Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 8 kwietnia 2025 13:03
  • Data zakończenia: 8 kwietnia 2025 13:16

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie urządzenie stosuje się do pomiaru rezystancji izolacji w systemach mechatronicznych?

A. multimetr
B. mostek pomiarowy
C. omomierz
D. induktor pomiarowy
Pomiar rezystancji izolacji w urządzeniach mechatronicznych jest procesem, który wymaga zastosowania odpowiednich narzędzi, a wykorzystanie omomierza, mostka pomiarowego czy multimetru do tego celu jest niewłaściwe z wielu powodów. Omomierz, mimo że jest przyrządem dedykowanym do pomiaru rezystancji, nie jest w stanie sprostać wymaganiom związanym z pomiarem izolacji. W jego przypadku mogą występować problemy z niskimi wartościami rezystancji, co prowadzi do zniekształcenia wyników, a także do ryzyka uszkodzenia izolacji. Mostek pomiarowy, z drugiej strony, zazwyczaj stosowany jest w przypadku pomiarów precyzyjnych, ale jego zastosowanie do pomiaru rezystancji izolacji może być nieodpowiednie, gdyż nie jest zaprojektowany do wykrywania problemów związanych z izolacjami przy wysokich napięciach, co jest istotne w kontekście bezpieczeństwa. Multimetr to narzędzie wszechstronne, jednak jego pomiarowe ograniczenia dotyczące rezystancji izolacji i niskiej pewności pomiarowej w takich zastosowaniach sprawiają, że nie jest on odpowiedni do tego zadania. Niezrozumienie różnic między tymi urządzeniami może prowadzić do wniosków, które mogą zagrażać bezpieczeństwu urządzeń oraz ich użytkowników. Właściwe metody pomiaru są kluczowe dla zapewnienia długotrwałej i bezpiecznej pracy urządzeń mechatronicznych oraz zgodności z normami branżowymi.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Jakim napięciem powinien być zasilany cyfrowy mikroprocesorowy regulator DCRK 12 przeznaczony do kompensacji współczynnikamocy w układach napędów elektrycznych, o danych znamionowychzamieszczonych w tabeli?

Ilość stopni regulacji12
Regulacja współczynnika mocy0,8 ind. – 0,8 pojem.
Napięcie zasilania i kontroli Ue380...415V, 50/60Hz
Roboczy zakres działania Ue- 15% ... +10% Ue
Wejście pomiarowe prądu5 A
Typ pomiaru napięcia i prąduRMS
Ilość wyjść przekaźnikowych12
Maksymalny prąd załączenia12 A

A. 230 V AC
B. 230 V DC
C. 400 V AC
D. 400 V DC
Wybór niewłaściwego napięcia zasilania, jak 230 V AC, 230 V DC lub 400 V DC, świadczy o niepełnym zrozumieniu specyfiki zasilania urządzeń przemysłowych. Napięcie 230 V AC to standard stosowany w instalacjach domowych i nie odpowiada wymaganiom regulatorów takich jak DCRK 12, które są zaprojektowane do działania w wyższych zakresach napięcia, typowych dla aplikacji przemysłowych. Zastosowanie napięcia 230 V w tych warunkach mogłoby prowadzić do niewystarczającej mocy do odpowiedniej pracy regulatora, co z kolei skutkowałoby niesatysfakcjonującą kompensacją współczynnika mocy oraz obniżeniem efektywności systemu. Napięcie 400 V DC również nie jest odpowiednie, ponieważ regulator DCRK 12 działa na prądzie przemiennym (AC) i nie może funkcjonować przy prądzie stałym (DC), co prowadziłoby do uszkodzenia urządzenia. Zrozumienie różnicy między zasilaniem AC a DC jest kluczowe w kontekście projektowania i eksploatacji systemów elektrycznych, w przeciwnym razie istnieje ryzyko poważnych uszkodzeń sprzętu oraz strat energetycznych. W branży przemysłowej, gdzie bezpieczeństwo i niezawodność są kluczowe, niezwykle istotne jest, aby stosować się do norm i standardów dotyczących napięcia zasilania, aby zapewnić prawidłowe funkcjonowanie i trwałość urządzeń.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Jakiego czujnika należy używać do obserwacji temperatury uzwojeń silnika elektrycznego?

A. Termistora
B. Hallotronu
C. Warystora
D. Tensometru
Termistor jest elementem, który charakteryzuje się znaczną zmianą oporu elektrycznego w zależności od temperatury. Dzięki temu, jest idealnym czujnikiem do monitorowania temperatury uzwojeń silników elektrycznych, gdzie precyzyjne pomiary są kluczowe dla ich prawidłowego działania. W zastosowaniach przemysłowych, gdzie silniki elektryczne pracują w trudnych warunkach, termistory są wykorzystywane do zabezpieczania przed przegrzaniem, co może prowadzić do uszkodzenia silnika. Dobrą praktyką w branży jest stosowanie termistorów w obwodach ochronnych, co pozwala na automatyczne wyłączanie silnika w przypadku osiągnięcia krytycznej temperatury. Dzięki swojej prostocie i niezawodności, termistory są szeroko stosowane w różnych aplikacjach, takich jak klimatyzacja, wentylacja oraz w systemach automatyki przemysłowej. Warto również zauważyć, że termistory mogą być stosowane w różnych konfiguracjach, co czyni je wszechstronnym rozwiązaniem w monitorowaniu temperatury. Ich zastosowanie przyczynia się do zwiększenia efektywności energetycznej oraz niezawodności urządzeń elektrycznych.

Pytanie 9

Czujnik rozpoznaje elementy z tworzywa sztucznego

A. indukcyjny
B. piezoelektryczny
C. magnetyczny
D. pojemnościowy
Czujniki magnetyczne, piezoelektryczne oraz indukcyjne nie są odpowiednimi narzędziami do wykrywania tworzyw sztucznych, co wynika z ich fundamentalnych zasad działania. Czujniki magnetyczne działają na zasadzie wykrywania pola magnetycznego, co oznacza, że są skuteczne jedynie dla materiałów ferromagnetycznych. Tworzywa sztuczne, będące materiałami dielektrycznymi, nie wykazują odpowiedzi na pole magnetyczne, więc ich zastosowanie w tym kontekście jest niewłaściwe. Czujniki piezoelektryczne z kolei wykorzystują efekt piezoelektryczny, który polega na generowaniu napięcia elektrycznego w odpowiedzi na mechaniczne naprężenia. Chociaż mogą być użyte do wykrywania zmian ciśnienia czy drgań, nie są skuteczne w wykrywaniu materiałów takich jak tworzywa sztuczne, ponieważ nie reagują na ich obecność jako taką. Wreszcie czujniki indukcyjne są skomponowane w taki sposób, aby wykrywać przewodzące materiały metalowe poprzez generowanie i analizowanie pola elektromagnetycznego. Ich zastosowanie do wykrywania tworzyw sztucznych jest zatem nieefektywne, ponieważ materiały te nie wykazują odpowiedzi na pole indukcyjne. W praktyce, wybór odpowiedniego czujnika może być kluczowy dla zapewnienia efektywności procesów produkcyjnych. Dlatego ważne jest zrozumienie zasad działania różnych typów czujników i ich zastosowań, aby uniknąć pomyłek w doborze technologii.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Dane techniczne zamieszczone w tabeli dotyczą

Rodzaj cieczy hydraulicznejolej mineralny
Zakres temperatury pracy-25°C do +80°C
Standardowa filtracja cieczy hydraulicznej90 μm
Zakres lepkości cieczy hydraulicznej16 mm²/s do 200 mm²/s
Poziom głośności65 dB (A)
Napięcie zasilania silnika230 V 50 Hz, 3x400 V 50 Hz
Napięcie zasilania rozdzielaczy24 V DC, 230 V 50 Hz
Pojemność nominalna zbiornika7 dm³20 dm³

A. sprężarki powietrza.
B. rozdzielacza pneumatycznego.
C. zasilacza hydraulicznego.
D. rozdzielacza hydraulicznego.
Wybór rozdzielacza pneumatycznego, sprężarki powietrza lub rozdzielacza hydraulicznego jako odpowiedzi może wynikać z niepełnego zrozumienia funkcji i zastosowań tych urządzeń. Rozdzielacz pneumatyczny jest elementem systemów pneumatycznych, które działają na zasadzie sprężonego powietrza. Tego typu urządzenia nie wykorzystują cieczy hydraulicznych ani nie wymagają filtracji, co stanowi fundamentalną różnicę w porównaniu do zasilaczy hydraulicznych. Sprężarki powietrza zajmują się przetwarzaniem powietrza, a nie cieczy, co również sprawia, że ich dane techniczne nie są zgodne z informacjami zawartymi w tabeli. Rozdzielacz hydrauliczny natomiast może być mylony z zasilaczem hydrauliczny, lecz pełni inną funkcję, polegającą na kierowaniu przepływu cieczy hydraulicznej w systemie. Brak umiejętności rozróżnienia między tymi urządzeniami może prowadzić do błędnych wniosków, dlatego ważne jest, aby zrozumieć, że każdy z wymienionych elementów ma unikalne właściwości i zastosowania. Przykłady zastosowań, takie jak systemy sterowania w hydraulice, wymagają dokładnego przemyślenia, jakie urządzenia będą użyte. Kluczowe dla zrozumienia jest również zapoznanie się z dokumentacją techniczną oraz standardami branżowymi, które dostarczają istotnych informacji o parametrach technicznych i wymaganiach dla poszczególnych komponentów systemów hydraulicznych.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

W systemie regulacji dwupołożeniowej

A. zadowalające wyniki regulacji można osiągnąć jedynie dla obiektów o niewielkiej inercji
B. nie uzyskuje się zerowej średniej wartości błędu
C. można osiągnąć zerowy błąd pomiarowy
D. wartość regulowana w stanie ustalonym oscyluje wokół wartości zadanej
W kontekście regulacji dwupołożeniowej, niepoprawne odpowiedzi wskazują na pewne nieporozumienia dotyczące podstawowych zasad działania takich systemów. Stwierdzenie, że istnieje możliwość uzyskania zerowego uchybu, jest mylne, ponieważ w regulacji dwupołożeniowej zawsze występują oscylacje wokół wartości zadanej. Gdy system jest załączany i wyłączany, wartość regulowana nie osiąga jedynie stanu ustalonego, ale oscyluje wokół niego z powodu opóźnień i inercji obiektu regulowanego. Kolejnym nieprawidłowym stwierdzeniem jest to, że w regulacji dwupołożeniowej nie uzyskuje się zerowania średniej wartości błędu. W rzeczywistości, choć średni błąd może być minimalizowany, to wprowadzenie oscylacji powoduje, że błąd nie jest zerowy. Dodatkowo, twierdzenie, że zadowalającą wartość regulacji uzyskuje się tylko dla obiektów o małej inercji, również jest nieprecyzyjne. Regulacja dwupołożeniowa można stosować także w obiektach o dużej inercji, lecz w takich przypadkach mogą być wymagane dodatkowe techniki stabilizacji, aby zredukować oscylacje. Typowe błędy myślowe w analizie regulacji dwupołożeniowej często wynikają z ignorowania dynamiki systemu oraz niepełnego zrozumienia wpływu inercji na odpowiedź systemu.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Właściwości takie jak moc silnika, liczba cylindrów, stopień sprężania, pojemność zbiornika, efektywność oraz ciśnienie są typowe dla

A. sprężarki tłokowej
B. silnika hydraulicznego
C. pompy hydraulicznej
D. siłownika pneumatycznego
Podczas oceny sprężarek tłokowych musisz zwrócić uwagę na kilka istotnych parametrów, takich jak moc silnika, liczba cylindrów, stopnie sprężania czy pojemność zbiornika. Te rzeczy są naprawdę ważne w różnych branżach, od klimatyzacji po chłodnictwo. Sprężarka tłokowa działa tak, że tłok w cylindrze przesuwa się, a to właśnie zwiększa ciśnienie gazu. Dzięki takim wskaźnikom jak ciśnienie robocze czy wydajność powietrza inżynierowie mogą dobrać sprzęt do konkretnego zastosowania, gdzie potrzebna jest odpowiednia moc sprężania. Ogólnie znajomość tych parametrów pozwala na lepsze projektowanie i dobór sprężarek, co jest ważne w branży. Rozumienie tych kwestii jest kluczowe, jeśli chcesz, żeby systemy działały efektywnie i były niezawodne.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Co obejmuje zakres pomiarowy czujnika?

A. wykres ilustrujący zależność między wartościami: wejściową i wyjściową czujnika
B. maksymalna różnica pomiędzy wartością zmierzoną a rzeczywistą
C. najniższa wartość czynników wejściowych, która jest możliwa do pomiaru
D. zakres wartości czynników wejściowych, które dany czujnik jest w stanie zmierzyć
Zakres pomiarowy czujnika to kluczowe pojęcie w technologii pomiarowej, definiujące przedział wartości, w którym dany czujnik może prawidłowo funkcjonować. Odpowiedź "przedział wartości wielkości wejściowych czujnika, jaki może być mierzony danym czujnikiem" precyzyjnie opisuje, że każdy czujnik ma określone granice, wewnątrz których jego pomiary są wiarygodne. Na przykład, czujnik temperatury może mieć zakres od -50°C do 150°C, co oznacza, że wartości poza tym przedziałem mogą być niedokładne lub całkowicie niemożliwe do zmierzenia. Zrozumienie zakresu pomiarowego jest niezbędne przy doborze odpowiednich czujników do konkretnego zastosowania, co jest zgodne z praktykami inżynieryjnymi i normami branżowymi, takimi jak ISO 9001. W praktyce, wybór czujnika z nieodpowiednim zakresem pomiarowym może prowadzić do błędów w danych, co może mieć poważne konsekwencje w różnych dziedzinach przemysłu, takich jak automatyka czy monitorowanie procesów chemicznych.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Podczas eksploatacji silnika prądu stałego zauważono iskrzenie szczotek spowodowane zanieczyszczeniem komutatora. Aby pozbyć się tej awarii, należy wyłączyć silnik, a potem

A. przetrzeć komutator mokrą szmatką
B. wyczyścić komutator i szczotki
C. oczyścić komutator i wypolerować papierem ściernym
D. nałożyć na komutator olej lub smar
Odpowiedź "oczyścić komutator i wypolerować papierem ściernym" jest prawidłowa, ponieważ usunięcie zabrudzeń z komutatora jest kluczowym krokiem w utrzymaniu silnika prądu stałego w dobrym stanie. Komutator, będący istotnym elementem silnika, pełni funkcję przełączania prądu w uzwojeniach wirnika. Zabrudzenia, takie jak resztki węgla ze szczotek czy inne zanieczyszczenia, mogą prowadzić do iskrzenia, co z kolei zwiększa ryzyko uszkodzenia zarówno komutatora, jak i szczotek. Wypolerowanie komutatora papierem ściernym pozwala na usunięcie nie tylko zabrudzeń, ale również nierówności, co zapewnia lepszy kontakt ze szczotkami. Ta procedura jest zgodna z najlepszymi praktykami w branży, które zalecają regularne czyszczenie i konserwację komutatorów w celu zapewnienia ich długotrwałej wydajności. Przykładem zastosowania tej techniki może być regularna konserwacja silników w aplikacjach przemysłowych, gdzie niezawodność pracy jest kluczowa. Dobrą praktyką jest również monitorowanie stanu komutatora i regularne jego czyszczenie, co pozwala na minimalizowanie ryzyka awarii oraz oszczędności związane z kosztami naprawy.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Która z poniższych usterek urządzenia II klasy ochronności stwarza najwyższe ryzyko porażenia prądem?

A. Przepalenie bezpiecznika znajdującego się wewnątrz urządzenia
B. Uszkodzenie przewodu ochronnego PE
C. Przepalenie uzwojeń silnika umieszczonego w urządzeniu
D. Uszkodzenie izolacji kabla zasilającego urządzenie
W przypadku awarii urządzenia II klasy ochronności, niektóre odpowiedzi mogą wydawać się logiczne, ale w rzeczywistości nie uwzględniają kluczowych aspektów ochrony przed porażeniem elektrycznym. Przepalenie uzwojeń silnika, mimo że może prowadzić do awarii, nie stwarza bezpośredniego zagrożenia porażenia prądem. W rzeczywistości, urządzenia te są projektowane tak, aby wytrzymały pewne obciążenia i przestarzałe uzwojenia zwykle powodują jedynie spadek efektywności. Z kolei przepalenie bezpiecznika wewnątrz urządzenia również nie jest bezpośrednim zagrożeniem, ponieważ jego funkcją jest ochrona przed przeciążeniem i zwarciem, co w rzeczywistości zapobiega potencjalnym uszkodzeniom. Uszkodzenie przewodu ochronnego PE, chociaż niebezpieczne, w urządzeniach klasy II nie jest tak krytyczne jak uszkodzenie izolacji przewodu zasilającego. W urządzeniach tej klasy, przewód PE jest zwykle zbędny, ponieważ ochrona przed porażeniem opiera się na podwójnej izolacji. Kluczowym błędem myślowym jest niedocenianie znaczenia izolacji oraz mylenie różnych rodzajów awarii. Zrozumienie, że izolacja stanowi pierwszą linię obrony przed porażeniem, jest krytyczne w przestrzeganiu standardów bezpieczeństwa, takich jak PN-EN 61140.