Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 6 maja 2025 10:19
  • Data zakończenia: 6 maja 2025 10:41

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na podstawie przedstawionych danych katalogowych narzędzia skrawającego wskaż wartość głębokości warstwy skrawanej, którą należy ustawić w obrabiarce CNC dla obróbki zgrubnej.

Rodzaj obróbkiDokładność obróbkiChropowatość powierzchni
(Ra) μm
Zakres posuwów
mm/obr
Zakres
głębokości
mm
Obróbka dokładnaIT6-IT90,32÷1,250,05÷0,30,5÷2
Obróbka średniodokładnaIT9-IT112,5÷50,2÷0,52÷4
Obróbka zgrubnaIT12-IT1410÷40≥0,4≥4

A. 0,5 mm
B. 0,8 mm
C. 5,0 mm
D. 2,0 mm
Wartość głębokości warstwy skrawanej, którą należy ustawić w obrabiarce CNC dla obróbki zgrubnej, wynosi 5,0 mm. Zgodnie z danymi katalogowymi, podczas obróbki zgrubnej zaleca się głębokości skrawania wynoszące co najmniej 4 mm, co czyni tę odpowiedź poprawną. Ustalenie optymalnej głębokości skrawania jest kluczowe dla efektywności procesu obróbczy. Zbyt mała głębokość może prowadzić do wydłużenia czasu obróbki oraz niższej efektywności materiałowej, podczas gdy zbyt duża głębokość może powodować nadmierne obciążenie narzędzia, co w skrajnych przypadkach prowadzi do jego uszkodzenia. W praktyce, głębokość skrawania powinna być dostosowywana do rodzaju materiału oraz rodzaju narzędzia. Przykładowo, w obróbce stali narzędziowej często stosuje się głębokości skrawania w zakresie 5-10 mm, co zwiększa wydajność procesu i zmniejsza ryzyko przegrzania narzędzi. Dla zachowania wysokiej jakości obróbki, warto również monitorować stan narzędzia podczas pracy oraz stosować odpowiednie chłodziwa, co wpływa na jego trwałość i efektywność skrawania.

Pytanie 2

Falowniki używane w przetwornicach częstotliwości mają na celu regulację

A. prędkości obrotowej silnika, poprzez modyfikację wartości prądu zasilającego silnik
B. prędkości obrotowej silnika, poprzez zmianę częstotliwości napięcia zasilającego silnik
C. kierunku obrotów silnika, poprzez zmianę częstotliwości napięcia zasilającego silnik
D. mocy silnika, poprzez zmianę częstotliwości napięcia zasilającego silnik
Stosowanie falowników w przetwornicach częstotliwości wymaga zrozumienia różnicy między regulacją prędkości obrotowej a innymi parametrami silnika, takimi jak moc czy kierunek obrotów. Wiele osób myli regulację prędkości z regulacją mocy, co prowadzi do nieporozumień. W rzeczywistości, falownik nie reguluje mocy silnika poprzez zmianę częstotliwości napięcia, ale raczej dostosowuje prędkość obrotową do wymagań aplikacji. Zmienność prędkości obrotowej silnika jest kluczowa dla efektywnego działania różnych systemów, jednak sama regulacja mocy wymaga odmiennych podejść, takich jak zmiana wartości prądu, co mylnie zostało zasugerowane w niektórych odpowiedziach. Ponadto kierunek obrotów silnika może być regulowany przy pomocy odpowiedniego sterowania, ale nie jest to głównym celem falowników, które są projektowane przede wszystkim do precyzyjnego dostosowywania prędkości. Często występujące błędy myślowe w tej dziedzinie wynikają z braku zrozumienia podstawowych zasad działania falowników oraz ich funkcji w systemach automatyzacji. Dlatego istotne jest, aby przed podjęciem decyzji o zastosowaniu falownika, dokładnie zrozumieć jego działanie i cel, co w konsekwencji pozwoli uniknąć nieporozumień w zakresie jego zastosowania.

Pytanie 3

Dane techniczne zamieszczone w tabeli dotyczą

Rodzaj cieczy hydraulicznejolej mineralny
Zakres temperatury pracy-25°C do +80°C
Standardowa filtracja cieczy hydraulicznej90 μm
Zakres lepkości cieczy hydraulicznej16 mm²/s do 200 mm²/s
Poziom głośności65 dB (A)
Napięcie zasilania silnika230 V 50 Hz, 3x400 V 50 Hz
Napięcie zasilania rozdzielaczy24 V DC, 230 V 50 Hz
Pojemność nominalna zbiornika7 dm³20 dm³

A. rozdzielacza hydraulicznego.
B. zasilacza hydraulicznego.
C. rozdzielacza pneumatycznego.
D. sprężarki powietrza.
Zasilacz hydrauliczny jest kluczowym elementem systemów hydraulicznych, który odpowiada za dostarczanie odpowiedniego ciśnienia i przepływu cieczy roboczej, co jest niezbędne do prawidłowego działania maszyn hydraulicznych. W tabeli zamieszczono dane dotyczące cieczy hydraulicznej, co jest charakterystyczne dla zasilaczy hydraulicznych, które operują na oleju mineralnym. Przykładowo, w różnych aplikacjach przemysłowych - takich jak prasy hydrauliczne czy systemy podnoszenia - zasilacze hydrauliczne muszą spełniać określone normy jakościowe, w tym normy dotyczące filtrowania cieczy hydraulicznej, aby zapewnić ich niezawodność oraz wydajność. Zastosowanie standardów, takich jak ISO 4406, pozwala na monitorowanie stopnia zanieczyszczenia oleju, co jest kluczowe dla utrzymania optymalnej pracy zasilacza. Dodatkowo, zasilacze hydrauliczne powinny być zaprojektowane z uwzględnieniem zakresów temperatur pracy, co wpływa na ich efektywność i żywotność. Właściwe parametry techniczne, takie jak pojemność zbiornika, również odgrywają istotną rolę w zapewnieniu ciągłości operacji w zastosowaniach przemysłowych.

Pytanie 4

W systemach hydraulicznych, jaki jest główny powód stosowania zaworów bezpieczeństwa?

A. Zmniejszenie kosztów eksploatacji
B. Ochrona układu przed nadmiernym ciśnieniem
C. Poprawa jakości filtracji
D. Zwiększenie przepływu cieczy roboczej
Zawory bezpieczeństwa w systemach hydraulicznych pełnią kluczową rolę w ochronie układów przed nadmiernym ciśnieniem. Ich podstawowym zadaniem jest zapobieganie uszkodzeniom elementów układu, które mogą prowadzić do awarii czy niebezpiecznych sytuacji. Zawory te działają na zasadzie odprowadzania nadmiaru ciśnienia, gdy przekroczy ono określoną wartość, co w praktyce zapobiega eksplozji przewodów czy uszkodzeniu pomp. Wyobraź sobie, że ciśnienie w układzie zaczyna gwałtownie rosnąć - w tym momencie zawór bezpieczeństwa otwiera się i pozwala na ucieczkę nadmiaru płynu, przywracając bezpieczne warunki pracy. Jest to standardowe rozwiązanie zgodne z normami bezpieczeństwa, które znacznie przedłuża żywotność systemu i chroni pracowników oraz urządzenia. W branży mechatronicznej jest to szczególnie ważne, ponieważ układy hydrauliczne są często używane w maszynach i urządzeniach, które muszą działać niezawodnie w trudnych warunkach. Zastosowanie zaworów bezpieczeństwa jest powszechną praktyką i stanowi podstawę projektowania bezpiecznych systemów hydraulicznych, co jest kluczowym elementem wiedzy w kwalifikacji ELM.06.

Pytanie 5

Zgodnie z zasadami opracowywania programu w języku SFC

A. dwa kroki nie mogą być bezpośrednio ze sobą powiązane, muszą być oddzielone tranzycją
B. dwie tranzycje mogą być bezpośrednio ze sobą powiązane, nie muszą być oddzielone krokiem
C. dwa kroki powinny być bezpośrednio ze sobą powiązane, nie mogą być oddzielone tranzycją
D. dwie tranzycje muszą być bezpośrednio ze sobą powiązane, nie mogą być oddzielone krokiem
Wiele osób ma tendencję do mylenia zasad rządzących strukturą SFC, co prowadzi do błędnych wniosków na temat połączeń między krokami i tranzycjami. Na przykład, stwierdzenie, że dwie tranzycje mogą być bezpośrednio ze sobą połączone, ignoruje istotę działania tranzycji, które pełnią funkcję kontrolną i decydującą o tym, kiedy krok może zostać zakończony. W praktyce oznacza to, że tranzycje wymagają spełnienia określonych warunków przed przejściem do następnego kroku, a więc nie mogą być wykorzystywane w sposób nieprzemyślany. Kolejna nieprawidłowa koncepcja dotyczy połączenia kroków bez tranzycji. Takie podejście prowadzi do chaosu w procesie, ponieważ brak tranzycji zdejmuje z systemu możliwość monitorowania i kontrolowania stanów, co w konsekwencji może prowadzić do awarii lub błędów operacyjnych. Warto zwrócić uwagę, że zgodnie z najlepszymi praktykami w automatyce przemysłowej, każda zmiana stanu powinna być starannie planowana i kontrolowana, a SFC stanowi doskonałe narzędzie do realizacji tych zasad. Dlatego kluczowe jest zrozumienie, że zarówno kroki, jak i tranzycje muszą być używane zgodnie z ustalonymi regułami, aby zapewnić bezpieczne i wydajne działanie systemów automatyzacji.

Pytanie 6

Podczas serwisowania układów hydraulicznych, jakie działanie jest kluczowe?

A. Malowanie rurociągów
B. Usuwanie zanieczyszczeń z powierzchni zewnętrznych
C. Sprawdzenie szczelności połączeń
D. Sprawdzenie jakości farby na urządzeniach
Sprawdzenie szczelności połączeń w układach hydraulicznych to kluczowy krok w procesie serwisowania. Wszelkie nieszczelności mogą prowadzić do wycieków płynów, co z kolei może skutkować spadkiem ciśnienia roboczego, co jest niebezpieczne dla całego systemu. Nieszczelności mogą także prowadzić do zanieczyszczenia płynu hydraulicznego, co ma negatywny wpływ na wydajność i trwałość pompy oraz innych elementów układu. Regularne sprawdzanie szczelności pomaga w wykrywaniu potencjalnych problemów zanim doprowadzą one do poważniejszych awarii. Dzięki temu można zapewnić dłuższą żywotność układu i uniknąć kosztownych napraw. Stosując odpowiednie metody diagnostyczne, takie jak testy ciśnieniowe czy użycie specjalnych płynów detekcyjnych, można zlokalizować nawet najmniejsze nieszczelności. W praktyce, konserwacja i sprawdzanie szczelności połączeń jest nie tylko dobrą praktyką, ale wręcz standardem w branży, który zapewnia bezpieczne i efektywne działanie układów hydraulicznych.

Pytanie 7

Jakiej czynności nie wykonuje się podczas odbioru maszyny po przeprowadzeniu przeglądu technicznego?

A. Określenia zakresu następnego przeglądu technicznego
B. Weryfikacji działania maszyny bez obciążenia
C. Przeprowadzenia testowego uruchomienia maszyny pod obciążeniem znamionowym
D. Sprawdzenia kondycji oraz poprawności działania urządzeń zabezpieczających
Analizując pozostałe odpowiedzi, można zauważyć, że wszystkie one dotyczą kluczowych aspektów odbioru obrabiarki po przeglądzie technicznym, ale nie są one czynnościami które można pominąć. Testowe uruchomienie obrabiarki pod obciążeniem znamionowym ma fundamentalne znaczenie dla sprawdzenia prawidłowego funkcjonowania maszyny w warunkach zbliżonych do rzeczywistych. Przeprowadzenie takiego testu pozwala zidentyfikować ewentualne problemy związane z wydajnością oraz stabilnością urządzenia, co jest kluczowe dla zapewnienia jego efektywności. Sprawdzanie działania obrabiarki bez obciążenia także nie powinno być lekceważone, gdyż umożliwia wykrycie podstawowych usterek i nieprawidłowości w działaniu systemów sterujących. Ponadto, weryfikacja stanu oraz prawidłowości działania urządzeń zabezpieczających jest niezbędna do zapewnienia bezpieczeństwa operatorów i otoczenia. Zaniedbanie któregokolwiek z tych kroków może prowadzić do poważnych konsekwencji, takich jak awarie, wypadki przy pracy, czy znaczne straty finansowe związane z przestojami produkcyjnymi. Dlatego ważne jest, aby każdy proces odbioru obrabiarek po przeglądzie był dokładnie zaplanowany i realizowany zgodnie z ustalonymi standardami oraz najlepszymi praktykami branżowymi.

Pytanie 8

Który z wymienionych fragmentów kodu assemblera wskazuje na realizację operacji dodawania przez procesor?

A. MUL
B. ADD
C. SUB
D. DIV
Wybór kodu 'SUB', 'MUL' lub 'DIV' wskazuje na nieporozumienie dotyczące podstawowych operacji arytmetycznych w assemblerze. Instrukcja 'SUB' oznacza odejmowanie, co jest operacją przeciwną do dodawania. Użycie tej komendy w kontekście pytania sugeruje, że użytkownik może mylić dodawanie z odejmowaniem, co jest istotnym błędem, zwłaszcza w algorytmach, gdzie precyzyjne obliczenia są kluczowe. Z kolei 'MUL' to instrukcja mnożenia, a 'DIV' dotyczy dzielenia, co oznacza, że wybór którejkolwiek z tych odpowiedzi wskazuje na brak zrozumienia operacji arytmetycznych w assemblerze. Ważne jest, aby zauważyć, że każda z tych instrukcji ma swoje unikalne zastosowania w programowaniu niskopoziomowym, a ich wybór powinien być oparty na konkretnych potrzebach algorytmu. Edukacja w zakresie assemblera wymaga zrozumienia, jak różne instrukcje wpływają na operacje na danych oraz jak wpływają na wydajność programów. Błędy w tym zakresie mogą prowadzić do wydajnościowych problemów lub błędnych wyników w obliczeniach, co podkreśla znaczenie zrozumienia nie tylko samego języka assemblera, ale również właściwych zastosowań poszczególnych instrukcji.

Pytanie 9

Zakład produkcyjny zlecił unowocześnienie automatu wiertarskiego, który jest napędzany silnikiem indukcyjnym z czterostopniową przekładnią pasową, służącą do regulacji prędkości obrotowej wrzeciona wiertarki. Unowocześnienie ma na celu zamianę przekładni mechanicznej na urządzenie elektroniczne. Który z poniższych elementów powinien być użyty do realizacji tego przedsięwzięcia?

A. Przemiennik częstotliwości
B. Przetwornik analogowo-cyfrowy
C. Prostownik jednopołówkowy niesterowany
D. Przetwornicę napięcia
Wybór przetwornicy napięcia, prostownika jednopołówkowego niesterowanego czy przetwornika analogowo-cyfrowego jako zamiany przekładni mechanicznej na rozwiązania elektroniczne nie jest dobrym pomysłem. Przetwornica napięcia to urządzenie, które tylko zmienia napięcie z jednego poziomu na inny i nie ma opcji regulacji prędkości obrotowej silnika. W automatyce wykorzystuje się ją do zasilania, ale nie do kontroli obrotów. Prostownik jednopołówkowy niesterowany, który zamienia prąd zmienny na stały, też nie wpłynie na prędkość obrotową silnika, jego zadanie to dostarczanie stałego napięcia, co w tym przypadku nie wystarczy. Co do przetwornika analogowo-cyfrowego, to on przetwarza sygnały analogowe na cyfrowe, co jest przydatne do monitorowania, ale sam nie zmienia parametrów silnika. Widać tutaj błąd w myśleniu: do regulacji prędkości obrotowej potrzebna jest nie tylko konwersja napięcia, ale też zaawansowana kontrola, którą daje przemiennik częstotliwości. Wybierając niewłaściwy komponent, możesz napotkać poważne problemy z działaniem maszyny i z wyższymi kosztami eksploatacji.

Pytanie 10

Jakiego czujnika należy używać do obserwacji temperatury uzwojeń silnika elektrycznego?

A. Tensometru
B. Warystora
C. Termistora
D. Hallotronu
Termistor jest elementem, który charakteryzuje się znaczną zmianą oporu elektrycznego w zależności od temperatury. Dzięki temu, jest idealnym czujnikiem do monitorowania temperatury uzwojeń silników elektrycznych, gdzie precyzyjne pomiary są kluczowe dla ich prawidłowego działania. W zastosowaniach przemysłowych, gdzie silniki elektryczne pracują w trudnych warunkach, termistory są wykorzystywane do zabezpieczania przed przegrzaniem, co może prowadzić do uszkodzenia silnika. Dobrą praktyką w branży jest stosowanie termistorów w obwodach ochronnych, co pozwala na automatyczne wyłączanie silnika w przypadku osiągnięcia krytycznej temperatury. Dzięki swojej prostocie i niezawodności, termistory są szeroko stosowane w różnych aplikacjach, takich jak klimatyzacja, wentylacja oraz w systemach automatyki przemysłowej. Warto również zauważyć, że termistory mogą być stosowane w różnych konfiguracjach, co czyni je wszechstronnym rozwiązaniem w monitorowaniu temperatury. Ich zastosowanie przyczynia się do zwiększenia efektywności energetycznej oraz niezawodności urządzeń elektrycznych.

Pytanie 11

Rozpoczynając konserwację instalacji światłowodowej, co należy wykonać w pierwszej kolejności?

A. podłączyć reflektometr
B. zajrzeć do otworu z wiązką lasera w modemie
C. zajrzeć do otworu z wiązką lasera w kablu
D. podłączyć mikroskop ręczny z monitorem LCD
Odpowiedzi, które sugerują, żeby patrzeć w otwór ze światłem lasera w modemie lub kablu, a także podłączać reflektometr, nie są najlepsze na początek konserwacji instalacji światłowodowej. Patrzenie w otwór lasera, zarówno w modemie, jak i w kablu, wcale nie mówi nic o stanie włókien światłowodowych. Poza tym, promieniowanie lasera jest niebezpieczne dla wzroku i nie powinno być traktowane jako metoda inspekcji. Reflektometr to ważne narzędzie, ale używa się go do pomiarów po tym, jak zrobimy inspekcję wizualną. Łączenie reflektometru bez wcześniejszej oceny wizualnej prowadzi do błędnych wniosków, bo problemy jak zanieczyszczenia czy uszkodzenia nie będą od razu widoczne w wynikach pomiarów. W praktyce, konserwacja powinna zaczynać się od inspekcji wizualnej, co jest zgodne z normami branżowymi. Takie podejście może prowadzić do nieefektywnej diagnostyki i zbędnych wydatków, co stawia techników i operatorów w trudnej sytuacji. Właściwe podejście do konserwacji nie tylko zwiększa efektywność pracy, ale też poprawia jakość usług, które dostawcy internetu oferują.

Pytanie 12

Które z instrukcji dotyczących obsługi frezarki jest niewłaściwe?

A. Należy zakładać i stabilizować narzędzia w rękawicach roboczych
B. W trakcie obróbki materiałów odpryskowych i pylących należy nosić okulary ochronne oraz półmaski przeciwpyłowe
C. Śruby mocujące narzędzia oraz imadła maszynowe i dociski śrubowe należy dociskać ręcznie, unikając używania przedłużek do kluczy
D. Należy chłodzić obrabiany element podczas obróbki za pomocą mokrych szmat
Chłodzenie obrabianego elementu podczas obróbki przy pomocy specjalnych płynów chłodzących jest kluczowym elementem zapewniającym prawidłowe działanie frezarki. Podczas intensywnej obróbki mechanicznej, temperatura narzędzia oraz obrabianego materiału może osiągnąć bardzo wysokie wartości, co prowadzi do ich uszkodzenia, zniekształceń, a nawet przyspieszonego zużywania się narzędzi. Użycie odpowiednich płynów chłodzących, które mają za zadanie nie tylko obniżenie temperatury, ale także usuwanie wiórów oraz zanieczyszczeń, jest zgodne z najlepszymi praktykami w branży. Warto pamiętać, że chłodzenie mokrymi szmatkami jest niewystarczające, ponieważ nie zapewnia odpowiedniej penetracji w obszary robocze, co może prowadzić do powstawania punktów przegrzewania. Aby uzyskać najlepsze rezultaty, należy stosować płyny chłodzące zgodne z normami ISO, które posiadają odpowiednie właściwości smarne i chłodzące oraz są bezpieczne dla zdrowia operatora.

Pytanie 13

Jakie informacje powinien zawierać raport z realizowanych prac konserwacyjnych frezarki numerycznej?

A. Miejsce i datę oraz kosztorys przeprowadzonej konserwacji
B. Miejsce i datę, a także czas realizacji prac konserwacyjnych
C. Kosztorys oraz opis przeprowadzonych działań, a także podpis osoby odpowiedzialnej za konserwację
D. Datę i opis wykonanych prac oraz podpis osoby odpowiedzialnej za konserwację
Jak patrzę na błędne odpowiedzi, to widzę kilka rzeczy, które mogą wprowadzać w błąd, jeśli chodzi o dokumentację konserwacji. Sporo opcji sugeruje, że w protokole powinien być kosztorys prac. No, to może być przydatne w kwestiach finansowych, ale nie jest to najważniejsze dla stanu technicznego maszyny. Kosztorys nie mówi nam za dużo o jakości czy zakresie prac. Kolejna sprawa - niektórzy piszą o miejscu wykonania prac, ale to też nie jest kluczowe. Dużo ważniejsze jest, kiedy i co się działo. Czas trwania prac również nie ma aż takiej wagi i często jest mylone z istotnością tych informacji. Właściwe podejście do dokumentacji powinno być oparte na konkretach, żeby zapewnić bezpieczeństwo i sprawność w pracy. Warto się zastanowić, jakie dane są naprawdę istotne przy zarządzaniu konserwacją, bo to wszystko jest mega ważne dla funkcjonowania maszyn w zakładzie.

Pytanie 14

Który z poniższych komponentów jest używany w układach sterowania do konwersji sygnałów analogowych na cyfrowe?

A. Zawór proporcjonalny
B. Silnik elektryczny
C. Transformator
D. Przetwornik A/C
Przetwornik analogowo-cyfrowy, znany jako A/C (ang. ADC - Analog to Digital Converter), jest kluczowym elementem w systemach mechatronicznych, ponieważ pozwala na przekształcenie sygnałów analogowych na cyfrowe. W praktyce oznacza to, że sygnały, które są ciągłe w czasie i mogą przyjmować nieskończoną liczbę wartości, są zamieniane na sygnały cyfrowe, które są dyskretne i mogą być przetwarzane przez systemy cyfrowe, takie jak mikroprocesory czy sterowniki PLC. To umożliwia efektywne zarządzanie i kontrolowanie procesów przemysłowych. Przetworniki A/C znajdują zastosowanie w wielu dziedzinach, takich jak automatyka przemysłowa, robotyka oraz systemy pomiarowe. Dzięki nim możemy precyzyjnie monitorować i reagować na zmiany w układzie, co jest niezbędne w złożonych systemach mechatronicznych. Przykładem zastosowania jest odczyt wartości czujników takich jak temperatury, ciśnienia czy wilgotności, które są następnie interpretowane przez system sterujący w celu podjęcia odpowiednich działań. Standardy branżowe wymagają, by takie przetworniki charakteryzowały się wysoką dokładnością i szybkością przetwarzania, co jest kluczowe dla zachowania jakości i precyzji działania systemów.

Pytanie 15

W specyfikacji silnika można znaleźć oznaczenie S2 40. Pracując z układem wykorzystującym ten silnik, trzeba mieć na uwadze, aby

A. wilgotność otoczenia w trakcie pracy nie była wyższa niż 40%
B. czas działania nie przekraczał 40 min., a czas postoju był do momentu, gdy silnik się schłodzi.
C. temperatura otoczenia w trakcie pracy nie była wyższa niż 40°C
D. silnik pracował z obciążeniem nie mniejszym niż 40% mocy znamionowej
Odpowiedź wskazująca na czas pracy silnika wynoszący maksymalnie 40 minut oraz wymagany czas postoju do momentu ostygnięcia jest zgodna z zasadami eksploatacji silników oznaczonych jako S2. W tego rodzaju silnikach, okres pracy krótkotrwałej, jak i czas odpoczynku, są kluczowe dla ich efektywności oraz żywotności. Oznaczenie S2 40 informuje, że silnik może działać przez 40 minut z pełnym obciążeniem, po czym konieczne jest, aby miał czas na schłodzenie. Przykładem zastosowania tych zasad jest praca silnika w aplikacjach, gdzie wymagana jest jego cykliczna praca, jak w przenośnych narzędziach elektrycznych. Zgodnie z normami IEC 60034, stosowanie się do tych zasad pozwala na uniknięcie przegrzewania, co zwiększa niezawodność urządzenia oraz zmniejsza ryzyko awarii. Warto również zauważyć, że odpowiednie szacowanie cyklów pracy i odpoczynku stanowi element dobrej praktyki inżynieryjnej, co przekłada się na oszczędności w kosztach utrzymania i wydłużenie czasu eksploatacji. Dbanie o te wartości jest nie tylko wymagane, ale i korzystne z perspektywy użytkownika.

Pytanie 16

Który kabel w sieci elektrycznej zasilającej silnik trójfazowy jest oznaczony izolacją w kolorze żółto-zielonym?

A. Fazowy
B. Sterujący
C. Ochronny
D. Neutralny
Wybór przewodu sterującego, fazowego lub neutralnego jako przewodu ochronnego opiera się na nieprawidłowym zrozumieniu ról, jakie pełnią te elementy w instalacji elektrycznej. Przewód sterujący, choć istotny w systemach automatyki, nie pełni funkcji ochronnej, a jego celem jest przesyłanie sygnałów kontrolnych do urządzeń. Z kolei przewody fazowe, które przenoszą prąd roboczy z zasilania, nie mają zabezpieczenia przed porażeniem; ich izolacja jest zwykle kolorowa, ale nie zawiera żółto-zielonego oznaczenia. Przewód neutralny, odpowiadający za zamykanie obwodów prądowych, także nie pełni funkcji ochronnej. W przypadku jego uszkodzenia, ryzyko porażenia prądem znacznie wzrasta, gdyż nie zapewnia on odpowiedniego uziemienia. W praktyce, decydując się na zastosowanie nieodpowiedniego przewodu zamiast ochronnego, narażamy użytkowników na niebezpieczeństwo oraz łamiemy przepisy dotyczące bezpieczeństwa instalacji elektrycznych. Warto pamiętać, że zgodnie z normami, przewód ochronny jest jedynym elementem, którego głównym zadaniem jest zapewnienie bezpieczeństwa użytkowania urządzeń elektrycznych poprzez skuteczne odprowadzanie prądu do ziemi w razie awarii. Przekonanie, że inne przewody mogą sprostać tej roli, jest błędne i może prowadzić do tragicznych skutków.

Pytanie 17

W schemacie układu hydraulicznego przyłącze rury zasilającej rozdzielacza oznaczane jest literą

A. T
B. B
C. P
D. A
Niepoprawne odpowiedzi, jak B, T czy A, wskazują na jakieś nieporozumienia w symbolice hydraulicznej. Symbol B zazwyczaj oznacza odpływ, więc można pomyśleć, że dotyczy przyłącza zasilającego, ale to nie to. Odpływ odprowadza medium robocze, a nie je dostarcza. Symbol T natomiast to powrót oleju do zbiornika, co też nie jest związane z przyłączem zasilającym. Używanie tych symboli w niewłaściwy sposób może powodować błędy w projektowaniu i używaniu układów hydraulicznych, co w praktyce może prowadzić do problemów z maszynami. Co do symboli A i B, to one oznaczają wyjścia robocze, więc też nie mają nic wspólnego z zasilaniem. Rozumienie tych różnic jest naprawdę kluczowe, żeby unikać typowych błędów w analizie schematów hydraulicznych. Jeśli nie ogarniasz tej symboliki, to może być nieefektywna instalacja i wyższe koszty. Dlatego ważne, by każdy, kto z tym pracuje, miał dobry przegląd oznaczeń i ich zastosowania.

Pytanie 18

Która z poniższych czynności serwisowych nie jest konieczna do wykonania codziennie przed uruchomieniem szlifierki kątowej?

A. Oględziny stanu przewodu zasilającego
B. Pomiar przewodności bezpiecznika
C. Sprawdzenie mocowania osłony tarczy i rękojeści
D. Dokręcenie nakrętki mocującej tarczę
Pomiar przewodności bezpiecznika nie jest czynnością, która musi być wykonywana codziennie przed uruchomieniem szlifierki kątowej, ponieważ bezpiecznik, jako element zabezpieczający, nie ulega szybkiemu zużyciu podczas normalnej eksploatacji narzędzia. W praktyce, choć warto okresowo kontrolować stan bezpiecznika, jego pomiar nie jest wymagany przed każdym użyciem. Dobrym rozwiązaniem jest przeprowadzanie takich pomiarów w ramach regularnej konserwacji, na przykład raz w miesiącu lub po intensywnym użytkowaniu narzędzia. W przypadku uszkodzenia lub przepalenia bezpiecznika natychmiastowa wymiana jest konieczna, ale codzienny pomiar nie jest konieczny. Warto także zaznaczyć, że niektóre nowoczesne narzędzia są wyposażone w automatyczne systemy monitorowania, które same informują użytkownika o stanie zabezpieczeń. Przestrzeganie standardów BHP oraz dobrych praktyk w zakresie konserwacji sprzętu pozwala na zwiększenie bezpieczeństwa i wydajności pracy.

Pytanie 19

W systemie mechatronicznym konieczne jest zastosowanie regulacji temperatury w dwóch stanach. Który z regulatorów odpowiada tym wymaganiom?

A. Proporcjonalny
B. PI
C. Dwustawny
D. PID
Regulator dwustawny, znany również jako regulator on/off, jest idealnym rozwiązaniem dla systemów wymagających dwupołożeniowej regulacji temperatury. Jego działanie polega na przełączaniu pomiędzy dwoma stanami - włączonym i wyłączonym - co zapewnia prostotę i efektywność. Taki regulator jest powszechnie stosowany w systemach grzewczych, klimatyzacyjnych oraz w urządzeniach przemysłowych, gdzie precyzyjne utrzymanie temperatury nie jest kluczowe. Przykładem może być termostat w piecu, który włącza się, gdy temperatura spada poniżej ustawionej wartości, i wyłącza, gdy ją przekracza. Dzięki swojej prostocie, regulator dwustawny jest łatwy do implementacji oraz konfiguracji, co czyni go preferowanym wyborem w wielu aplikacjach. Warto również zauważyć, że takie rozwiązanie spełnia standardy efektywności energetycznej, minimalizując zużycie energii poprzez unikanie niepotrzebnego działania grzałek czy chłodnic.

Pytanie 20

Ile par połączonych ze sobą przewodów (ramek) tworzy najprostszy wirnik w trójfazowym silniku indukcyjnym?

A. Z trzech par
B. Z dziewięciu par
C. Z sześciu par
D. Z jednej pary
Najprostszy wirnik silnika indukcyjnego trójfazowego składa się z jednej pary przewodów połączonych w ramki. Ta konstrukcja jest znana jako wirnik typu klatkowego, który jest powszechnie stosowany w silnikach asynchronicznych. W jednej parze przewodów mamy dwa przewody, które są odpowiedzialne za wytwarzanie pola magnetycznego w wirniku. Zastosowanie jednej pary przewodów pozwala na efektywne generowanie momentu obrotowego przy minimalnych stratach energetycznych. W praktyce, wirnik tego typu jest bardzo wydajny i mało awaryjny, co czyni go idealnym rozwiązaniem dla wielu zastosowań przemysłowych, takich jak pompy, wentylatory czy sprężarki. Projektując silniki elektryczne, inżynierowie bazują na normach takich jak IEC 60034, które definiują wymagania dotyczące wirników oraz ogólnie silników elektrycznych. Warto zaznaczyć, że w przypadku silników wielofazowych, liczba par przewodów w wirniku wpływa na charakterystyki pracy silnika, takie jak moc, moment obrotowy i wydajność, dlatego ich odpowiedni dobór jest kluczowy w projektowaniu.

Pytanie 21

Podczas diagnostyki systemu mechatronicznego, co jest kluczowym parametrem do zmierzenia?

A. Kolor przewodów
B. Materiał obudowy
C. Napięcie zasilania
D. Waga komponentów
Napięcie zasilania jest kluczowym parametrem do zmierzenia podczas diagnostyki systemu mechatronicznego, ponieważ od jego poprawności zależy prawidłowe funkcjonowanie całego układu. W mechatronice urządzenia często opierają się na precyzyjnym zasilaniu poszczególnych komponentów, takich jak silniki, siłowniki czy czujniki. Niewłaściwe napięcie może prowadzić do nieprawidłowego działania lub nawet uszkodzenia tych elementów. Dlatego sprawdzenie napięcia jest jednym z pierwszych kroków diagnostycznych. Dodatkowo, zgodnie z dobrą praktyką inżynierską, systemy mechatroniczne są projektowane z określonymi zakresami napięcia roboczego, które muszą być dokładnie utrzymywane. W praktyce, pomiar napięcia zasilania może pomóc zidentyfikować problemy związane z zasilaniem, takie jak spadki napięcia, które są częstą przyczyną problemów w systemach mechatronicznych. Regularne monitorowanie tego parametru pozwala na wczesne wykrycie potencjalnych awarii i zapewnia niezawodność całego systemu.

Pytanie 22

Badanie szczelności układu hydraulicznego powinno być wykonane przy ciśnieniu

A. wyższym o 100% od ciśnienia roboczego
B. wyższym o 50% od ciśnienia roboczego
C. niższym o 20% od ciśnienia roboczego
D. równym ciśnieniu roboczemu
Ocena szczelności układu hydraulicznego przy ciśnieniu większym o 50% od ciśnienia roboczego jest kluczowym standardem w branży inżynieryjnej. Taki test ma na celu zapewnienie, że układ jest w stanie wytrzymać wszelkie potencjalne przeciążenia, które mogą wystąpić w trakcie normalnej eksploatacji. Przykładowo, w aplikacjach przemysłowych, takich jak maszyny hydrauliczne czy systemy transportu cieczy, presja robocza często osiąga wysokie wartości, dlatego ważne jest, aby podczas testów przekroczyć te wartości o 50%. Takie podejście jest zgodne z normami takimi jak ISO pressures standaryzacja, które zalecają przeprowadzanie testów na ciśnienie wyższe niż robocze w celu eliminacji ryzyka awarii. Dzięki temu można zidentyfikować potencjalne nieszczelności lub słabości w konstrukcji układu, co przyczynia się do zwiększenia bezpieczeństwa i niezawodności systemu. Umożliwia to również wcześniejsze wykrycie problemów, co może zaoszczędzić znaczne koszty związane z naprawami i przestojami w produkcji.

Pytanie 23

Jakie ciśnienie cieczy powinno być w układzie hydraulicznym, aby siłownik o powierzchni czynnej tłoka A = 80 cm2 był w stanie wygenerować siłę F = 150 kN?

A. 1,875 bara
B. 18,75 bara
C. 1875 barów
D. 187,5 bara
Poprawna odpowiedź to "187,5 bara." Ciśnienie cieczy zasilającej układ hydrauliczny jest kluczowym parametrem, który pozwala na uzyskanie odpowiedniej siły z siłowników hydraulicznych. W tym przypadku, aby obliczyć ciśnienie, wykorzystujemy wzór p=F/A, gdzie F to siła, a A to powierzchnia czynna tłoka. Podstawiając wartości: F=150 kN (czyli 150000 N) oraz A=80 cm² (czyli 0,008 m²), otrzymujemy p=150000 N/0,008 m²=18750000 Pa, co w przeliczeniu na bary daje nam 187,5 bara. Zastosowanie odpowiedniego ciśnienia w układach hydraulicznych jest zgodne z normami branżowymi, które określają wymagania dotyczące bezpieczeństwa i efektywności pracy maszyn. W praktyce, ciśnienie to pozwala na sprawne działanie siłowników w różnych zastosowaniach, takich jak w przemyśle ciężkim, budowlanym czy motoryzacyjnym, gdzie precyzyjne sterowanie ruchem i siłą ma kluczowe znaczenie. Utrzymanie właściwego ciśnienia w układzie nie tylko zwiększa wydajność, ale także minimalizuje ryzyko uszkodzeń i awarii, co jest istotne dla długoterminowej niezawodności systemów hydraulicznych.

Pytanie 24

Który z wymienionych kwalifikatorów działań, wykorzystywanych w metodzie SFC, może być pominięty w opisie bloku akcji, nie wpływając na sposób realizacji przypisanego w nim działania?

A. D
B. R
C. S
D. N
Kwalifikator "N" w metodzie SFC (Sequential Function Chart) oznacza brak kwalifikatora, co oznacza, że nie ma dodatkowego opisu dla danego działania. Jego pominięcie nie wpływa na sposób realizacji bloku akcji, ponieważ nie dodaje on żadnych warunków ani szczegółów, które musiałyby być brane pod uwagę w procesie wykonawczym. W praktyce, stosowanie kwalifikatorów w SFC jest kluczowe dla zapewnienia przejrzystości i zrozumiałości diagramów, jednak w przypadku "N" mamy do czynienia z sytuacją, w której blok akcji działa w taki sam sposób, niezależnie od tego, czy ten kwalifikator jest obecny, czy nie. W branży automatyki przemysłowej, znajomość i umiejętność stosowania kwalifikatorów w SFC jest niezbędna do efektywnego modelowania procesów, co pozwala na łatwiejszą analizę i optymalizację działań. Na przykład, w przypadku zautomatyzowanego procesu pakowania, kwalifikatory mogą pomóc w określeniu, kiedy maszyna powinna przejść do kolejnego etapu, a ich odpowiednie stosowanie zapewnia płynność całej operacji.

Pytanie 25

Jaką z wymienionych czynności można przeprowadzić podczas pracy silnika prądu stałego?

A. Wymienić szczotki komutatora
B. Przeczyścić odpowiednimi środkami elementy wirujące silnika
C. Dokręcić śruby mocujące silnik do podłoża
D. Wyczyścić łopatki wentylatora
Dokręcanie śrub mocujących silnik do podłoża w czasie pracy silnika prądu stałego jest czynnością bezpieczną, ponieważ nie wpływa na działanie samego silnika ani nie zagraża jego integralności. W praktyce, silnik powinien być odpowiednio zamocowany, aby uniknąć drgań i potencjalnych uszkodzeń. W sytuacjach, gdy silnik pracuje, można przeprowadzać różne czynności, które nie ingerują w jego układ elektryczny czy mechaniczny. W przypadku niewłaściwego zamocowania, silnik może ulegać uszkodzeniom mechanicznym, co w dłuższej perspektywie prowadzi do awarii. Dlatego dobrym zwyczajem jest regularne sprawdzanie mocowania silnika oraz ich stanu, co jest zgodne z najlepszymi praktykami w zakresie konserwacji. Warto również zaznaczyć, że zgodnie z normami bezpieczeństwa, wszelkie inne prace elektryczne powinny być wykonywane wyłącznie po odłączeniu urządzenia od zasilania, co pozwala uniknąć poważnych wypadków.

Pytanie 26

Która z poniższych zasad dotyczących rysowania schematów elektrycznych jest fałszywa?

A. Symbole zabezpieczeń przedstawia się w stanie spoczynku (podstawowym)
B. Schematy tworzy się w stanie podstawowym (bezprądowym)
C. Symbole łączników rysuje się w momencie ich działania
D. Cewka oraz styki przekaźnika posiadają identyczne oznaczenia
Odpowiedź jest poprawna, ponieważ zasady rysowania schematów elektrycznych określają, że symbole łączników, takich jak wyłączniki czy przyciski, powinny być przedstawiane w stanie spoczynku, a nie w stanie pracy. Rysowanie tych symboli w stanie pracy może prowadzić do nieporozumień, gdyż nie oddaje rzeczywistego stanu, w jakim urządzenia będą funkcjonować w normalnych warunkach. W praktyce, na przykład podczas tworzenia schematu dla instalacji elektrycznej, istotne jest, aby zapewnić jasność i przejrzystość, co ułatwia późniejsze analizowanie i wykonywanie prac serwisowych. Zgodnie z normami, takimi jak PN-EN 60617, symbole powinny być przedstawione zgodnie z ustalonymi standardami, co zwiększa bezpieczeństwo i efektywność w komunikacji technicznej. Rysowanie symboli w stanie spoczynku pozwala na jednoznaczne zrozumienie, jakie urządzenia są włączone lub wyłączone, co jest istotne dla prawidłowego funkcjonowania całego systemu elektrycznego.

Pytanie 27

Która z poniższych usterek urządzenia II klasy ochronności stwarza najwyższe ryzyko porażenia prądem?

A. Przepalenie bezpiecznika znajdującego się wewnątrz urządzenia
B. Uszkodzenie izolacji kabla zasilającego urządzenie
C. Przepalenie uzwojeń silnika umieszczonego w urządzeniu
D. Uszkodzenie przewodu ochronnego PE
Uszkodzenie izolacji przewodu zasilającego urządzenie II klasy ochronności stanowi poważne zagrożenie porażenia prądem, ponieważ narusza integralność systemu ochrony przed porażeniem elektrycznym. W urządzeniach tej klasy, które nie mają metalowej obudowy uziemionej, kluczową rolę odgrywa izolacja. W przypadku, gdy izolacja ulegnie uszkodzeniu, istnieje ryzyko kontaktu z przewodem pod napięciem, co może prowadzić do poważnych obrażeń lub śmierci. Zgodnie z normą PN-EN 61140, urządzenia klasy II powinny być projektowane z myślą o minimalizacji ryzyka porażenia prądem, co oznacza, że wszelkie uszkodzenia izolacji powinny być niezwłocznie diagnozowane i naprawiane. Praktycznie oznacza to, że regularne przeglądy oraz stosowanie odpowiednich technik konserwacji, takich jak testy izolacji, są kluczowe w zapobieganiu takim sytuacjom. Ponadto, zastosowanie odpowiednich zabezpieczeń, jak wyłączniki różnicowoprądowe, może znacząco zwiększyć bezpieczeństwo użytkowników i zapobiec poważnym wypadkom.

Pytanie 28

Podczas wymiany uszkodzonego kondensatora, można użyć zamiennika o

A. wyższej wartości pojemności
B. niższej wartości pojemności
C. niższej wartości napięcia nominalnego
D. wyższej wartości napięcia nominalnego
Zastosowanie kondensatora o większej wartości napięcia nominalnego jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności układów elektronicznych. Wyższa wartość napięcia nominalnego oznacza, że kondensator będzie w stanie wytrzymać większe napięcia bez ryzyka uszkodzenia. Przykładem może być kondensator stosowany w zasilaczach impulsowych, gdzie napięcia mogą być znacznie wyższe niż nominalne. W takim przypadku, zastosowanie kondensatora o odpowiednio wysokim napięciu nominalnym zabezpiecza go przed awarią. Dobrą praktyką jest, aby wartość napięcia nominalnego kondensatora była co najmniej 20-30% wyższa od maksymalnego napięcia roboczego w układzie, co znacząco zwiększa niezawodność. Warto również pamiętać, że kondensatory są klasyfikowane zgodnie z normami, takimi jak IEC 60384, które definiują ich parametry i zastosowania. Wybierając zamiennik, warto zwrócić uwagę na te standardy, co pozwala na efektywne i bezpieczne projektowanie obwodów.

Pytanie 29

W dokumentacji dotyczączej prasy pneumatycznej jako kluczowy parametr eksploatacji określono ciśnienie zasilające na poziomie 0,6 MPa ± 5%. Który z podanych pomiarów nie mieści się w akceptowalnym zakresie?

A. 0,58 MPa
B. 630 000 Pa
C. 650 kPa
D. 600 kPa
Odpowiedź '650 kPa' jest właściwa, ponieważ znajduje się poza dopuszczalnym zakresem ciśnienia zasilania dla prasy pneumatycznej. Zgodnie z dokumentacją, wartość ciśnienia nominalnego wynosi 0,6 MPa, a dopuszczalne odchylenie wynosi ± 5%. Oznacza to, że ciśnienie powinno mieścić się w przedziale od 0,57 MPa do 0,63 MPa. Wartość 650 kPa, co odpowiada 0,65 MPa, przekracza górną granicę tego zakresu, co może prowadzić do niebezpiecznych sytuacji podczas pracy urządzenia. Przykładowo, w przypadku nadmiernego ciśnienia dochodzi do zwiększonego ryzyka uszkodzenia elementów prasy, co może skutkować awarią maszyny oraz zagrożeniem dla operatorów. W praktyce, kontrola i monitorowanie ciśnienia zasilania jest kluczowe dla zapewnienia prawidłowej pracy i bezpieczeństwa urządzeń pneumatycznych. Przestrzeganie tych norm jest zgodne z wytycznymi branżowymi, które zalecają regularne kalibracje oraz audyty systemów ciśnieniowych.

Pytanie 30

W dokumentacji dotyczącej obsługi i konserwacji sieci komunikacyjnej sterowników PLC, które współpracują z urządzeniami mechatronicznymi, powinno się zawrzeć zalecenie dotyczące

A. układania przewodów komunikacyjnych równolegle do przewodów zasilających
B. wykorzystania przewodów o dużej pojemności wzajemnej żył
C. stosowania tylko przewodów nieekranowanych
D. dodawania dodatkowego przewodu do wyrównywania potencjałów pomiędzy żyłami
Prowadzenie przewodów komunikacyjnych równolegle do przewodów zasilających jest kluczowym zaleceniem w kontekście minimalizacji zakłóceń elektromagnetycznych. Takie podejście pozwala na skuteczne oddzielanie sygnałów komunikacyjnych od potencjalnych źródeł zakłóceń, co jest szczególnie istotne w aplikacjach mechatronicznych, gdzie stabilność działania urządzeń ma kluczowe znaczenie. W praktyce, stosowanie tej metody przyczynia się do zwiększenia jakości przesyłu danych i zmniejszenia ryzyka błędów komunikacyjnych. W branży automatyki istnieje wiele standardów, takich jak IEC 61158, które podkreślają znaczenie odpowiedniego prowadzenia przewodów w kontekście interoperacyjności i niezawodności systemów. Warto również pamiętać, że zgodnie z wytycznymi producentów, stosowanie tej techniki w instalacjach przemysłowych umożliwia lepsze dostosowanie do zmieniających się warunków pracy oraz poprawia ogólną wydajność systemów. Dlatego właściwe prowadzenie przewodów komunikacyjnych powinno być integralnym elementem projektowania i implementacji systemów mechatronicznych.

Pytanie 31

Jaką z poniższych czynności konserwacyjnych można przeprowadzić podczas pracy silnika prądu stałego?

A. Przeczyścić elementy wirujące silnika za pomocą odpowiednich środków
B. Zamienić szczotki komutatora
C. Oczyścić łopatki wentylatora
D. Zmierzyć prędkość obrotową metodą stroboskopową
Zmierzenie prędkości obrotowej metodą stroboskopową jest kluczowym procesem w diagnostyce i konserwacji silników prądu stałego, ponieważ pozwala na monitorowanie parametrów pracy silnika bez konieczności jego wyłączania. Metoda ta polega na użyciu stroboskopu, który emituje błyski światła w synchronizacji z obrotami wirnika. Dzięki temu operator widzi wirnik w stanie nieruchomym, co umożliwia dokładny odczyt prędkości obrotowej. Praktyczne zastosowanie tej metody jest nieocenione w sytuacjach, gdy konieczne jest szybkie sprawdzenie stanu technicznego silnika, a jego wyłączenie wiązałoby się z przestojem w pracy maszyny. Zgodnie z dobrymi praktykami, zaleca się regularne monitorowanie prędkości obrotowej silników, co pozwala na wczesne wykrywanie nieprawidłowości oraz podejmowanie działań prewencyjnych, co zwiększa niezawodność i bezpieczeństwo pracy urządzeń.

Pytanie 32

Jaki z wymienionych sposobów powinien być zastosowany podczas przeprowadzania początkowego testowania programu stworzonego dla robota przemysłowego?

A. Ręczne powtarzanie ruchów, etap po etapie z prędkością ustawioną na 100%
B. Automatyczne powtarzanie ruchów, z prędkością ustawioną na 20%
C. Ręczne powtarzanie ruchów, etap po etapie z prędkością ustawioną na 20%
D. Automatyczne powtarzanie ruchów z prędkością ustawioną na 100%
Ręczne odtwarzanie ruchów robota przemysłowego, krok po kroku, z prędkością ustawioną na 20% jest kluczowym podejściem podczas wstępnego testowania programów. Takie podejście zapewnia możliwość szczegółowego monitorowania każdego etapu ruchu robota, co jest niezbędne w kontekście analizy poprawności funkcjonowania zaprogramowanych sekwencji. Prędkość 20% umożliwia dokładne obserwowanie zachowań robota, co jest szczególnie istotne przy pierwszych testach, kiedy to jeszcze nie ma pełnej pewności co do stabilności i bezpieczeństwa działania robota. Działania te są zgodne z najlepszymi praktykami w obszarze automatyzacji i robotyki, gdzie bezpieczeństwo użytkowników i sprzętu ma kluczowe znaczenie. W praktyce, zarówno w laboratoriach jak i w środowiskach przemysłowych, zaleca się wprowadzenie stopniowego zwiększania prędkości po pomyślnym zakończeniu testów przy niskiej prędkości, co pozwala na minimalizację ryzyka uszkodzeń oraz błędów w działaniu systemu.

Pytanie 33

Na podstawie załączonego fragmentu instrukcji obsługi frezarki wskaż, która z wymienionych czynności konserwacyjnych powinna być najczęściej wykonywana dla maszyny niewyposażonej w opcjonalny układ chłodziwa wrzeciona (TSC).

CzęstośćPrace konserwacyjne wykonywane
Codziennie
  • Sprawdzić poziom chłodziwa podczas każdej ośmiogodzinnej zmiany (zwłaszcza podczas intensywnego użytkowania TSC)
  • Sprawdzić poziom oleju w zbiorniku olejowym prowadnicy
  • Usunąć wióry z osłon prowadnicy i osadnika
  • Usunąć wióry z urządzenia do wymiany narzędzi
  • Oczyścić stożek wrzeciona czystą szmatą i nasmarować lekkim olejem
Co tydzień
  • Sprawdzić filtry układu chłodziwa wrzeciona (TSC). W razie potrzeby oczyścić lub wymienić.
  • Sprawdzić prawidłowość pracy automatycznego spustu na filtrze regulatora.
  • W maszynach z opcją TSC oczyścić osadnik wiórów w zbiorniku płynu chłodzącego. Zdjąć pokrywę zbiornika i usunąć osad ze zbiornika. Odłączyć pompę chłodziwa od szafki i wyłączyć zasilanie maszyny przed rozpoczęciem pracy przy zbiorniku chłodziwa.
    Wykonywać tę czynność COMIESIĘCZNIE dla maszyn bez opcji TSC.
Co miesiąc
  • Sprawdzić poziom oleju w skrzynce przekładniowej. Dla wrzecion o stożku 40: Zdjąć osłonę otworu inspekcyjnego pod głowicą wrzeciona. Dolewać powoli olej od góry, aż zacznie kapać przez rurkę przelewową w nie miski osadnika. Dla wrzecion o stożku 50: Sprawdzić poziom oleju przez wziernik. W razie potrzeby dolać z boku skrzynki przekładniowej.
  • Sprawdzić, czy osłony prowadnicy działają prawidłowo i w razie potrzeby nasmarować je lekkim olejem.
  • Nałożyć gałkę smaru na zewnętrznej krawędzi szyn prowadnicy w urządzeniu do wymiany narzędzi i zmienić kolejno wszystkie narzędzia.
  • Sprawdzić poziom oleju SMTC we wzierniku (patrz „Kontrola poziomu oleju w mocowanym bocznie urządzeniu do wymiany narzędzi" w niniejszym rozdziale).
  • EC-400 Oczyścić podkładki ustalające na osi A i stanowisko ładowania. Wiąże się to z koniecznością zdjęcia palety.

A. Oczyszczenie osadnika wiórów w zbiorniku płynu chłodzącego.
B. Sprawdzenie prawidłowości pracy automatycznego spustu na filtrze regulatora.
C. Sprawdzenie poziomu oleju w skrzynce przekładniowej.
D. Sprawdzenie działania osłon prowadnicy.
Wybór odpowiedzi, która sugeruje inne czynności konserwacyjne, wskazuje na niezrozumienie harmonogramu konserwacji urządzeń mechanicznych. Sprawdzanie poziomu oleju w skrzynce przekładniowej jest istotnym zadaniem, ale zgodnie z instrukcją powinno być przeprowadzane co miesiąc, a nie co tydzień. Ignorowanie częstotliwości tych czynności może prowadzić do sytuacji, w której ważne elementy maszyny nie są odpowiednio monitorowane, co w dłuższej perspektywie może skutkować poważnymi awariami. Sprawdzanie działania osłon prowadnicy również jest ważne, ale jest to zadanie o niższej częstotliwości. Z kolei oczyszczanie osadnika wiórów w zbiorniku płynu chłodzącego dotyczy tylko maszyn wyposażonych w opcjonalny układ chłodziwa wrzeciona i nie ma zastosowania w kontekście maszyny, która go nie posiada. Takie nieprecyzyjne podejście do konserwacji może prowadzić do błędów w zarządzaniu zasobami i nieoptymalnego wykorzystania czasu pracy. Wiedza na temat częstotliwości poszczególnych czynności konserwacyjnych oraz ich znaczenia w kontekście wydajności maszyny jest kluczowa w codziennej pracy operatorów i techników. Dobre praktyki zakładają, że każda czynność powinna być dostosowana do specyfikacji producenta i rzeczywistych warunków pracy maszyny, co zdecydowanie poprawia efektywność operacyjną.

Pytanie 34

Aby zmienić kierunek obrotu wirnika silnika bocznikowego prądu stałego bez przesterowania maszyny, co należy zrobić?

A. zmienić kierunek prądu w uzwojeniu twornika
B. zmienić kierunek prądu w uzwojeniu komutacyjnym
C. zamienić miejscami dwa przewody podłączone do źródła zasilania
D. zmienić kierunek prądu w uzwojeniu wzbudzenia
W przypadku podanych odpowiedzi, zmiana zwrotu prądu w uzwojeniu wzbudzenia nie spowoduje zmiany kierunku obrotów wirnika w silniku bocznikowym prądu stałego, a to dlatego, że uzwojenie wzbudzenia jest odpowiedzialne głównie za generowanie pola magnetycznego, a nie za kontrolowanie kierunku ruchu wirnika. Zmiana zwrotu prądu w uzwojeniu komutacyjnym również nie jest właściwa, ponieważ uzwojenie komutacyjne ma na celu przełączanie prądu w wirniku, ale nie wpływa na kierunek obrotów w sposób wymagany w tym kontekście. Zamiana miejscami przewodów podłączonych do sieci jest błędnym podejściem, gdyż może prowadzić do nieprawidłowego działania silnika lub jego uszkodzenia, a nie do zmiany kierunku obrotów. Typowym błędem myślowym w przypadku tych odpowiedzi jest przekonanie, że zmiana jakiegokolwiek elementu związana z prądem w obwodzie prowadzi do zmiany kierunku obrotów, podczas gdy w rzeczywistości kierunek obrotu wirnika zależy od specyficznej interakcji między prądem w uzwojeniu twornika a polem magnetycznym. Dlatego kluczowe jest zrozumienie, że prawidłowa metoda zmiany kierunku obrotów wymaga bezpośredniej interakcji właśnie w uzwojeniu twornika.

Pytanie 35

Wskaż, jaka czynność powinna zostać zrealizowana przed przystąpieniem do konserwacji instalacji sprężonego powietrza, zaraz po wyłączeniu i odpowietrzeniu sprężarki oraz opróżnieniu zbiorników powietrza?

A. Oczyścić części odpowiednimi środkami chemicznymi
B. Wymienić uszkodzone elementy instalacji oraz wszystkie uszczelki
C. Otworzyć zawory odwadniaczy spustowych i upewnić się o braku ciśnienia w instalacji
D. Zakryć części i otwory czystą szmatką lub taśmą klejącą
Otwieranie zaworów odwadniaczy przed każdymi pracami konserwacyjnymi to mega ważna sprawa. Dzięki temu usuwamy wilgoć, która może się zbierać w zbiornikach i przewodach. A to jest kluczowe, żeby system działał sprawnie i dłużej. Jak woda lub jakieś zanieczyszczenia dostaną się do instalacji, to mogą spowodować korozję, co w efekcie może prowadzić do awarii, a nawet niebezpiecznych sytuacji, jak wybuchy. Musimy też pamiętać, że upewnienie się, że ciśnienie w instalacji jest na zero, to podstawa bezpieczeństwa. Jeśli zaczniemy działać pod ciśnieniem, to naprawdę może być bardzo niebezpiecznie dla osób obsługujących system. Standardy BHP w przemyśle mówią głośno o tym, jak ważne jest przestrzeganie procedur bezpieczeństwa, czyli regularne usuwanie wilgoci i kontrolowanie ciśnienia. Dobrze też wiedzieć, że odpowiednie zarządzanie instalacją sprężonego powietrza poprawia nie tylko bezpieczeństwo, ale też efektywność całego systemu.

Pytanie 36

Jakiego rodzaju oprogramowanie należy zastosować do przedstawienia procesu produkcji?

A. SCADA
B. CAE
C. CAM
D. CAD
SCADA, czyli System Kontroli i Zbierania Danych, to oprogramowanie kluczowe w wizualizacji i zarządzaniu procesami produkcyjnymi. Jego głównym celem jest monitorowanie systemów w czasie rzeczywistym, co pozwala na szybkie reagowanie na wszelkie nieprawidłowości. SCADA umożliwia zbieranie danych z różnych czujników i urządzeń, a następnie ich przetwarzanie i wizualizację w formie intuicyjnych interfejsów graficznych. Dzięki temu operatorzy mogą pełniej zrozumieć stan systemu produkcyjnego, co jest istotne w kontekście optymalizacji procesów oraz minimalizacji przestojów. W praktyce SCADA często współpracuje z innymi systemami, takimi jak ERP (Enterprise Resource Planning) czy MES (Manufacturing Execution Systems), co jeszcze bardziej zwiększa jej użyteczność. Standardy takie jak ISA-95 definiują interakcje pomiędzy systemami produkcyjnymi a zarządczymi, co sprawia, że SCADA jest integralnym elementem nowoczesnych zakładów przemysłowych. Właściwe wykorzystanie SCADA przynosi korzyści w postaci zwiększonej efektywności operacyjnej oraz lepszego wykorzystania zasobów.

Pytanie 37

Sterownik PLC powinien zarządzać systemem nagrzewnicy, który składa się z wentylatora oraz zestawu grzałek. Jaką czynność należy podjąć, aby uniknąć przegrzania obudowy nagrzewnicy po jej dezaktywowaniu?

A. Opóźnić dezaktywację grzałek
B. Zmniejszyć prędkość obrotową silnika wentylatora
C. Opóźnić dezaktywację wentylatora
D. Zwiększyć moc grzałek
Opóźnienie wyłączenia wentylatora jest kluczowym działaniem mającym na celu ochronę obudowy nagrzewnicy przed przegrzewaniem się. Kiedy grzałki są wyłączone, obudowa nagrzewnicy wciąż emituje ciepło, a wentylator odgrywa istotną rolę w odprowadzaniu tego ciepła do otoczenia. Działający wentylator pomoże w utrzymaniu właściwej temperatury obudowy, zapobiegając jej uszkodzeniu oraz wydłużając żywotność urządzenia. W praktyce, opóźnienie wyłączenia wentylatora można zrealizować poprzez zaprogramowanie odpowiedniego czasu w sterowniku PLC, po którym wentylator będzie kontynuował pracę. Tego typu rozwiązania są zgodne z zasadami inżynierii automatyki, gdzie bezpieczeństwo i niezawodność systemu są priorytetem. Właściwe zarządzanie temperaturą nie tylko chroni urządzenie, ale również wpływa na efektywność energetyczną całego systemu grzewczego.

Pytanie 38

Jakiej litery używamy do oznaczania na schematach systemów sterowania wyjść sterownika PLC?

A. W
B. Q
C. X
D. I
Litera Q jest standardowo używana do oznaczania wyjść w systemach sterowania opartych na sterownikach PLC, ponieważ pochodzi od angielskiego słowa "output". W praktyce oznaczenie to jest niezwykle ważne dla zachowania przejrzystości oraz jednoznaczności schematów. Użycie litery Q pomaga inżynierom i technikom w szybkiej identyfikacji elementów wyjściowych w skomplikowanych układach sterujących. Na przykład, w wielu projektach automatyzacji przemysłowej, takich jak sterowanie silnikami, zaworami czy innymi urządzeniami wykonawczymi, oznaczenia Q ułatwiają dokumentację oraz diagnostykę. Stosowanie standardów w oznaczeniach, takich jak IEC 61131-3, gwarantuje, że schematy są zgodne z przyjętymi normami branżowymi, co ułatwia współpracę między zespołami inżynieryjnymi oraz zapewnia efektywność komunikacji w projektach. Dodatkowo, stosując jednolite oznaczenia, inżynierowie mogą szybciej wprowadzać zmiany w układzie, co zwiększa elastyczność i skraca czas realizacji projektów.

Pytanie 39

Zidentyfikuj sieć przemysłową z topologią w kształcie pierścienia.

A. Profibus DP
B. Modbus
C. LonWorks
D. InterBus-S
InterBus-S jest standardem komunikacyjnym wykorzystywanym w automatyce przemysłowej, który charakteryzuje się topologią pierścieniową. Ta struktura sieciowa umożliwia efektywną komunikację między urządzeniami oraz zapewnia wysoki poziom niezawodności i elastyczności. W topologii pierścieniowej każde urządzenie jest połączone z dwoma innymi, co oznacza, że sygnał przechodzi przez wszystkie węzły sieci w jednym kierunku. Dzięki temu, w przypadku awarii jednego z urządzeń, możliwe jest kontynuowanie komunikacji, co jest istotne dla utrzymania ciągłości procesów przemysłowych. InterBus-S znajduje zastosowanie w różnych aplikacjach, takich jak systemy automatyki w zakładach produkcyjnych, gdzie kontrola i monitoring procesów są kluczowe. Przykładem praktycznego zastosowania może być integracja czujników i napędów w systemach robotyki przemysłowej, gdzie szybkość i niezawodność komunikacji są kluczowe. W branży automatyki stosuje się najlepsze praktyki, takie jak projektowanie z uwzględnieniem redundancji, co czyni InterBus-S odpowiednim wyborem dla krytycznych aplikacji przemysłowych.

Pytanie 40

Który z parametrów nie jest uwzględniony w specyfikacji technicznej frezarki numerycznej CNC?

A. Liczba wrzecion [szt.]
B. Gramatura wtrysku [g/cykl]
C. Dokładność pozycjonowania [mm]
D. Maksymalna prędkość ruchu dla poszczególnych osi [m/s]
Wybór odpowiedzi związanej z gramaturą wtrysku jako niewłaściwej jest wynikiem pomylenia parametrów technologicznych stosowanych w różnych procesach obróbczych. Liczba wrzecion, powtarzalność pozycjonowania oraz maksymalna prędkość ruchu dla poszczególnych osi są kluczowymi elementami specyfikacji technicznej frezarek numerycznych CNC i mają fundamentalne znaczenie w kontekście obróbki skrawaniem. Wiele osób myli te pojęcia z technologią wtrysku, co może prowadzić do błędnych wniosków. Powtarzalność pozycjonowania, na przykład, jest miarą zdolności maszyny do wielokrotnego dokładnego powracania do tej samej pozycji. Jest to niezwykle ważny parametr w produkcji precyzyjnych komponentów, ponieważ nawet niewielkie odchylenia mogą prowadzić do poważnych błędów w wymiarach produktów. Z drugiej strony, maksymalna prędkość ruchu dla osi wpływa na efektywność operacyjną całego procesu, a jej optymalizacja może znacząco skrócić czas cyklu produkcyjnego. Takie nieporozumienia mogą wynikać z braku zrozumienia podstawowych różnic między różnymi technologiami obróbczy, co jest kluczowe dla skutecznego wykorzystania maszyn w przemyśle. Ważne jest, aby mieć świadomość, że każdy proces obróbczy ma swoje unikalne parametry, które powinny być brane pod uwagę w kontekście specyfiki danej technologii. Zrozumienie tych aspektów jest kluczowe dla podejmowania trafnych decyzji technologicznych w czasie projektowania i produkcji.