Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 12 maja 2025 22:14
  • Data zakończenia: 12 maja 2025 22:37

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Aby zdemontować sterownik PLC z szyny DIN (TS-35), potrzebne jest

A. wkrętaka płaskiego
B. klucza imbusowego
C. wkrętaka krzyżowego
D. klucza płaskiego
Wkrętak płaski to najlepsze narzędzie do demontowania sterowników PLC z szyny DIN. Dlaczego? Bo te sterowniki mają często specjalne zatrzaski, które można łatwo zwolnić właśnie tym wkrętakiem. Jak to robić? Wystarczy delikatnie wsunąć końcówkę wkrętaka w szczelinę zatrzasku i lekko pchnąć, żeby go odczepić. To naprawdę działa. Używanie wkrętaka płaskiego jest też zgodne z zasadami bezpieczeństwa, bo pozwala na dokładne działanie bez ryzyka uszkodzenia zarówno sterownika, jak i szyny. W automatyce przemysłowej, jak wiadomo, odpowiednie narzędzia to podstawa, żeby urządzenia działały długo i aby nie wydawać kasy na naprawy. No i nie zapominajmy, że wkrętaki płaskie są mega uniwersalne. Można je stosować nie tylko do demontażu, ale też do instalacji i konserwacji różnych sprzętów elektrycznych. Naprawdę warto mieć je w swoim warsztacie, bo ułatwiają pracę.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Jakie urządzenie pomiarowe wykorzystuje się do określania podciśnienia?

A. Wakuometr
B. Dynamometr
C. Pirometr
D. Wariometr
Wariometr to przyrząd, który służy do pomiaru zmian ciśnienia atmosferycznego, a jego zastosowanie jest szczególnie widoczne w aeronautyce oraz meteorologii. Używany jest często w samolotach do określenia wysokości lotu i jest niezbędnym narzędziem dla pilotów, jednak nie ma zastosowania w pomiarze podciśnienia. Pirometr to urządzenie do pomiaru temperatury na podstawie promieniowania cieplnego, co czyni go całkowicie nieodpowiednim do miary ciśnienia jakiegokolwiek rodzaju. Z kolei dynamometr służy do pomiaru siły lub momentu obrotowego, co również nie ma związku z pomiarem podciśnienia. Te błędne odpowiedzi mogą wynikać z nieprecyzyjnego rozumienia funkcji i zastosowania różnych przyrządów pomiarowych. Kluczowe jest zrozumienie, że każdy przyrząd ma swoje specyficzne zastosowanie i pomylenie ich może prowadzić do nieprawidłowych wyników pomiarów oraz konsekwencji w praktyce inżynieryjnej. W kontekście branżowym, umiejętność rozróżniania pomiędzy różnymi typami przyrządów pomiarowych jest fundamentem dla każdej osoby zajmującej się inżynierią lub zarządzaniem procesami technologicznymi. Właściwe dobieranie narzędzi pomiarowych do specyficznych zadań jest kluczowe dla uzyskania wiarygodnych i dokładnych wyników.

Pytanie 8

Jaką czynność należy przeprowadzić, aby zwiększyć średnicę otworu i umożliwić osadzenie w nim łba śruby?

A. Rozwiercanie
B. Wiercenie wtórne
C. Pogłębianie
D. Wiercenie
Pogłębianie to super ważny proces, który polega na powiększeniu średnicy otworu. To jest kluczowe, kiedy musimy wrzucić do niego większe elementy, jak na przykład łby śrub. Do tego używa się specjalnych narzędzi, które dokładnie zwiększają średnicę, co ma ogromne znaczenie w inżynierii, bo tolerancje wymiarowe są tutaj na wagę złota. Pogłębianie sprawdza się zwłaszcza wtedy, gdy otwór już jest, ale musimy go tylko delikatnie powiększyć, na przykład przy montażu różnych złączek. W praktyce pamiętaj, żeby dbać o jakość powierzchni otworu, bo to kluczowe. Można to osiągnąć, używając odpowiednich narzędzi i ustawiając dobre parametry obróbcze. Dobrze jest stosować narzędzia pogłębiające o odpowiedniej geometrii – dzięki temu jakość obróbki będzie lepsza i unikniemy uszkodzeń materiału.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Woltomierz działający w trybie AC pokazuje wartość napięcia elektrycznego

A. skuteczną
B. chwilową
C. średnią
D. maksymalną
W przypadku pomiarów napięcia zmiennego (AC) niepoprawne jest utożsamianie odczytów woltomierza z pomiarami chwilowymi, średnimi czy maksymalnymi. Wartość chwilowa odnosi się do natychmiastowej wartości napięcia w danym momencie czasu, co jest bardziej użyteczne w analizie sygnałów niż w pomiarach efektywnej wartości napięcia. Z kolei wartość średnia, obliczana jako średnia arytmetyczna z szeregu wartości chwilowych, również nie jest odpowiednia w kontekście napięcia zmiennego, ponieważ dla sinusoidalnego przebiegu napięcia średnia wartość wynosi zero. To prowadzi do nieporozumień, gdyż można by sądzić, że średnia miałaby jakiekolwiek zastosowanie w praktycznych pomiarach. Maksymalna wartość napięcia, zwana także wartością szczytową, przedstawia najwyższy punkt napięcia w cyklu, ale również nie jest miarą efektywności działania obwodu elektrycznego. Prawidłowe rozumienie tych pojęć jest kluczowe dla analizy i diagnostyki systemów elektrycznych. W obliczeniach związanych z mocą oraz projektowaniem instalacji wykorzystuje się wartość skuteczną, co jest zgodne z ogólnymi praktykami branżowymi i normami, takimi jak IEC 60204, które podkreślają znaczenie właściwego pomiaru i interpretacji danych w kontekście działania urządzeń elektrycznych.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Wskaż, który rodzaj siłownika można wykorzystać w układzie zasilanym sprężonym powietrzem o ciśnieniu p = 0,8 MPa, jeśli wymagana jest siła teoretyczna 50 daN oraz przemieszczenie 10 cm?

A. D12, pmax = 10 bar, skok standardowy: 25, 50, 80, 100,125, 160, 200
B. D32, pmax = 10 bar, skok standardowy: 25, 50, 80, 100,125, 160, 200
C. D32, pmax = 10 bar, skok standardowy: 16, 32, 50, 80, 125, 200
D. D25, pmax = 10 bar, skok standardowy: 16, 32, 50, 80, 125, 200
Wybór niewłaściwego siłownika, takiego jak D25, D12 czy D32 z niewłaściwym skokiem, może prowadzić do nieoptymalnych rezultatów w aplikacjach przemysłowych. Siłownik D25, mimo że posiada maksymalne ciśnienie 10 bar, może nie być w stanie wygenerować wymaganej siły teoretycznej 50 daN w kontekście zadanego przemieszczenia. W przypadku siłownika D12, jego parametry mogą być zbyt niskie dla tego zastosowania, przez co nie spełni on oczekiwań w zakresie siły i skoku. Siłownik D32 z nieodpowiednim skokiem (np. 16, 32, 50, 80, 125, 200 mm) również może nie dostarczyć wymaganego przemieszczenia 10 cm, co jest kluczowe dla efektywności operacji. Przykładowe błędy myślowe obejmują nieprzemyślane założenie, że każdy siłownik o podobnym ciśnieniu roboczym jest równoważny w aplikacji, co jest dalekie od rzeczywistości. W praktyce, parametry takie jak średnica tłoka, siła teoretyczna oraz skok mają bezpośredni wpływ na skuteczność działania układów pneumatycznych. Wybór odpowiedniego siłownika powinien być oparty na analizie wymagań konkretnej aplikacji oraz standardów branżowych, aby zapewnić optymalne działanie systemu.

Pytanie 17

W tabeli podano dane techniczne sterownika PLC Jakim maksymalnym prądem można obciążyć sterownik dołączając do jego wyjścia silnik?

Dane techniczne
Napięcie zasilająceAC/DC 24 V
Wejścia:
Zakres dopuszczalnyDC 20,4 ... 28,8 V
Przy sygnale „0"maks. AC/DC 5 V
Przy sygnale „1"min. AC/DC 12 V
Prąd wejściowy2,5 mA
Wyjścia:
Rodzaj4 przekaźnikowe
Prąd ciągły10 A - przy obciążeniu rezystancyjnym,
3 A - przy obciążeniu indukcyjnym

A. 10 A
B. 3 A
C. 2,5 A
D. 0,75 A
Maksymalny prąd 3 A, który można obciążyć sterownik PLC, odpowiada specyfikacjom podanym w dokumentacji technicznej urządzenia. W praktyce oznacza to, że przy dołączaniu silnika indukcyjnego do wyjścia sterownika, nie można przekraczać tego prądu, aby uniknąć uszkodzenia urządzenia. Przykładowo, jeśli planujesz używać niewielkiego silnika do napędu wentylatora lub pompy, upewnij się, że jego maksymalne zapotrzebowanie na prąd nie przekracza tego limitu. W przemyśle, często stosuje się zabezpieczenia, takie jak bezpieczniki lub wyłączniki przeciążeniowe, które chronią sprzęt przed uszkodzeniami związanymi z nadmiernym prądem. Dobrym rozwiązaniem jest również monitorowanie prądu roboczego silnika przy pomocy amperomierza, co pozwala na bieżąco ocenić, czy urządzenie pracuje w dopuszczalnych granicach. Zrozumienie i przestrzeganie tych limitów jest kluczowe dla wydajności oraz długowieczności systemów automatyki przemysłowej, w których używane są sterowniki PLC.

Pytanie 18

Jakie jest przesunięcie fazowe sygnału wyjściowego w odniesieniu do sygnału wejściowego sinusoidalnego w regulatorze typu PD?

A. 90°
B. 0°
C. -90°
D. 45°
Odpowiedzi takie jak 45°, 0° i -90° są nieprawidłowe z perspektywy teorii przesunięcia fazowego w regulatorach PD. Sugerowanie, że przesunięcie fazowe wynosi 45° jest błędne, ponieważ odpowiada to określonej konfiguracji układów, która nie jest charakterystyczna dla regulatorów PD. Tego typu wartości przesunięcia są związane z bardziej złożonymi układami, które uwzględniają dodatkowe elementy, takie jak filtry lub inne formy regulacji. Natomiast odpowiedź 0° implikuje, że sygnał wyjściowy jest synchroniczny z wejściowym, co jest sprzeczne z zamierzeniem regulatora PD, który zawsze wprowadza pewne opóźnienie. W przypadku odpowiedzi -90°, sugeruje to, że sygnał wyjściowy jest opóźniony w przeciwnym kierunku, co również nie znajduje potwierdzenia w teorii. W inżynierii, zrozumienie przesunięcia fazowego jest kluczowe dla zapewnienia stabilności systemu regulacji. Błędy w ocenie przesunięcia fazowego mogą prowadzić do oscylacji lub niestabilności, co stanowi jeden z najczęstszych problemów w praktyce inżynierskiej. Dlatego ważne jest, aby dokładnie analizować odpowiedzi na temat przesunięcia fazowego, aby uniknąć błędów projektowych i osiągnąć optymalne działanie systemów automatyki.

Pytanie 19

Charakterystykę I = f(U) diody półprzewodnikowej można uzyskać za pomocą oscyloskopu dwukanałowego w trybie

A. X/Y
B. X/T
C. AC
D. DC
Użycie trybu AC do analizy charakterystyki prądowo-napięciowej diody półprzewodnikowej jest niewłaściwe, ponieważ ten tryb oscyloskopu służy przede wszystkim do analizy sygnałów zmiennych. W trybie AC oscyloskop nie wyświetla sygnałów stałych, co ogranicza możliwość monitorowania prądów i napięć w nieliniowych elementach, takich jak diody, które wymagają analizy w pełnym zakresie napięć. Z kolei tryb DC pozwala na obserwację sygnałów stałych, ale nie umożliwia jednoczesnego przedstawienia prądu i napięcia na jednym wykresie, co jest kluczowe do zrozumienia charakterystyki diody. Opcja X/T również nie jest odpowiednia, gdyż ten tryb jest używany do analizy sygnałów czasowych, a nie do porównania dwóch zmiennych, jak w przypadku prądu i napięcia. Typowym błędem przy wyborze trybu oscyloskopu jest założenie, że wystarczy wybrać jakikolwiek tryb do analizy, nie biorąc pod uwagę specyfiki badanego elementu. Aby skutecznie analizować nieliniowe charakterystyki, konieczne jest zrozumienie, że odpowiedni tryb X/Y dostarcza najbardziej wartościowych informacji, które są niezbędne dla właściwej interpretacji wyników oraz projektowania układów elektronicznych.

Pytanie 20

Do działań wstępnych, które pozwolą na prawidłowy montaż nowego paska klinowego w przekładni pasowej, nie należy zaliczać

A. analizy stopnia zużycia
B. weryfikacji czystości paska
C. sprawdzenia wymiarów
D. oceny stopnia naprężenia
Wszystkie wymienione czynności, z wyjątkiem sprawdzenia stopnia naprężenia, są istotnymi operacjami przygotowawczymi, które należy wykonać przed montażem nowego paska klinowego. Weryfikacja wymiarów jest kluczowym krokiem, ponieważ właściwe dopasowanie paska do przekładni pasowej zapewnia jego prawidłowe działanie. W przeciwnym razie, jeśli pasek będzie za długi lub za krótki, może prowadzić do nadmiernego zużycia, a nawet uszkodzenia innych elementów układu napędowego. Kontrola czystości paska oraz otoczenia montażowego również nie może być pomijana. Zanieczyszczenia mogą prowadzić do niewłaściwego osadzenia paska, co z kolei może skutkować awariami. Ocena stopnia zużycia jest równie ważna, gdyż pozwala na identyfikację, czy wymiana paska jest rzeczywiście konieczna. Typowym błędem myślowym jest przekonanie, że sprawdzenie naprężenia można wykonać przed montażem paska. Jednakże naprężenie dotyczy już zamontowanego paska, dlatego nie jest to czynność przygotowawcza. Właściwe zrozumienie procesu montażu paska klinowego i związanych z nim operacji przygotowawczych jest kluczowe dla zapewnienia długotrwałego i niezawodnego działania układów napędowych.

Pytanie 21

Jaką z wymienionych czynności należy regularnie przeprowadzać w trakcie konserwacji systemu pneumatycznego?

A. Wymieniać szybkozłącza
B. Usuwać kondensat wodny
C. Regulować ciśnienie powietrza
D. Wymieniać rury pneumatyczne
Usuwanie kondensatu wodnego z układu pneumatycznego jest kluczową czynnością konserwacyjną, która zapobiega wielu problemom technicznym. Kondensat wodny, który powstaje w wyniku różnicy temperatury między powietrzem a elementami układu, może prowadzić do korozji, uszkodzeń uszczelek oraz obniżenia efektywności działania systemu. Regularne usuwanie kondensatu jest nie tylko zalecane, ale wręcz wymagane przez standardy branżowe, takie jak ISO 8573, które definiują jakość sprężonego powietrza. Przykładem praktycznego zastosowania tej wiedzy jest instalacja odpowiednich separatorów kondensatu w systemie, które automatycznie usuwają wodę, minimalizując ryzyko jej nagromadzenia. Dodatkowo, regularne przeglądy układu oraz kontrola poziomu kondensatu w zbiornikach powinny być integralną częścią planu konserwacji, co pozwala na wczesne wykrywanie potencjalnych problemów i zapewnienie ciągłości pracy urządzeń.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Siłowniki do bramy powinny być zamontowane w poziomej orientacji. Jakie narzędzie należy użyć do właściwego zamocowania siłowników?

A. czujnik zegarowy
B. poziomnicę
C. kątomierz
D. przymiar liniowy
Użycie kątomierza, czujnika zegarowego lub przymiaru liniowego do montażu siłowników bramy nie jest właściwe z kilku powodów. Kątomierz, mimo że służy do pomiaru kątów, nie jest narzędziem przeznaczonym do pomiarów poziomu, co sprawia, że nie można nim dokładnie ustawić siłowników w pozycji poziomej. Montaż siłowników w odpowiednim ustawieniu poziomym jest kluczowy dla ich działania, a użycie kątomierza może prowadzić do błędnych interpretacji kątów, co w efekcie zagraża stabilności całej konstrukcji bramy. Czujnik zegarowy, który zazwyczaj służy do precyzyjnego pomiaru odchyleń w urządzeniach mechanicznych, również nie jest odpowiednim narzędziem do poziomowania. W kontekście montażu siłowników, kluczowe jest, aby zastosować narzędzie, które bezpośrednio mierzy poziom, a czujnik zegarowy może jedynie wskazać nieprawidłowości w ruchu, ale nie dostarczy informacji o poziomej orientacji. Przymiar liniowy, choć przydatny do pomiarów długości, nie ma zastosowania w kontekście pomiaru poziomu. Użytkownicy często mylą funkcje tych narzędzi, nie zdając sobie sprawy, że stosowanie niewłaściwych przyrządów pomiarowych może prowadzić do uszkodzenia całego systemu, a także zwiększa ryzyko nieprawidłowego działania bramy, co może stwarzać zagrożenie dla użytkowników. Właściwe narzędzie do poziomowania jest więc kluczowe dla zachowania bezpieczeństwa i funkcjonalności instalacji.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Podczas pracy z urządzeniem hydraulicznym pracownik odniósł ranę w udo na skutek wysunięcia siłownika i krwawi. Osoba ratująca, przystępując do udzielania pierwszej pomocy, powinna najpierw

A. sprawdzić, czy w okolicy są osoby posiadające kwalifikacje w reanimacji
B. założyć poszkodowanemu opatrunek uciskowy na ranę
C. założyć poszkodowanemu opatrunek uciskowy poniżej rany
D. umieścić poszkodowanego w bezpiecznej pozycji bocznej
Założenie opatrunku uciskowego na ranę jest kluczowym krokiem w przypadku, gdy poszkodowany krwawi. Opatrunek uciskowy ma na celu zatamowanie krwawienia poprzez zastosowanie odpowiedniego nacisku na ranę. W sytuacji, gdy krwotok jest znaczny, a czas reakcji jest ograniczony, natychmiastowe podjęcie działań może uratować życie. Dobrym przykładem zastosowania tej techniki jest stosowanie opatrunków hemostatycznych, które są zaprojektowane specjalnie do zatrzymywania krwawienia. W przypadku urazów spowodowanych np. wypadkami w pracy, pierwsza pomoc powinna być udzielana zgodnie z wytycznymi Europejskiej Rady Resuscytacji, które podkreślają znaczenie szybkiego i skutecznego działania. Należy pamiętać, że nawet przy udzielaniu pierwszej pomocy, ważne jest, aby wezwać odpowiednie służby ratunkowe, aby zapewnić dalszą pomoc medyczną. Znajomość zasad udzielania pierwszej pomocy oraz umiejętność szybkiego reagowania na sytuacje kryzysowe są niezbędne w każdym miejscu pracy, a odpowiednie szkolenia mogą znacząco zwiększyć bezpieczeństwo w środowisku zawodowym.

Pytanie 30

Jaką wielkość fizyczną definiuje się jako ilość ładunku elektrycznego przepływającego przez przekrój poprzeczny przewodnika w jednostce czasu?

A. Indukcyjność przewodnika
B. Rezystancja przewodnika
C. Gęstość prądu elektrycznego
D. Natężenie prądu elektrycznego
Natężenie prądu elektrycznego definiuje ilość ładunku elektrycznego, który przepływa przez dany przekrój poprzeczny przewodnika w jednostce czasu. Jest to kluczowa wielkość w elektryczności, oznaczana najczęściej literą 'I', a jej jednostką w układzie SI jest amper (A). Natężenie prądu elektrycznego ma ogromne znaczenie w praktycznych zastosowaniach inżynieryjnych, na przykład w projektowaniu obwodów elektrycznych, gdzie precyzyjne określenie natężenia prądu jest kluczowe dla zapewnienia bezpieczeństwa i efektywności działania urządzeń. Warto pamiętać, że prąd elektryczny może być zarówno stały (DC), jak i zmienny (AC), a jego pomiar jest istotny w kontekście analizy przepływu energii w systemach zasilania. W standardach branżowych, takich jak IEC 60038, określone zostały różne parametry dotyczące prądu, co przyczynia się do jednolitości w projektowaniu instalacji elektrycznych. Zrozumienie natężenia prądu elektrycznego oraz jego właściwości pozwala na bezpieczne i efektywne użytkowanie wszelkich urządzeń elektrycznych.

Pytanie 31

Interfejs komunikacyjny umożliwia połączenie

A. siłownika z programatorem
B. sterownika z programatorem
C. pompy hydraulicznej z silnikiem
D. modułu rozszerzającego z grupą siłowników
Interfejs komunikacyjny jest kluczowym elementem systemów automatyki, który umożliwia wymianę danych pomiędzy sterownikami a programatorami. W kontekście automatyki przemysłowej, sterownik (np. PLC) zarządza procesami, a programator służy do jego programowania oraz monitorowania. Interfejsy komunikacyjne, takie jak Ethernet, Modbus, Profibus czy CAN, pozwalają na efektywne przesyłanie sygnałów i danych, co jest niezbędne do optymalizacji pracy systemów. Przykładowo, w nowoczesnych zakładach produkcyjnych, sprawna komunikacja pomiędzy sterownikami a programatorami jest kluczowa dla zdalnego monitorowania stanu maszyn oraz szybkiego reagowania na ewentualne awarie. Dobre praktyki w zakresie projektowania interfejsów komunikacyjnych obejmują zapewnienie odpowiedniej przepustowości, niezawodności oraz bezpieczeństwa przesyłu danych. Właściwe zrozumienie funkcji i zastosowania interfejsów komunikacyjnych jest niezbędne dla inżynierów zajmujących się automatyką, by tworzyć wydajne i bezpieczne systemy sterowania.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Konserwacja układu stycznikowo-przekaźnikowego nie obejmuje

A. wprowadzania regulacji
B. sprawdzania dokręcenia śrub zacisków
C. analizy zużycia styków
D. usuwania kurzu
Czyszczenie z kurzu, kontrola dokręcenia śrub zacisków oraz kontrola zużycia styków są kluczowymi elementami konserwacji układów stycznikowo-przekaźnikowych. Czyszczenie z kurzu jest istotne, ponieważ zanieczyszczenia mogą prowadzić do przegrzewania się elementów, co zwiększa ryzyko awarii. Właściwe dokręcenie śrub zacisków jest równie ważne, ponieważ luźne połączenia mogą generować opór, co prowadzi do uszkodzenia elementów elektronicznych oraz ich szybszego zużycia. Kontrola zużycia styków to kolejny niezbędny aspekt, ponieważ stykami przepływa prąd, a ich zużycie może prowadzić do nieefektywnej pracy całego układu, a w konsekwencji do awarii. Użytkownicy często popełniają błąd, myśląc, że konserwacja układu stycznikowo-przekaźnikowego polega jedynie na jego regulacji, co jest mylnym podejściem. Kluczowe jest zrozumienie, że konserwacja ma na celu utrzymanie urządzenia w stanie roboczym oraz zapobieganie awariom, co realizuje się poprzez systematyczne działania profilaktyczne, a nie wprowadzanie zmian w jego parametrach pracy. W praktyce, stosowanie się do standardów branżowych, takich jak normy IEC 60364, zapewnia bezpieczeństwo i długą żywotność urządzeń elektrycznych.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Aby ustalić wznios silnika indukcyjnego, należy wykonać pomiar

A. wysokości silnika
B. odległości między osią wału a podstawą uchwytów silnika
C. średnicy stojana
D. szerokości silnika oraz średnicy wirnika
Wysokość silnika, średnica stojana i szerokość silnika z wirnikiem to takie parametry, które są związane z konstrukcją silnika, ale nie mają nic wspólnego z pomiarem wzniosu. Jasne, że wysokość silnika jest ważna, kiedy chodzi o to, gdzie ten silnik jest wbudowany, ale nie pokazuje, jaka jest właściwa odległość między osią wału a podstawą łap. Średnica stojana dotyczy wymiarów wewnętrznych silnika i ma znaczenie dla jego działania, ale nie ma wpływu na wznios. Szerokość silnika oraz średnica wirnika to też ważne wymiary, ale nie mówią nam, jak silnik jest zamontowany, a to jest kluczowe dla jego prawidłowego działania. Często zdarza się, że ludzie mylą wznios z parametrami konstrukcyjnymi silnika, zamiast skupić się na tej rzeczywistej odległości, która może mieć duży wpływ na wydajność i współpracę z innymi elementami. Zrozumienie, jak te różne parametry się powiązane, może pomóc uniknąć problemów w eksploatacji i dobrze dobrać silnik do konkretnego zastosowania.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Który z wymienionych zaworów hydraulicznych powinien być zainstalowany w układzie, aby prędkość obrotowa silnika hydraulicznego pozostawała stała, niezależnie od zmian wartości momentu obciążenia na wale?

A. Rozdzielacz suwakowy
B. Zawór przelewowy
C. Zawór dławiąco-zwrotny
D. Regulator przepływu
Regulator przepływu jest kluczowym elementem w układach hydraulicznych, który umożliwia utrzymanie stałej prędkości obrotowej silnika hydraulicznego, niezależnie od zmian momentu obciążenia na wale. Działa on poprzez automatyczne dostosowanie przepływu cieczy hydraulicznej, co pozwala na zachowanie stabilności pracy urządzenia. Przykładem zastosowania regulatorów przepływu są maszyny budowlane, gdzie zmienne obciążenia są powszechne. W takich aplikacjach, regulator przepływu zapewnia, że silnik hydrauliczny działa w optymalnym zakresie prędkości, co prowadzi do efektywnego zużycia energii i minimalizacji zużycia komponentów. Stosowanie regulatorów przepływu jest zgodne z najlepszymi praktykami w inżynierii hydraulicznej, ponieważ pozwala na zwiększenie wydajności układów oraz przedłużenie żywotności systemów hydraulicznych poprzez eliminację ryzyka przeciążeń. Dodatkowo, w kontekście norm ISO dotyczących systemów hydraulicznych, regulacja przepływu jest uznawana za niezbędny element, który przyczynia się do bezpieczeństwa i funkcjonalności układów hydraulicznych.
Strona wykorzystuje pliki cookies do poprawy doświadczenia użytkownika oraz analizy ruchu. Szczegóły