Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 25 maja 2025 17:07
  • Data zakończenia: 25 maja 2025 17:13

Egzamin zdany!

Wynik: 38/40 punktów (95,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie zjawisko można zaobserwować przy cewce indukcyjnej w przypadku zwarcia międzyzwojowego?

A. wzrostu rezystancji cewki
B. zmniejszenia natężenia prądu płynącego przez cewkę
C. spadku indukcyjności cewki
D. wzrostu reaktancji cewki
Wybór odpowiedzi związanej ze zwiększeniem rezystancji cewki może wydawać się logiczny w kontekście zwarcia, jednak nie jest to właściwe podejście do analizy tego zjawiska. W przypadku zwarcia międzyzwojowego, rzeczywisty przepływ prądu przez cewkę może obniżyć jej indukcyjność, ale niekoniecznie prowadzi to do wzrostu rezystancji. W rzeczywistości, w momencie zwarcia, można zaobserwować zmniejszenie impedancji, co skutkuje większym natężeniem prądu, a nie jego spadkiem. Ponadto, zmniejszenie prądu pobieranego przez cewkę jest z kolei związane z jej działaniem w obwodzie, a nie bezpośrednio z zwarciem. Warto zauważyć, że w niektórych warunkach zwarcie może prowadzić do zwiększenia prądu, co jest sprzeczne z koncepcją jego zmniejszenia. Zwiększenie reaktancji cewki również nie jest odpowiednie, ponieważ w przypadku zwarcia reaktancja (zależna od indukcyjności) maleje. Typowe błędy myślowe polegają na myleniu pojęć związanych z rezystancją i reaktancją, co prowadzi do niepoprawnych wniosków o wpływie zwarcia na parametry cewki. W praktyce, kluczowym jest zrozumienie, że zwarcie prowadzi do zmiany w strukturze magnetycznej i elektrycznej cewki, co wyraźnie wpływa na jej wydajność i parametry operacyjne.

Pytanie 2

Który z wymienionych wyłączników nadprądowych powinien zabezpieczać obwód zasilający trójfazowy silnik klatkowy o parametrach znamionowych: Pn = 11 kW, Un = 400 V, cos φ = 0,73, η = 80 %?

A. S303 C32
B. S303 C25
C. S303 C40
D. S303 C20
Wybór wyłącznika nadprądowego S303 C32 jest odpowiedni dla obwodu zasilania trójfazowego silnika klatkowego o parametrach Pn = 11 kW, Un = 400 V, cos φ = 0,73 oraz η = 80%. Przy obliczaniu prądu znamionowego silnika, korzystając z wzoru I = Pn / (√3 * Un * cos φ), otrzymujemy wartość około 18,7 A. Wyłącznik C32 ma zdolność przenoszenia prądu do 32 A, co daje odpowiedni margines bezpieczeństwa w przypadku przeciążeń, a także umożliwia ochronę przed zwarciami. Dobrą praktyką w doborze wyłączników jest uwzględnienie dodatkowego zapasu prądowego, co chroni instalację przed uszkodzeniem. Na przykład, w przypadku rozruchu silnika, prąd może wzrosnąć do 6-7 razy wartości nominalnej, dlatego rekomenduje się stosowanie wyłączników z wyższymi wartościami znamionowymi. Zgodnie z normami PN-EN 60947-2, wyłączniki muszą być dostosowane do specyficznych warunków pracy, co czyni wybór S303 C32 właściwym rozwiązaniem w kontekście zapewnienia bezpieczeństwa i niezawodności systemu zasilania.

Pytanie 3

Określ prawidłową sekwencję działań przy wymianie uszkodzonego łącznika świecznikowego w instalacji elektrycznej.
włączenie napięcia, sprawdzenie prawidłowości działania.

A. Sprawdzenie prawidłowości działania, włączenie napięcia, stwierdzenie braku napięcia, demontaż łącznika, montaż łącznika, wyłączenie napięcia
B. Stwierdzenie braku napięcia, wyłączenie napięcia, demontaż łącznika, montaż łącznika, sprawdzenie
C. Wyłączenie napięcia, stwierdzenie braku napięcia, demontaż łącznika, montaż łącznika, włączenie napięcia, sprawdzenie prawidłowości działania
D. Wyłączenie napięcia, demontaż łącznika, montaż łącznika, sprawdzenie prawidłowości działania, stwierdzenie braku napięcia, włączenie napięcia
Kiedy zabierasz się za wymianę uszkodzonego łącznika świecznikowego, najważniejsze to zacząć od wyłączenia napięcia. Bez tego krok nie tylko porażka może się wydarzyć, ale coś gorszego. Potem, zanim zaczniesz grzebać w instalacji, dobrze jest upewnić się, że naprawdę nie ma napięcia w obwodzie. To trochę jak dobre nawyki, które mogą uratować życie. Jak już to masz za sobą, możesz zająć się demontażem starego łącznika, ale pamiętaj, żeby być ostrożnym – nigdy nie wiadomo, co może się zdarzyć. Po włożeniu nowego łącznika, dopiero wtedy możesz włączyć napięcie i sprawdzić, czy wszystko działa. Taka kolejność jest super ważna i zgadza się z normami bezpieczeństwa, jak PN-IEC 60364, które mówią, jak robić to bezpiecznie. W sumie, w domowym warsztacie to przydatna wiedza, bo często coś się psuje i warto wiedzieć, jak to zrobić porządnie i bezpiecznie.

Pytanie 4

Po włączeniu oświetlenia na klatce schodowej przez automat schodowy, żarówka na pierwszym piętrze nie zaświeciła, podczas gdy pozostałe żarówki na innych piętrach działały bez zarzutów. Jakie może być źródło tej awarii?

A. Niedokręcony przewód do łącznika na pierwszym piętrze
B. Uszkodzony łącznik na pierwszym piętrze
C. Niedokręcony przewód do oprawy na pierwszym piętrze
D. Uszkodzony automat schodowy
Niedokręcony przewód do oprawy na pierwszym piętrze może być przyczyną braku działania żarówki w tym miejscu. Ta sytuacja często występuje w instalacjach elektrycznych, gdy podczas montażu lub konserwacji, przewody nie są odpowiednio dokręcone. W przypadku oświetlenia na klatkach schodowych, gdzie automaty schodowe kontrolują oświetlenie, każdy element musi być prawidłowo podłączony, aby zapewnić szczelność obwodu. Przykładem może być sytuacja, gdy podczas wymiany żarówki osoba nie zwraca uwagi na stan połączeń, co może prowadzić do ich luzowania. W praktyce, regularne kontrole i konserwacja instalacji elektrycznych, zgodne z normami PN-IEC 60364, są kluczowe dla zapewnienia bezpieczeństwa oraz efektywności działania systemów oświetleniowych. Zawsze warto sprawdzić połączenia przed uznaniem, że część jest uszkodzona, co może zaoszczędzić czas i koszty związane z naprawą.

Pytanie 5

Podczas pracy urządzeń napędowych, oględziny nie obejmują oceny

A. stanu osłon części wirujących
B. poziomu drgań
C. stanu szczotek
D. wskazań aparatury kontrolno-pomiarowej
Odpowiedź "stanu szczotek" jest poprawna, ponieważ podczas oględzin urządzeń napędowych w czasie ich pracy koncentrujemy się na aspektach, które bezpośrednio wpływają na ich funkcjonowanie oraz bezpieczeństwo. Stan szczotek, które są zwykle elementami wykonawczymi w silnikach elektrycznych, nie jest kontrolowany podczas pracy, gdyż ich ocena wymaga zatrzymania urządzenia. Oględziny skupiają się na monitorowaniu parametrów pracy, takich jak poziom drgań, które mogą wskazywać na nieprawidłowości w pracy łożysk lub wirników, oraz na wskazaniach aparatury kontrolno-pomiarowej, które dostarczają kluczowych informacji o stanie technicznym urządzenia. Przykładem praktycznym są procedury dotyczące diagnostyki i konserwacji silników elektrycznych, gdzie regularne sprawdzanie poziomu drgań i temperatury ma na celu zapobieganie awariom oraz optymalizację pracy maszyn. Zgodnie z normami ISO 10816, monitorowanie drgań jest niezbędne dla zapewnienia ciągłości produkcji oraz minimalizacji kosztów związanych z naprawami i przestojami.

Pytanie 6

W systemach z stycznikami kategorii użytkowania DC-6 mogą być wykorzystywane

A. lampy sodowe
B. lampy rtęciowe
C. żarówki
D. świetlówki
Wybór żarówek jako odpowiedzi na to pytanie jest uzasadniony ze względu na ich zastosowanie w układach ze stycznikami o kategorii użytkowania DC-6. Kategoria ta jest przeznaczona do pracy z obwodami prądu stałego, które są w stanie obsłużyć normalne obciążenia, w tym żarówki. Żarówki charakteryzują się dość prostą charakterystyką obciążeniową, co sprawia, że są odpowiednie do zastosowań w instalacjach elektrycznych, gdzie mogą być włączane i wyłączane za pomocą styczników. Przykładem praktycznego zastosowania mogą być oświetlenie w halach produkcyjnych, gdzie styczniki sterują włączaniem i wyłączaniem grup żarówek w zależności od potrzeb. Warto również zauważyć, że żarówki, w przeciwieństwie do innych typów lamp, takich jak świetlówki, wymagają prostszych układów sterujących, co czyni je bardziej elastycznymi w zastosowaniach przemysłowych. Dla zachowania zgodności z normami bezpieczeństwa i efektywności energetycznej, ważne jest, aby dobierać odpowiednie styczniki oraz obwody zabezpieczające, co również wpływa na niezawodność całego układu oświetleniowego.

Pytanie 7

Piec elektryczny o mocy 12 kW jest zasilany z trójfazowej instalacji 3 x 400 V za pomocą przewodu o długości 20 m i przekroju 4 mm2. Jakie konsekwencje przyniesie wymiana tego przewodu na przewód o tej samej długości, lecz o przekroju 6 mm2?

A. Spadek napięcia na przewodach zasilających wzrośnie.
B. Moc wydobywana w piecu zmaleje 1,5 raza.
C. Moc wydobywana w piecu wzrośnie 1,5 raza.
D. Spadek napięcia na przewodach zasilających zmniejszy się.
Wymiana przewodu o przekroju 4 mm² na 6 mm² w instalacji trójfazowej przynosi ze sobą korzyści związane z obniżeniem spadku napięcia na przewodach zasilających. Spadek napięcia jest wynikiem oporu przewodów, a ten opór maleje wraz ze zwiększeniem przekroju przewodu. W przypadku instalacji elektrycznych, zgodnie z normami IEC 60228, mniejsze spadki napięcia są kluczowe dla efektywności operacyjnej urządzeń elektrycznych. Przy większym przekroju przewodu, przepływ prądu staje się bardziej efektywny, co oznacza mniejsze straty energii w postaci ciepła. Przykładem praktycznym może być zastosowanie takich przewodów w instalacjach przemysłowych, gdzie urządzenia o dużej mocy, jak piec elektryczny, muszą działać optymalnie, aby zminimalizować zużycie energii i zapewnić trwałość systemu. Mniejszy spadek napięcia pozwala na stabilniejsze zasilanie, co jest szczególnie ważne w kontekście ochrony urządzeń elektronicznych i ich długoterminowej wydajności.

Pytanie 8

Jaką wartość ma maksymalna dopuszczalna rezystancja uziomu RA przewodu ochronnego łączącego uziom z dostępnością przewodzącą dla znamionowego prądu różnicowego IN = 30 mA oraz napięcia dotykowego 50 V AC wyłącznika różnicowoprądowego?

A. Około 1 660 Ω
B. Około 830 Ω
C. 4 000 Ω
D. 2 000 Ω
Największa dopuszczalna rezystancja uziomu RA przewodu ochronnego łączącego uziom z częścią przewodzącą dostępną dla prądu różnicowego IN = 30 mA i napięcia dotykowego 50 V AC wynosi około 1 660 Ω. W praktyce oznacza to, że gdy osoba dotknie elementu przewodzącego, prąd różnicowy powinien być w stanie przepływać przez przewód uziemiający, a jego wartość powinna być na tyle niska, aby zminimalizować ryzyko porażenia prądem. Dopuszczalna rezystancja uziomu jest regulowana przez normy, takie jak PN-IEC 60364-4-41, które określają maksymalne wartości dla różnych kategorii instalacji elektrycznych. Używanie tych norm w projektowaniu i budowie instalacji elektrycznych jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. W praktyce, wartość rezystancji powinna być mierzona podczas odbioru instalacji, a także okresowo sprawdzana w celu zapewnienia ciągłej ochrony. Przykładem jest instalacja w budynkach mieszkalnych, gdzie właściwie dobrana rezystancja uziomu zapobiega poważnym skutkom awarii elektrycznych.

Pytanie 9

Jakie oznaczenie powinna nosić wkładka bezpiecznikowa, którą trzeba zainstalować w celu zabezpieczenia silników oraz urządzeń rozdzielczych?

A. gR
B. aL
C. gB
D. aM
Wkładka bezpiecznikowa oznaczona symbolem aM jest przeznaczona do ochrony silników oraz urządzeń rozdzielczych przed przeciążeniem i zwarciem. Oznaczenie to wskazuje, że bezpiecznik ten ma charakterystykę czasowo-prądową, która jest dostosowana do pracy urządzeń z silnikami, co oznacza, że pozwala na chwilowe przekroczenie dopuszczalnego prądu w momencie rozruchu silnika, co jest niezbędne dla prawidłowego funkcjonowania urządzeń elektrycznych. W praktyce oznacza to, że wkładka aM jest w stanie znieść większy prąd przez krótki czas, co zapobiega niepotrzebnym wyłączeniom w przypadku chwilowych przeciążeń. Takie wkładki są szczególnie zalecane w instalacjach, gdzie silniki startują z dużym momentem, co generuje znaczne obciążenia prądowe. Wdrożenie wkładek aM zgodnie z normami IEC 60269, które określają wymagania dla wkładek bezpiecznikowych, jest dobrą praktyką, zapewniającą bezpieczeństwo oraz niezawodność systemów elektrycznych.

Pytanie 10

Jaką wartość powinno mieć napięcie pomiarowe przy pomiarze rezystancji izolacji kabla umieszczonego w gruncie?

A. 2 500 V
B. 1 000 V
C. 250 V
D. 500 V
Odpowiedź 2 500 V jest prawidłowa, ponieważ podczas pomiarów rezystancji izolacji kabli ułożonych w ziemi, stosowanie napięcia rzędu 2 500 V jest standardem uznawanym w branży elektroenergetycznej. Taki poziom napięcia zapewnia wystarczającą siłę do wykrycia potencjalnych uszkodzeń izolacji, które mogą nie być widoczne przy niższych napięciach. W praktyce, zastosowanie wyższego napięcia pozwala na dokładniejsze określenie stanu izolacji, co jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności sieci zasilającej. Dobre praktyki zalecają, aby przed przystąpieniem do pomiarów, upewnić się, że kabel jest odłączony od źródła zasilania, co pozwoli na uzyskanie wiarygodnych wyników. Dodatkowo, pomiary powinny być przeprowadzane z użyciem odpowiednich narzędzi pomiarowych, które są przystosowane do pracy z takimi napięciami. Warto również zauważyć, że normy, takie jak PN-EN 61557-2, wskazują na znaczenie pomiaru rezystancji izolacji w celu zapobiegania awariom i zapewniania ciągłości dostaw energii.

Pytanie 11

W jakich okolicznościach aktywuje się samoczynne częstotliwościowe odciążenie (SCO) w sieci zasilanej przez generator synchroniczny?

A. Pojawienia się przepięcia.
B. Zwiększenia mocy pobieranej ponad moc wytwarzaną.
C. Podwyższenia częstotliwości ponad wartość nominalną.
D. Nadkompensacji sieci.
Samoczynne częstotliwościowe odciążenie (SCO) w sieci zasilanej z generatora synchronicznego zadziała w momencie zwiększenia mocy pobieranej ponad wartość mocy wytwarzanej. W sytuacji, gdy zapotrzebowanie na moc przekracza moc generowaną przez system, dochodzi do spadku częstotliwości w sieci. Generator synchroniczny, aby dostosować się do nowego obciążenia, może zredukować częstotliwość obrotową, co w efekcie może prowadzić do zwiększenia mocy generowanej przez jednostki w systemie. W praktyce, aby przeciwdziałać tym zmianom, stosuje się mechanizmy automatycznego odciążenia, które w odpowiedzi na wzrost poboru mocy, aktywują rezerwy mocy dostępne w sieci. Przykładem zastosowania SCO może być sytuacja w sieci rozdzielczej, gdzie nagły wzrost poboru mocy przez dużego odbiorcę wymaga natychmiastowej reakcji generatorów w celu utrzymania stabilności systemu. Standardy takie jak NERC i IEC podkreślają znaczenie takich mechanizmów w zapewnieniu niezawodności i stabilności systemów elektroenergetycznych.

Pytanie 12

Przed rozpoczęciem wymiany uszkodzonych części instalacji elektrycznej do 1 kV, należy najpierw odłączyć napięcie, a następnie stosować się do zasad bezpieczeństwa w poniższej kolejności:

A. zabezpieczyć przed ponownym załączeniem, uziemić instalację elektryczną, potwierdzić brak napięcia
B. zabezpieczyć przed ponownym załączeniem, potwierdzić brak napięcia, uziemić instalację elektryczną
C. potwierdzić brak napięcia, uziemić instalację elektryczną, zabezpieczyć przed ponownym załączeniem
D. potwierdzić brak napięcia, zabezpieczyć przed ponownym załączeniem, uziemić instalację elektryczną
Przed przystąpieniem do wymiany uszkodzonych elementów instalacji elektrycznej do 1 kV, kluczowe jest przestrzeganie ustalonej procedury bezpieczeństwa. Po pierwsze, zabezpieczenie przed powtórnym załączeniem oznacza zastosowanie odpowiednich blokad lub zamknięć, które uniemożliwiają przypadkowe przywrócenie zasilania podczas prac. Po tym etapie, potwierdzenie braku napięcia jest niezbędne, aby upewnić się, że instalacja faktycznie jest de-energizowana. Można to osiągnąć za pomocą odpowiednich przyrządów pomiarowych, takich jak wskaźniki napięcia, które powinny być używane przez wykwalifikowany personel. Uziemienie instalacji elektrycznej jest kolejnym krokiem, który zapewnia, że wszelkie pozostałe ładunki elektryczne są bezpiecznie odprowadzane do ziemi, co minimalizuje ryzyko porażenia prądem. Cała ta procedura jest zgodna z normami bezpieczeństwa, takimi jak PN-EN 50110-1, które określają zasady dotyczące eksploatacji instalacji elektrycznych.

Pytanie 13

Która z poniższych okoliczności wymaga przeprowadzenia pomiarów kontrolnych w instalacji elektrycznej niskiego napięcia?

A. Rozbudowanie instalacji
B. Zadziałanie zabezpieczenia przedlicznikowego
C. Zmiana rodzaju źródeł światła w oprawach oświetleniowych
D. Zadziałanie wyłącznika różnicowoprądowego
Rozbudowa instalacji elektrycznej niskiego napięcia wiąże się z koniecznością przeprowadzenia pomiarów kontrolnych, aby zapewnić zgodność z obowiązującymi normami oraz bezpieczeństwo użytkowników. Zgodnie z normą PN-IEC 60364, każde zmiany w instalacji, takie jak jej rozbudowa, wymagają weryfikacji parametrów technicznych, jak rezystancja izolacji, ciągłość przewodów ochronnych oraz sprawność urządzeń zabezpieczających. Przykładowo, dodanie nowych obwodów może wpływać na działanie istniejących zabezpieczeń, co w konsekwencji może prowadzić do ich nieprawidłowego funkcjonowania. Dlatego przed oddaniem rozbudowanej instalacji do eksploatacji, konieczne jest przeprowadzenie pomiarów kontrolnych, aby potwierdzić, że instalacja spełnia wymogi bezpieczeństwa i użytkowania. Dodatkowo, takie pomiary mogą pomóc w identyfikacji potencjalnych problemów, które mogą wystąpić w przyszłości, co jest kluczowe dla utrzymania wysokiego standardu bezpieczeństwa.

Pytanie 14

Jaka jest minimalna wymagana wartość natężenia oświetlenia dla powierzchni blatów ławek w klasie?

A. 400 lx
B. 200 lx
C. 300 lx
D. 500 lx
Wymagana minimalna wartość natężenia oświetlenia powierzchni blatów ławek szkolnych w sali lekcyjnej wynosi 300 lx. Jest to standardowa wartość określona w normach oświetleniowych, takich jak PN-EN 12464-1, które regulują kwestie oświetlenia miejsc pracy, w tym również szkół. W praktyce oznacza to, że odpowiednie natężenie oświetlenia zapewnia komfort i efektywność nauki uczniów, co jest kluczowe dla ich skupienia oraz zdolności do przyswajania wiedzy. Oświetlenie na poziomie 300 lx pozwala na wygodne czytanie, pisanie i wykonywanie innych zadań wymagających precyzyjnego wzroku. Wartości poniżej tej normy mogą prowadzić do zmęczenia oczu i obniżenia wydajności uczniów. Przykładem zastosowania tej wartości jest projektowanie wnętrz w nowych szkołach, gdzie architekci uwzględniają odpowiednie źródła światła, aby zapewnić optymalne warunki do nauki.

Pytanie 15

Wyznacz rezystancję przewodu LgY o powierzchni przekroju 10 mm2 i długości 1 km, mając informację, że rezystywność miedzi wynosi 1,72∙10-8 Ω∙m?

A. 17,2 Ω
B. 1 720 Ω
C. 172 Ω
D. 1,72 Ω
Obliczenie rezystancji przewodu LgY 10 mm² o długości 1 km można przeprowadzić korzystając ze wzoru: R = ρ * (L / A), gdzie R to rezystancja, ρ to rezystywność materiału, L to długość przewodu, a A to jego przekrój poprzeczny. W przypadku miedzi rezystywność wynosi 1,72∙10^-8 Ω∙m. Wprowadźmy zatem wartości do wzoru: R = 1,72∙10^-8 * (1000 / 10 * 10^-6) = 1,72 Ω. To pokazuje, że przy długości przewodu 1 km i przekroju 10 mm², rezystancja wynosi 1,72 Ω. W praktyce, taką wartość rezystancji należy uwzględniać w obliczeniach dotyczących systemów elektrycznych, aby zapewnić odpowiednią wydajność i minimalizować straty energii. W branży elektroenergetycznej standardowe wartości rezystancji są kluczowe w doborze przewodów oraz ocenie ich zdolności do przewodzenia prądu, co ma istotne znaczenie dla bezpieczeństwa i efektywności instalacji.

Pytanie 16

Aby zidentyfikować miejsce o zwiększonej temperaturze obudów silników w wersji przeciwwybuchowej, przeprowadza się pomiary temperatury ich obudowy. W którym miejscu pomiar temperatury nie powinien być wykonywany?

A. W okolicy pokrywy wentylatora
B. Na końcu obudowy od strony napędowej
C. W centrum obudowy w rejonie skrzynki zaciskowej
D. Na tarczy łożyskowej, od strony napędowej blisko pokrywy łożyskowej
Pomiar temperatury silników w wykonaniu przeciwwybuchowym jest kluczowy dla zapewnienia bezpieczeństwa ich użytkowania. Zlokalizowanie odpowiedniego miejsca do pomiaru ma ogromne znaczenie, a obszar w pobliżu pokrywy wentylatora jest jednym z tych miejsc, które należy unikać. Wentylatory mają tendencję do generowania dodatkowego ciepła w wyniku tarcia oraz niewłaściwego przepływu powietrza, co może prowadzić do błędnych odczytów temperatury. Zamiast tego, pomiary powinny być wykonywane w miejscach, gdzie temperatura obudowy silnika jest bardziej stabilna i reprezentatywna dla jego ogólnej pracy. Przykładem dobrych praktyk jest pomiar w pobliżu skrzynki zaciskowej, gdzie zazwyczaj nie występują dodatkowe czynniki wpływające na wyniki. Stosowanie się do tych zasad jest zgodne z normami takimi jak IEC 60079, które regulują kwestie bezpieczeństwa w obszarach zagrożonych wybuchem. Wspierają one zrozumienie, jak ważne jest prawidłowe lokalizowanie miejsc do pomiarów, aby uniknąć fałszywych alarmów i zapewnić bezpieczeństwo operacji.

Pytanie 17

Jakie wymagania muszą być spełnione podczas pomiaru rezystancji izolacyjnej w instalacji elektrycznej po wcześniejszym odłączeniu zasilania?

A. Włączone urządzenia do gniazd wtyczkowych, aktywne łączniki oświetleniowe, zamontowane źródła światła
B. Wyłączone urządzenia z gniazd wtyczkowych, aktywne łączniki oświetleniowe, usunięte źródła światła
C. Wyłączone urządzenia z gniazd wtyczkowych, aktywne łączniki oświetleniowe, zamontowane źródła światła
D. Włączone urządzenia do gniazd wtyczkowych, aktywne łączniki oświetleniowe, usunięte źródła światła
Prawidłowa odpowiedź wskazuje na konieczność wyłączenia odbiorników z gniazd wtyczkowych oraz wymontowania źródeł światła przed przystąpieniem do pomiaru rezystancji izolacji. To kluczowe kroki, które mają na celu zapewnienie bezpieczeństwa oraz dokładności pomiarów. W czasie testów rezystancji izolacji, włączenie odbiorników lub pozostawienie źródeł światła w obwodzie mogłoby prowadzić do błędnych wyników, które nie oddają rzeczywistego stanu izolacji. Przykładowo, podłączenie urządzeń może stworzyć drogę dla prądu, co zafałszuje pomiar rezystancji. W branży elektrycznej zaleca się, aby przed każdym pomiarem izolacji, upewnić się, że wszystkie urządzenia są odłączone, co jest zgodne z normą PN-EN 61557, która określa wymagania dotyczące pomiarów. Tylko w ten sposób można rzetelnie ocenić stan izolacji oraz wykryć ewentualne uszkodzenia, co jest kluczowe dla bezpieczeństwa użytkowników i integrności instalacji.

Pytanie 18

Przedstawione w tabeli wyniki pomiarów rezystancji uzwojeń i izolacji silnika trójfazowego wskazują na

Pomiar między zaciskami silnikaRezystancja
U1 – U232 Ω
V1 – V232 Ω
W1 – W232 Ω
U1 – V10
V1 – W15 MΩ
U1 – W15 MΩ
U1 – PE0
V1 – PE0
W1 – PE5 MΩ

A. uszkodzoną izolację w uzwojeniach U1 – U2 oraz V1 – V2
B. zwarcie międzyzwojowe w uzwojeniu W1 – W2
C. przerwę w uzwojeniu U1 – U2
D. zwarcie między uzwojeniami U1 – U2 oraz W1 – W2
Odpowiedź wskazująca na uszkodzoną izolację w uzwojeniach U1 – U2 oraz V1 – V2 jest prawidłowa ze względu na wyniki pomiarów rezystancji, które zostały przedstawione w tabeli. Wartości wynoszące 0 Ω dla izolacji są alarmującym sygnałem, wskazującym na bezpośrednie połączenie z masą, co oznacza, że nie ma odpowiedniej bariery izolacyjnej. Zgodnie z normą IEC 60034, rezystancja izolacji powinna wynosić przynajmniej kilkaset megaomów, aby zapewnić bezpieczną i niezawodną pracę silnika. Praktyka przemysłowa zaleca, aby regularnie monitorować stan izolacji silników poprzez pomiary rezystancji, co pozwala na wczesne wykrywanie potencjalnych problemów. W przypadku stwierdzenia uszkodzonej izolacji, należy podjąć natychmiastowe działania, takie jak odłączenie silnika od zasilania i dokładna inspekcja uzwojeń, aby zapobiec poważniejszym uszkodzeniom oraz zminimalizować ryzyko pożaru. Usunięcie tego typu defektów jest kluczowe dla zapewnienia bezpieczeństwa na stanowisku pracy oraz długoterminowej efektywności urządzenia.

Pytanie 19

Jakiego rodzaju pracy powinien być przystosowany silnik elektryczny, który ma napędzać wentylator wyciągowy w procesie obróbki drewna?

A. S7 - praca okresowa długotrwała z hamowaniem elektrycznym
B. S1 - praca ciągła
C. S3 - praca okresowa przerywana
D. S9 - praca z nieokresowymi zmianami obciążenia i prędkości obrotowej
Silnik elektryczny do wentylatora wyciągowego w obróbce drewna powinien być przystosowany do pracy ciągłej. To znaczy, że powinien działać bez przerwy, co jest bardzo ważne w kontekście wentylacji. Wentylatory wyciągowe często są używane tam, gdzie potrzebne jest ciągłe usuwanie powietrza z miejsca pracy. Przykładem mogą być hale produkcyjne, gdzie trzeba na bieżąco pozbywać się pyłów i szkodliwych oparów. Z mojego doświadczenia wynika, że takie warunki są kluczowe, by zapewnić zdrowie pracowników. Silniki do pracy ciągłej są też tak projektowane, żeby uniknąć przegrzewania. To z kolei przekłada się na ich wydajność i niezawodność. W branży są normy, jak IEC 60034, które określają, jak powinny działać silniki w różnych sytuacjach, co zapewnia bezpieczeństwo i efektywność.

Pytanie 20

Jakie oznaczenie będzie miał przewód – alternatywa dla przewodu OW 4×2,5 mm2 zasilającego przenośny trójfazowy silnik indukcyjny używany w warsztacie ślusarskim?

A. H07RR-F 4G2,5
B. H03V2V2-F 3X2,5
C. H07VV-U 4G2,5
D. H03V2V2H2-F 3X2,5
Odpowiedź H07RR-F 4G2,5 jest poprawna, ponieważ to oznaczenie odnosi się do elastycznego przewodu gumowego, który jest szczególnie przystosowany do zasilania urządzeń elektrycznych w warunkach przemysłowych, takich jak przenośne silniki indukcyjne. Przewód ten charakteryzuje się wysoką odpornością na działanie olejów, chemikaliów oraz mechanicznych uszkodzeń, co czyni go idealnym wyborem do użycia w warsztatach, gdzie występuje ryzyko uszkodzeń. Oznaczenie 4G2,5 wskazuje na to, że przewód składa się z czterech żył, z czego trzy mają przekrój 2,5 mm², co zapewnia odpowiednią wydajność prądową dla silników o mocy do około 7,5 kW w układzie trójfazowym. Ponadto, zgodnie ze standardami IEC, przewody takie jak H07RR-F spełniają wymagania dotyczące bezpieczeństwa i niezawodności, co jest niezbędne w środowisku pracy. W praktyce używając tego przewodu, można mieć pewność, że zapewnia on właściwe parametry zasilania oraz bezpieczeństwo użytkowania urządzeń elektrycznych.

Pytanie 21

Aby przeprowadzić pomiar rezystancji metodą techniczną, należy przygotować

A. mostek Wheatstone'a
B. amperomierz i woltomierz
C. omomierz oraz woltomierz
D. mostek Thomsona
Istnieją różne metody pomiaru rezystancji, jednak nie wszystkie z nich są odpowiednie do pomiarów technicznych w tym kontekście. Wykorzystanie mostka Wheatstone'a do pomiaru rezystancji jest jedną z popularnych metod, ale nie jest to podejście, które wykorzystuje amperomierz i woltomierz bezpośrednio. Mostek Wheatstone'a działa na zasadzie porównywania nieznanej rezystancji z rezystancjami znanymi, co wymaga bardziej złożonego układu, w którym zbalansowanie mostka jest kluczowe. Dodatkowo, mostek Thomsona, chociaż również używany do pomiaru rezystancji, jest bardziej skomplikowany i odnosi się do sytuacji, w których występują dodatkowe czynniki wpływające na pomiar, takie jak temperatura. Z kolei omomierz to urządzenie elektroniczne, które mierzy rezystancję i robi to automatycznie, ale w kontekście pytania o metodę techniczną, pomiar za pomocą omomierza nie odzwierciedla zasady Ohma w sposób bezpośredni, ponieważ nie uwzględnia pomiaru napięcia i natężenia prądu. Często pojawiają się mylne interpretacje, które prowadzą do przekonania, że inne urządzenia mogą zastąpić amperomierz i woltomierz. Kluczowe jest zrozumienie, że podstawowym warunkiem prawidłowego pomiaru rezystancji jest zastosowanie metody, która opiera się na bezpośrednich pomiarach napięcia i natężenia prądu, co umożliwia dokładne obliczenie rezystancji zgodnie z zasadą Ohma.

Pytanie 22

Przedstawione w tabeli wyniki pomiarów rezystancji uzwojeń i izolacji silnika trójfazowego wskazują na

Pomiar między
zaciskami silnika
Rezystancja
U1 – U232 Ω
V1 – V232 Ω
W1 – W232 Ω
U1 – V10
V1 – W15 MΩ
U1– W15 MΩ
U1 – PE0
V1 – PE0
W1 – PE5 MΩ

A. zwarcie między uzwojeniami U1 — U2 oraz W1 - W2
B. przerwę w uzwojeniu U1 — U2
C. zwarcie międzyzwojowe w uzwojeniu W1 — W2
D. uszkodzoną izolację w uzwojeniach U1 — U2 oraz V1 — V2
Wybrałeś odpowiedź mówiącą o uszkodzonej izolacji w uzwojeniach U1 — U2 oraz V1 — V2, i to jest akurat słuszne. Wyniki pomiarów rezystancji pokazują wyraźne anomalie. Na przykład, rezystancja izolacji między uzwojeniem U1 a V1 wynosi 0 Ω, co jasno wskazuje, że izolacji tam nie ma. Prowadzi to do potencjalnego zagrożenia dla bezpieczeństwa zarówno urządzenia, jak i użytkowników. Z mojej perspektywy, dobrze jest pamiętać, że normy branżowe, jak IEC 60034 dotyczące silników elektrycznych, mówią, że odpowiednie wartości rezystancji są kluczowe dla bezpieczeństwa i niezawodności silnika. Regularne pomiary rezystancji izolacji powinny być częścią rutyny konserwacji, żeby móc wcześnie wykrywać problemy i unikać awarii. Dbanie o tę izolację jest naprawdę istotne, bo jej uszkodzenie może prowadzić do zwarcia, co może zrujnować silnik i inne elementy systemu zasilania. W praktyce, ważne jest, żeby trzymać się pewnych procedur pomiarowych i konserwacyjnych – to naprawdę fundament, by działać zgodnie z najlepszymi praktykami.

Pytanie 23

Która z wymienionych czynności nie jest częścią oceny stanu technicznego podczas przeglądu układu napędowego z wykorzystaniem przekształtnika energoelektronicznego?

A. Weryfikacja jakości zabezpieczeń nadprądowych oraz zmiennozwarciowych
B. Sprawdzenie natężenia oświetlenia na stanowisku obsługi układu napędowego
C. Ocena czystości filtrów powietrza chłodzącego
D. Kontrola połączeń stykowych
Sprawdzanie natężenia oświetlenia na stanowisku obsługi układu napędowego to nie to samo, co przegląd stanu technicznego tego układu. Jak dla mnie, w takim przeglądzie powinniśmy skupić się na kluczowych aspektach, które wpływają na to, czy układ działa wydajnie i bezpiecznie. Na przykład, trzeba by sprawdzić zabezpieczenia nadprądowe i zmiennozwarciowe, bo one chronią urządzenia przed uszkodzeniem, gdy coś idzie nie tak, jak powinno. I nie zapominajmy o połączeniach stykowych, które odpowiadają za przekazywanie sygnałów elektrycznych. Filtry powietrza chłodzącego też mają ogromne znaczenie, bo odpowiednia temperatura pracy układu wpływa na jego długowieczność. Zadbanie o te wszystkie aspekty to klucz do efektywności operacyjnej oraz bezpieczeństwa użycia systemów z przekształtnikami. Przeglądy zgodne z normami, jak IEC 60204, mogą pomóc w uniknięciu awarii i sprawić, że układy napędowe będą działały jak należy.

Pytanie 24

Jaka jest wartość skuteczna napięcia przemiennego dotykowego, która może być utrzymywana w standardowych warunkach otoczenia, przy rezystancji ciała ludzkiego wynoszącej około 1 kΩ?

A. 50 V
B. 12 V
C. 25 V
D. 60 V
Wartość skuteczna przemiennego napięcia dotykowego, dopuszczalnego długotrwale w warunkach środowiskowych normalnych, wynosi 50 V. Ta wartość została określona w normach międzynarodowych, takich jak IEC 60479, które badają wpływ prądu elektrycznego na organizm ludzki. W przypadku, gdy rezystancja ciała ludzkiego wynosi około 1 kΩ, napięcie 50 V może prowadzić do wyczuwalnego, ale niegroźnego odczucia dla większości ludzi. W praktyce oznacza to, że w instalacjach elektrycznych, które mogą być narażone na przypadkowy kontakt z człowiekiem, stosowane są zabezpieczenia, aby nie przekraczać tej wartości napięcia, co ma kluczowe znaczenie dla bezpieczeństwa. W zastosowaniach takich jak instalacje elektryczne w miejscach publicznych oraz w obiektach przemysłowych, zachowanie limitu 50 V jest fundamentalnym aspektem projektowania systemów ochrony przeciwporażeniowej. Warto również zauważyć, że różne środowiska mogą wpływać na rezystancję ciała ludzkiego, dlatego projektanci systemów elektrycznych muszą uwzględniać takie czynniki jak wilgotność czy kontakt z różnymi materiałami, aby zawsze stosować się do obowiązujących norm i najlepszych praktyk.

Pytanie 25

W jaki sposób zmieni się prędkość obrotowa silnika synchronicznego, gdy liczba par biegunów w jego tworniku zostanie zmieniona z 2 na 1?

A. Dwukrotnie wzrośnie
B. Dwukrotnie zmniejszy się
C. Czterokrotnie wzrośnie
D. Czterokrotnie zmniejszy się
Prędkość obrotowa silnika synchronicznego jest ściśle związana z częstotliwością prądu zasilającego oraz liczbą par biegunów w uzwojeniach silnika. Zgodnie z zasadą synchronizacji, prędkość obrotowa silnika synchronicznego (n) oblicza się za pomocą wzoru: n = (120 * f) / p, gdzie f to częstotliwość prądu w hercach, a p to liczba par biegunów. W przypadku zmiany liczby par biegunów z 2 na 1, mamy do czynienia ze zmniejszeniem liczby par biegunów o połowę, co skutkuje podwojeniem prędkości obrotowej. W praktyce oznacza to, że silnik będzie pracować z wyższą prędkością, co jest istotne w aplikacjach wymagających zwiększenia efektywności operacyjnej, takich jak napędy wentylatorów czy pomp. W przemyśle zastosowanie silników synchronicznych z mniejszą liczbą par biegunów może umożliwić osiągnięcie wyższej wydajności energetycznej, co jest zgodne z aktualnymi trendami dążącymi do optymalizacji procesów produkcyjnych oraz redukcji kosztów eksploatacyjnych.

Pytanie 26

W tabeli przedstawiono wyniki pomiarów napięć między przewodami w sieci typu TN-C-S. Jakie uszkodzenie występuje w instalacji?

L1-N240 V
L2-N240 V
L3-N240 V
PEN-N0 V
PEN-PE10 V

A. Brak ciągłości przewodu PE
B. Przebicie izolacji między L1-N
C. Uszkodzenie przewodu N
D. Zwarcie między fazami L1-L2
Brak ciągłości przewodu PE w instalacjach TN-C-S jest kluczowym problemem, który może prowadzić do poważnych zagrożeń dla bezpieczeństwa. W sieci TN-C-S przewód PEN pełni podwójną rolę: przewodu neutralnego oraz ochronnego. Przykładowo, w sytuacji, gdy napięcie między przewodem PEN a PE wynosi 10 V, wskazuje to na brak ciągłości w przewodzie PE. W idealnych warunkach napięcie to powinno wynosić 0 V, co oznacza, że przewód ochronny jest prawidłowo uziemiony i pełni swoją funkcję zabezpieczającą. W przypadku braku ciągłości przewodu PE, istnieje ryzyko, że metalowe obudowy urządzeń mogą stać się naładowane, co stwarza niebezpieczeństwo porażenia prądem. W praktyce, wszelkie prace w instalacjach elektrycznych powinny być prowadzone zgodnie z normami, takimi jak PN-IEC 60364, które podkreślają znaczenie prawidłowego uziemienia i ochrony przeciwporażeniowej. Regularne pomiary i inspekcje mogą pomóc w identyfikacji takich problemów, co jest zgodne z zaleceniami zawartymi w dokumentach branżowych.

Pytanie 27

Silnik prądu stałego w układzie szeregowym dysponuje parametrami: PN = 8 kW, UN = 440 V, IN = 20 A, Rt = 0,5 ? (całkowita rezystancja twornika), RW = 0,5 ? (rezystancja wzbudzenia). Jaką wartość powinna mieć całkowita rezystancja rozrusznika, jeśli prąd rozruchowy silnika ma wynosić dwa razy więcej niż prąd znamionowy?

A. 21 ?
B. 10 ?
C. 22 ?
D. 11 ?
Aby obliczyć całkowitą wartość rezystancji rozrusznika, należy najpierw zrozumieć, że przy rozruchu silnika prąd osiąga wartość dwukrotnie wyższą niż prąd znamionowy. W tym przypadku prąd rozruchowy wynosi 2 * I_N = 2 * 20 A = 40 A. Całkowita rezystancja układu, która pozwoli na osiągnięcie tego prądu przy napięciu znamionowym, może być obliczona za pomocą prawa Ohma: R = U / I. Podstawiając dane: R = 440 V / 40 A = 11 ?. Następnie, uwzględniając rezystancje twornika (R_t = 0,5 ?) oraz rezystancję wzbudzenia (R_W = 0,5 ?), możemy obliczyć całkowitą rezystancję rozrusznika jako: R_rozrusznika = R - (R_t + R_W) = 11 ? - 1 ? = 10 ?. Takie wyliczenie jest kluczowe przy projektowaniu obwodów rozruchowych i zapewnia, że silnik będzie uruchamiany w sposób bezpieczny i efektywny. W praktyce, prawidłowe dobranie rezystancji rozrusznika może znacznie wydłużyć żywotność sprzętu oraz zminimalizować ryzyko uszkodzeń.

Pytanie 28

Obwody zasilające gniazda wtyczkowe o maksymalnym prądzie 32 A powinny być chronione przez wyłącznik RCD o prądzie różnicowym nominalnym

A. 500 mA
B. 30 mA
C. 100 mA
D. 1 000 mA
Wyłącznik RCD o znamionowym prądzie różnicowym 30 mA jest zalecany do ochrony osób przed porażeniem elektrycznym, szczególnie w obwodach zasilających gniazda wtyczkowe, gdzie może wystąpić kontakt z wodą lub innymi substancjami przewodzącymi. Zgodnie z normami, takimi jak PN-EN 61008-1, wyłączniki te są projektowane w celu wykrywania niewielkich różnic prądowych, które mogą wskazywać na niebezpieczne sytuacje. Przykładowo, w łazienkach, kuchniach czy miejscach narażonych na wilgoć, użycie RCD 30 mA znacząco zwiększa bezpieczeństwo użytkowników, minimalizując ryzyko porażenia prądem. Dodatkowo, warto zauważyć, że wyłączniki o wyższych wartościach prądów różnicowych, jak 100 mA czy 500 mA, są zazwyczaj stosowane w obwodach ochrony przeciwpożarowej, a nie w zastosowaniach bezpośrednio związanych z użytkownikami, co czyni 30 mA optymalnym wyborem w kontekście ochrony osób.

Pytanie 29

Jaki jest główny powód stosowania bezpieczników w instalacjach elektrycznych?

A. Redukcja hałasu w instalacji
B. Poprawa jakości dostarczanej energii
C. Ochrona przed przeciążeniem i zwarciem
D. Zmniejszenie wartości napięcia w obwodach
Bezpieczniki to kluczowe elementy ochronne stosowane w instalacjach elektrycznych, mające na celu zapewnienie bezpieczeństwa całego systemu oraz osób z niego korzystających. Głównym powodem stosowania bezpieczników jest ochrona przed przeciążeniem i zwarciem. W przypadku przeciążenia lub zwarcia bezpiecznik przerywa przepływ prądu, co zapobiega uszkodzeniom przewodów, urządzeń i potencjalnie niebezpiecznym sytuacjom, takim jak pożary. Działa to na zasadzie automatycznego wyłączenia obwodu, kiedy przepływ prądu przekracza określoną wartość dopuszczalną. To nie tylko chroni instalację, ale również minimalizuje ryzyko dla użytkowników. Dzięki temu, bezpieczniki stanowią pierwszą linię obrony w systemach elektrycznych. Wiele standardów branżowych, takich jak normy PN-EN, podkreśla konieczność stosowania bezpieczników jako podstawowego elementu ochrony w instalacjach. W praktyce, stosowanie bezpieczników jest nie tylko wymogiem prawnym, ale również dobrą praktyką inżynierską zapewniającą długotrwałą i bezawaryjną pracę urządzeń elektrycznych.

Pytanie 30

Podczas wymiany gniazdka trójfazowego w instalacji przemysłowej należy

A. zmienić przewody na nowe o większym przekroju
B. utrzymać odpowiednią kolejność przewodów fazowych w zaciskach gniazda
C. zagiąć oczka na końcach przewodów
D. zamontować końcówki oczkowe na przewodach
Zachowanie kolejności przewodów fazowych w zaciskach gniazda trójfazowego jest kluczowym aspektem bezpieczeństwa i prawidłowego działania instalacji. W układach trójfazowych, każdy z przewodów fazowych (L1, L2, L3) ma przypisane określone funkcje oraz wartości napięć, które powinny być utrzymywane w odpowiedniej sekwencji. Niezachowanie tej kolejności może prowadzić do problemów z równowagą obciążenia, co z kolei może skutkować uszkodzeniem urządzeń elektrycznych, a nawet zagrożeniem pożarowym. W praktyce, np. w przypadku podłączania silników elektrycznych, niewłaściwa kolejność faz może spowodować, że silnik będzie działał w odwrotnym kierunku, co może prowadzić do poważnych uszkodzeń. Zgodnie z normami PN-IEC 60364, zachowanie odpowiedniej kolejności połączeń jest niezbędne dla zapewnienia właściwej funkcjonalności oraz bezpieczeństwa instalacji elektrycznych.

Pytanie 31

Który z wymienionych materiałów eksploatacyjnych nie jest konieczny do wykorzystania przy przezwajaniu trójfazowego silnika indukcyjnego o mocy 7,5 kW?

A. Lakier izolacyjny
B. Drut nawojowy
C. Izolacja żłobkowa
D. Łożysko igiełkowe
Łożysko igiełkowe nie jest materiałem, który musi być wykorzystany podczas przezwajania trójfazowego silnika indukcyjnego o mocy 7,5 kW, ponieważ jego funkcja dotyczy głównie mechaniki silnika, a nie jego uzwojeń. Proces przezwajania koncentruje się na wymianie drutu nawojowego, lakieru izolacyjnego oraz izolacji żłobkowej, które mają kluczowe znaczenie dla funkcjonowania i wydajności silnika. Drut nawojowy jest niezbędny do odtworzenia uzwojeń silnika, a jego parametry, takie jak przekrój i materiał, muszą być dobierane zgodnie z wymaganiami mocy i napięcia. Lakier izolacyjny pełni istotną rolę w ochronie uzwojeń przed wilgocią i uszkodzeniami mechanicznymi, natomiast izolacja żłobkowa jest niezbędna do zapewnienia odpowiedniej separacji między uzwojeniami a rdzeniem silnika, co zapobiega zwarciom. Właściwe dobieranie tych materiałów zgodnie z normami, jak IEC 60034, zapewnia długotrwałe i efektywne działanie silnika.

Pytanie 32

Przed przystąpieniem do prac konserwacyjnych w elektrycznym urządzeniu trwale podłączonym do zasilania, po odcięciu napięcia, jak należy postępować w odpowiedniej kolejności?

A. należy zabezpieczyć obwód przed przypadkowym załączeniem, uziemić oraz zewrzeć wszystkie fazy, a następnie sprawdzić, czy nie ma napięcia
B. należy sprawdzić, czy nie ma napięcia, uziemić oraz zewrzeć wszystkie fazy, a następnie zabezpieczyć obwód przed przypadkowym załączeniem
C. należy sprawdzić, czy nie ma napięcia, zabezpieczyć obwód przed przypadkowym załączeniem, uziemić oraz zewrzeć wszystkie fazy
D. należy zabezpieczyć obwód przed przypadkowym załączeniem, sprawdzić, czy nie ma napięcia, uziemić oraz zewrzeć wszystkie fazy
Odpowiedź jest prawidłowa, ponieważ kolejność wykonywania czynności przed rozpoczęciem prac konserwacyjnych w urządzeniu elektrycznym ma kluczowe znaczenie dla bezpieczeństwa. Najpierw zabezpieczamy obwód przed przypadkowym załączeniem, co oznacza, że wyłączamy wszelkie źródła zasilania i stosujemy odpowiednie blokady. Następnie sprawdzamy brak napięcia, co można zrobić za pomocą odpowiednich narzędzi, takich jak wskaźniki napięcia lub multimetru. Uziemienie i zwarcie wszystkich faz to kolejne kroki, które mają na celu minimalizację ryzyka porażenia prądem oraz wyładowań elektrycznych. Zgodnie z normą PN-EN 50110-1, te działania stanowią integralną część procedur pracy w instalacjach elektrycznych. Przykładowo, w zakładach przemysłowych, gdzie pracuje się z dużymi maszynami, takie procedury są stosowane, aby zapewnić bezpieczeństwo pracowników i uniknąć poważnych wypadków. Dodatkowo, przestrzeganie tych zasad pomaga w zachowaniu zgodności z wymogami BHP oraz normami branżowymi.

Pytanie 33

Jaką funkcję pełni bocznik rezystancyjny używany podczas dokonywania pomiarów?

A. Poszerza zakres pomiarowy amperomierza
B. Daje możliwość zdalnego pomiaru energii elektrycznej
C. Zwiększa zakres pomiarowy woltomierza
D. Umożliwia pomiar upływu prądu przez izolację
Boczniki rezystancyjne są kluczowym elementem w pomiarach prądowych, ponieważ umożliwiają rozszerzenie zakresu pomiarowego amperomierzy, co jest szczególnie ważne w przypadku pomiarów dużych prądów. Działają na zasadzie dzielenia prądu na mniejsze wartości, co pozwala na precyzyjniejsze pomiary oraz ochronę urządzenia pomiarowego przed uszkodzeniem. Przykładem zastosowania bocznika rezystancyjnego może być pomiar prądów w instalacjach przemysłowych, gdzie wartości prądów mogą znacznie przekraczać możliwości standardowych amperomierzy. Dzięki zastosowaniu bocznika, możliwe jest przekształcenie dużych prądów na mniejsze napięcia, które mogą być bezpiecznie zmierzone. Dobrze zaprojektowane boczniki powinny być zgodne z normami, takimi jak IEC 61010, co zapewnia ich bezpieczeństwo i niezawodność w trudnych warunkach pracy. Właściwy dobór bocznika oraz jego parametry, takie jak wartość rezystancji i moc, mają kluczowe znaczenie dla dokładności pomiarów i ochrony urządzeń, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 34

Który z poniższych rodzajów silników wyróżnia się najlepszą kontrolą prędkości obrotowej poprzez modyfikację wartości napięcia zasilającego?

A. Asynchroniczny klatkowy
B. Prądu stałego
C. Asynchroniczny pierścieniowy
D. Synchroniczny jawnobiegunowy
Silniki prądu stałego charakteryzują się doskonałą regulacją prędkości obrotowej, co czyni je idealnym wyborem w aplikacjach wymagających precyzyjnego sterowania. Dzięki prostocie zmiany napięcia zasilającego, można łatwo dostosować prędkość obrotową silnika do konkretnego zadania. Przykłady zastosowania obejmują napędy w robotyce, gdzie wymagana jest zmienna prędkość w zależności od zadań do wykonania, czy też w wentylatorach, gdzie regulacja obrotów wpływa na efektywność energetyczną. W przemyśle, silniki prądu stałego są wykorzystywane w maszynach takich jak dźwigi czy taśmociągi, gdzie precyzyjne zarządzanie prędkością jest kluczowe dla bezpieczeństwa i efektywności procesu. Dobre praktyki wskazują na wykorzystanie kontrolerów PWM (Pulse Width Modulation) do efektywnej regulacji napięcia oraz ograniczenia strat energii. Warto również zauważyć, że silniki te są bardziej odpowiednie do zadań, gdzie wymagana jest często zmiana kierunku obrotów, co również wpływa na ich popularność w różnorodnych aplikacjach.

Pytanie 35

Jakie konsekwencje wystąpią w instalacji elektrycznej po zamianie przewodów ADY 2,5 mm2 na DY 2,5 mm2?

A. Obniżenie obciążalności prądowej
B. Obniżenie rezystancji pętli zwarciowej
C. Zwiększenie temperatury przewodu
D. Wzrost spadku napięcia na przewodach
Wymiana przewodów ADY 2,5 mm² na DY 2,5 mm² prowadzi do zmniejszenia rezystancji pętli zwarciowej dzięki zastosowaniu przewodów o lepszej jakości i właściwościach materiałowych. Przewody DY charakteryzują się mniejszym oporem elektrycznym, co bezpośrednio wpływa na efektywność działania instalacji elektrycznej. Przy niższej rezystancji pętli zwarciowej, w przypadku awarii, prąd zwarciowy jest wyższy, co pozwala na szybsze działanie zabezpieczeń, takich jak wyłączniki nadprądowe czy różnicowoprądowe. Standardy określające wymagania dla instalacji elektrycznych, jak PN-IEC 60364, podkreślają znaczenie minimalizowania rezystancji w systemach elektroenergetycznych, aby zapewnić bezpieczeństwo i niezawodność. Przykładem praktycznym jest instalacja w obiektach przemysłowych, gdzie szybka reakcja zabezpieczeń jest kluczowa dla ochrony sprzętu i ludzi. Właściwe dobranie przewodów w instalacjach elektrycznych ma zatem kluczowe znaczenie dla bezpieczeństwa oraz efektywności energetycznej.

Pytanie 36

Aby ograniczyć prąd płynący w obwodzie zasilania silnika indukcyjnego pierścieniowego podczas rozruchu, co należy zrobić?

A. dostosować rozrusznik obwodu wirnika
B. zwiększyć obciążenie na wale
C. przetoczyć pierścienie ślizgowe wirnika
D. zmienić kolejność faz w stojanie
Dopasowanie rozrusznika obwodu wirnika jest kluczowym działaniem mającym na celu zmniejszenie prądu rozruchowego silnika indukcyjnego pierścieniowego. W momencie uruchamiania silnika indukcyjnego, zwłaszcza w przypadku silników o dużej mocy, prąd rozruchowy może być kilkukrotnie większy od prądu nominalnego. Użycie rozrusznika, który ogranicza ten prąd, umożliwia płynne rozpoczęcie pracy silnika oraz zabezpiecza pozostałe elementy obwodu przed uszkodzeniem. Przykładem takiego rozrusznika jest rozrusznik z opornikami, który na początku wprowadza oporność do obwodu wirnika, a następnie stopniowo ją zmniejsza, co pozwala na kontrolowanie momentu obrotowego i prądu. W praktyce, prawidłowe dopasowanie rozrusznika do parametrów silnika i obciążenia ma kluczowe znaczenie dla efektywności energetycznej oraz długowieczności urządzenia, co jest zgodne z najlepszymi praktykami w branży. Warto również zwrócić uwagę na normy ustanowione przez organizacje takie jak IEC, które wskazują na znaczenie odpowiednich systemów rozruchowych w przemyśle.

Pytanie 37

Do nawinięcia stojana w trójfazowym silniku indukcyjnym o mocy 7,5 kW nie stosuje się

A. pierścienia zwierającego
B. drutu nawojowego
C. izolacji żłobkowej
D. lakieru izolacyjnego
Pierścień zwierający nie jest stosowany w przezwojeniu stojana trójfazowego silnika indukcyjnego o mocy 7,5 kW, ponieważ jego konstrukcja opiera się na rdzeniu stalowym, w którym uzwojenia są umieszczone w żłobkach. Pierścienie zwierające są używane głównie w silnikach z wirnikami klatkowym, gdzie zapewniają zamknięcie obwodu wirnika. W przypadku silników indukcyjnych z uzwojeniem stojana, kluczowe komponenty to drut nawojowy, izolacja żłobkowa oraz lakier izolacyjny. Drut nawojowy, wykonany z miedzi, jest niezbędny do utworzenia uzwojeń, które generują pole magnetyczne. Izolacja żłobkowa oraz lakier izolacyjny chronią drut przed zwarciem oraz uszkodzeniami mechanicznymi, a także zapewniają odpowiednią wydajność cieplną. Dobrze przeprowadzone przezwojenie zwiększa efektywność silnika, co jest istotne w kontekście obciążenia i żywotności maszyny.

Pytanie 38

Zgodnie z aktualnymi regulacjami, czas pomiędzy następnymi kontrolami skuteczności ochrony przed porażeniem prądem dla instalacji elektrycznych w pomieszczeniach z wyziewami żrącymi, w strefach zagrożonych wybuchem oraz na terenie otwartym nie może przekraczać

A. dwa lata
B. pięć lat
C. pół roku
D. jeden rok
Odpowiedź "jeden rok" jest poprawna, ponieważ zgodnie z obowiązującymi przepisami, w tym normami IEC 60364 oraz krajowymi regulacjami, instalacje elektryczne w pomieszczeniach narażonych na działanie substancji żrących, zagrożone wybuchem czy na otwartej przestrzeni powinny być regularnie kontrolowane. Przepisy te mają na celu zapewnienie bezpieczeństwa użytkowników oraz ochrony przed ewentualnymi awariami, które mogą prowadzić do poważnych konsekwencji, w tym pożarów lub wybuchów. Regularne kontrole co roku pozwalają na wczesne identyfikowanie potencjalnych problemów, takich jak korozja elementów instalacji, luźne połączenia czy inne usterki, które w takich warunkach mogą pojawić się szybciej niż w standardowych warunkach. Przykładem zastosowania tej regulacji może być przemysł chemiczny, gdzie substancje agresywne mogą wpływać na stan techniczny instalacji elektrycznych i w konsekwencji na bezpieczeństwo pracy. Dlatego przestrzeganie rocznego terminu kontroli jest kluczowe dla minimalizacji ryzyka i zapewnienia odpowiednich standardów pracy.

Pytanie 39

Jeżeli silnik prądu stałego z komutatorem po włączeniu zasilania nie zaczyna pracować, to możliwą przyczyną tej sytuacji może być

A. umiejscowienie szczotek poza obszarem neutralnym
B. zbyt mocny nacisk szczotek na komutator
C. zaśmiecenie komutatora pyłem węglowym
D. brak kontaktu szczotek z komutatorem
Brak przylegania szczotek do komutatora jest kluczowym problemem w silnikach komutatorowych prądu stałego. Gdy szczotki nie mają odpowiedniego kontaktu z komutatorem, nie dochodzi do przekazywania prądu do wirnika, co skutkuje brakiem obrotów silnika. Regularne kontrole stanu szczotek oraz komutatora są częścią dobrej praktyki w konserwacji tych urządzeń. W przypadku, gdy szczotki są zbyt zużyte, mogą nie przylegać wystarczająco, co uniemożliwia silnikowi uruchomienie. Właściwe ciśnienie szczotek na komutatorze oraz ich właściwe ustawienie w odpowiedniej strefie neutralnej są istotne dla efektywności działania silnika. Przykładem zastosowania tej wiedzy jest rutynowe serwisowanie silników w aplikacjach przemysłowych, gdzie ich awaria może prowadzić do znacznych przestojów. Zgodnie z normami branżowymi, regularne czyszczenie komutatora i kontrola stanu szczotek powinny być częścią harmonogramu konserwacji, aby zapewnić niezawodność i długowieczność urządzeń."

Pytanie 40

Jakie będą konsekwencje podniesienia częstotliwości napięcia zasilającego stojan w trakcie działania trójfazowego silnika indukcyjnego?

A. Całkowite zniszczenie wirnika silnika
B. Spadek prędkości obrotowej wirnika silnika
C. Wzrost prędkości obrotowej wirnika silnika
D. Nawrót wirnika silnika
Zwiększenie częstotliwości napięcia zasilania stojana trójfazowego silnika indukcyjnego prowadzi do podwyższenia prędkości obrotowej wirnika zgodnie z zasadą synchronizacji. W silnikach indukcyjnych prędkość obrotowa wirnika jest ściśle związana z częstotliwością zasilania, co wynika z relacji: n = 120 * f / p, gdzie n to prędkość obrotowa w obr/min, f to częstotliwość w Hz, a p to liczba par biegunów. Zwiększenie częstotliwości powoduje, że wirnik osiąga wyższą prędkość, co ma zastosowanie w różnych procesach przemysłowych, gdzie wymagana jest regulacja prędkości napędu, na przykład w systemach transportowych czy w automatyce przemysłowej. W praktyce możemy wykorzystać falowniki, które umożliwiają precyzyjne sterowanie częstotliwością, a tym samym prędkością obrotową silnika, co optymalizuje zużycie energii i zwiększa efektywność procesów. Warto również zauważyć, że zgodnie z normami IEC 60034, projektowanie systemów napędowych powinno uwzględniać odpowiednie parametry zasilania, co wpływa na trwałość i wydajność silników."