Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 7 czerwca 2025 23:37
  • Data zakończenia: 7 czerwca 2025 23:50

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W firmie produkującej radiatory z aluminiowych kształtowników pracuje pięć osób. Każda z nich wytwarza codziennie 30 radiatorów. Na wykonanie 10 radiatorów potrzebny jest jeden kształtownik aluminiowy. Ile wynosi dzienny koszt nabycia materiałów do produkcji, jeśli jeden kształtownik kosztuje 50 zł?

A. 750 zł
B. 150 zł
C. 500 zł
D. 2 500 zł
Aby obliczyć dzienny koszt zakupu materiałów do produkcji radiatorów, należy najpierw ustalić, ile radiatorów produkują wszyscy pracownicy razem. Każdy z pięciu pracowników wykonuje 30 radiatorów dziennie, co daje 5 * 30 = 150 radiatorów. Ponieważ jeden kształtownik aluminiowy wystarcza na wykonanie 10 radiatorów, potrzebujemy 150 / 10 = 15 kształtowników. Koszt jednego kształtownika wynosi 50 zł, zatem całkowity koszt zakupu materiałów wyniesie 15 * 50 zł = 750 zł. W praktyce, znajomość kosztów materiałowych jest kluczowa dla efektywnego zarządzania produkcją w zakładach przemysłowych. Monitorowanie tych kosztów pozwala na optymalizację procesów i zwiększenie rentowności firmy. Zastosowanie odpowiednich standardów dotyczących zarządzania materiałami, takich jak Just-In-Time, może również przyczynić się do redukcji nadmiarów materiałowych oraz kosztów magazynowania.

Pytanie 2

Silne pole elektrostatyczne wywołuje

A. wzrost temperatury otoczenia
B. wzrost wilgotności powietrza
C. zakłócenia w funkcjonowaniu aparatury kontrolno-pomiarowej
D. rozdzielenie laminatu, używanego jako podłoże płytki drukowanej
Zwiększenie wilgotności powietrza, rozwarstwienie laminatu stosowanego jako podłoże płytki drukowanej oraz zwiększenie temperatury otoczenia to zjawiska, które nie są bezpośrednio związane z działaniem silnego pola elektrostatycznego. Wilgotność powietrza jest zjawiskiem meteorologicznym, które jest wynikiem parowania wody i nie ma bezpośredniego powiązania z polem elektrostatycznym. Często występuje nieporozumienie, że pole elektrostatyczne może wpływać na warunki atmosferyczne, co jest błędne, ponieważ te zjawiska są niezależne. Co więcej, rozwarstwienie laminatu jest problemem mechanicznym, który zwykle jest spowodowany niewłaściwą obróbką materiałów czy ich złym składem chemicznym, a nie działaniem pola elektrostatycznego. W kontekście elektroniki, rozwarstwienie laminatu może prowadzić do uszkodzenia układów elektronicznych, ale nie jest wynikiem działania pola elektrostatycznego. Zwiększenie temperatury otoczenia również nie jest bezpośrednio związane z polem elektrostatycznym. W rzeczywistości, zmiany temperatury są skutkiem wielu różnych czynników, takich jak źródła ciepła, warunki pogodowe, a nie działania pól elektrostatycznych. Często osoby podejmujące takie błędne wnioski oparte są na niepełnym zrozumieniu mechanizmów fizycznych rządzących tymi zjawiskami, co prowadzi do mylnych przekonań, że pole elektrostatyczne ma szerszy wpływ na otoczenie, niż ma to miejsce w rzeczywistości.

Pytanie 3

Gdy zachodzi potrzeba połączenia światłowodu z przewodem skrętkowym, powinno się użyć

A. konwerter.
B. wzmacniak.
C. koncentrator.
D. router.
Konwerter to urządzenie, które pozwala na łączenie różnych typów mediów transmisyjnych, jak światłowód i skrętka. W kontekście sieci, konwertery światłowodowe są naprawdę ważne, bo integrują różne technologie. Właściwie to, ich głównym zadaniem jest zmiana sygnału optycznego z światłowodu na sygnał elektryczny, który można przesłać przez skrętkę, i odwrotnie. To jest istotne, kiedy chcemy rozbudować lokalną sieć, korzystając z już istniejących połączeń, jak sieci Ethernet. Przykład? Jeśli mamy budynek, który potrzebuje internetu, to możemy połączyć go z centralą przez światłowód, ale w samej budowli kontynuować transmisję sygnału przez skrętkę. To jest zgodne z najlepszymi praktykami w budowie sieci, a także z normami IEEE 802.3, które określają metody przesyłu w lokalnych sieciach. Dlatego konwerter to kluczowy element nowoczesnych architektur sieciowych.

Pytanie 4

W regulatorze PID podwojono stałą czasową Ti (czas całkowania), co skutkuje

A. wzrostem amplitudy oscylacji
B. wydłużeniem czasu regulacji
C. zmniejszeniem stabilności układu
D. brakiem zmian w czasie regulacji
Zwiększenie stałej czasowej Ti, która odpowiada za czas całkowania w regulatorze PID, bezpośrednio wpływa na wydłużenie czasu regulacji. Stała Ti jest kluczowym parametrem, który określa, jak szybko regulator będzie integrował błąd w systemie. Kiedy Ti jest większe, to regulator będzie wolniej reagował na zmiany w błędzie, co prowadzi do dłuższego czasu odpowiedzi na zakłócenia. W praktyce oznacza to, że system będzie potrzebował więcej czasu na osiągnięcie zadanego poziomu, co jest szczególnie istotne w aplikacjach wymagających precyzyjnej kontroli, takich jak automatyka przemysłowa czy systemy HVAC. Wartości Ti powinny być dostosowywane zgodnie z wymaganiami procesu, a ich nadmierne zwiększenie może prowadzić do opóźnień w reakcji systemu, co jest niekorzystne. W kontekście projektowania systemów automatyki, należy stosować metody dostrajania parametrów PID, takie jak metoda Zieglera-Nicholsa, aby uzyskać optymalne wartości Ti, co pozwoli na efektywniejszą regulację.

Pytanie 5

Jak zwiększenie rezystancji obciążenia w układach wzmacniaczy rezystancyjnych wpłynie na

A. zmniejszenie pasma przenoszenia
B. podwyższenie napięcia zasilającego
C. wzrost mocy wyjściowej
D. spadek mocy wyjściowej
Zrozumienie wpływu rezystancji obciążenia na wzmacniacze rezystancyjne jest kluczowe w projektowaniu i użytkowaniu systemów elektronicznych. Wybór odpowiedzi sugerujących, że zwiększenie rezystancji obciążenia prowadzi do zwiększenia napięcia zasilania lub wzrostu mocy wyjściowej, opiera się na nieprawidłowym rozumieniu podstawowych zasad działania wzmacniaczy. W rzeczywistości, napięcie zasilania jest na stałym poziomie, które jest dostosowane do wymagań układu. Zwiększenie rezystancji obciążenia nie wpływa na to napięcie; zamiast tego, zmiana ta wpływa na ilość prądu, który może przepływać przez obciążenie. Wzrost rezystancji oznacza spadek prądu, co w konsekwencji prowadzi do zmniejszenia mocy wyjściowej, a nie jej wzrostu. Odpowiedzi sugerujące zmniejszenie pasma przenoszenia także są mylące. Pasmo przenoszenia wzmacniacza zależy głównie od jego topologii oraz użytych komponentów, a nie tylko od rezystancji obciążenia. W praktyce, niewłaściwe połączenie lub zła wartość rezystancji obciążenia mogą prowadzić do nieoptymalnego działania urządzenia, co jest często wynikiem braku zrozumienia związku pomiędzy rezystancją a parametrami wyjściowymi wzmacniacza. Takie błędne myślenie może prowadzić do nieefektywnego projektowania systemów audio czy pomiarowych, co podkreśla znaczenie znajomości teorii w praktyce inżynieryjnej.

Pytanie 6

Co należy zrobić, gdy pracownik omdleje w źle wentylowanej pracowni elektronicznej?

A. ustawić poszkodowanego w pozycji siedzącej i dać mu wodę do picia
B. wynieść poszkodowanego na świeże powietrze, położyć na plecach i unieść kończyny w górę
C. położyć poszkodowanego na plecach, umieścić zimny kompres na czole i monitorować tętno
D. wynieść poszkodowanego na świeże powietrze i ułożyć go na brzuchu
Odpowiedź sugerująca wyniesienie poszkodowanego na świeże powietrze, ułożenie go na plecach oraz uniesienie kończyn jest poprawna z kilku powodów. Omdlenie często jest wynikiem obniżonego ciśnienia krwi, co prowadzi do niedotlenienia mózgu. Dlatego kluczowe jest jak najszybsze zapewnienie dostępu świeżego powietrza, co zwiększa ilość tlenu dostarczanego do organizmu. Ułożenie poszkodowanego na plecach z uniesionymi nogami wspomaga krążenie krwi i przywraca prawidłowe ciśnienie w organizmie. W praktyce, tak postępowanie jest zgodne z wytycznymi Europejskiej Rady Resuscytacji, które podkreślają znaczenie pozycji leżącej w przypadku omdlenia. Ważne jest również monitorowanie stanu poszkodowanego, aby w razie potrzeby móc szybko zareagować. Przykładem może być sytuacja, w której pracownik w warsztacie elektronicznym doświadcza omdlenia z powodu wysokiej temperatury oraz braku wentylacji. W takich okolicznościach szybkie działanie może uratować życie.

Pytanie 7

Jakie urządzenie jest przeznaczone do bezdotykowego pomiaru temperatury?

A. luksomierza
B. pirometru
C. multimetru
D. kalorymetru
Pirometr jest urządzeniem służącym do bezdotykowego pomiaru temperatury obiektów. Działa na zasadzie rejestrowania promieniowania podczerwonego emitowanego przez ciało, co pozwala na określenie jego temperatury bez konieczności bezpośredniego kontaktu. Pirometry są niezwykle przydatne w sytuacjach, gdzie tradycyjne metody pomiaru, takie jak termometry, mogą być niepraktyczne lub niebezpieczne, na przykład w przypadku gorących powierzchni, elementów w ruchu lub materiałów szkodliwych. W przemyśle, medycynie, a także w laboratoriach, użycie pirometrów pozwala na szybkie i dokładne pomiary, co jest zgodne z najlepszymi praktykami w zakresie monitorowania procesów technologicznych oraz zapewnienia bezpieczeństwa. Warto również zaznaczyć, że wiele pirometrów jest wyposażonych w funkcje, które umożliwiają zapisywanie danych oraz ich analizę, co zwiększa efektywność monitorowania temperatury w dłuższym okresie czasu.

Pytanie 8

Reflektometr optyczny to urządzenie wykorzystywane do identyfikacji uszkodzeń w

A. światłowodach
B. matrycach LED RGB
C. matrycach LCD
D. ogniwach fotowoltaicznych
Reflektometr optyczny, znany również jako OTDR (Optical Time Domain Reflectometer), to zaawansowane narzędzie służące do diagnozowania oraz lokalizacji uszkodzeń w systemach światłowodowych. Działa na zasadzie wysyłania impulsów światła przez włókno optyczne, a następnie analizowania odbitych sygnałów, co pozwala na określenie lokalizacji oraz charakterystyki uszkodzeń. Przykładowo, w przypadku przerwania włókna, OTDR jest w stanie zidentyfikować miejsce usterki z dużą precyzją, co jest kluczowe dla szybkiej naprawy i minimalizacji przestojów w sieciach telekomunikacyjnych. W branży telekomunikacyjnej stosuje się standardy ITU-T G.651 i G.652, które regulują parametry włókien optycznych, a reflektometry optyczne są uznawane za standardowe narzędzie w monitorowaniu ich wydajności. Dzięki zastosowaniu OTDR można także ocenić jakość połączeń, co jest istotne przy wdrażaniu nowych instalacji. Wiedza na temat użycia reflektometrów optycznych jest niezbędna dla techników i inżynierów w dziedzinie telekomunikacji.

Pytanie 9

Jakie urządzenia należy wykorzystać do strojenia toru pośredniej częstotliwości w radiowych odbiornikach?

A. miernik magnetoelektryczny
B. mostek pomiarowy
C. wobulator i oscyloskop
D. multimetr cyfrowy
Wobulator i oscyloskop to naprawdę ważne sprzęty, gdy mówimy o strojeniu toru pośredniej częstotliwości w radiu. Wobulator generuje różne sygnały, co jest super przydatne do testowania i dostrajania obwodów. Działa to na zasadzie modulacji sygnału, więc można bardzo precyzyjnie ustawić częstotliwość odbioru. Oscyloskop natomiast to narzędzie, które pozwala nam widzieć sygnały elektroniczne na bieżąco. Dzięki temu inżynierowie mogą dostrzegać problemy z jakością sygnału, na przykład szumy czy zniekształcenia. Weźmy na przykład sytuację, kiedy stroimy tor pośredniej częstotliwości – wobulator może wprowadzić sygnał o znanej częstotliwości, a oscyloskop pokazuje, czy odbiornik to dobrze demoduluje. Takie podejście jest naprawdę zgodne z tym, co robią specjaliści w branży i podkreśla, jak ważna jest dokładna analiza sygnałów podczas strojenia.

Pytanie 10

Adres IP bramy w rejestratorze, który jest podłączony do sieci komputerowej, to adres

A. rutera
B. kamery
C. serwera DNS
D. przełącznika
Błędne odpowiedzi na to pytanie mogą wynikać z nieporozumienia dotyczącego roli poszczególnych urządzeń w sieci. Przełącznik to urządzenie, które działa na poziomie warstwy drugiej modelu OSI, odpowiedzialne za przekazywanie ramek danych w obrębie lokalnej sieci. Nie ma on funkcji bramy, ponieważ nie obsługuje komunikacji pomiędzy różnymi sieciami. Kamery, z drugiej strony, to urządzenia końcowe, które przesyłają dane za pomocą protokołów sieciowych, ale również nie pełnią roli bramy. Serwer DNS działa na poziomie tłumaczenia nazw domenowych na adresy IP, co jest niezbędne do lokalizowania zasobów w sieci, jednak jego funkcjonalność również nie obejmuje działania jako brama. Typowym błędem w rozumieniu tego zagadnienia jest mylenie funkcji przełącznika z funkcjami rutera oraz nieznajomość podstawowych zadań serwera DNS. Aby skutecznie zarządzać siecią, należy zrozumieć, że ruter jest odpowiedzialny za komunikację zewnętrzną, a inne urządzenia, takie jak przełączniki, kamery czy serwery DNS, pełnią uzupełniające role, lecz nie mogą działać jako brama bezposrednia.

Pytanie 11

Klient zgłasza problem z zamontowanym systemem alarmowym, który składa się z 4 czujników PIR umieszczonych na wysokości 2,5 m, centrali alarmowej zainstalowanej na poddaszu oraz syreny zewnętrznej umieszczonej na wysokości 4 m. Jakie narzędzia są niezbędne do identyfikacji usterki systemu alarmowego w obiekcie?

A. Drabina, multimetr, zestaw wkrętaków, zestaw szczypiec
B. Wiertarka, lutownica, zestaw wkrętaków, zestaw szczypiec, szukacz par przewodów
C. Drabina, multimetr, wiertarka, ściągacz izolacji
D. Multimetr, wiertarka, lutownica, zestaw wkrętaków, szczypce boczne
Zestawy narzędzi, które wymieniłeś, zawierają elementy, które raczej nie są potrzebne do diagnostyki w systemie alarmowym. Na przykład wiertarka – niby jest przydatna, ale głównie w czasie instalacji, a nie podczas diagnozowania usterek. Użycie wiertarki w tej sytuacji może prowadzić do niepotrzebnych uszkodzeń i błędnej manipulacji przy zainstalowanych elementach. Lutownica też nie jest konieczna, bo najczęściej problemy z alarmami dotyczą połączeń, a nie uszkodzonych elementów. Choć zestaw wkrętaków i szczypiec czasami się pojawia w odpowiedziach, to stosowanie ich razem z niewłaściwymi narzędziami, jak wiertarka czy lutownica, nie daje pełnego zestawu do skutecznej diagnostyki. Ważne, żeby rozumieć, jakie narzędzia są kluczowe w danej sytuacji, bo błędne decyzje mogą wpłynąć na efektywność i bezpieczeństwo pracy. Narzędzia muszą być dostosowane do konkretnego problemu i zgadzać się z najlepszymi praktykami w diagnostyce systemów alarmowych.

Pytanie 12

W osiedlowym szlabanie uszkodzony został pilot zdalnego sterowania działający w systemie Keeloq. Konieczna jest jego wymiana na pilot

A. jedynie dostarczony przez producenta szlabanu
B. uniwersalny (samouczący)
C. jakikolwiek stałokodowy
D. jakikolwiek zmiennokodowy
Wybór innych opcji, takich jak pilot dowolny stałokodowy, zmiennokodowy czy uniwersalny, jest błędny z kilku powodów. Piloty stałokodowe działają na zasadzie wysyłania tego samego kodu za każdym razem, co czyni je łatwymi do skopiowania i naraża system na ataki. W kontekście systemów takich jak Keeloq, które są oparte na zmiennym kodowaniu, piloty stałokodowe nie są w stanie zapewnić wymaganej ochrony i ich użycie może skutkować poważnymi lukami bezpieczeństwa. Z kolei piloty zmiennokodowe, choć bardziej zaawansowane, niekoniecznie będą kompatybilne z konkretnym systemem szlabanu, co może prowadzić do problemów z działaniem. Uniwersalne piloty samouczące, mimo że mogą być wygodne, również nie gwarantują pełnej kompatybilności z systemem Keeloq, gdyż mogą nie obsługiwać specyficznych protokołów kodowania stosowanych przez producenta. Typowym błędem jest założenie, że jakikolwiek pilot będzie współpracował z danym systemem, co często prowadzi do frustracji użytkowników i dodatkowych kosztów związanych z ewentualnymi naprawami. W związku z tym, kluczowe jest korzystanie z pilotów dostarczonych przez producenta, które gwarantują nie tylko prawidłowe działanie, ale również bezpieczeństwo całego systemu.

Pytanie 13

W jaki sposób można usunąć dane z pamięci EPROM, aby ponownie ją zaprogramować?

A. Podając odpowiedni sygnał logiczny na wejście CLR
B. Umieszczając układ pamięci w promieniowaniu podczerwonym
C. Podając odpowiedni sygnał logiczny na wejście Write Enable
D. Umieszczając układ pamięci w promieniowaniu ultrafioletowym
Podanie odpowiedniego poziomu logicznego na wejście CLR oraz na wejście Write Enable to koncepcje, które dotyczą innych typów pamięci, ale nie mają zastosowania w kontekście EPROM. W przypadku pamięci RAM lub innych układów, manipulowanie sygnałami na takich wejściach może prowadzić do kasowania lub przerywania operacji zapisu, jednak EPROM nie jest projektowany w ten sposób. Odpowiedź związana z umieszczaniem układu pamięci w świetle podczerwonym jest także błędna, ponieważ pamięć EPROM nie reaguje na ten zakres promieniowania. W rzeczywistości, światło podczerwone ma znacznie dłuższą długość fali niż to, które jest wymagane do efektywnego kasowania danych w EPROM, co czyni tę metodę całkowicie nieodpowiednią. Warto zrozumieć, że technologia EPROM opiera się na specyficznych mechanizmach, gdzie kasowanie wymaga energii dostarczanej w formie promieniowania UV. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków to mylenie różnych technologii pamięci oraz brak zrozumienia mechanizmu działania EPROM. Dlatego kluczowe jest, aby podczas programowania i kasowania pamięci wbudowanych stosować metody zgodne z ich specyfiką technologiczną i unikać nieuzasadnionych uogólnień dotyczących innych typów pamięci.

Pytanie 14

W jakich systemach wykorzystywany jest sterownik PLC?

A. w transmisji światłowodowej
B. w telewizji dozorowej
C. w sieciach komputerowych
D. w automatyce przemysłowej
Wybór odpowiedzi związanej z sieciami komputerowymi czy transmisją światłowodową pokazuje, że może nie do końca rozumiesz, do czego służą sterowniki PLC. One są głównie do automatyki przemysłowej i odpowiadają za sterowanie procesami. Oczywiście, są interfejsy, które łączą PLC z systemami komputerowymi, ale same sterowniki nie zajmują się zarządzaniem sieciami. Podobnie z transmisją światłowodową – PLC nie obsługują sygnałów optycznych, tylko elektroniczne. Co do telewizji dozorowej, to prawda, że mogą być częścią systemów monitoringu, ale nie odpowiadają za ich działanie. Ważne by zrozumieć, co te technologie potrafią, żeby unikać takich pomyłek. Odpowiednie zrozumienie roli PLC w automatyce jest kluczowe, żeby dobrze projektować i wdrażać systemy.

Pytanie 15

W przypadku połączeń znacznie oddalonych urządzeń akustycznych, jakie kable powinny być używane?

A. sygnalizacyjne YKSwXs
B. symetryczne (balanced)
C. sygnalizacyjne YKSY
D. niesymetryczne (unbalanced)
Odpowiedź "symetryczne (balanced)" jest poprawna, ponieważ w przypadku połączeń znacznie odległych urządzeń akustycznych ważne jest minimalizowanie zakłóceń elektromagnetycznych oraz strat sygnału. Kable symetryczne są zaprojektowane w taki sposób, że wykorzystują dwa przewody do przesyłania sygnału, co pozwala na zniesienie zakłóceń dzięki różnicy potencjałów między nimi. W praktyce oznacza to, że sygnał przesyłany jest w formie różnicy napięć, co czyni go odpornym na wpływ zewnętrznych źródeł zakłóceń, takich jak inne urządzenia elektroniczne czy linie energetyczne. Przykładem zastosowania kabli symetrycznych są profesjonalne systemy nagłośnieniowe, gdzie długie odległości pomiędzy mikrofonami a mikserami wymagają wysokiej jakości przesyłu dźwięku bez straty jego integralności. W branży audio standardem jest używanie kabli XLR, które są typowymi kablami symetrycznymi, zapewniającymi niezawodność i wysoką jakość dźwięku. Znajomość tych aspektów jest niezbędna dla każdego technika dźwięku, aby zapewnić optymalne działanie systemów akustycznych.

Pytanie 16

Ile przewodów potrzeba do standardowego podłączenia czujnika ruchu z antysabotażowym wejściem?

A. 8
B. 4
C. 2
D. 6
Czujniki ruchu z wejściem antysabotażowym wymagają standardowego podłączenia z wykorzystaniem sześciu żył, co zapewnia prawidłową komunikację oraz zasilanie urządzenia. Do podstawowych funkcji należy zasilanie czujnika, wyjście alarmowe, oraz dwa obwody do połączenia antysabotażowego, które informują o ewentualnej próbie sabotażu. Dodatkowe żyły mogą być używane do komunikacji z centralą alarmową lub innymi elementami systemu zabezpieczeń. W praktyce, stosując sześć żył, zapewniamy nie tylko poprawne działanie czujnika, ale także jego integrację z innymi elementami systemu zabezpieczeń, co jest kluczowe w kontekście efektywnego monitorowania obszarów. Standardy branżowe, takie jak EN 50131, podkreślają znaczenie zgodności z takimi wymaganiami dla zapewnienia wysokiego poziomu bezpieczeństwa. Warto również pamiętać, że dobór odpowiednich żył i sposób ich prowadzenia może wpływać na skuteczność całego systemu alarmowego.

Pytanie 17

W instrukcji dotyczącej uruchamiania urządzenia znajduje się polecenie: "...dostosować obwód rezonansowy przy pomocy trymera do częstotliwości...". Czym jest trymer?

A. cewką regulowaną
B. potencjometrem
C. filtr z regulowaną indukcyjnością
D. kondensatorem dostrojczym
Kondensator dostrojczy jest elementem elektronicznym, który jest używany do regulacji częstotliwości obwodów rezonansowych w aplikacjach takich jak radioodbiorniki, nadajniki i systemy komunikacyjne. Działa na zasadzie zmiany pojemności, co wpływa na częstotliwość rezonansową obwodu LC (indukcyjność i kondensator). Przykładem zastosowania kondensatora dostrojczego może być dostrajanie fal radiowych w odbiornikach radiowych, gdzie użytkownik może dostosować pojemność kondensatora, aby odbierać różne stacje. W branży elektronicznej, szczególnie w projektowaniu filtrów pasmowych czy oscylatorów, stosowanie kondensatorów dostrojczych jest standardem, ponieważ pozwala na precyzyjne dostrojenie sygnałów do odpowiednich częstotliwości. Ponadto, dobrą praktyką jest zazwyczaj korzystanie z kondensatorów o wysokiej jakości dielektrycznej, co minimalizuje straty energii i poprawia stabilność działania urządzenia. W kontekście obwodów elektronicznych, znajomość właściwości kondensatorów dostrojczych i ich zastosowań jest kluczowa dla inżynierów i techników zajmujących się elektroniką.

Pytanie 18

Urządzenie działające w sieci komputerowej, mające na celu powiększenie zasięgu transmisji przez odtworzenie pierwotnego kształtu sygnału, bez oceny poprawności przesyłanych informacji, to

A. hub
B. bridge
C. repeater
D. switch
Wybór hubu, switcha lub bridge'a jako odpowiedzi na to pytanie jest wynikiem niepełnego zrozumienia ról, jakie pełnią te urządzenia w sieci komputerowej. Hub, będący jednym z najstarszych urządzeń, działa na zasadzie rozsyłania sygnału do wszystkich portów, co skutkuje dużą ilością kolizji i obniżeniem efektywności sieci. Hub nie regeneruje sygnału, a jedynie go powiela, co czyni go mniej wydajnym rozwiązaniem w porównaniu do repeatera. Switch, z drugiej strony, operuje na warstwie drugiej modelu OSI i jest w stanie inteligentnie kierować dane do odpowiednich urządzeń w sieci, co czyni go bardziej złożonym urządzeniem, ale nie ma on na celu zwiększenia zasięgu sygnału. Bridge działa na zasadzie łączenia dwóch lub więcej segmentów sieci, ale również nie regeneruje sygnału i wymaga analizy danych. Kluczowym błędem w myśleniu jest mylenie regeneracji sygnału z analizą i kierowaniem danych. Wybierając niewłaściwe urządzenie, można wprowadzić wiele problemów, takich jak spadek wydajności czy problemy z połączeniem, co może negatywnie wpłynąć na całą infrastrukturę sieciową.

Pytanie 19

Na podstawie informacji zawartych w tabeli pomiarowej, oszacuj wzmocnienie napięciowe KUMAX dla częstotliwości środkowej fO=260 Hz? Uwej=200mV

f[Hz]4080100140180220260
Uwyj
[V]
0,410,821,21,411,922,12,40
f[Hz]300340380420460500540
Uwyj
[V]
2,21,921,431,20,820,420,22

A. KUMAX = 12 V/V
B. KUMAX = 260 V/V
C. KUMAX = 2,4 V/V
D. KUMAX = 24 V/V
Wybór odpowiedzi innej niż KUMAX = 12 V/V może wynikać z kilku nieporozumień dotyczących pomiarów wzmocnienia napięciowego. Na przykład, jeżeli ktoś obliczał wzmocnienie na podstawie niewłaściwych wartości napięcia, mógł dojść do błędnych wniosków. W przypadku pomiaru wzmocnienia ważne jest, aby korzystać z dokładnych danych, w tym właściwych wartości napięcia wejściowego i wyjściowego. Użycie napięcia wyjściowego 2,4 V w połączeniu z napięciem wejściowym 200 mV jest kluczowe, a błędne wartości mogą prowadzić do znaczących różnic w obliczeniach. Przykładowe pomyłki to mylenie jednostek – np. przeliczenie napięcia z miliwoltów na wolty lub odwrotnie, co może prowadzić do znacznych błędów w obliczeniach. Ważne jest również zrozumienie, że wzmocnienie napięciowe nie jest stałe dla wszystkich częstotliwości; może się zmieniać w zależności od charakterystyki układu oraz zastosowanych komponentów. Niekiedy osoby oceniające wzmocnienie mogą również zapominać, że wzmocnienie napięciowe jest wartością bezwymiarową, co oznacza, że nie wiąże się z jednostkami, a jego interpretacja wymaga starannego podejścia do analizy sygnałów. Dlatego kluczowe jest przeanalizowanie wszystkich danych i zastosowanie odpowiednich metod obliczeniowych, aby uzyskać prawidłowy wynik.

Pytanie 20

Aby zlokalizować metalowy obiekt w systemie automatyki przemysłowej, najbardziej odpowiednim rozwiązaniem będzie czujnik

A. temperatury
B. indukcyjny
C. pojemnościowy
D. optyczny
Czujnik indukcyjny jest najbardziej odpowiednim rozwiązaniem do wykrywania metalowych przedmiotów w zastosowaniach automatyki przemysłowej. Działa na zasadzie generowania pola elektromagnetycznego, które zmienia się w obecności obiektu metalowego. Kiedy metalowy przedmiot wchodzi w zasięg pola, zmienia się jego wartości, co pozwala czujnikowi na detekcję obiektu. Jest to szczególnie użyteczne w zautomatyzowanych liniach produkcyjnych, gdzie precyzyjne wykrywanie elementów metalowych jest kluczowe dla zapewnienia bezpieczeństwa i efektywności operacyjnej. Przykładowo, czujniki indukcyjne są powszechnie stosowane w robotyce do detekcji pozycji narzędzi lub komponentów, a także w systemach transportowych, gdzie mogą monitorować obecność części na taśmach produkcyjnych. W branży przemysłowej standardy takie jak ISO 13849-1 dotyczące bezpieczeństwa maszyn podkreślają znaczenie stosowania niezawodnych czujników wykrywających obecność obiektów, co czyni czujniki indukcyjne odpowiednim wyborem. Dodatkowo, ich odporność na zanieczyszczenia oraz możliwość pracy w trudnych warunkach, jak np. w wysokiej temperaturze czy w obecności wilgoci, sprawia, że są one często preferowanym rozwiązaniem w przemysłowych aplikacjach.

Pytanie 21

Badanie złącza p-n w tranzystorze bipolarnym można przeprowadzić przy użyciu

A. amperomierza
B. omomierza
C. watomierza
D. woltomierza
Odpowiedź dotycząca omomierza jest jak najbardziej trafna. To narzędzie służy do pomiaru oporu elektrycznego, co jest mega ważne przy badaniu złącza p-n w tranzystorze bipolarnym. Złącze p-n działa jak dioda, która w zasadzie jest przewodnikiem, gdy prąd płynie w jedną stronę, a w drugą - staje się opornikiem. Kiedy używamy omomierza, możemy sprawdzić, czy to złącze działa tak jak powinno, bo mierzymy opór w obu stanach. Jak tranzystor się uszkodzi, omomierz pokaże niską oporność nawet w stanie zaporowym, co oznacza, że coś jest nie tak. W elektronice omomierz to kluczowe narzędzie, zwłaszcza przy diagnozowaniu problemów w obwodach i produkcji komponentów elektronicznych. Każdy tranzystor musi być testowany, żeby był zgodny z normami jakości. To pokazuje, jak ważny jest omomierz przy weryfikacji złączy p-n.

Pytanie 22

Dwóch techników w czasie 5 godzin instaluje system wideofonowy dla 10 lokatorów. Koszt zakupu materiałów wynosi 2 000 zł. Jaki jest koszt instalacji dla jednego lokatora, jeżeli stawka roboczogodziny jednego pracownika to 50 zł, a całość obciążona jest 22% VAT?

A. 305 zł
B. 350 zł
C. 250 zł
D. 200 zł
Aby ustalić koszt instalacji dla pojedynczego lokatora, należy najpierw obliczyć całkowity koszt robocizny i materiałów. Dwóch monterów pracuje przez 5 godzin, co daje łącznie 10 roboczogodzin. Przy stawce 50 zł za godzinę roboczogodzina koszt robocizny wynosi 10 roboczogodzin x 50 zł = 500 zł. Następnie dodajemy koszt materiałów, który wynosi 2000 zł, co daje całkowity koszt instalacji równy 500 zł + 2000 zł = 2500 zł. Ponieważ instalacja dotyczy 10 lokatorów, koszt dla jednego lokatora wynosi 2500 zł / 10 = 250 zł. Należy jednak pamiętać, że do całkowitego kosztu dodawany jest podatek VAT w wysokości 22%. Zatem koszt brutto wynosi 250 zł + 22% x 250 zł = 250 zł + 55 zł = 305 zł. Takie podejście pokazuje, jak ważne jest uwzględnianie wszystkich kosztów oraz podatków przy kalkulacji cen, co jest standardem w branży budowlanej i instalacyjnej.

Pytanie 23

Ile wynosi maksymalna prędkość przesyłania danych do urządzenia, którego dane techniczne przedstawiono w tabeli?

Napięcie zasilające230 V AC; 50 Hz
Wejście pomiarowePt100/Pt500/Pt1000
Rezystancja przewodów pomiarowychmaksymalnie 20 Ω w każdym przewodzie
Wyjścia przekaźnikowe2 styki zwierne; 2 A/250 V AC (cosφ=1)
Interfejs komunikacyjnyRS485
Szybkość transmisji1 200 b/s ÷ 115 200 b/s
Pamięć danychEEPROM

A. 150 B/s
B. 1 200 B/s
C. 14 400 B/s
D. 115 200 B/s
Poprawna odpowiedź to 14 400 B/s, ponieważ jest to maksymalna prędkość przesyłania danych, która jest zgodna z typowymi standardami komunikacji w urządzeniach elektronicznych. W kontekście urządzeń, które komunikują się z komputerami lub innymi systemami, istnieją różne protokoły, które określają maksymalne prędkości transferu. Na przykład, standard RS-232, który jest powszechnie stosowany w komunikacji szeregowej, może obsługiwać prędkości do 115 200 bps, ale w praktyce wiele urządzeń korzysta z niższych prędkości, aby zapewnić stabilność i niezawodność transferu danych. W przypadku urządzeń, które mają maksymalną prędkość 14 400 B/s, oznacza to, że mogą one efektywnie przesyłać dane, nie przeciążając jednocześnie interfejsu komunikacyjnego. Przykłady zastosowania to modemy czy urządzenia do przesyłania danych, które wymagają stabilnych prędkości transferu, aby zapewnić ich sprawne działanie.

Pytanie 24

Maksymalny poziom natężenia dźwięku w biurze dla osoby zajmującej się projektowaniem układów elektronicznych, zgodnie z obowiązującymi normami, nie powinien przekraczać wartości

A. 25 dB
B. 35 dB
C. 45 dB
D. 55 dB
Wybór wartości 25 dB jako dopuszczalnego poziomu hałasu w biurze jest nieodpowiedni, ponieważ jest to wartość znacznie poniżej normy akceptowanej w kontekście biur. Poziom 25 dB odpowiada bardzo cichym pomieszczeniom, takim jak biblioteki czy ciche strefy w mieszkaniach, gdzie występuje minimalna akustyka. W środowisku biurowym, gdzie pracownicy korzystają z komputerów, prowadzą rozmowy telefoniczne lub współpracują z innymi, dźwięki te generują hałas, który naturalnie podnosi poziom hałasu do wartości powyżej 25 dB. Wartość 45 dB również jest nieadekwatna, ponieważ jest zbyt niska dla standardowego biura, w którym dźwięki mogą generować różne urządzenia biurowe oraz aktywność ludzi. Przyjęcie 35 dB jako dopuszczalnej wartości również nie uwzględnia realistycznych warunków biurowych, w których poziom hałasu często przekracza tę wartość, co może prowadzić do obniżonej efektywności pracy oraz dyskomfortu. Kluczowe jest, aby zrozumieć, że normy dotyczące hałasu w miejscu pracy są ustalane po to, aby promować zdrowe i sprzyjające efektywności środowisko pracy, gdzie wartości powyżej 55 dB są powszechnie akceptowane jako dopuszczalne w typowych biurach. Niezrozumienie tych standardów może prowadzić do nieodpowiednich warunków pracy oraz negatywnych skutków zdrowotnych dla pracowników.

Pytanie 25

Jakie urządzenie jest wykorzystywane do łączenia włókien w komunikacyjnym kablu światłowodowym?

A. spawarka
B. zgrzewarka
C. który służy do lutowania
D. zaciśniacz
Wybór narzędzi do łączenia włókien optycznych może być mylący, szczególnie gdy rozważa się zastosowanie zaciskarki, lutownicy czy zgrzewarki. Zaciskarka jest narzędziem używanym do łączenia kabli elektrycznych i nie ma zastosowania w kontekście włókien optycznych. Jej mechanizm opiera się na zgrzewaniu metalowych przewodów, co jest całkowicie nieodpowiednie dla delikatnych włókien optycznych, które wymagają precyzyjnego połączenia bez narażania ich na uszkodzenia. Lutownica, natomiast, jest narzędziem stosowanym w elektronice do łączenia komponentów elektronicznych, a jej zasada działania polega na topnieniu cyny, co w przypadku włókien optycznych jest niewłaściwe, ponieważ nie ma możliwości skutecznego lutowania materiałów optycznych. Zgrzewarka także nie znajduje zastosowania w tej dziedzinie, ponieważ jej działanie opiera się na łączeniu materiałów przez wysokotemperaturowe zgrzewanie, co w przypadku włókien może prowadzić do ich zniszczenia. Aby połączyć włókna optyczne w sposób efektywny i bezpieczny, niezbędne jest zrozumienie różnic pomiędzy tymi technologiami oraz ich zastosowań w praktyce. Właściwe podejście do łączenia włókien optycznych, które zapewnia minimalizację strat sygnału i wysoką jakość połączenia, opiera się na wiedzy o technicznych aspektach używania spawarek światłowodowych, co podkreśla znaczenie właściwego wyboru narzędzi w branży telekomunikacyjnej.

Pytanie 26

W instalacji naściennej w budynku mieszkalnym jednokondygnacyjnym przewody powinny być prowadzone

A. najkrótszą trasą
B. w pionie oraz poziomie
C. tylko w poziomie
D. wyłącznie w pionie
Instalacja natynkowa w jednokondygnacyjnym budynku mieszkalnym wymaga prowadzenia przewodów zarówno w pionie, jak i w poziomie, co jest zgodne z ogólnymi zasadami projektowania instalacji elektrycznych. W praktyce oznacza to, że instalatorzy muszą uwzględniać różnorodne czynniki, takie jak dostępność punktów zasilających, rozmieszczenie gniazdek i włączników oraz estetykę wykończenia wnętrza. Prowadzenie przewodów w pionie umożliwia wygodne podłączenie urządzeń na różnych poziomach, a poziome prowadzenie jest kluczowe dla łatwego dostępu do zasilania w obrębie pomieszczeń. Ponadto, zgodnie z normą PN-HD 60364, instalacje elektryczne powinny być wykonywane w sposób zapewniający bezpieczeństwo użytkowania oraz łatwość konserwacji. Przykładowo, w przypadku montażu instalacji w kuchni, odpowiednie prowadzenie przewodów w poziomie i pionie zapewnia optymalne połączenia z urządzeniami AGD, minimalizując jednocześnie ryzyko przeciążeń elektrycznych oraz uszkodzeń mechanicznych. Ostatecznie, elastyczność w projektowaniu instalacji pozwala na lepsze dostosowanie do indywidualnych potrzeb mieszkańców budynku.

Pytanie 27

Jakie będzie całkowity koszt naprawy odbiornika telewizyjnego, jeżeli czas pracy wynosił 2 godziny, koszt materiałów to 100 zł, a stawka za godzinę pracy technika wynosi 80 zł?

A. 212 zł
B. 212 zł
C. 196 zł
D. 260 zł
Aby obliczyć całkowity koszt naprawy odbiornika telewizyjnego, należy zsumować koszt pracy serwisanta oraz koszt materiałów. W tym przypadku czas naprawy wynosił 2 godziny, a stawka godzinowa serwisanta to 80 zł. Zatem koszt pracy wynosi: 2 godziny * 80 zł/godz. = 160 zł. Koszt materiałów wynosi 100 zł. Całkowity koszt naprawy to: 160 zł (koszt pracy) + 100 zł (koszt materiałów) = 260 zł. Takie podejście jest zgodne z najlepszymi praktykami branżowymi, które zalecają szczegółowe rozliczenie kosztów robocizny oraz materiałów, aby klient miał pełną transparentność wydatków. W przypadku napraw sprzętu elektronicznego, istotne jest także uwzględnienie dodatkowych kosztów, takich jak dojazd serwisanta, jeśli jest to wymagane. Praktyka ta pomaga utrzymać zaufanie klientów oraz zapewnia rzetelność w rozliczeniach.

Pytanie 28

Jaką wartość ma częstotliwość prądu zmiennego, jeśli jego okres wynosi 0,001 s?

A. 100 kHz
B. 10 kHz
C. 1 kHz
D. 0,1 kHz
Częstotliwość prądu zmiennego, tak jak w przypadku tego pytania, jest ściśle związana z pojęciem okresu, jednakże niepoprawne odpowiedzi mogą wynikać z nieporozumienia dotyczącego tego, jak te dwie wielkości są powiązane. Odpowiedzi 10 kHz, 0,1 kHz i 100 kHz powstają w wyniku błędnych obliczeń lub błędnego zrozumienia zasady odwrotności. Na przykład, wybierając odpowiedź 10 kHz, można pomyśleć, że wystarczająco mały okres (0,0001 s) mógłby odpowiadać tej częstotliwości, co jest jednak błędne. Takie błędne myślenie często wynika z niepełnego zrozumienia proporcji między okresem a częstotliwością. Podobnie, 0,1 kHz sugeruje, że okres mógłby wynosić 10 s, co jest całkowicie niezgodne z podanym okresem 0,001 s. Częstotliwość 100 kHz również błędnie zakłada, że krótki okres w sekundach (0,00001 s) jest poprawny, co z kolei jest niezgodne z zadanym okresem. Te pomyłki mogą prowadzić do problemów w praktycznych zastosowaniach, takich jak projektowanie układów elektronicznych, gdzie błędna częstotliwość może skutkować niewłaściwym działaniem urządzenia. Kluczowe jest, aby zrozumieć, że w inżynierii elektrycznej, poprawne obliczenia są podstawą skutecznego projektowania i optymalizacji systemów, a znajomość relacji między okresem a częstotliwością jest fundamentalnym krokiem w każdej analizie sygnału.

Pytanie 29

Jakie urządzenia należy wykorzystać w systemie monitoringu, aby zwiększyć dystans między kamerą a rejestratorem, jeśli połączenie jest zrealizowane za pomocą kabla UTP?

A. Symetryzatory
B. Filtry wideo
C. Transformatory wideo
D. Zwrotnice
Wybór symetryzatorów może prowadzić do zamieszania, jeśli chodzi o zwiększanie odległości między kamerą a rejestratorem w systemach wideo. Tak naprawdę, symetryzatory mają na celu poprawę jakości sygnału w audio i wideo, ale głównie to chodzi o eliminację zakłóceń i wzmocnienie sygnału. Nie są one zbyt odpowiednie do przesyłania sygnału na długie odległości. Często w monitoringu wideo się ich nie stosuje, bo nie są projektowane pod kątem sygnału wideo, który potrzebuje specyficznych parametrów, jak impedancja czy pasmo przenoszenia. Filtry wideo, które usuwają niepożądane częstotliwości, też nie są idealnym rozwiązaniem, jeśli chodzi o zwiększanie odległości – raczej poprawiają jakość sygnału przy określonej długości kabla. A zwrotnice to inna sprawa, używane są w telekomunikacji do kierowania sygnałami, ale w kontekście monitoringu nie pomagają zwiększyć odległości. Często myśli się, że każde urządzenie, które poprawia sygnał, będzie też dobre do przesyłania na dużą odległość, ale to wcale nie jest takie proste. Wymagania dotyczące przesyłu sygnału wideo są dość szczegółowe i trzeba używać odpowiednich rozwiązań, jak właśnie transformatory wideo, które zapewniają lepszą jakość na długich dystansach.

Pytanie 30

Stacja bazowa jest częścią systemu

A. telewizji kablowej
B. sterowania mikroprocesorowego
C. nawigacyjnego
D. alarmowego
Wybór odpowiedzi dotyczącej alarmowego systemu jest nieprawidłowy, ponieważ stacja czołowa nie ma związku z systemami alarmowymi. Systemy alarmowe koncentrują się na detekcji zagrożeń, takich jak włamania czy pożary, oraz na monitorowaniu i reagowaniu na te sytuacje. W kontekście telekomunikacji, stacja czołowa nie jest elementem, który odpowiada za alarmowanie, lecz za przetwarzanie sygnałów telewizyjnych. Podobnie, wybór opcji dotyczącej nawigacji jest błędny, ponieważ systemy nawigacyjne, takie jak GPS, skupiają się na lokalizacji i kierowaniu, a nie na przekazywaniu sygnału telewizyjnego. Stacja czołowa nie uczestniczy w procesie nawigacyjnym, lecz skupia się na dystrybucji treści multimedialnych. Napotkanie na odpowiedź wskazującą na sterowanie mikroprocesorowe może wynikać z mylnego przekonania o uniwersalności mikroprocesorów w różnych zastosowaniach. Choć mikroprocesory są kluczowe w systemach elektronicznych, ich rola w stacji czołowej telewizji kablowej jest ograniczona do przetwarzania sygnałów, a nie zarządzania funkcjami systemów sterowania. Często spotykanym błędem myślowym w takich przypadkach jest uogólnienie funkcji technologii bez zrozumienia ich kontekstu i specyfiki działania w danym systemie.

Pytanie 31

Skrót ADSL odnosi się do technologii, która pozwala na

A. szerokopasmowy asymetryczny dostęp do sieci teleinformatycznych
B. transmisję informacji cyfrowych za pośrednictwem fal radiowych
C. odbieranie cyfrowej telewizji naziemnej
D. kompresję materiałów audio i wideo
ADSL, czyli Asymmetrical Digital Subscriber Line, to technologia szerokopasmowego dostępu do internetu, która wykorzystuje istniejące linie telefoniczne do przesyłania danych cyfrowych. Jej główną cechą jest asymetryczność, co oznacza, że prędkość pobierania danych (downstream) jest znacznie wyższa niż prędkość wysyłania danych (upstream). Dzięki temu ADSL jest szczególnie przystosowane do typowego użytkowania, gdzie użytkownicy częściej pobierają dane (np. przeglądanie stron internetowych, oglądanie filmów) niż je wysyłają. Przykładem zastosowania ADSL jest domowe lub biurowe łącze internetowe, które umożliwia korzystanie z szerokopasmowego dostępu bez potrzeby instalacji kosztownych infrastrukturalnych rozwiązań. ADSL jest zgodne z międzynarodowymi standardami ITU-T G.992.1, co zapewnia interoperacyjność między różnymi urządzeniami i dostawcami usług. Ponadto, ADSL jest często wykorzystywane w kontekście usług Triple Play, które integrują dostęp do internetu, telewizji i telefonii w jedną ofertę.

Pytanie 32

Aby poprawić jakość obrazu w trudnych warunkach oświetleniowych, należy zwiększyć odstęp S/N generowany przez układy elektroniczne kamery?

A. wyrównać
B. wyzerować
C. zwiększyć
D. zmniejszyć
Aby poprawić jakość obrazu w słabych warunkach oświetleniowych, kluczowe jest zwiększenie odstępu sygnału do szumu (S/N) wytwarzanego przez układy elektroniczne kamery. Wysoki stosunek S/N oznacza, że sygnał, który jest istotny dla reprodukcji obrazu, jest znacznie silniejszy od szumów, które mogą wprowadzać zakłócenia. Przykładowo, w zastosowaniach takich jak monitoring nocny, zwiększenie czułości matrycy kamery pozwala na uzyskanie lepszej jakości w trudnych warunkach oświetleniowych. W praktyce można to osiągnąć poprzez zastosowanie większych pikseli matrycy, co zwiększa zbieranie światła, lub przez poprawę algorytmów redukcji szumów. Standardy branżowe, takie jak ISO w fotografii, wskazują, że wyższe wartości ISO, które często towarzyszą poprawionemu S/N, mogą doprowadzić do jaśniejszego obrazu w ciemności, choć mogą także wprowadzać szumy. Dlatego ważne jest, aby znaleźć równowagę pomiędzy czułością a jakością obrazu, co jest kluczowe dla uzyskania zadowalających rezultatów.

Pytanie 33

Jakiego koloru powinien być przewód ochronny PE w elektrycznej instalacji zasilającej urządzenia elektroniczne?

A. Czerwony.
B. Czarny.
C. Jasnoniebieski.
D. Żółto-zielony.
Przewód ochronny PE (Protection Earth) w instalacjach elektrycznych zasilających urządzenia elektroniczne powinien mieć kolor żółto-zielony. Taki kolor jest zgodny z międzynarodowymi standardami, w tym normą IEC 60446, która określa oznaczenia kolorów przewodów elektrycznych. Żółto-zielony przewód pełni kluczową rolę w zapewnieniu bezpieczeństwa, ponieważ jego zadaniem jest odprowadzenie prądu doziemnego w przypadku awarii, co minimalizuje ryzyko porażenia prądem elektrycznym. Przykładem zastosowania przewodu PE może być podłączanie urządzeń, takich jak komputery, drukarki czy serwery, gdzie zapewnienie odpowiedniego uziemienia chroni nie tylko użytkowników, ale również sam sprzęt przed uszkodzeniami. Nieprzestrzeganie tych norm może prowadzić do poważnych zagrożeń, takich jak zwarcia czy pożary, dlatego istotne jest stosowanie się do wytycznych branżowych w zakresie instalacji elektrycznych.

Pytanie 34

Jak powinna wyglądać prawidłowa sekwencja działań przy konserwacji systemu automatyki przemysłowej?

A. Dokręcenie styków zaciskowych, kontrola przewodów ciśnieniowych, przeprowadzenie pomiarów elektrycznych instalacji, zapoznanie się z dokumentacją techniczną instalacji
B. Kontrola przewodów ciśnieniowych, przeprowadzenie pomiarów elektrycznych instalacji, zapoznanie się z dokumentacją techniczną instalacji, dokręcenie styków zaciskowych
C. Zapoznanie się z dokumentacją techniczną instalacji, dokręcenie styków zaciskowych, przeprowadzenie pomiarów elektrycznych instalacji, kontrola przewodów ciśnieniowych
D. Przeprowadzenie pomiarów elektrycznych instalacji, kontrola przewodów ciśnieniowych, zapoznanie się z dokumentacją techniczną instalacji, dokręcenie styków zaciskowych
Wybór nieprawidłowej kolejności czynności konserwacyjnych może prowadzić do wielu problemów w pracy instalacji automatyki przemysłowej. Na przykład, rozpoczęcie od sprawdzenia przewodów ciśnieniowych przed zapoznaniem się z dokumentacją techniczną może skutkować błędną interpretacją funkcji tych przewodów oraz ich wpływu na całą instalację. Ponadto, dokręcenie styków zaciskowych jako pierwsza czynność może prowadzić do sytuacji, w której luźne połączenia zostaną naprawione bez pełnego zrozumienia, jakie inne czynniki mogą wpływać na ich stan. Istotne jest, aby najpierw zrozumieć dokumentację techniczną, aby zidentyfikować, które elementy instalacji wymagają szczególnej uwagi. Wykonywanie pomiarów elektrycznych przed odpowiednim przygotowaniem może z kolei prowadzić do nieprawidłowych wyników, które mogą wprowadzić w błąd technika konserwacyjnego. W praktyce, pomiar powinien być ostatnim krokiem przed finalnym sprawdzeniem systemu, aby upewnić się, że wszelkie regulacje zostały wprowadzone, a połączenia są stabilne. Często takie błędne podejście wynika z niewłaściwego zrozumienia hierarchii działań konserwacyjnych, co może prowadzić do poważnych konsekwencji w działaniu systemów automatyki, w tym zakłóceń w procesach produkcyjnych oraz zwiększenia kosztów napraw.

Pytanie 35

W każdej linii kodu, oprócz mnemonika instrukcji, można dodać po średniku sekwencję znaków, która zostanie zignorowana przez asembler. Co to jest?

A. instrukcja.
B. argumenty.
C. komentarz.
D. znamie.
Komentarze w kodzie asemblera są niezwykle istotne, ponieważ pozwalają programistom na dodawanie notatek i wyjaśnień, które ułatwiają zrozumienie działania programu. W asemblerze, ciąg znaków umieszczony po średniku nie wpływa na wykonywanie programu – jest ignorowany przez asembler. Na przykład, w linii kodu 'MOV AX, BX ; Przesunięcie wartości z rejestru BX do AX', wszystko, co znajduje się po średniku, jest traktowane jako komentarz. Tego typu praktyka sprzyja lepszej organizacji kodu oraz umożliwia innym programistom szybkie zrozumienie założeń i celów poszczególnych fragmentów kodu. Standardy programowania, takie jak PEP 8 w Pythonie, podkreślają znaczenie komentarzy i dokumentacji w kodzie, co jest również ważne w kontekście programowania w asemblerze, szczególnie w projektach zespołowych, gdzie przejrzystość kodu jest kluczowa. Dobrą praktyką jest umieszczanie komentarzy nie tylko na początku skomplikowanych bloków kodu, ale również przy każdej istotnej instrukcji, aby zwiększyć czytelność i ułatwić przyszłe modyfikacje.

Pytanie 36

Monter realizuje montaż instalacji telewizji satelitarnej dla 6 mieszkańców w czasie 8 godzin. Koszt materiałów to 2 080 zł, a stawka za roboczogodzinę wynosi 40 zł. Jaka suma przypada na instalację dla jednego lokatora?

A. 333 zł
B. 450 zł
C. 350 zł
D. 400 zł
Koszt instalacji telewizji satelitarnej dla jednego lokatora wynosi 400 zł. Aby to obliczyć, należy uwzględnić zarówno koszt materiałów, jak i robocizny. Koszt materiałów dla całej instalacji wynosi 2080 zł, co przy sześciu lokatorach daje 346,67 zł na lokatora. Następnie, monter pracuje przez 8 godzin, a stawka za roboczogodzinę wynosi 40 zł, co daje całkowity koszt robocizny równy 320 zł (8 godzin x 40 zł). Koszt robocizny również dzielimy przez sześciu lokatorów, co daje 53,33 zł na lokatora. Suma tych dwóch wartości (346,67 zł + 53,33 zł) daje 400 zł za instalację dla jednego lokatora. W praktyce, przy planowaniu kosztów instalacji telewizyjnych, ważne jest uwzględnienie zarówno materiałów, jak i pracy, aby odpowiednio zrozumieć całkowite wydatki. Przykładowo, w branży telekomunikacyjnej często stosuje się kalkulacje kosztów jednostkowych, aby optymalizować wydatki oraz zapewnić konkurencyjność usług.

Pytanie 37

Weryfikacja parametrów instalacji antenowej DVB-T wymaga dokonania

A. kąta elewacji oraz azymutu
B. rezystancji kabla
C. izolacji kabla
D. bitowej stopy błędów
Pomiar parametrów instalacji antenowej DVB-T nie opiera się na sprawdzaniu rezystancji kabla, kąta elewacji ani azymutu, czy izolacji kabla, ponieważ te aspekty nie są bezpośrednio związane z jakością odbioru sygnału. Rezystancja kabla, chociaż istotna dla oceny jego integralności, nie dostarcza informacji o tym, jak dobrze sygnał jest przesyłany i odbierany. Izolacja kabla może wpływać na zakłócenia, jednak nie wskazuje na jakość samego sygnału DVB-T. Kąt elewacji i azymutu są istotne w kontekście skierowania anteny w stronę nadajnika, ale ich pomiar nie dostarcza informacji o jakości i stabilności sygnału odbieranego przez urządzenia końcowe. Takie podejścia mogą prowadzić do mylnych ocen, ponieważ nie uwzględniają one najważniejszych parametrów wpływających na jakość transmisji, jakimi są sygnały błędów. Osoby koncentrujące się na tych aspektach mogą przeoczyć konieczność przeprowadzenia rzeczywistych testów odbioru, które ujawniają problemy z jakością sygnału, prowadząc do zainstalowania anteny w nieoptymalnej pozycji. Dlatego istotne jest, aby technicy instalacji antenowej koncentrowali się na pomiarze BER i innych parametrach związanych z jakością sygnału, zgodnie z najlepszymi praktykami branżowymi.

Pytanie 38

Jak nazywa się program wykorzystywany do wyszukiwania błędów w kodach napisanych w asemblerze?

A. linkerem
B. kompilatorem
C. konwerterem
D. debuggerem
Debugger to narzędzie służące do analizy i diagnostyki programów komputerowych, które umożliwia programistom wykrywanie, identyfikowanie i usuwanie błędów w kodzie. Debugging to kluczowy etap w procesie rozwoju oprogramowania, szczególnie w przypadku programów napisanych w asemblerze, gdzie bliskość do sprzętu sprawia, że błędy mogą prowadzić do poważnych problemów. Przykładowo, podczas korzystania z debuggera programista może zatrzymać wykonanie programu w określonym punkcie, zbadać stan rejestrów oraz pamięci, co pozwala na precyzyjne określenie, dlaczego program nie działa tak, jak powinien. W praktyce, debugger pozwala na krokowe przechodzenie przez kod, co jest szczególnie przydatne w asemblerze, gdzie konstrukcje są niskopoziomowe i złożone. Dobre praktyki w zakresie debugowania obejmują korzystanie z takich narzędzi jak GDB dla systemów Unix, które wspierają różne architektury procesorów. Zrozumienie działania debuggera i umiejętność jego efektywnego wykorzystania jest niezbędne dla każdego programisty, który pracuje w niskopoziomowym programowaniu.

Pytanie 39

W jakim urządzeniu stosuje się zjawisko defleksji elektronów w polu elektromagnetycznym?

A. Monitorze CRT
B. Nośniku optycznym
C. Dysku twardym
D. Ekranie LCD
Twarde dyski, panele LCD oraz napędy optyczne nie bazują na zjawisku odchylania elektronów w polu elektromagnetycznym. Twarde dyski działają na zasadzie magnetyzmu i wykorzystują mechaniczne elementy do odczytu i zapisu danych, co różni się od wykorzystania elektronów w monitorach CRT. W przypadku paneli LCD, obraz jest generowany przez manipulację światłem, które przechodzi przez ciekłe kryształy, a nie przez odchylanie elektronów. Technologia LCD nie wykorzystuje elektronów w sposób, w jaki robi to CRT; zamiast tego, kontroluje intensywność światła poprzez zmiany w orientacji cząsteczek ciekłych kryształów. Napędy optyczne, takie jak napędy DVD, działają na zasadzie lasera, który odczytuje dane zapisane na płytach, co również jest całkowicie różne od zjawiska odchylania elektronów. W wyborach odpowiedzi na takie pytania, kluczowe jest zrozumienie, jak konkretne technologie działają na poziomie fizycznym i technicznym, aby uniknąć mylnych wniosków. Nieprawidłowe odpowiedzi mogą wynikać z niepełnego zrozumienia różnic między technologiami oraz ich zastosowań w praktyce, co jest istotne w kontekście zawodów związanych z informatyką i inżynierią.

Pytanie 40

Jaką rolę w systemie antenowym TV-SAT odgrywa konwerter?

A. Zwiększa i przekształca częstotliwość sygnału z anteny.
B. Dostarcza antenie napięcie przemienne.
C. Dostarcza antenie napięcie stałe.
D. Tłumi i zmienia częstotliwość sygnału antenowego.
Wybór innych odpowiedzi może wynikać z nieporozumienia dotyczącego funkcji konwertera w instalacji antenowej. Przykładowo, zasilać antenę napięciem przemiennym jest niepoprawne, ponieważ konwerter zasilany jest napięciem stałym, co jest typowe dla technologii satelitarnych. Zasila go odbiornik, który przesyła odpowiednie napięcie zasilające przez kabel koncentryczny. Odpowiedzi dotyczące tłumienia sygnału są również mylące; konwerter nie tłumi sygnału, ale go wzmacnia. Tłumienie sygnału jest zjawiskiem negatywnym, które objawia się spadkiem jakości sygnału, co jest przeciwieństwem działania konwertera. W rzeczywistości konwerter powinien maksymalizować jakość sygnału, aby zapewnić wydajność odbioru. Właściwe zrozumienie funkcji konwertera jest ważne dla efektywnego zaprojektowania systemu antenowego. W praktyce, nieprawidłowe wybory komponentów lub ich nieodpowiednie instalacje mogą prowadzić do znacznego obniżenia jakości odbioru telewizji satelitarnej. Kluczowe jest zatem zaznajomienie się z zasadami działania konwertera oraz jego właściwościami, aby uniknąć typowych błędów w instalacjach satelitarnych.