Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 23 maja 2025 20:18
  • Data zakończenia: 23 maja 2025 20:28

Egzamin niezdany

Wynik: 18/40 punktów (45,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Po dokonaniu eksportu klucza HKCU stworzona zostanie kopia rejestru zawierająca dane o konfiguracji

A. procedurach uruchamiających system operacyjny
B. wszystkich aktywnie ładowanych profili użytkowników systemu
C. aktualnie zalogowanego użytkownika
D. sprzętu komputera dla wszystkich użytkowników systemu
Poprawna odpowiedź to aktualnie zalogowany użytkownik, ponieważ eksport klucza rejestru HKCU (HKEY_CURRENT_USER) dotyczy jedynie ustawień i konfiguracji związanych z bieżącym profilem użytkownika. Klucz HKCU przechowuje dane specyficzne dla aktualnie zalogowanego użytkownika, takie jak preferencje aplikacji, ustawienia systemowe oraz różne konfiguracje związane z interfejsem użytkownika. Na przykład, po zalogowaniu się na konto użytkownika, system operacyjny wczytuje te ustawienia, co umożliwia personalizację środowiska pracy. Eksportowanie klucza HKCU jest praktycznym sposobem na tworzenie kopii zapasowych tych ustawień lub przenoszenie ich na inny komputer. W wielu sytuacjach administracyjnych i wsparcia technicznego zarządzanie tymi danymi jest kluczowe, ponieważ pozwala na szybkie przywrócenie preferencji użytkownika po reinstalacji systemu lub migracji na nową maszynę. Zgodnie z dobrymi praktykami zabezpieczeń, zawsze warto także mieć świadomość, jakie dane są eksportowane, aby uniknąć niezamierzonego ujawnienia informacji wrażliwych."

Pytanie 2

Zrzut ekranu ilustruje aplikację

Ilustracja do pytania
A. antywirusowy
B. antyspamowy
C. typu firewall
D. typu recovery
Firewall to mega ważny element w zabezpieczeniach sieci komputerowych. Działa jak taka bariera pomiędzy naszą siecią a światem zewnętrznym. Jego głównym zadaniem jest monitorowanie i kontrolowanie ruchu w sieci, oczywiście na podstawie reguł, które wcześniej ustaliliśmy. Na zrzucie ekranu widać listę reguł przychodzących, co pokazuje, że mamy do czynienia z typowym firewall'em. Firewalle mogą być hardware'owe albo software'owe i często można je ustawiać w taki sposób, żeby filtrowały pakiety, zmieniały adresy sieciowe czy sprawdzały stan połączeń. Dobrze skonfigurowany firewall chroni przed nieautoryzowanym dostępem, zapobiega atakom DOS i kontroluje, kto ma dostęp do naszych zasobów. Korzysta się z nich w różnych miejscach, od domowych sieci po te wielkie korporacyjne. Dobrze jest regularnie aktualizować reguły firewalla, sprawdzać logi w poszukiwaniu dziwnych rzeczy i łączyć go z innymi narzędziami bezpieczeństwa, jak systemy wykrywania intruzów. Jak się to wszystko dobrze poustawia, można znacząco poprawić bezpieczeństwo i chronić nasze wrażliwe dane przed zagrożeniami w sieci.

Pytanie 3

Sygnał kontrolny generowany przez procesor, umożliwiający zapis do urządzeń wejściowych i wyjściowych, został na diagramie oznaczony numerem

Ilustracja do pytania
A. 4
B. 2
C. 3
D. 1
Wybór błędnej odpowiedzi co do sygnału sterującego zapisem do urządzeń wejścia-wyjścia często wynika z niepełnego zrozumienia roli poszczególnych sygnałów w architekturze mikroprocesora. Sygnały MEMR i MEMW oznaczają operacje odczytu i zapisu do pamięci, co jest mylące dla wielu uczących się, którzy mogą błędnie przypuszczać, że są one związane z urządzeniami wejścia-wyjścia. MEMR jest używany do odczytu danych z pamięci, natomiast MEMW do zapisu danych do pamięci. Sygnały te są integralną częścią komunikacji z pamięcią RAM i ROM, ale nie z urządzeniami wejścia-wyjścia. I/OR i I/OW to sygnały dedykowane dla operacji z urządzeniami I/O. I/OR oznacza odczyt z urządzeń I/O, podczas gdy I/OW oznacza zapis. Mylenie sygnałów związanych z pamięcią i I/O jest powszechnym błędem, zwłaszcza u początkujących projektantów systemów. Aby uniknąć takich pomyłek, ważne jest dogłębne zrozumienie funkcji i zastosowania każdego sygnału oraz kontekstu, w jakim są używane. W systemach komputerowych sygnały są wykorzystywane w złożonych sekwencjach operacji, a prawidłowe ich przypisanie jest kluczowe dla stabilnej i wydajnej pracy całego systemu. Inżynierowie muszą być świadomi standardowych praktyk i protokołów komunikacyjnych używanych w systemach mikroprocesorowych, by skutecznie projektować i diagnozować złożone systemy komputerowe. Dobra znajomość tych zasad pozwala na unikanie kosztownych błędów w projektowaniu sprzętu i oprogramowania, co jest kluczowe w nowoczesnym inżynierii komputerowej.

Pytanie 4

Zgodnie z aktualnymi przepisami BHP, odległość oczu od ekranu monitora powinna wynosić

A. 40 - 75 cm
B. 20 - 39 cm
C. 39 - 49 cm
D. 75 - 110
Odległość oczu od ekranu monitora wynosząca od 40 do 75 cm jest zgodna z zaleceniami ergonomii oraz przepisami BHP, które mają na celu zminimalizowanie zmęczenia wzroku oraz dyskomfortu podczas pracy przy komputerze. Utrzymanie właściwej odległości pozwala na lepsze skupienie wzroku na ekranie, co z kolei wpływa na wydajność i komfort pracy. Przykładowo, w przypadku osób pracujących w biurach, które spędzają długie godziny przed komputerem, zachowanie tej odległości może znacznie zmniejszyć ryzyko wystąpienia zespołu suchego oka oraz innych problemów z widzeniem. Warto również pamiętać o regularnych przerwach oraz stosowaniu zasady 20-20-20, czyli co 20 minut patrzeć przez 20 sekund na obiekt oddalony o 20 stóp (około 6 metrów), aby zredukować napięcie mięśni oczu. Przy odpowiedniej odległości i zachowaniu zasady ergonomii, użytkownicy mogą znacznie poprawić swoje doznania podczas użytkowania sprzętu komputerowego, co jest kluczowe w dzisiejszym środowisku pracy.

Pytanie 5

Jaką cechę posiada przełącznik w sieci?

A. Z przesyłanych pakietów pobiera docelowe adresy IP
B. Korzysta z protokołu EIGRP
C. Działa na fragmentach danych określanych jako segmenty
D. Z odebranych ramek wydobywa adresy MAC
Przełącznik sieciowy to urządzenie, które odgrywa kluczową rolę w zarządzaniu komunikacją w sieciach lokalnych. Jego podstawową funkcją jest odczytywanie adresów MAC z ramek sieciowych, co umożliwia efektywne przekazywanie danych pomiędzy urządzeniami w tej samej sieci. Dzięki mechanizmowi przechowywania adresów MAC w tablicy, przełącznik jest w stanie podejmować decyzje dotyczące przesyłania danych tylko do tych portów, które są rzeczywiście połączone z docelowymi urządzeniami. Taka operacja zwiększa wydajność sieci oraz minimalizuje niepotrzebny ruch, co jest zgodne z najlepszymi praktykami w projektowaniu sieci lokalnych. Na przykład, w dużych biurach, gdzie wiele komputerów jest podłączonych do jednego przełącznika, jego zdolność do prawidłowego kierowania ruchu bazując na adresach MAC jest kluczowa dla zapewnienia płynnej komunikacji. Przełączniki są niezbędnymi elementami w nowoczesnych sieciach Ethernet, a ich odpowiednia konfiguracja zgodna z protokołami IEEE 802.1D (Spanning Tree Protocol) i IEEE 802.1Q (VLAN) może znacząco poprawić zarządzanie ruchem sieciowym oraz zwiększyć bezpieczeństwo.

Pytanie 6

Złącze SC powinno być zainstalowane na przewodzie

A. telefonicznym
B. światłowodowym
C. typu skrętka
D. koncentrycznym
Złącza koncentryczne, telefoniczne oraz typu skrętka nie są przeznaczone do stosowania z kablami światłowodowymi, co stanowi kluczowy błąd w rozumieniu technologii przesyłu sygnałów. Złącza koncentryczne, typowo używane w systemach telewizyjnych i kablowych, posiadają metalową konstrukcję, która nie jest kompatybilna z delikatnymi włóknami światłowodowymi. W przypadku kabli telefonicznych, które często korzystają z technologii miedzi, złącza te również nie spełniają wymogów związanych z przesyłem sygnału optycznego. Z kolei złącza typu skrętka są stosowane w sieciach Ethernet, gdzie sygnał przesyłany jest za pomocą miedzi, a nie światła. To błędne podejście może wynikać z nieznajomości różnic między technologiami komunikacyjnymi. W praktyce, złącza SC są niezbędne do prawidłowego funkcjonowania sieci światłowodowych, a stosowanie niewłaściwych typów złącz prowadzi do znacznych strat sygnału oraz problemów z łącznością. Właściwe używanie złączy jest kluczowe dla efektywności i niezawodności nowoczesnych systemów komunikacyjnych, co podkreśla znaczenie edukacji i zrozumienia technologii w tej dziedzinie.

Pytanie 7

Który typ profilu użytkownika zmienia się i jest zapisywany na serwerze dla klienta działającego w sieci Windows?

A. Lokalny
B. Obowiązkowy
C. Tymczasowy
D. Mobilny
Tymczasowy profil użytkownika, choć czasami mylnie uważany za podobny do mobilnego, nie jest przechowywany na serwerze i nie umożliwia użytkownikowi synchronizacji ustawień między różnymi komputerami. Zamiast tego tworzy się go w sytuacjach, gdy występują problemy z ładowaniem profilu użytkownika, co skutkuje ograniczonym dostępem do danych i ustawień. Użytkownik korzystający z tymczasowego profilu może zauważyć, że jego preferencje i pliki nie są dostępne, co może prowadzić do frustracji i spadku efektywności w pracy. Lokalne profile użytkownika są przechowywane lokalnie na danym urządzeniu i nie mają możliwości synchronizacji ani zdalnego dostępu, co ogranicza ich użyteczność w środowiskach zdalnych lub rozproszonych. Obowiązkowe profile, chociaż pozwalają na pewne centralne zarządzanie, również nie są odpowiednie w kontekście mobilności, ponieważ wszelkie zmiany wprowadzone przez użytkownika nie są zapisywane. Użytkownicy często mylą te różne typy profili, co może prowadzić do nieporozumień w zarządzaniu środowiskiem IT. Warto zrozumieć, że mobilne profile użytkownika są zaprojektowane z myślą o łatwej integracji i użytkowaniu w złożonych środowiskach sieciowych, co stanowi ich kluczową przewagę w porównaniu do innych typów profili.

Pytanie 8

Pamięć podręczna Intel Smart Cache, która znajduje się w procesorach wielordzeniowych, takich jak Intel Core Duo, to pamięć

A. Cache L1 równo dzielona pomiędzy rdzenie
B. Cache L2 lub Cache L3, współdzielona przez wszystkie rdzenie
C. Cache L1 współdzielona pomiędzy wszystkie rdzenie
D. Cache L2 lub Cache L3, równo podzielona pomiędzy rdzenie
Odpowiedź dotycząca pamięci podręcznej Intel Smart Cache jest prawidłowa, ponieważ odnosi się do architektury procesorów wielordzeniowych, takich jak Intel Core Duo. Intel Smart Cache to pamięć podręczna typu L2 lub L3, która jest współdzielona pomiędzy rdzeniami procesora, co ma na celu zwiększenie wydajności oraz zmniejszenie opóźnień w dostępie do danych. Współdzielenie pamięci podręcznej pozwala na efektywne zarządzanie danymi, które mogą być wykorzystywane przez różne rdzenie, co znacząco poprawia współczynnik hitów cache, a tym samym ogólną wydajność systemu. Przykładowo, w zastosowaniach intensywnie obliczeniowych, takich jak gry komputerowe czy przetwarzanie grafiki, współdzielona pamięć podręczna pozwala na szybszy dostęp do często używanych danych, co jest kluczowe dla osiągnięcia lepszej wydajności. W standardach projektowania architektur procesorów, takie podejście jest uznawane za dobrą praktykę, ponieważ umożliwia lepszą skalowalność i efektywność energetyczną.

Pytanie 9

Jakie polecenie w systemie Linux jest używane do planowania zadań?

A. top
B. shred
C. cron
D. taskschd
Polecenie 'cron' w systemie Linux jest narzędziem służącym do harmonogramowania zadań, co oznacza, że umożliwia automatyczne uruchamianie skryptów lub programów w określonych interwałach czasowych. Jest to niezwykle przydatne w administracji systemami, gdzie rutynowe zadania, takie jak tworzenie kopii zapasowych, aktualizacje oprogramowania czy monitorowanie systemu, muszą być wykonywane regularnie. 'Cron' opiera się na plikach konfiguracyjnych, które określają, kiedy i co ma być wykonywane. Użytkownicy mogą dodawać swoje zadania do pliku crontab, który jest specyficzny dla danego użytkownika. Przykład użycia to dodanie zadania, które co godzinę wykonuje skrypt bash: '0 * * * * /path/to/script.sh'. W ten sposób administratorzy mogą zaoszczędzić czas i zminimalizować ryzyko błędów ludzkich poprzez automatyzację powtarzalnych zadań. Dobrą praktyką jest także używanie 'cron' w połączeniu z logowaniem, aby mieć pełen obraz na temat wykonań zadań oraz ich potencjalnych problemów.

Pytanie 10

Wskaż złącze, które nie jest stosowane w zasilaczach ATX?

A. SATA Connector
B. MPC
C. PCI-E
D. DE-15/HD-15
Złącze DE-15/HD-15, znane również jako złącze VGA, jest interfejsem analogowym używanym głównie do przesyłania sygnału wideo z komputera do monitora. Nie jest to złącze stosowane w zasilaczach ATX, które są projektowane z myślą o zasilaniu komponentów komputerowych, a nie o przesyłaniu sygnałów wideo. Zasilacze ATX wykorzystują złącza takie jak 24-pinowe złącze główne, złącza 4/8-pinowe do procesora, złącza SATA do dysków twardych oraz złącza PCI-E do kart graficznych. Przykładem zastosowania złącza DE-15/HD-15 jest podłączanie starszych monitorów CRT lub projektorów, podczas gdy w nowoczesnych systemach dominują złącza cyfrowe, takie jak HDMI czy DisplayPort. Zrozumienie różnorodnych typów złączy i ich zastosowania w praktyce jest kluczowe dla prawidłowego montażu oraz diagnostyki komputerów.

Pytanie 11

Aby sygnały pochodzące z dwóch routerów w sieci WiFi pracującej w standardzie 802.11g nie wpływały na siebie nawzajem, należy skonfigurować kanały o numerach

A. 5 i 7
B. 1 i 5
C. 2 i 7
D. 3 i 6
Wybór kanałów 1 i 5, 3 i 6, czy 5 i 7, może prowadzić do niepożądanych zakłóceń w sieci WiFi, ponieważ kanały te nie są odpowiednio oddalone od siebie. Na przykład, wybierając kanały 1 i 5, użytkownik naraża się na interferencje, ponieważ kanał 5 leży w pobliżu kanału 1, co może prowadzić do nakładania się sygnałów. Podobnie, kombinacja kanałów 3 i 6 nie jest optymalna, ponieważ oba kanały są zbyt blisko siebie, co wprowadza niepotrzebny szum i zmniejsza efektywność transmisji. Użytkownicy często popełniają błąd polegający na przyjęciu, że im więcej kanałów używają, tym lepsza będzie jakość sieci, jednak kluczowe jest, aby wybrane kanały były rozdzielone, aby zminimalizować zakłócenia. W praktyce, wybieranie kanałów w bliskiej odległości od siebie prowadzi do obniżenia przepustowości sieci, wzrostu opóźnień oraz problemów z łącznością, co negatywnie wpływa na doświadczenia użytkowników i może skutkować koniecznością częstszego resetowania routerów. Dlatego ważne jest, aby przy konfiguracji sieci WiFi kierować się dobrymi praktykami, które zapewnią optymalne wykorzystanie dostępnych zasobów bezprzewodowych.

Pytanie 12

Jak wielu hostów można maksymalnie zaadresować w sieci lokalnej, mając do dyspozycji jeden blok adresów klasy C protokołu IPv4?

A. 255
B. 510
C. 254
D. 512
Odpowiedź 254 jest prawidłowa, ponieważ w klasie C adresów IPv4 mamy 256 możliwych adresów (od 0 do 255). Jednak dwa z tych adresów są zarezerwowane: jeden dla adresu sieci (adres, w którym wszystkie bity hosta są ustawione na 0) oraz jeden dla adresu rozgłoszeniowego (adres, w którym wszystkie bity hosta są ustawione na 1). Dlatego maksymalna liczba hostów, które można zaadresować w sieci lokalnej z wykorzystaniem tej klasy, wynosi 254. W praktyce oznacza to, że w typowej sieci lokalnej, takiej jak w biurze czy w domu, administratorzy mogą przydzielić adresy IP do 254 różnych urządzeń, takich jak komputery, drukarki, smartfony czy inne urządzenia IoT. Zgodnie z najlepszymi praktykami sieciowymi, zarządzanie adresacją IP w klasie C jest powszechnie stosowane w małych i średnich sieciach, co pozwala na efektywne wykorzystanie dostępnych zasobów adresowych. Dodatkowo, przy planowaniu sieci, warto uwzględnić rezerwacje adresów dla urządzeń serwisowych, co jeszcze bardziej podkreśla znaczenie dokładnego obliczania dostępnych adresów.

Pytanie 13

Brak danych dotyczących parzystości liczby lub znaku rezultatu operacji w ALU może sugerować usterki w funkcjonowaniu

A. rejestru flagowego
B. wskaźnika stosu
C. pamięci cache
D. tablicy rozkazów
Tablica rozkazów jest odpowiedzialna za przechowywanie instrukcji, które procesor ma wykonać, ale nie ma bezpośredniego związku z informacjami o parzystości lub znaku. Jej rola polega na interpretacji i dekodowaniu rozkazów, co wpływa na przebieg całego procesu obliczeniowego, jednak nie kontroluje wyników operacji arytmetycznych. Pamięć cache natomiast służy do przechowywania danych i instrukcji, które są często wykorzystywane, co przyspiesza dostęp do nich, ale również nie ma wpływu na flagi. Wskaźnik stosu jest używany do zarządzania stosami funkcji, przechowując adresy powrotu i lokalne zmienne, co w żadnym wypadku nie ma związku z obliczeniami wyników operacji. Typowym błędem w tym kontekście jest mylenie komponentów architektury komputera oraz ich funkcji. Brak znajomości roli rejestru flagowego może prowadzić do błędnych wniosków, ponieważ nie docenia się znaczenia stanu operacji, które wpływa na dalsze działanie programu. Zrozumienie, jak różne komponenty współdziałają, jest kluczowe dla programistów i inżynierów zajmujących się projektowaniem systemów komputerowych.

Pytanie 14

Który element pasywny sieci powinien być użyty do połączenia okablowania ze wszystkich gniazd abonenckich z panelem krosowniczym umieszczonym w szafie rack?

A. Przepust szczotkowy
B. Organizer kabli
C. Adapter LAN
D. Kabel połączeniowy
Organizer kabli to kluczowy element pasywny w infrastrukturze sieciowej, który służy do uporządkowania i zarządzania okablowaniem. Poprawne ułożenie kabli w panelach krosowniczych oraz w szafach rackowych ma fundamentalne znaczenie dla efektywności i niezawodności całego systemu. Organizer kabli pozwala na uniknięcie splątania, co ułatwia identyfikację i konserwację okablowania. Dobrze zorganizowane kable zmniejszają ryzyko błędów podłączeniowych oraz poprawiają wentylację w szafie rackowej, co jest istotne dla utrzymania odpowiedniej temperatury urządzeń sieciowych. Zgodnie z normami ANSI/TIA-568 oraz ISO/IEC 11801, odpowiednie zarządzanie kablami jest kluczowe dla zapewnienia zgodności oraz optymalnej wydajności sieci. Przykładem praktycznego zastosowania organizera kabli jest wykorzystanie go w biurach oraz centrach danych, gdzie złożoność okablowania wymaga starannego zarządzania, aby zminimalizować przerwy w działaniu i ułatwić przyszłe rozbudowy systemu.

Pytanie 15

Jakie napięcie zasilające mają pamięci DDR2?

A. 1,8 V
B. 2,5 V
C. 1,0 V
D. 1,4 V
Odpowiedź 1,8 V jest prawidłowa, ponieważ pamięci DDR2 zostały zaprojektowane do pracy przy napięciu zasilania wynoszącym właśnie 1,8 V. Ten standard zasilania zapewnia równocześnie odpowiednią wydajność oraz stabilność działania modułów pamięci. Pamięci DDR2, które są rozwinięciem wcześniejszych standardów DDR, wprowadziły szereg udoskonaleń, takich jak podwyższona szybkość transferu i wydajność energetyczna. Dzięki niższemu napięciu w porównaniu do starszych pamięci DDR (które wymagały 2,5 V), DDR2 generują mniej ciepła i pozwalają na oszczędność energii, co jest szczególnie istotne w przypadku laptopów i urządzeń mobilnych. Umożliwia to także projektowanie bardziej kompaktowych systemów z mniejszymi wymaganiami chłodzenia, co jest kluczowym aspektem w nowoczesnych komputerach i sprzęcie elektronicznym. Warto zaznaczyć, że zgodność z tym napięciem jest kluczowa dla zapewnienia optymalnej pracy pamięci w systemach komputerowych oraz dla zapewnienia ich długotrwałej niezawodności.

Pytanie 16

Urządzenie ADSL wykorzystuje się do nawiązania połączenia

A. satelitarnego
B. cyfrowego asymetrycznego
C. radiowego
D. cyfrowego symetrycznego
Ważne jest, aby zrozumieć, że odpowiedzi dotyczące połączeń cyfrowych symetrycznych, radiowych i satelitarnych nie są poprawne w kontekście urządzenia ADSL. Połączenia cyfrowe symetryczne, jak na przykład technologie Ethernet, oferują równą prędkość zarówno dla pobierania, jak i wysyłania danych, co jest przeciwieństwem asymetrycznego charakteru ADSL. Użytkownicy, którzy wybierają symetryczne połączenia, często potrzebują wyższej prędkości wysyłania dla aplikacji takich jak przesyłanie dużych plików czy hosting serwisów internetowych. Z kolei technologie radiowe i satelitarne różnią się od ADSL pod względem sposobu transmisji danych. Połączenia radiowe wykorzystują fale radiowe do dostarczania sygnału, co może wprowadzać większe opóźnienia i problemy z jakością sygnału, zwłaszcza w warunkach atmosferycznych. Z kolei technologie satelitarne, mimo że oferują zasięg w odległych lokalizacjach, mają znaczne opóźnienia wynikające z odległości do satelitów na orbicie, co czyni je mniej praktycznymi dla codziennego użytku porównując do ADSL. Wybór nieodpowiedniej technologii może prowadzić do nieefektywnego korzystania z internetu, dlatego kluczowe jest, aby zrozumieć różnice między nimi oraz odpowiednio dostosować wybór technologii do swoich potrzeb. Zrozumienie tych różnic jest kluczowe w kontekście optymalizacji usług internetowych dla użytkowników końcowych.

Pytanie 17

Urządzenie pokazane na ilustracji służy do

Ilustracja do pytania
A. dostarczenia zasilania po kablu U/UTP
B. regeneracji sygnału
C. rozdziału domen kolizji
D. monitorowania ruchu na porcie LAN
Regeneracja sygnału jest procesem stosowanym w repeaterach i wzmacniaczach sygnału sieciowego, gdzie celem jest poprawa jakości sygnału przesyłanego po długich kablach. Urządzenia te nie dostarczają zasilania do urządzeń końcowych jak w przypadku PoE. Rozdział domen kolizji jest związany z funkcjonowaniem przełączników sieciowych, które izolują różne segmenty sieci, redukując kolizje pakietów i poprawiając wydajność. Przełączniki działają na warstwie drugiej modelu OSI i nie są bezpośrednio związane z dostarczaniem zasilania. Monitorowanie ruchu na porcie LAN dotyczy analizy i zarządzania przepływem danych w sieci, co jest realizowane przez zaawansowane urządzenia takie jak urządzenia IDS/IPS (Intrusion Detection/Prevention Systems) lub oprogramowanie monitoringowe, a nie przez urządzenia PoE. Typowym błędem jest mylenie funkcjonalności urządzeń sieciowych, ponieważ każde z nich ma specyficzne zadania i zastosowania. Power over Ethernet to technologia, która umożliwia integrację zasilania i transmisji danych w jednym kablu, co jest kluczowym ułatwieniem w nowoczesnych instalacjach sieciowych, jednak nie wpływa na rozdział domen kolizji, regenerację sygnału czy też monitorowanie ruchu w sposób bezpośredni.

Pytanie 18

Na rysunku poniżej przedstawiono ustawienia zapory ogniowej w ruterze TL-WR340G. Jakie zasady dotyczące konfiguracji zapory zostały zastosowane?

Ilustracja do pytania
A. Zapora jest aktywna, wyłączone jest filtrowanie adresów IP, reguła filtrowania adresów IP ustawiona na opcję "odmów pakietom nieokreślonym jakimikolwiek regułami filtrowania przejść przez urządzenie", filtrowanie domen aktywne
B. Zapora jest nieaktywna, filtrowanie adresów IP oraz domen jest wyłączone, reguła filtrowania adresów IP ustawiona na opcję "zezwalaj pakietom nieokreślonym jakimikolwiek regułami filtrowania przejść przez urządzenie", filtrowanie domen aktywne
C. Zapora jest aktywna, włączone jest filtrowanie adresów IP, reguła filtrowania adresów IP ustawiona na opcję "odmów pakietom nieokreślonym jakimikolwiek regułami filtrowania przejść przez urządzenie", filtrowanie domen wyłączone
D. Zapora jest aktywna, włączone jest filtrowanie adresów IP, reguła filtrowania adresów IP ustawiona na opcję "zezwalaj pakietom nieokreślonym jakimikolwiek regułami filtrowania przejść przez urządzenie", filtrowanie domen jest wyłączone
Odpowiedzi które nie są poprawne zawierają kilka błędnych założeń. Jednym z najczęstszych błędów jest mylenie stanu zapory ogniowej. Wyłączona zapora pozostawia sieć bez podstawowej ochrony co stwarza poważne zagrożenie dla bezpieczeństwa. W sytuacjach gdy zapora jest wyłączona oraz wyłączone jest filtrowanie adresów IP i domen sieć staje się otwarta na wszelkiego rodzaju ataki z zewnątrz co jest niezgodne z podstawowymi zasadami bezpieczeństwa sieciowego. Innym istotnym błędem jest niewłaściwe zrozumienie działania reguł filtrowania. Ustawienie na odmowę pakietom które nie są określone jakimikolwiek regułami filtrowania oznacza że każdy nieznany ruch jest automatycznie blokowany co jest dobrym rozwiązaniem dla sieci które muszą być wyjątkowo zabezpieczone ale może prowadzić do problemów z dostępnością usług jeśli administrator nie określił wszystkich potrzebnych reguł. Ważne jest również umiejętne korzystanie z filtrowania domen które pozwala na bardziej precyzyjne kontrolowanie jaki ruch jest dozwolony szczególnie w środowiskach gdzie nazwy domen są bardziej czytelne i łatwiejsze do zarządzania niż adresy IP. Błędne podejścia zazwyczaj wynikają z niepełnego zrozumienia jak poszczególne elementy konfiguracji wpływają na ogólne bezpieczeństwo i funkcjonowanie sieci co podkreśla znaczenie gruntownego przygotowania teoretycznego i praktycznego w administracji sieciowej. Poprawna konfiguracja wymaga znajomości zarówno technicznych aspektów jak i umiejętnego dostosowania reguł do specyficznych potrzeb sieci co stanowi klucz do efektywnego zarządzania bezpieczeństwem.

Pytanie 19

Granice dla obszaru kolizyjnego nie są określane przez porty urządzeń takich jak

A. most (ang. bridge)
B. przełącznik (ang. swith)
C. router
D. koncentrator (ang. hub)
Przełączniki, mosty i routery działają na wyższych warstwach modelu OSI, co pozwala im na inteligentne zarządzanie ruchem sieciowym oraz wyznaczanie granic dla domeny kolizyjnej. Przełącznik, na przykład, operuje na warstwie drugiej i potrafi analizować adresy MAC, co pozwala mu na przekazywanie danych tylko do odpowiednich odbiorców, eliminując kolizje. Mosty z kolei łączą różne segmenty sieci, co również przyczynia się do ograniczenia domen kolizyjnych przez segregację ruchu. Routery, działające na warstwie trzeciej, mają zdolność kierowania pakietów na podstawie adresów IP i mogą łączyć różne sieci, co również wpływa na wydajność i bezpieczeństwo. Użytkownicy często mylą te urządzenia, zakładając, że każde z nich funkcjonuje w ten sam sposób jak koncentrator. W rzeczywistości, używanie koncentratorów w nowoczesnych sieciach może prowadzić do znacznych problemów z wydajnością oraz bezpieczeństwem, ponieważ nie oferują one mechanizmów minimalizujących kolizje. Błędem jest zatem przypisywanie koncentratorom podobnych funkcji do bardziej zaawansowanych urządzeń, takich jak przełączniki czy routery, co może prowadzić do nieefektywnej konfiguracji sieci. Współczesne praktyki zalecają użycie przełączników, aby zoptymalizować ruch sieciowy i zapewnić lepsze zarządzanie zasobami.

Pytanie 20

W jakiej usłudze wykorzystywany jest protokół RDP?

A. terminalowej w systemie Linux
B. pulpitu zdalnego w systemie Windows
C. poczty elektronicznej w systemie Linux
D. SCP w systemie Windows
Protokół RDP to naprawdę ważne narzędzie w Windowsie. Dzięki niemu możemy zdalnie podłączyć się do innego komputera i robić różne rzeczy – od zarządzania systemem po uruchamianie programów i dostęp do plików. W praktyce, wielu adminów IT korzysta z RDP, żeby efektywnie wspierać użytkowników i zarządzać serwerami. RDP potrafi przesyłać dźwięk, udostępniać drukarki, a nawet przenosić pliki między naszym komputerem a tym zdalnym. W dobie pracy zdalnej wiele firm stawia na to rozwiązanie, bo czasy się zmieniają, a zdalne biura rosną w siłę. A jeśli chodzi o bezpieczeństwo, to RDP też daje radę – szyfrowanie danych i autoryzacja użytkowników pomagają w ochronie informacji, co jest istotne dla każdej organizacji.

Pytanie 21

W systemie Windows harmonogram zadań umożliwia przydzielenie

A. maksymalnie czterech terminów realizacji dla wskazanego programu
B. więcej niż pięciu terminów realizacji dla wskazanego programu
C. maksymalnie pięciu terminów realizacji dla wskazanego programu
D. maksymalnie trzech terminów realizacji dla wskazanego programu
Harmonogram zadań w systemie Windows umożliwia przypisywanie wielu terminów wykonania dla wskazanych programów, co jest kluczowym elementem zarządzania zadaniami i optymalizacji procesów. W rzeczywistości, użytkownicy mogą skonfigurować harmonogram w taki sposób, aby uruchamiać dany program w różnych terminach i okolicznościach, co pozwala na zwiększenie efektywności działania systemu. Przykładem może być sytuacja, w której administrator systemu ustawia zadania do automatycznej aktualizacji oprogramowania w regularnych odstępach czasu, takich jak codziennie, co tydzień lub co miesiąc. Taka elastyczność pozwala na lepsze wykorzystanie zasobów systemowych oraz minimalizuje ryzyko przestojów. Ponadto, zgodnie z zaleceniami Microsoftu, harmonogram zadań można używać w połączeniu z innymi narzędziami, takimi jak PowerShell, co umożliwia bardziej zaawansowane operacje oraz integrację z innymi systemami. Stanowi to przykład najlepszych praktyk w zarządzaniu infrastrukturą IT.

Pytanie 22

Wtyczka zaprezentowana na fotografie stanowi element obwodu elektrycznego zasilającego

Ilustracja do pytania
A. stację dyskietek
B. dyski wewnętrzne SATA
C. napędy CD-ROM
D. procesor ATX12V
Wtyczka ATX12V, w przeciwieństwie do złączy używanych do zasilania stacji dyskietek, napędów CD-ROM czy dysków SATA, jest przeznaczona do zasilania procesorów, co wynika z rosnących potrzeb energetycznych nowoczesnych CPU. Stacje dyskietek oraz napędy CD-ROM wykorzystywały starsze standardy zasilania, takie jak Molex lub Berg, które dostarczały napięcia 5V i 12V, ale ich zastosowanie zostało wyparte przez bardziej zaawansowane technologie. Dyski SATA, z kolei, używają specyficznych złącz SATA power, które dostarczają napięcia 3.3V, 5V oraz 12V, co jest niezbędne dla ich prawidłowego funkcjonowania. Błędne przekonanie, że wtyczka ATX12V mogłaby być używana do takich celów, wynika z niedostatecznego zrozumienia specyfikacji złączy oraz ich zastosowań. Każde złącze w komputerze ma przypisaną unikalną rolę, która jest zgodna ze specyfikacjami producentów i standardami branżowymi. Dlatego zrozumienie różnic między nimi jest kluczowe dla prawidłowego montażu i użytkowania komponentów komputerowych oraz unikania potencjalnych problemów związanych z nieprawidłowym zasilaniem elementów sprzętowych.

Pytanie 23

Aby podłączyć drukarkę z portem równoległym do komputera, który dysponuje jedynie złączami USB, konieczne jest zainstalowanie adaptera

A. USB na PS/2
B. USB na COM
C. USB na LPT
D. USB na RS-232
Wybór adaptera USB na PS/2, USB na COM lub USB na RS-232 do podłączenia drukarki z interfejsem równoległym jest błędny z kilku powodów. Adapter USB na PS/2 jest przeznaczony do podłączania urządzeń, takich jak klawiatury i myszy, które korzystają z portu PS/2, a nie ma zastosowania w kontekście drukarek. USB na COM dotyczy interfejsu szeregowego, który nie jest kompatybilny z równoległym złączem LPT, co sprawia, że nie można użyć tego adaptera do komunikacji z drukarką równoległą. Z kolei USB na RS-232, podobnie jak adapter COM, obsługuje interfejs szeregowy, co również wyklucza możliwość podłączenia drukarki korzystającej z równoległego połączenia. Najczęstszym błędem w takich wyborach jest mylenie typów interfejsów i założenie, że różne adaptery mogą pełnić tę samą funkcję. Adaptery są projektowane z myślą o konkretnych standardach komunikacji, które różnią się nie tylko konstrukcją, ale również sposobem przesyłania danych. W przypadku drukarek równoległych, jedynym odpowiednim adapterem, który prawidłowo przekształca sygnał USB na LPT, jest adapter USB na LPT. Dlatego ważne jest, aby zrozumieć różnice między różnymi typami złącz i ich zastosowaniami, aby uniknąć nieporozumień i problemów przy podłączaniu urządzeń.

Pytanie 24

Aby ustalić fizyczny adres karty sieciowej, w terminalu systemu Microsoft Windows należy wpisać komendę

A. ipconfig /all
B. show mac
C. get mac
D. ifconfig -a
Odpowiedzi, które nie są poprawne, wskazują na pewne nieporozumienia dotyczące poleceń używanych w systemie Windows do zarządzania konfiguracją sieci. Polecenie 'get mac' nie jest rozpoznawane w systemie Windows; jest to komenda, która może być używana w innych systemach operacyjnych, takich jak Linux, ale nie w Windows. Z kolei 'ifconfig -a' jest również komendą z systemów uniksowych, która nie działa w Windows. To polecenie wyświetla informacje o interfejsach sieciowych, ale jego użycie w Windows wymagałoby instalacji dodatkowych narzędzi, takich jak Cygwin. Odpowiedź 'show mac' również nie jest poprawna, ponieważ 'show' jest komendą typową dla systemów Cisco, a nie dla Windows. W związku z tym, każdy, kto używa tych poleceń w kontekście Windows, może napotkać trudności. Typowe błędy myślowe prowadzące do takich wyborów mogą wynikać z braku zrozumienia, że różne systemy operacyjne mają swoje specyficzne polecenia i, co gorsza, mylenie ich z komendami z innych systemów. Kluczowe jest, aby znać odpowiednie narzędzia i polecenia przypisane do konkretnego środowiska operacyjnego, co jest podstawą skutecznego zarządzania siecią i rozwiązywania problemów.

Pytanie 25

Podczas procesu zamykania systemu operacyjnego na wyświetlaczu pojawił się błąd, znany jako bluescreen 0x000000F3 Bug Check 0xF3 DISORDERLY_SHUTDOWN - nieudane zakończenie pracy systemu, spowodowane brakiem pamięci. Co może sugerować ten błąd?

A. uruchamianie zbyt wielu aplikacji przy starcie komputera
B. niewystarczający rozmiar pamięci wirtualnej
C. uszkodzenie partycji systemowej
D. przegrzanie procesora
Błąd 0x000000F3, znany jako DISORDERLY_SHUTDOWN, wskazuje na problemy związane z brakiem pamięci podczas zamykania systemu operacyjnego. W kontekście tej odpowiedzi, niewystarczający rozmiar pamięci wirtualnej jest kluczowym czynnikiem, który może prowadzić do tego błędu. Pamięć wirtualna jest mechanizmem, który pozwala systemowi operacyjnemu na użycie przestrzeni dyskowej jako rozszerzenia pamięci RAM. Gdy dostępna pamięć RAM jest niewystarczająca do obsługi uruchomionych aplikacji i procesów, system operacyjny wykorzystuje pamięć wirtualną, aby zaspokoić te potrzeby. Jeśli jednak rozmiar pamięci wirtualnej jest zbyt mały, system może napotkać problemy z zamykaniem aplikacji i zwalnianiem zasobów, co prowadzi do błędów, takich jak ten opisany w pytaniu. Aby uniknąć takich sytuacji, zaleca się regularne monitorowanie użycia pamięci oraz dostosowywanie ustawień pamięci wirtualnej zgodnie z zaleceniami producenta systemu operacyjnego. Dobrym standardem jest zapewnienie, że pamięć wirtualna jest ustawiona na co najmniej 1,5 razy większą niż fizyczna pamięć RAM w systemie.

Pytanie 26

Który kabel powinien być użyty do budowy sieci w lokalach, gdzie występują intensywne pola zakłócające?

A. Typu skrętka
B. Ekranowany
C. Koncentryczny z transmisją w paśmie podstawowym
D. Koncentryczny z transmisją szerokopasmową
Ekranowany przewód to kluczowy wybór w instalacjach sieciowych znajdujących się w obszarach z silnymi polami zakłócającymi. Ekranowanie, zazwyczaj wykonane z metalu lub folii, skutecznie redukuje zakłócenia elektromagnetyczne, które mogą negatywnie wpływać na jakość sygnału. W praktyce, w obiektach przemysłowych czy biurowych, gdzie obecne są różnorodne maszyny i urządzenia elektroniczne, stosowanie przewodów ekranowanych zapewnia stabilność i niezawodność połączeń sieciowych. Dobrą praktyką jest także stosowanie ekranów o wysokiej przewodności, co pozwala na skuteczniejszą ochronę przed zakłóceniami. Standardy takie jak ISO/IEC 11801 oraz ANSI/TIA-568 definiują wymagania dotyczące ekranowania przewodów, co czyni je niezbędnym elementem nowoczesnych instalacji sieciowych w trudnych warunkach. Warto również pamiętać, że zastosowanie ekranowanych przewodów może znacząco wpłynąć na wydajność systemów komunikacyjnych, co jest szczególnie istotne w kontekście rosnących wymagań dotyczących prędkości i jakości przesyłanych danych.

Pytanie 27

Zwiększenie zarówno wydajności operacji (zapis/odczyt), jak i bezpieczeństwa przechowywania danych jest możliwe dzięki zastosowaniu macierzy dyskowej

A. RAID 1
B. RAID 3
C. RAID 0
D. RAID 50
Wybór RAID 3, RAID 1 lub RAID 0 jako odpowiedzi na pytanie jest błędny, ponieważ każda z tych konfiguracji ma swoje ograniczenia, jeżeli chodzi o jednoczesne zwiększenie szybkości operacji oraz bezpieczeństwa przechowywania danych. RAID 1, który polega na mirroringu danych, zapewnia doskonałą redundancję, ale nie zwiększa wydajności zapisu, a wręcz może ją obniżyć, ponieważ wymaga tego samego zapisu na dwóch dyskach. RAID 0 z kolei, mimo że oferuje wysoką wydajność dzięki stripingowi, nie zapewnia żadnej redundancji – w przypadku awarii któregoś z dysków, wszystkie dane są tracone. RAID 3, korzystający z parzystości, również nie jest optymalnym rozwiązaniem, gdyż wprowadza pojedynczy dysk parzystości, co może stać się wąskim gardłem w operacjach zapisu. Kluczowym błędem myślowym jest zatem brak zrozumienia, że aby osiągnąć wysoką wydajność i bezpieczeństwo, konieczne jest zastosowanie odpowiedniej kombinacji technologii RAID. W praktyce, podejście do wyboru macierzy dyskowej wymaga analizy specyficznych potrzeb operacyjnych i budżetowych, a także znajomości kompromisów, które wiążą się z różnymi konfiguracjami RAID, co przekłada się na efektywność w zarządzaniu danymi w każdej organizacji.

Pytanie 28

Termin "PIO Mode" odnosi się do trybu operacyjnego

A. napędu FDD
B. kanału IDE
C. pamięci
D. modemu
Zauważam, że są pewne nieporozumienia w odpowiedziach, które sugerują, że tryb PIO dotyczy modemu albo napędu FDD, czyli stacji dysków. Modemy nie używają trybów PIO, bo to są inne urządzenia do komunikacji i działają na innych zasadach. Napędy FDD, chociaż mogą mieć różne metody transferu, to też nie mają bezpośredniego związku z PIO. Jeśli chodzi o pamięć, to PIO w ogóle nie pasuje, bo RAM działa na zasadzie losowego dostępu i nie potrzebuje takich trybów pracy, jakie są w kontekście wymiany danych. Często takie błędne wnioski wynikają z niepełnej wiedzy o tym, jak różne podzespoły komputerowe ze sobą współpracują. Ważne jest, żeby zrozumieć, jak te urządzenia się komunikują i jakie mają standardy, bo to bardzo pomaga w diagnozowaniu i rozwiązywaniu problemów ze sprzętem.

Pytanie 29

Najlepszym sposobem na zabezpieczenie domowej sieci Wi-Fi jest

A. stosowanie szyfrowania WPA-PSK
B. zmiana adresu MAC routera
C. zmiana nazwy SSID
D. stosowanie szyfrowania WEP
Zmiana adresu MAC rutera, chociaż może wydawać się użytecznym środkiem zabezpieczającym, nie stanowi skutecznej metody ochrony. Adres MAC jest unikalnym identyfikatorem przypisanym do karty sieciowej i zmiana go nie sprawi, że sama sieć stanie się bardziej bezpieczna. Techniki takie jak spoofing pozwalają hakerom na łatwe przechwycenie i podmianę adresów MAC, co umniejsza skuteczność tej metody. Zmiana identyfikatora SSID, który jest nazwą sieci, również nie zapewnia prawdziwej ochrony. Choć ukrycie SSID może zmniejszyć widoczność sieci dla potencjalnych intruzów, nie zapewnia to żadnego szyfrowania ani autoryzacji, co czyni sieć nadal podatną na ataki. Co więcej, zmienić SSID można w prosty sposób, a zaawansowani użytkownicy mogą łatwo go odkryć. Szyfrowanie WEP, pomimo że było kiedyś powszechnie stosowane, jest obecnie uznawane za niebezpieczne. Algorytmy WEP są łatwe do złamania z wykorzystaniem dostępnych narzędzi, co prowadzi do nieautoryzowanego dostępu do sieci. Wszystkie te metody są oparte na błędnym myśleniu, które polega na przekonaniu, że zmiany w konfiguracji mogą zastąpić solidne zabezpieczenia. Skuteczne zabezpieczenie sieci Wi-Fi wymaga zastosowania zaawansowanych standardów szyfrowania, takich jak WPA-PSK, które zapewniają odpowiednią ochronę przed wieloma rodzajami ataków.

Pytanie 30

Jakie zakresy adresów IPv4 mogą być używane jako adresy prywatne w lokalnej sieci?

A. 127.0.0.0 ÷ 127.255.255.255
B. 168.172.0.0 ÷ 168.172.255.255
C. 200.186.0.0 ÷ 200.186.255.255
D. 172.16. 0.0 ÷ 172.31.255.255
Zakres adresów IP 127.0.0.0 do 127.255.255.255 jest zarezerwowany dla adresów loopback, co oznacza, że są one używane do testowania lokalnych połączeń na danym urządzeniu. Adres 127.0.0.1 jest powszechnie znany jako 'localhost' i służy do komunikacji wewnętrznej w systemie operacyjnym. Użycie tych adresów w sieciach lokalnych nie jest wskazane, ponieważ nie są one routowane poza urządzenie, co uniemożliwia ich wykorzystanie do komunikacji między różnymi urządzeniami w sieci. Zakres 168.172.0.0 do 168.172.255.255 nie jest zdefiniowany jako prywatny w żadnym standardzie, co oznacza, że mogą być one przypisane jako publiczne adresy IP. Ostatecznie, zakres 200.186.0.0 do 200.186.255.255 również nie znajduje się w ramach prywatnych adresów IP, a adresy te są routowane w Internecie. Typowe błędy, które mogą prowadzić do nieprawidłowych wniosków, obejmują mylenie adresów prywatnych z publicznymi, co może skutkować problemami z dostępem do sieci oraz bezpieczeństwem. Kluczowe jest, aby zrozumieć, jakie adresy są przeznaczone do użytku lokalnego a jakie do komunikacji w Internecie, aby skutecznie projektować i zarządzać sieciami komputerowymi.

Pytanie 31

Podane dane katalogowe odnoszą się do routera z wbudowaną pamięcią masową

CPUAtherosAR7161 680MHz
Memory32MB DDR SDRAM onboard memory
Boot loaderRouterBOOT
Data storage64MB onboard NAND memory chip
EthernetOne 10/100 Mbit/s Fast Ethernet port with Auto-MDI/X
miniPCIOne MiniPCI Type IIIA/IIIB slot
One MiniPCIe slot for 3G modem only (onboard SIM connector)
WirelessBuilt in AR2417 802. 11 b/g wireless, 1x MMCX connector
ExpansionOne USB 2.0 ports (without powering, needs power adapter, available separately)
Serial portOne DB9 RS232C asynchronous serial port
LEDsPower, NAND activity, 5 user LEDs
Power optionsPower over Ethernet: 10..28V DC (except power over datalines).
Power jack: 10..28V DC. Includes voltage monitor
Dimensions105 mm x 105 mm, Weight: 82 g
Power consumptionUp to 5W with wireless at full activity
Operating SystemMikroTik RouterOS v3, Level4 license

A. 32 MB
B. 64 MB
C. 680 MB
D. 3 MB
Patrząc na dostępne opcje pamięci dla routerów, warto zauważyć, że pojemności te mają spore znaczenie. Na przykład 680 MB to dość nietypowa wartość dla pamięci masowej w routerach, gdzie raczej spotyka się mniejsze pojemności NAND do przechowywania systemu i konfiguracji. Taka wielkość bardziej przypomina pamięć RAM w komputerach, niż coś, co przyda się w routerze. Natomiast 3 MB to stanowczo za mało na jakiekolwiek zaawansowane oprogramowanie czy konfiguracje, co może mocno ograniczyć funkcjonalność i wydajność całego urządzenia. Jeżeli chodzi o 32 MB, to jest to już coś, co można spotkać w starszych modelach, ale w nowoczesnych zastosowaniach to zdecydowanie za mało. Wiele osób myli pamięć RAM z pamięcią masową, co prowadzi do niedoszacowania wymagań pamięciowych, zwłaszcza w kontekście bardziej rozbudowanych systemów operacyjnych routerów oraz potrzeb aplikacji sieciowych. Dlatego wybór odpowiedniej pojemności pamięci ma kluczowe znaczenie dla stabilności i wydajności sieci, a także dla elastyczności konfiguracji.

Pytanie 32

Użytkownicy w sieciach bezprzewodowych mogą być uwierzytelniani zdalnie przy pomocy usługi

A. HTTPS
B. IMAP
C. RADIUS
D. NNTP
No to widzę, że wybrałeś odpowiedzi jak IMAP, HTTPS i NNTP, ale muszę przyznać, że są one nieco mylące w kontekście zdalnego uwierzytelniania w sieciach bezprzewodowych. IMAP to protokół do zarządzania e-mailami, więc nie ma tu mowy o uwierzytelnianiu w sieci. Użycie go w tym przypadku to trochę nietrafione posunięcie, bo nie ma żadnych mechanizmów, które by pomogły w autoryzacji dostępu do sieci. HTTPS z kolei to protokół, który dba o bezpieczne przesyłanie danych w internecie, ale znów nie jest to coś, co służy do uwierzytelniania w sieci lokalnej. Może się wydawać, że jest to jakiś sposób na ochronę, ale w tym kontekście po prostu nie pasuje. NNTP natomiast to protokół do wymiany wiadomości w grupach dyskusyjnych, i to też nie ma nic wspólnego z procesem uwierzytelniania w sieciach. Tutaj błędnie myślisz, myląc funkcje tych protokołów, które tak naprawdę mają różne zadania. Zrozumienie, jak te protokoły działają i do czego służą, jest kluczowe, szczególnie w kontekście bezpieczeństwa sieci.

Pytanie 33

Jakiego portu używa protokół FTP (File transfer Protocol)?

A. 20
B. 53
C. 69
D. 25
Protokół FTP (File Transfer Protocol) wykorzystuje port 20 do przesyłania danych. Jest to standardowy port, który został przypisany przez IANA (Internet Assigned Numbers Authority) i jest używany w trybie aktywnym FTP. W tym trybie, gdy klient nawiązuje połączenie z serwerem FTP, dane są przesyłane z serwera do klienta przez port 20. Jest to kluczowe w kontekście transferu plików, ponieważ zapewnia dedykowane połączenie do przesyłania zawartości, co pozwala na efektywne wykorzystanie zasobów sieciowych. Przykładem zastosowania protokołu FTP jest przesyłanie dużych plików między serwerami, co często odbywa się w firmach zajmujących się hostingiem lub w procesach backupu danych. Warto również zauważyć, że obok portu 20, protokół FTP korzysta z portu 21 do nawiązywania połączenia sterującego. Zrozumienie tych portów i ich funkcji jest kluczowe dla administratorów sieci oraz specjalistów IT, aby efektywnie zarządzać transferem danych i zabezpieczać komunikację w sieciach komputerowych.

Pytanie 34

Dezaktywacja automatycznych aktualizacji systemu Windows skutkuje

A. automatycznym ściąganiem aktualizacji bez ich instalacji
B. zablokowaniem samodzielnego pobierania uaktualnień przez system
C. automatycznym weryfikowaniem dostępności aktualizacji i informowaniem o tym użytkownika
D. uniemożliwieniem jakiejkolwiek formy pobierania aktualizacji systemu
Wybór odpowiedzi wskazującej na automatyczne pobieranie aktualizacji bez instalacji nie jest prawidłowy, ponieważ nie uwzględnia istoty wyłączenia automatycznych aktualizacji. Gdy automatyczne aktualizacje są wyłączone, system nie podejmuje żadnych działań w celu pobrania aktualizacji, co wyklucza automatyczne pobieranie, niezależnie od jego statusu instalacji. Również stwierdzenie, że wyłączenie automatycznych aktualizacji zablokowuje każdy sposób pobierania aktualizacji, jest błędne. Użytkownik ma wciąż możliwość ręcznego sprawdzenia dostępnych aktualizacji i ich pobrania, co sugeruje, że pewne formy aktualizacji są wciąż dostępne. Dodatkowo, zablokowanie samodzielnego pobierania uaktualnień przez system nie oznacza również, że użytkownik nie może być informowany o dostępności aktualizacji, co sugeruje kolejna błędna odpowiedź. Użytkownicy powinni wiedzieć, że wyłączenie automatycznych aktualizacji wiąże się z odpowiedzialnością za ręczne monitorowanie oraz zarządzanie aktualizacjami, co jest kluczowe dla utrzymania ogólnej sprawności i bezpieczeństwa systemu operacyjnego. Wysokiej jakości praktyka zarządzania aktualizacjami obejmuje zarówno automatyzację procesu, jak i odpowiednią kontrolę, aby minimalizować ryzyko związane z lukami w zabezpieczeniach.

Pytanie 35

Na przedstawionym schemacie urządzeniem, które łączy komputery, jest

Ilustracja do pytania
A. przełącznik
B. most
C. regenerator
D. ruter
Ruter to urządzenie sieciowe, które łączy różne sieci komputerowe i kieruje ruchem danych między nimi. W przeciwieństwie do przełączników, które działają na poziomie drugiej warstwy modelu OSI i zajmują się przesyłaniem danych w obrębie tej samej sieci lokalnej, rutery funkcjonują w trzeciej warstwie, co pozwala im na międzysegmentową komunikację. Ruter analizuje nagłówki pakietów i decyduje o najlepszej ścieżce przesłania danych do ich docelowego adresu. Jego użycie jest kluczowe w sieciach rozległych (WAN), gdzie konieczna jest efektywna obsługa ruchu pomiędzy różnymi domenami sieciowymi. Rutery wykorzystują protokoły routingu, takie jak OSPF czy BGP, umożliwiając dynamiczną adaptację tras w odpowiedzi na zmiany w topologii sieci. Dzięki temu zapewniają redundancję i optymalizację trasy danych, co jest niezbędne w środowiskach o dużym natężeniu ruchu. W praktyce ruter pozwala również na nadawanie priorytetów i zarządzanie przepustowością, co jest istotne dla utrzymania jakości usług w sieciach obsługujących różnorodne aplikacje i protokoły.

Pytanie 36

Na dysku obok systemu Windows zainstalowano system Linux Ubuntu. W celu ustawienia kolejności uruchamiania systemów operacyjnych, konieczna jest modyfikacja zawartości

A. boot.ini
B. /etc/inittab
C. bcdedit
D. /etc/grub.d
Odpowiedzi związane z /etc/inittab, boot.ini i bcdedit są nietrafione. To są rzeczy, które dotyczą zupełnie innych systemów i nie pasują do Linuxa. Plik /etc/inittab był kiedyś używany w starszych wersjach Linuxa, ale teraz nie służy do zarządzania bootowaniem systemów, gdy mamy GRUB. Boot.ini to plik Windowsowy, który nie ma nic wspólnego z Linuxem. A bcdedit to narzędzie do konfiguracji Windows, więc też do Linuxa się nie nadaje. To dość powszechny błąd, że ludzie mieszają te różne systemy i ich metody bootowania. Każdy system ma swoje własne zasady, więc ważne jest, aby nie mieszać tych rzeczy, bo to może prowadzić do problemów z uruchomieniem. Także zawsze lepiej trzymać się odpowiednich narzędzi i plików konfiguracyjnych dla danego systemu.

Pytanie 37

W biurze rachunkowym znajduje się sześć komputerów w jednym pomieszczeniu, połączonych kablem UTP Cat 5e z koncentratorem. Pracownicy korzystający z tych komputerów muszą mieć możliwość drukowania bardzo dużej ilości dokumentów monochromatycznych (powyżej 5 tys. stron miesięcznie). Aby zminimalizować koszty zakupu i eksploatacji sprzętu, najlepszym wyborem będzie:

A. drukarka atramentowa podłączona do jednego z komputerów i udostępniana w sieci
B. laserowa drukarka sieciowa z portem RJ45
C. laserowe drukarki lokalne podłączone do każdego z komputerów
D. atramentowe urządzenie wielofunkcyjne ze skanerem i faksem
Patrząc na inne odpowiedzi, trzeba przyznać, że wybór drukarki atramentowej podłączonej do jednego komputera i udostępnianej w sieci to dość kiepski pomysł, zwłaszcza w biurze rachunkowym. Koszt eksploatacji takich drukarek jest wyższy, a jakość druku czarno-białego na dłuższą metę może być słabsza, co nie sprawdzi się przy dużych nakładach. Gdy drukujemy ponad 5000 stron miesięcznie, ciągłe wymiany tuszy mogą mocno skomplikować życie. Nawet urządzenie wielofunkcyjne atramentowe z funkcjami skanera i faksu nie jest najlepszym wyjściem, bo są one bardziej do codziennych zadań niż do wydajnego druku czarno-białego. Takie drukarki zazwyczaj mają też mniejsze możliwości, co może wprowadzić chaos i spowolnić pracę. Z kolei wybór lokalnych drukarek laserowych dla każdego komputera to dodatkowe koszty nie tylko na sprzęt, ale i na serwisowanie kilku urządzeń oraz zarządzanie różnymi tonerami. To zazwyczaj prowadzi do niepotrzebnych opóźnień i marnotrawstwa, co na pewno nie jest korzystne, gdy mamy do zrealizowania sporo wydruków. Warto podejmować decyzje, mając na uwadze koszty i wydajność, dlatego centralna drukarka sieciowa to według mnie najlepszy wybór.

Pytanie 38

Podaj polecenie w systemie Linux, które umożliwia wyświetlenie identyfikatora użytkownika.

A. whoami
B. users
C. id
D. who
Polecenie 'id' w systemie Linux jest najskuteczniejszym sposobem na uzyskanie informacji o użytkowniku, w tym jego unikalnego identyfikatora, czyli UID (User Identifier). To polecenie nie tylko wyświetla UID, ale także grupy, do których użytkownik należy, co jest niezwykle przydatne w kontekście zarządzania uprawnieniami i dostępem do zasobów systemowych. Przykładowo, po wpisaniu 'id' w terminalu, użytkownik otrzymuje informacje takie jak: uid=1000(nazwa_użytkownika) gid=1000(grupa) groups=1000(grupa),27(dodatkowa_grupa). Wiedza o UID jest kluczowa, gdyż pozwala administratorom na efektywne zarządzanie uprawnieniami i kontrolę dostępu do plików oraz procesów. W praktyce, zrozumienie działania polecenia 'id' pozwala na lepsze rozwiązywanie problemów związanych z uprawnieniami, co jest istotnym elementem codziennej administracji systemami Linux. Dobrą praktyką jest regularne korzystanie z tego polecenia w kontekście audytów bezpieczeństwa czy podczas konfigurowania nowych użytkowników.

Pytanie 39

Symbol graficzny przedstawiony na ilustracji oznacza jaką bramkę logiczną?

Ilustracja do pytania
A. NOR
B. AND
C. OR
D. NAND
Zrozumienie działania bramek logicznych jest kluczowe dla projektowania układów cyfrowych. W tym pytaniu trzy z czterech odpowiedzi dotyczą bramek które są często mylone z bramką AND. Bramka NAND jest odwrotnością bramki AND i działa na zasadzie że wyjście jest w stanie logicznym 0 tylko wtedy gdy wszystkie wejścia są w stanie 1. Jest szeroko stosowana w generowaniu sygnałów resetujących i układach pamięci ponieważ jej działanie pozwala na efektywne implementowanie funkcji logicznych. Bramka NOR z kolei to odwrotność bramki OR i jej wyjście jest 1 tylko wtedy gdy wszystkie wejścia są 0 co jest przydatne w projektowaniu pamięci i przerzutników. Bramka OR przekazuje stan logiczny 1 na wyjściu gdy przynajmniej jedno z wejść jest w stanie 1 co jest użyteczne w obwodach wyboru sygnałów. Mylenie bramek NAND NOR i OR z bramką AND wynika często z podobieństw w ich symbolach graficznych oraz złożoności ich funkcji logicznych. Ważne jest aby inżynierowie dokładnie analizowali zarówno działanie jak i zastosowania każdej z tych bramek aby unikać błędów w projektowaniu i implementacji układów cyfrowych. Dobra znajomość tych różnic jest niezbędna do tworzenia poprawnych i efektywnych rozwiązań technologicznych.

Pytanie 40

Dwie stacje robocze w tej samej sieci nie mają możliwości komunikacji. Która z poniższych okoliczności może być przyczyną tego problemu?

A. Inne systemy operacyjne stacji roboczych
B. Różne bramy domyślne dla stacji roboczych
C. Identyczne nazwy użytkowników
D. Identyczne adresy IP stacji roboczych
Odpowiedź dotycząca takich samych adresów IP stacji roboczych jest poprawna, ponieważ w sieciach komputerowych każdy węzeł musi mieć unikalny adres IP, aby umożliwić poprawną komunikację. Gdy dwa urządzenia mają ten sam adres IP, wówczas występuje konflikt adresów, co prowadzi do problemów z routingiem i przesyłaniem danych. Przykładem może być sytuacja, w której dwa komputery w tej samej podsieci – na przykład 192.168.1.10 – próbują jednocześnie wysłać dane do routera. Router nie będzie w stanie zidentyfikować, które urządzenie jest źródłem danych, co skutkuje niemożnością nawiązania komunikacji. Zgodnie z zasadami TCP/IP, każdy interfejs sieciowy musi mieć unikalny adres, co jest kluczowe dla funkcjonowania sieci lokalnych i internetu. W praktyce, aby uniknąć takich konfliktów, powinno się stosować protokoły DHCP, które automatycznie przydzielają unikalne adresy IP urządzeniom w sieci, minimalizując tym samym ryzyko błędów związanych z powielającymi się adresami.