Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 31 maja 2025 10:35
  • Data zakończenia: 31 maja 2025 10:43

Egzamin zdany!

Wynik: 37/40 punktów (92,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Oprogramowanie komputerowe, które monitoruje procesy w systemach i posiada kluczowe funkcje takie jak gromadzenie, wizualizacja oraz archiwizacja danych, a także alarmowanie i kontrolowanie przebiegu procesu, to oprogramowanie

A. SCADA
B. CNC
C. CAM
D. CAD
Oprogramowanie SCADA (Supervisory Control and Data Acquisition) jest kluczowym narzędziem w nowoczesnych systemach automatyki przemysłowej. Jego główną funkcją jest nadzorowanie i zarządzanie procesami przemysłowymi poprzez zbieranie, wizualizację i archiwizację danych w czasie rzeczywistym. SCADA umożliwia operatorom monitorowanie różnych parametrów procesów, takich jak temperatura, ciśnienie czy poziom substancji, co pozwala na szybkie podejmowanie decyzji oraz reagowanie na potencjalne awarie. Przykłady zastosowania SCADA obejmują przemysł energetyczny, wodociągi, zakłady chemiczne oraz produkcję. Dzięki integracji z systemami alarmowymi, SCADA informuje o nieprawidłowościach i niebezpieczeństwach, umożliwiając automatyczne lub manualne korekty w czasie rzeczywistym. Warto również zwrócić uwagę, że zgodność z międzynarodowymi standardami, takimi jak ISA-95, zapewnia interoperacyjność i skuteczność systemów SCADA w złożonych środowiskach przemysłowych.

Pytanie 2

W systemie mechatronicznym konieczne jest zastosowanie regulacji temperatury w dwóch stanach. Który z regulatorów odpowiada tym wymaganiom?

A. Dwustawny
B. PID
C. Proporcjonalny
D. PI
Regulator dwustawny, znany również jako regulator on/off, jest idealnym rozwiązaniem dla systemów wymagających dwupołożeniowej regulacji temperatury. Jego działanie polega na przełączaniu pomiędzy dwoma stanami - włączonym i wyłączonym - co zapewnia prostotę i efektywność. Taki regulator jest powszechnie stosowany w systemach grzewczych, klimatyzacyjnych oraz w urządzeniach przemysłowych, gdzie precyzyjne utrzymanie temperatury nie jest kluczowe. Przykładem może być termostat w piecu, który włącza się, gdy temperatura spada poniżej ustawionej wartości, i wyłącza, gdy ją przekracza. Dzięki swojej prostocie, regulator dwustawny jest łatwy do implementacji oraz konfiguracji, co czyni go preferowanym wyborem w wielu aplikacjach. Warto również zauważyć, że takie rozwiązanie spełnia standardy efektywności energetycznej, minimalizując zużycie energii poprzez unikanie niepotrzebnego działania grzałek czy chłodnic.

Pytanie 3

Jaki symbol literowy, zgodny z normą IEC 61131, wykorzystywany jest w oprogramowaniu sterującym dla PLC do identyfikacji jego fizycznych wejść dyskretnych?

A. S
B. R
C. |
D. Q
Symbol literowy "|" jest kluczowym elementem w standardzie IEC 61131, który definiuje sposób programowania sterowników PLC. W kontekście adresowania fizycznych wejść dyskretnych, ten symbol pełni rolę prefiksu przed numerem wejścia, co umożliwia jednoznaczne wskazanie, które z cyfrowych wejść jest używane w danym programie. Przykładowo, zapis "|X0" odnosi się do pierwszego wejścia dyskretnego, co jest zgodne z najlepszymi praktykami w branży automatyki. Taki system adresowania ułatwia programistom pracę, ponieważ pozwala na łatwe rozpoznanie, które urządzenie jest połączone z danym wejściem. Ponadto, posługiwanie się tym standardem sprzyja lepszej organizacji kodu oraz jego późniejszej konserwacji, co jest szczególnie istotne w długoterminowych projektach automatyzacji. Zrozumienie i umiejętność stosowania tego symbolu jest podstawą efektywnego programowania w kontekście automatyki przemysłowej.

Pytanie 4

Podwyższenie częstotliwości napięcia zasilającego silnik indukcyjny klatkowy o 20 Hz spowoduje

A. niestabilną pracę silnika
B. wzrost prędkości obrotowej wirnika silnika
C. zatrzymanie działania silnika
D. spadek prędkości obrotowej wirnika silnika
Zwiększenie częstotliwości napięcia zasilającego silnik indukcyjny klatkowy prowadzi do zwiększenia prędkości obrotowej wirnika. Wynika to z zasady, że prędkość obrotowa silnika indukcyjnego jest bezpośrednio związana z częstotliwością zasilania, określaną przez równanie: n = (120 * f) / p, gdzie n to prędkość w obrotach na minutę, f to częstotliwość zasilania, a p to liczba par biegunów. Wzrost częstotliwości o 20 Hz zwiększa liczbę zmian pola magnetycznego, co z kolei przyspiesza ruch wirnika. Przykładowo, w aplikacjach przemysłowych, takich jak napędy elektryczne w dźwigach lub taśmach produkcyjnych, odpowiednia regulacja częstotliwości zasilania pozwala na precyzyjne dostosowanie prędkości obrotowej silnika do wymagań procesu technologicznego. Ponadto, w praktyce stosuje się inwertery, które umożliwiają płynną regulację częstotliwości, pozwalając na oszczędności energii oraz zwiększenie efektywności pracy silników. Warto również zauważyć, że zmiany te są zgodne z normami IEC dotyczących napędów elektrycznych, które podkreślają znaczenie optymalizacji i efektywności energetycznej.

Pytanie 5

Aby ocenić jakość aktualnych połączeń elektrycznych w systemie mechatronicznym, należy najpierw przeprowadzić pomiar

A. rezystancji izolacji pomiędzy obudową urządzenia a przewodem zasilającym
B. spadku napięcia na komponentach
C. ciągłości połączeń
D. mocy pobieranej przez urządzenie
Pomiar ciągłości połączeń jest kluczowym krokiem w ocenie jakości połączeń elektrycznych w urządzeniu mechatronicznym. Gwarantuje on, że prąd może swobodnie przepływać przez wszystkie połączenia, co jest niezbędne do prawidłowego działania urządzenia. W praktyce, pomiar ten wykonuje się za pomocą multimetru, który wskazuje, czy obwód jest zamknięty, co bezpośrednio przekłada się na niezawodność systemów elektrycznych. W przypadku wykrycia przerwy, można zidentyfikować i naprawić problem, co jest zgodne z dobrą praktyką inżynieryjną. W branży mechatronicznej, gdzie urządzenia są często narażone na wibracje i zmiany temperatury, regularne sprawdzanie ciągłości połączeń jest kluczowe dla utrzymania wysokiej jakości i bezpieczeństwa systemów. Warto także zauważyć, że zgodnie z normami IEC 60364, ocena ciągłości połączeń jest integralną częścią kontroli jakości instalacji elektrycznych, co potwierdza jej znaczenie w codziennej praktyce inżynieryjnej.

Pytanie 6

Obniżenie błędu statycznego, skrócenie czasu reakcji, pogorszenie jakości regulacji przy niższych częstotliwościach, wzmocnienie szumów przetwornika pomiarowego są cechami działania jakiego rodzaju regulatora?

A. PD
B. I
C. P
D. PID
Regulator PD (proporcjonalno-derywacyjny) jest efektywnym narzędziem w wielu zastosowaniach automatyki, szczególnie tam, gdzie istotne jest zminimalizowanie błędu statycznego i skrócenie czasu reakcji. Działa on na zasadzie przeprowadzenia regulacji, która uwzględnia zarówno aktualny błąd, jak i jego tempo zmian, co pozwala na szybszą odpowiedź systemu na zakłócenia. W praktyce, regulator PD sprawdza się w systemach, gdzie wymagana jest szybkość reakcji, takich jak kontrola silników elektrycznych czy systemy wyrównywania poziomu w zbiornikach. Warto jednak pamiętać, że jego stosowanie wiąże się z pewnymi ograniczeniami. Przy mniejszych częstotliwościach regulacji, jakość odpowiedzi systemu może się pogarszać, a szumy przetwornika pomiarowego mogą zostać wzmocnione, co może prowadzić do niepożądanych fluktuacji. Dlatego też, w projektowaniu systemów regulacji, ważne jest zrozumienie specyfiki działania regulatora PD i jego wpływu na jakość regulacji.

Pytanie 7

Jaki krok powinien być wykonany po edytowaniu programu, zanim zostanie on zapisany do PLC?

A. Komparację
B. Kompresję
C. Kompilację
D. Kompensację
Wybór odpowiedzi związanej z kompresją, komparacją czy kompensacją wskazuje na nieporozumienie w zakresie terminologii oraz procesów związanych z programowaniem PLC. Kompresja odnosi się głównie do zmniejszania rozmiaru danych, co ma zastosowanie w przesyłaniu i przechowywaniu informacji, ale nie ma bezpośredniego wpływu na konwersję kodu do formatu akceptowalnego przez sterownik PLC. Proces ten nie jest wymagany przed zapisaniem programu, a jego pominięcie nie wpłynie na poprawność działania aplikacji. Komparacja natomiast dotyczy porównywania dwóch zestawów danych lub programów, co nie jest ani konieczne, ani właściwe w kontekście przygotowania programu do załadowania do PLC. Z kolei kompensacja, która w automatyce może dotyczyć korekcji błędów pomiarowych, również nie ma zastosowania w kontekście przetwarzania kodu źródłowego. Warto zauważyć, że błędne postrzeganie tych terminów może wynikać z braku zrozumienia podstawowych zasad programowania i działania sterowników. W kontekście najlepszych praktyk branżowych, kluczowe jest zrozumienie roli kompilacji jako nieodłącznego elementu procesu tworzenia oprogramowania, co zapewnia jego poprawne działanie oraz integrację z systemem automatyki.

Pytanie 8

Którego modułu funkcjonalnego powinno się użyć w programie, gdy konieczne jest zarejestrowanie momentu, w którym nastąpiło przerwanie sygnału na wejściu aktywującym timer?

A. TOF
B. TP
C. TONR
D. TON
Blok funkcjonalny TONR, czyli Timer On Delay Retentive, odpowiada za pamiętanie czasu, w którym sygnał na wejściu został przerwany. Dzięki tej funkcji retencyjnej, czas zostaje zachowany nawet, gdy sygnał już nie działa – to jest mega ważne, gdy trzeba zarejestrować moment wystąpienia zdarzenia i potem dalej to monitorować. Na przykład w automatyce przemysłowej, gdzie czasy cykli produkcyjnych są kluczowe, TONR pozwala na zapisanie momentu, kiedy cykl się zaczyna, a potem analizowanie tych danych po zakończeniu. Zgodnie z normą IEC 61131-3, korzystanie z takich bloków jak TONR przy programowaniu PLC jest naprawdę istotne, bo ułatwia tworzenie programów, które są niezawodne i łatwe do diagnozowania. Dodatkowo, użycie tych bloków poprawia czytelność kodu i sprawia, że łatwiej wprowadzać w nim zmiany czy rozbudowywać aplikację.

Pytanie 9

Zauważono, że silnik indukcyjny pracuje z nadmiernym hałasem, a źródło dźwięku znajduje się w łożysku tocznym. Jak można rozwiązać ten problem?

A. Uzupełniając smar w łożysku
B. Smarując łożysko olejem
C. Zamieniając osłony łożyska
D. Wymieniając łożysko
Głośna praca silnika indukcyjnego, wynikająca z nieprawidłowości w łożysku tocznym, wskazuje na jego zniszczenie lub zużycie mechaniczne. Wymiana łożyska to jedyne skuteczne rozwiązanie, które zapewni długotrwałe działanie silnika. W przypadku łożysk tocznych, ich efektywność zależy od odpowiedniego smarowania oraz stanu mechanicznego. Regularna konserwacja i wymiana łożysk są zgodne z normami branżowymi, które zalecają okresowe przeglądy urządzeń elektrycznych. Wymiana uszkodzonego łożyska na nowe pozwala na przywrócenie optymalnej pracy silnika oraz minimalizuje ryzyko dodatkowych uszkodzeń. Warto również zwrócić uwagę na dobór właściwego typu łożyska, które powinno odpowiadać specyfikacji producenta silnika. Praktyka pokazuje, że zaniedbanie wymiany łożyska może prowadzić do poważnych awarii mechanicznych, co wiąże się z kosztami napraw oraz przestojami produkcyjnymi. Dlatego kluczowe jest podejście proaktywne w zakresie konserwacji łożysk.

Pytanie 10

Rozpoczynając konserwację instalacji światłowodowej, co należy wykonać w pierwszej kolejności?

A. podłączyć mikroskop ręczny z monitorem LCD
B. zajrzeć do otworu z wiązką lasera w kablu
C. podłączyć reflektometr
D. zajrzeć do otworu z wiązką lasera w modemie
Podłączenie mikroskopu ręcznego do monitora LCD na początku konserwacji instalacji światłowodowej to naprawdę ważny krok. Pozwala to na dokładne sprawdzenie włókien światłowodowych. Mikroskopy zapewniają powiększenie, które ułatwia zauważenie mikrouszkodzeń i zanieczyszczeń, co może mieć wpływ na jakość sygnału. Z mojego doświadczenia, inspekcja wizualna włókien przed dalszymi czynnościami to standard w branży telekomunikacyjnej i zgadza się z wytycznymi od ITU. Dzięki mikroskopowi można odkryć różne problemy, jak nieodpowiednie zakończenia włókien, odpryski czy zarysowania. Takie rzeczy mogą spowodować straty sygnału albo przerwy w transmisji. Im wcześniej znajdziemy problemy, tym szybciej można je naprawić i zaoszczędzić pieniądze. Użycie mikroskopu ręcznego to umiejętność, która przyda się każdemu technikowi zajmującemu się instalacją i konserwacją światłowodów. Przykładowo, jak wykryjesz zanieczyszczenia, to technik może je wyczyścić specjalnymi materiałami, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 11

Który składnik gwarantuje stabilne unieruchomienie nurnika pionowo umiejscowionego siłownika w sytuacji awarii hydraulicznego przewodu zasilającego?

A. Hydrauliczny zawór różnicowy
B. Hydrauliczny regulator przepływu
C. Elektrohydrauliczny zawór proporcjonalny
D. Zamek hydrauliczny
Zamek hydrauliczny jest kluczowym elementem w systemach hydraulicznych, który zapewnia unieruchomienie nurnika siłownika w sytuacji awaryjnej, takiej jak uszkodzenie przewodu zasilającego. Działa poprzez zablokowanie przepływu cieczy hydraulicznej, co skutkuje stabilizacją pozycji nurnika. Przy zastosowaniu zamków hydraulicznych w maszynach budowlanych, takich jak dźwigi czy podnośniki, możliwe jest bezpieczne zatrzymanie operacji w przypadku awarii, zapobiegając niebezpiecznym sytuacjom, takim jak nagłe opadanie ładunków. Zgodnie z normami branżowymi, stosowanie zamków hydraulicznych jest zalecane w systemach, gdzie bezpieczeństwo jest priorytetem. Dobrą praktyką jest również regularne testowanie tych zamków w celu zapewnienia ich sprawności i niezawodności w krytycznych momentach pracy. Warto również zwrócić uwagę na odpowiednią konserwację i utrzymanie w dobrym stanie technicznym tych elementów, aby sprostać wysokim wymaganiom operacyjnym.

Pytanie 12

Jakie powinno być natężenie przepływu oleju dla silnika hydraulicznego o pojemności jednostkowej 5 cm3/obr., aby wałek wyjściowy osiągnął prędkość 1200 obr./min?

A. 0,1 dm3/min
B. 0,6 dm3/min
C. 6,0 dm3/min
D. 1,2 dm3/min
Aby zrozumieć, dlaczego odpowiedź 6,0 dm3/min jest poprawna, musimy uwzględnić zarówno chłonność jednostkową silnika hydraulicznego, jak i prędkość obrotową wałka. Chłonność jednostkowa wynosząca 5 cm³/obr. oznacza, że na każdy obrót wałka silnik potrzebuje 5 cm³ oleju. Przy prędkości 1200 obr./min, całkowite zapotrzebowanie na olej można obliczyć, mnożąc chłonność przez prędkość obrotową: 5 cm³/obr. * 1200 obr./min = 6000 cm³/min. Konwertując to na dm³/min (1 dm³ = 1000 cm³), otrzymujemy 6,0 dm³/min. Taka wiedza jest kluczowa w praktyce inżynierskiej, gdzie precyzyjne obliczenia przepływu oleju są niezbędne do zapewnienia optymalnej wydajności systemów hydraulicznych. Niewłaściwe natężenie przepływu może prowadzić do uszkodzenia silnika lub niewłaściwego działania układu hydraulicznego, co podkreśla znaczenie starannych obliczeń w projektowaniu układów hydraulicznych oraz zgodności z normami branżowymi dotyczącymi systemów hydraulicznych.

Pytanie 13

Obniżenie błędu statycznego, skrócenie czasu odpowiedzi, pogorszenie jakości regulacji przy niższych częstotliwościach, wzmocnienie szumów z przetwornika pomiarowego charakteryzuje działanie regulatora

A. PD
B. P
C. I
D. PID
Regulator PD (proporcjonalno-derywacyjny) jest stosowany w systemach regulacji, gdzie kluczowe znaczenie ma szybka reakcja na zmiany w wartościach regulowanych. Jego działanie polega na ograniczeniu błędu statycznego oraz skróceniu czasu reakcji, co czyni go idealnym rozwiązaniem w aplikacjach wymagających dynamicznej regulacji. Przykładami zastosowania regulatora PD są systemy automatyki przemysłowej, gdzie szybkie dostosowanie parametrów, takich jak temperatura czy ciśnienie, jest niezbędne dla zachowania efektywności procesów produkcyjnych. W praktyce, zastosowanie regulatora PD może prowadzić do znacznego zmniejszenia czasu potrzebnego na osiągnięcie wartości docelowej, co jest zgodne z najlepszymi praktykami inżynieryjnymi. Jednakże, należy pamiętać, że przy niższych częstotliwościach może dojść do pogorszenia jakości regulacji, co jest istotnym czynnikiem, który warto uwzględnić podczas projektowania systemu regulacji.

Pytanie 14

Jakim akronimem opisuje się systemy wspomagania komputerowego w procesie produkcji?

A. CAD
B. CNC
C. CAM
D. CAE
Odpowiedź CAM oznacza Computer Aided Manufacturing, co w tłumaczeniu na polski oznacza systemy komputerowego wspomagania wytwarzania. Systemy te są kluczowe w nowoczesnym przemyśle, ponieważ umożliwiają automatyzację procesów produkcyjnych, co zwiększa efektywność, precyzję oraz redukuje koszty produkcji. Przykładowo, w przemyśle motoryzacyjnym, systemy CAM są używane do sterowania maszynami CNC (Computer Numerical Control), które wykonują złożone operacje obróbcze na metalowych komponentach. Dzięki CAM inżynierowie mogą tworzyć skomplikowane modele w oprogramowaniu CAD (Computer Aided Design) i następnie bezpośrednio przesyłać je do maszyn produkcyjnych. To podejście nie tylko zwiększa dokładność, ale również umożliwia szybszą adaptację do zmieniających się potrzeb rynku, co jest zgodne z najlepszymi praktykami w zakresie Lean Manufacturing i Industry 4.0.

Pytanie 15

Jakim skrótem literowym określa się oprogramowanie do tworzenia wizualizacji procesów industrialnych?

A. CAM
B. SCADA
C. CAD
D. CAE
SCADA, czyli Supervisory Control and Data Acquisition, to kluczowy system stosowany w automatyce przemysłowej, który umożliwia monitorowanie oraz kontrolowanie procesów technologicznych w czasie rzeczywistym. W praktyce SCADA zbiera dane z różnorodnych czujników i urządzeń, co pozwala na wizualizację procesów na interaktywnych panelach operatorskich. Tego typu systemy są stosowane w różnych branżach, w tym w energetyce, wodociągach, transporcie oraz przemyśle chemicznym. SCADA umożliwia nie tylko zbieranie danych, ale także ich analizę i generowanie raportów, co jest istotne dla podejmowania decyzji zarządzających. Dodatkowo, systemy SCADA często integrują różne protokoły komunikacyjne, takie jak Modbus czy OPC, co zapewnia ich elastyczność i interoperacyjność. W dobie Przemysłu 4.0 SCADA odgrywa także kluczową rolę w implementacji IoT (Internet of Things), co otwiera nowe możliwości w zakresie automatyzacji i optymalizacji procesów przemysłowych.

Pytanie 16

Aby na rysunku oznaczyć promień łuku, należy zastosować literę

A. D
B. Φ
C. X
D. R
Odpowiedź "R" jest poprawna, ponieważ w rysunku technicznym promień łuku oznacza się literą "R". Termin ten wywodzi się od angielskiego słowa "radius", które z kolei oznacza promień. Użycie symbolu "R" jest standardem w praktyce inżynieryjnej oraz architektonicznej, zgodnym z normami ISO oraz innymi wytycznymi branżowymi. W kontekście rysunku technicznego, precyzyjne oznaczenie promienia jest kluczowe dla zachowania właściwych proporcji oraz parametrów konstrukcyjnych. Na przykład, w projektowaniu elementów mechanicznych, takich jak wały, zębatki czy różnego rodzaju połączenia, właściwe oznaczenie promieni łuków ma kluczowe znaczenie dla prawidłowego dopasowania komponentów. Dobre praktyki w rysunku technicznym zalecają stosowanie jasnych i zrozumiałych symboli, co pozwala uniknąć błędów w interpretacji rysunków przez różnych wykonawców. Warto również dodać, że w przypadku bardziej złożonych projektów, w których występują różne promienie, stosowanie symbolu "R" jako oznaczenia jest niezwykle pomocne w identyfikacji i weryfikacji tych parametrów na etapie wytwarzania.

Pytanie 17

Podczas serwisowania układów hydraulicznych, jakie działanie jest kluczowe?

A. Usuwanie zanieczyszczeń z powierzchni zewnętrznych
B. Malowanie rurociągów
C. Sprawdzenie szczelności połączeń
D. Sprawdzenie jakości farby na urządzeniach
Sprawdzenie szczelności połączeń w układach hydraulicznych to kluczowy krok w procesie serwisowania. Wszelkie nieszczelności mogą prowadzić do wycieków płynów, co z kolei może skutkować spadkiem ciśnienia roboczego, co jest niebezpieczne dla całego systemu. Nieszczelności mogą także prowadzić do zanieczyszczenia płynu hydraulicznego, co ma negatywny wpływ na wydajność i trwałość pompy oraz innych elementów układu. Regularne sprawdzanie szczelności pomaga w wykrywaniu potencjalnych problemów zanim doprowadzą one do poważniejszych awarii. Dzięki temu można zapewnić dłuższą żywotność układu i uniknąć kosztownych napraw. Stosując odpowiednie metody diagnostyczne, takie jak testy ciśnieniowe czy użycie specjalnych płynów detekcyjnych, można zlokalizować nawet najmniejsze nieszczelności. W praktyce, konserwacja i sprawdzanie szczelności połączeń jest nie tylko dobrą praktyką, ale wręcz standardem w branży, który zapewnia bezpieczne i efektywne działanie układów hydraulicznych.

Pytanie 18

Jakie kluczowe cechy funkcjonalne powinien mieć system sterowania układem nawrotnym dla silnika elektrycznego?

A. Podtrzymanie kierunku obrotów silnika z napędem
B. Ograniczenie czasowe dla pracy silnika z napędem
C. Sygnalizację kierunków obrotu silnika
D. Blokadę uniemożliwiającą jednoczesne włączenie w obu kierunkach
Wybór odpowiedzi "Blokadę przed jednoczesnym załączeniem w obu kierunkach." jest poprawny, ponieważ stanowi kluczowy element systemów sterowania silnikami elektrycznymi, który ma na celu zapewnienie bezpieczeństwa oraz ochrony zarówno urządzenia, jak i użytkownika. W praktyce, w przypadku jednoczesnego załączenia silnika w dwóch przeciwnych kierunkach, mogłoby dojść do poważnych uszkodzeń mechanicznych, a także do zagrożenia dla ludzi znajdujących się w pobliżu. Blokada ta jest standardowym rozwiązaniem w branży automatyki, stosowanym w wielu aplikacjach, od prostych silników jednofazowych po złożone systemy napędowe w przemyśle. Przykładowo, w systemach z wykorzystaniem falowników, implementacja takiej blokady jest nie tylko zalecana, ale wręcz wymagana przez normy bezpieczeństwa. Dobre praktyki inżynieryjne sugerują wprowadzenie dodatkowych czujników, które monitorują aktywność silnika, co pozwala na automatyczne zatrzymanie pracy w przypadku wykrycia nieprawidłowości. Oprócz tego, zapewnia to również większą niezawodność i dłuższą żywotność komponentów systemu, co jest kluczowe w kontekście kosztów eksploatacji.

Pytanie 19

Podczas przeglądu silnika trójfazowego frezarki numerycznej wykonano pomiary rezystancji uzwojeń i rezystancji izolacji, przedstawione w tabeli. Wyniki te wskazują na

Pomiar między
zaciskami silnika
Wynik
U1-U222 Ω
V1-V221,5 Ω
W1-W222,2 Ω
U1-V1
V1-W1
U1-W1
U1-PE52 MΩ
V1-PE49 MΩ
W1-PE30 Ω

A. przerwę w uzwojeniu U1-U2.
B. zwarcie między uzwojeniem W1-W2, a obudową silnika.
C. zwarcie między uzwojeniami U1-U2 oraz W1-W2.
D. przerwę w uzwojeniu V1-V2.
Odpowiedź wskazująca na zwarcie między uzwojeniem W1-W2 a obudową silnika jest poprawna z kilku kluczowych powodów. Przede wszystkim, analiza rezystancji izolacji uzwojeń w kontekście napięcia roboczego oraz wpływu na bezpieczeństwo operacyjne silnika jest istotna. Rezystancja izolacji między uzwojeniem W1-W2 a obudową wynosząca 30 MΩ sugeruje, że istnieje istotne połączenie elektryczne, co jest poniżej akceptowalnych wartości, według norm IEC 60034 dotyczących maszyn elektrycznych. Dla silników elektrycznych, wartości rezystancji izolacji powinny wynosić co najmniej 1 MΩ na każdy kilowatt mocy. W przypadku tego silnika, wzmianka o przebiciach i zwarciach w izolacji jest kluczowa, ponieważ może prowadzić do uszkodzeń mechanicznych i pożaru. Ponadto, zbliżone wartości rezystancji dla U1-U2 i V1-V2, wynoszące około 22 Ω, potwierdzają, że te uzwojenia działają prawidłowo, a zatem problem dotyczy tylko W1-W2. W praktyce, regularne sprawdzanie rezystancji izolacji jest kluczowym elementem prewencyjnego utrzymania ruchu, co pomaga w identyfikacji potencjalnych problemów zanim dojdzie do awarii.

Pytanie 20

Szczelność systemu pneumatycznego weryfikuje się poprzez pomiar

A. spadku ciśnienia w systemie w ustalonym czasie
B. ilości powietrza potrzebnego do utrzymania stałego poziomu ciśnienia
C. zmiany maksymalnej siły wytwarzanej przez siłownik
D. zmiany maksymalnej prędkości siłownika
Szczelność układu pneumatycznego sprawdza się poprzez pomiar spadku ciśnienia w określonym czasie, co jest kluczowym aspektem diagnostyki i konserwacji systemów pneumatycznych. W przypadku, gdy układ jest szczelny, ciśnienie powinno pozostawać na stałym poziomie. Jeżeli jednak ciśnienie zaczyna spadać, oznacza to, że gdzieś w układzie występuje wyciek lub nieszczelność. W praktyce, technicy często wykorzystują manometry oraz różne czujniki ciśnienia do monitorowania tego parametru. Standardy branżowe, takie jak ISO 8573, podkreślają znaczenie dokładnego pomiaru ciśnienia i jego stabilności w zachowaniu właściwych warunków pracy układów pneumatycznych. Dodatkowo, regularne testowanie szczelności jest zalecane w celu minimalizacji strat energii oraz zwiększenia efektywności operacyjnej systemów, co przekłada się na redukcję kosztów eksploatacji. Warto również pamiętać, że nieszczelności mogą prowadzić do uszkodzenia komponentów systemu, co podkreśla znaczenie precyzyjnego i regularnego monitorowania ciśnienia.

Pytanie 21

Na podstawie tabeli z dokumentacji techniczno-ruchowej przekładni napędu wskaż wszystkie czynności konserwacyjne, które należy przeprowadzić po upływie 4 lat i 3 miesięcy od przyjęcia jednostki napędowej do eksploatacji.

Lp.CzynnośćOdstępy czasu
1Sprawdzenie odgłosów z kół zębatych, łożyskco 1 miesiąc
2Sprawdzenie temperatury obudowy (maksymalna 90°C)
3Wizualne sprawdzenie uszczelnień
4Usunięcie kurzu, pyłu z powierzchni napędu
5Oczyszczenie korka odpowietrzającego i jego bezpośredniego otoczeniaco 3 miesiące
6Sprawdzenie śrub montażowych korpusu napęduco 6 miesięcy
7Sprawdzenie amortyzatorów gumowychco 48 miesięcy
8Wizualne sprawdzenie uszczelnień wału i ewentualnie wymiana

A. 1, 2, 3, 4, 5
B. 5, 8
C. 1, 2, 3, 4, 5, 6, 7
D. 1, 2, 3, 4, 5, 8
Odpowiedź 1, 2, 3, 4, 5 jest poprawna, ponieważ obejmuje wszystkie kluczowe czynności konserwacyjne wymagane po upływie 4 lat i 3 miesięcy eksploatacji jednostki napędowej. Regularna konserwacja jest niezbędna dla zapewnienia niezawodności systemów napędowych, a jej celem jest zapobieganie awariom i wydłużenie żywotności urządzeń. Przykładowo, czynności takie jak wymiana oleju, kontrola stanu uszczelek oraz sprawdzenie poziomu płynów eksploatacyjnych wpływają na efektywność pracy przekładni oraz minimalizują ryzyko uszkodzeń. Dobre praktyki branżowe sugerują, że takie przeglądy powinny być dokumentowane w systemie zarządzania utrzymaniem ruchu, co pozwala na śledzenie historii konserwacji i planowanie przyszłych działań. Biorąc pod uwagę znaczenie regularnej konserwacji, odpowiedzi 1, 2, 3, 4, 5 są zgodne z normami ISO 9001 dotyczącymi zarządzania jakością, które kładą nacisk na systematyczne podejście do utrzymania i poprawy efektywności operacyjnej.

Pytanie 22

Jaką rozdzielczość ma przetwornik A/C o 10-bitowej głębokości w sterowniku PLC, gdy zakres pomiarowy wynosi 0÷10 V?

A. 49,4 mV/bit
B. 1,1 mV/bit
C. 100,5 mV/bit
D. 9,8 mV/bit
Odpowiedź 9,8 mV/bit jest poprawna, ponieważ rozdzielczość przetwornika analogowo-cyfrowego (A/C) oblicza się na podstawie wzoru, który uwzględnia zarówno zakres pomiarowy, jak i liczbę bitów przetwornika. W tym przypadku, mając zakres 0-10 V oraz 10-bitowy przetwornik, obliczamy rozdzielczość jako 10 V / (2^10), co daje wynik 9,8 mV/bit. Oznacza to, że każdy bit przetwornika reprezentuje zmianę napięcia równą 9,8 mV. W praktyce, taka rozdzielczość jest kluczowa w systemach automatyki i sterowania, gdzie precyzyjny pomiar parametrów fizycznych, takich jak temperatura, ciśnienie czy poziom wody, jest niezbędny do prawidłowego funkcjonowania zautomatyzowanych procesów. Użycie 10-bitowego przetwornika A/C w aplikacjach przemysłowych pozwala na uzyskanie zadowalającej precyzji przy jednoczesnej prostocie implementacji i kosztach, co czyni go popularnym wyborem w wielu standardach branżowych, takich jak IEC 61131 dla systemów PLC.

Pytanie 23

Tłoczysko siłownika pneumatycznego porusza się poziomo ruchem prostoliniowym, lecz z wolniejszą prędkością niż zazwyczaj. Co może być najprawdopodobniejszą przyczyną opóźnienia ruchu siłownika?

A. Wyboczone lub uszkodzone tłoczysko
B. Zepsute mocowanie siłownika
C. Nieszczelność, zużycie uszczelek lub pierścieni tłoka
D. Uszkodzone zewnętrzne amortyzatory siłownika
Nieszczelność, zużycie uszczelek lub pierścieni tłoka są głównymi przyczynami spowolnienia ruchu siłownika pneumatycznego. W momencie, gdy uszczelki lub pierścienie są uszkodzone, dochodzi do wycieku powietrza, co prowadzi do utraty ciśnienia w układzie. To z kolei powoduje, że siłownik nie może osiągnąć pełnej prędkości, co jest kluczowe w wielu zastosowaniach przemysłowych, takich jak automatyzacja procesów lub linie montażowe. W praktyce, regularne kontrole stanu uszczelek i pierścieni są niezmiernie ważne, aby zapewnić optymalną wydajność systemu pneumatycznego. W przypadku wykrycia nieszczelności, należy natychmiast zidentyfikować źródło problemu i wymienić uszkodzone elementy, co minimalizuje ryzyko awarii całego systemu. Dobre praktyki w tej dziedzinie obejmują także stosowanie wysokiej jakości materiałów uszczelniających oraz przestrzeganie instrukcji producenta dotyczących montażu i konserwacji siłowników pneumatycznych.

Pytanie 24

Jakiego symbolu należy użyć, pisząc program dla sterownika PLC, gdy chcemy odwołać się do 8-bitowej komórki pamięci wewnętrznej klasy M?

A. MV0
B. MD0
C. MB0
D. M0.0
Wybór innych symboli, takich jak M0.0, MD0 czy MV0, wynika z nieporozumienia dotyczącego systemu adresowania pamięci w sterownikach PLC. Oznaczenie M0.0 odnosi się do bitów w komórce pamięci, co czyni je odpowiednim dla odniesienia do pojedynczego bitu, a nie do całej 8-bitowej komórki. Z kolei MD0 odnosi się do pamięci słowo (word memory), która ma 16 bitów i nie jest tożsame z pamięcią 8-bitową, co wpływa na sposób, w jaki dane są przetwarzane. MD0 jest używana w kontekście większych jednostek danych, które wymagają innego podejścia podczas programowania. Symbol MV0 z kolei sugeruje dostęp do pamięci zmiennoprzecinkowej, co również nie jest zgodne z wymaganiami zadania. Nieporozumienie tych symboli może prowadzić do błędów w programowaniu, takich jak niepoprawne odczyty danych, co w systemach automatyki może skutkować awariami lub nieprawidłowym działaniem urządzeń. Kluczowe jest zrozumienie kontekstu zastosowania każdego symbolu oraz znajomość standardów dotyczących adresowania pamięci w PLC. Z tego względu wybór odpowiedniego symbolu jest krytyczny dla zachowania integralności danych i efektywności rozwiązań automatyzacyjnych.

Pytanie 25

Aby ustalić, czy system sprężonego powietrza jest dostatecznie szczelny, należy przeprowadzić kontrolę

A. stanu izolacji termicznej rur pneumatycznych wychodzących poza budynki
B. szczelności zaworów odwadniających zbiorniki pneumatyczne
C. spadku ciśnienia w układzie pneumatycznym
D. stanu zewnętrznej powłoki rur pneumatycznych
Spadek ciśnienia w instalacji pneumatycznej jest kluczowym wskaźnikiem, który pozwala ocenić szczelność systemu sprężonego powietrza. W praktyce, gdy ciśnienie w instalacji spada, oznacza to, że powietrze może uchodzić przez nieszczelności. Takie nieszczelności mogą występować w różnych miejscach, na przykład w połączeniach przewodów, zaworach czy złączkach. Regularne monitorowanie ciśnienia jest nie tylko zgodne z najlepszymi praktykami inżynieryjnymi, ale również przyczynia się do efektywności energetycznej systemu. Zmniejszenie ciśnienia powoduje, że sprężarki muszą pracować intensywniej, co zwiększa koszty operacyjne. Dlatego, aby zapewnić optymalną wydajność, zaleca się stosowanie manometrów oraz systemów monitorujących, które automatycznie informują o spadkach ciśnienia. Istotne jest również przeprowadzanie regularnych przeglądów, które mogą wykrywać wczesne oznaki nieszczelności oraz stosowanie materiałów wysokiej jakości w instalacji, co ogranicza ryzyko problemów z ciśnieniem.

Pytanie 26

Jaka jest minimalna liczba bitów przetwornika A/C, która powinna być użyta w układzie, aby dla zakresu pomiarowego 0 mA ÷ 20 mA uzyskać rozdzielczość równą 0,01 mA?

A. 12 bitowy
B. 11 bitowy
C. 10 bitowy
D. 16 bitowy
Odpowiedź 11-bitowa jest poprawna, ponieważ aby osiągnąć wymaganą rozdzielczość 0,01 mA w zakresie 0-20 mA, musimy najpierw obliczyć liczbę poziomów kwantyzacji. Zakres pomiarowy wynoszący 20 mA podzielony przez rozdzielczość 0,01 mA daje nam 2000 poziomów. Następnie, aby określić wymaganą liczbę bitów w przetworniku A/C, stosujemy wzór 2^n ≥ 2000. Logarytm z podstawą 2 z 2000 wynosi około 10,97, co po zaokrągleniu w górę daje 11. Przetwornik 11-bitowy, oferując 2048 poziomów, spełnia wymogi co do rozdzielczości, ponieważ zapewnia wystarczającą ilość poziomów do uchwycenia zmian w sygnale. W praktyce przetworniki o takiej rozdzielczości są powszechnie stosowane w systemach automatyki przemysłowej, gdzie precyzyjny pomiar prądu jest kluczowy dla monitorowania i kontrolowania procesów. Dobrą praktyką jest również użycie przetworników A/C zgodnych z normami IEC 61000, które zapewniają wysoką jakość pomiarów w trudnych warunkach przemysłowych.

Pytanie 27

Jakie działania regulacyjne powinny zostać przeprowadzone w napędzie mechatronicznym opartym na przemienniku częstotliwości oraz silniku indukcyjnym, aby zwiększyć prędkość obrotową wirnika bez zmiany wartości poślizgu?

A. Proporcjonalnie zmniejszyć wartość częstotliwości oraz napięcia zasilającego
B. Proporcjonalnie zwiększyć wartość częstotliwości oraz napięcia zasilającego
C. Zwiększyć wartość napięcia zasilającego
D. Obniżyć wartość częstotliwości napięcia zasilającego
Zwiększenie proporcjonalnie wartości częstotliwości i napięcia zasilającego jest kluczowe dla poprawnej regulacji prędkości wirowania wirnika silnika indukcyjnego. Prędkość synchroniczna, a więc i prędkość wirowania, jest bezpośrednio związana z częstotliwością zasilania, co oznacza, że zwiększenie częstotliwości prowadzi do wzrostu prędkości obrotowej. Jednocześnie, aby nie zmieniać wartości poślizgu, co jest istotnym parametrem w pracy silnika, należy równocześnie zwiększyć napięcie zasilające. W przeciwnym razie, przy wyższej częstotliwości, reaktancja indukcyjna silnika wzrasta, co może prowadzić do spadku prądu w uzwojeniu i tym samym zmniejszenia momentu obrotowego. Proporcjonalne zwiększenie napięcia zasilającego pozwala na kompensację tych zmian, co jest zgodne z najlepszymi praktykami w inżynierii mechatronicznej. Na przykład, w zastosowaniach przemysłowych, takich jak przekładnie w maszynach CNC, odpowiednia regulacja tych parametrów jest kluczowa dla zapewnienia stabilności i efektywności pracy systemu.

Pytanie 28

Jakiego narzędzia należy użyć, aby zidentyfikować instrukcję, która wywołuje nieprawidłowe działanie programu?

A. Kompilatorem
B. Debuggerem
C. Asemblerem
D. Deasemblerem
Debugger to naprawdę przydatne narzędzie dla programistów, bo pozwala im dokładnie śledzić, co się dzieje w kodzie. Jego główną funkcją jest to, że można zobaczyć, jak program działa krok po kroku, co bardzo pomaga w zrozumieniu zmian w zmiennych i logice aplikacji. Na przykład, gdy coś nie działa jak powinno albo występuje błąd, można wstrzymać program w danym momencie, żeby sprawdzić, co poszło nie tak. Programista ma wtedy możliwość zbadać wartości zmiennych, zobaczyć, które instrukcje już się wykonały i gdzie leży problem. To bardzo cenne w pracy, bo pozwala na szybsze znalezienie błędów i ich naprawę, co jest zgodne z tym, co mówią najlepsi w branży – testowanie i debugowanie kodu to klucz do sukcesu. Używając debuggera, można również ustawić punkty przerwania, które zatrzymują działanie programu w określonym miejscu. Dzięki temu łatwiej jest znaleźć problemy, szczególnie w bardziej skomplikowanych aplikacjach.

Pytanie 29

Zgodnie z zasadą programowania przy użyciu SFC

A. dwa kroki nie mogą być ze sobą bezpośrednio połączone, muszą być oddzielone tranzycją
B. dwa kroki powinny być ze sobą bezpośrednio połączone, nie mogą być rozdzielone tranzycją
C. dwie tranzycje muszą być ze sobą bezpośrednio połączone, nie mogą być oddzielone krokiem
D. dwie tranzycje mogą być ze sobą bezpośrednio połączone, nie muszą być oddzielone krokiem
Zgadza się, dwa kroki w SFC muszą być rozdzielone tranzycją. W kontekście programowania sterowników PLC, kroki (ang. steps) reprezentują stany, a tranzycje (ang. transitions) są warunkami, które muszą być spełnione, aby przejść z jednego stanu do drugiego. To podejście jest zgodne z zasadami strukturalnego programowania oraz standardami IEC 61131-3, które definiują sposób tworzenia programów w PLC. Przykładem zastosowania tej zasady może być proces automatyzacji linii produkcyjnej, gdzie kroki mogą reprezentować konkretne stany maszyny, takie jak 'Uruchomienie', 'Praca', czy 'Zatrzymanie'. Tranzycje mogą definiować warunki, takie jak 'zakończenie cyklu produkcyjnego' lub 'awaria maszyny', które muszą wystąpić, aby system mógł przejść do innego kroku. Zrozumienie tej struktury jest kluczowe dla poprawnego projektowania i implementacji systemów automatyki, co zwiększa niezawodność i efektywność operacyjną.

Pytanie 30

Która z wymienionych metod jest stosowana podczas przeprowadzania początkowego testowania programu stworzonego dla robota przemysłowego?

A. Automatyczne odtwarzanie ruchów, z prędkością ruchu ustawioną na 20%
B. Automatyczne odtwarzanie ruchów z prędkością ruchu ustawioną na 100%
C. Ręczne odtwarzanie ruchów, krok po kroku z prędkością ruchu ustawioną na 20%
D. Ręczne odtwarzanie ruchów, krok po kroku z prędkością ruchu ustawioną na 100%
Ręczne odtwarzanie ruchów krok po kroku z prędkością ruchu ustawioną na 20% jest kluczowym etapem w procesie testowania programów dla robotów przemysłowych. Taki sposób testowania umożliwia inżynierom dokładne obserwowanie zachowania robota w kontrolowanym środowisku, co pozwala na wczesne wykrywanie ewentualnych błędów w programie. Przy tak niskiej prędkości można zminimalizować ryzyko uszkodzenia robota oraz otoczenia, co jest szczególnie ważne w kontekście bezpieczeństwa. W praktyce, manualne testowanie ruchów umożliwia także dostosowanie programu do specyficznych wymagań zadania, a także optymalizację trajektorii ruchu robota. W przypadku wykrycia błędów, inżynierowie mogą łatwo wprowadzić zmiany w programie, a następnie przetestować je w tym samym trybie. Takie podejście jest zgodne z najlepszymi praktykami w branży automatyzacji przemysłowej, które zalecają przeprowadzanie testów w sposób sekwencyjny przed przejściem do pełnej automatyzacji.

Pytanie 31

W jakim trybie operacyjnym sterownik PLC wykonuje wszystkie etapy cyklu pracy?

A. START
B. STOP
C. TERM
D. RUN
Tryb pracy RUN w sterownikach PLC jest kluczowy, ponieważ to właśnie w tym trybie realizowane są wszystkie zaprogramowane fazy cyklu pracy urządzenia. W trybie RUN sterownik interpretuje i wykonuje instrukcje zawarte w programie użytkownika, co oznacza, że w tym czasie mogą być realizowane operacje wejść i wyjść, obliczenia, a także podejmowanie decyzji na podstawie zdefiniowanych warunków. Na przykład, w systemach automatyki przemysłowej, w których PLC steruje procesem produkcyjnym, tryb RUN jest niezbędny do ciągłego monitorowania i kontrolowania parametrów, takich jak temperatura, ciśnienie czy poziom substancji. W praktyce, aby zapewnić niezawodność działania, stosuje się procedury uruchamiania i stopniowego przechodzenia do trybu RUN, co jest zgodne z zasadami bezpieczeństwa i dobrymi praktykami w projektowaniu systemów automatyki. Warto również zwrócić uwagę, że w różnych standardach automatyki, takich jak IEC 61131-3, podkreśla się znaczenie trybu RUN jako głównego trybu operacyjnego, w którym następuje realizacja logiki sterowania.

Pytanie 32

W przypadku, gdy w obwodzie wymagany jest kondensator o pojemności rzędu kilku tysięcy µF, należy wybrać kondensator

A. elektrolityczny
B. powietrzny
C. ceramiczny
D. foliowy
Kondensator elektrolityczny to komponent, który wyróżnia się wysoką pojemnością, co czyni go idealnym rozwiązaniem w układach wymagających wartości rzędu kilku tysięcy µF. W odróżnieniu od innych typów kondensatorów, takich jak kondensatory ceramiczne czy foliowe, kondensatory elektrolityczne są zdolne do przechowywania dużych ładunków elektrycznych w stosunkowo niewielkiej objętości. Dzięki temu są szeroko stosowane w zasilaczach impulsowych, filtrach dławikowych oraz w aplikacjach związanych z stabilizacją napięcia. Warto również zwrócić uwagę na ich niską wartość oporu szeregowego, co sprawia, że minimalizują straty energii w układzie, co jest kluczowe przy dużych prądach. Zgodność z normami, takimi jak IEC 60384, gwarantuje, że kondensatory elektrolityczne spełniają odpowiednie wymagania jakościowe i bezpieczeństwa w zastosowaniach przemysłowych.

Pytanie 33

Ile par biegunów powinno mieć uzwojenie stojana silnika o wielu prędkościach, aby po podłączeniu do źródła zasilania 230/240 V, 50 Hz jego wał obracał się z prędkością zbliżoną do 1500 obr/min?

A. dwie
B. cztery
C. trzy
D. jedna
Aby silnik wielobiegowy mógł działać z prędkością bliską 1500 obr/min przy zasilaniu 230/240 V i częstotliwości 50 Hz, uzwojenie stojana powinno mieć dwie pary biegunów. Prędkość obrotowa silnika synchronicznego jest określona równaniem: n = (120 * f) / P, gdzie n to prędkość obrotowa w obr/min, f to częstotliwość zasilania w Hz, a P to liczba par biegunów. Podstawiając wartości: n = 1500, f = 50, otrzymujemy P = (120 * 50) / 1500, co daje 4. Ponieważ liczba biegunów to P, mamy 2 pary biegunów (2P = 4). Taka konfiguracja silnika jest standardowa w zastosowaniach, które wymagają stabilnej prędkości obrotowej, jak w napędach elektrycznych w przemyśle. Zrozumienie wpływu liczby biegunów na prędkość obrotową jest kluczowe dla inżynierów zajmujących się projektowaniem systemów elektroenergetycznych oraz automatyki, gdzie precyzyjne kontrolowanie prędkości jest niezbędne dla wydajności procesu.

Pytanie 34

Który z poniższych kwalifikatorów działań w metodzie SFC odnosi się do uzależnień czasowych?

A. S
B. R
C. L
D. N
Kwalifikator 'L' w metodzie SFC (Sequential Function Chart) odnosi się do opóźnienia czasowego, co jest kluczowym mechanizmem w programowaniu sterowników PLC. Umożliwia on wprowadzenie zaplanowanego opóźnienia przed przejściem do następnego kroku w sekwencji działań. Jest to niezwykle istotne w aplikacjach, gdzie synchronizacja i czas reakcji mają krytyczne znaczenie, na przykład w systemach automatyki przemysłowej. W praktyce, zastosowanie opóźnienia może być użyte do zapewnienia, że sprzęt wykonawczy ma wystarczająco dużo czasu na zakończenie jednego zadania przed rozpoczęciem kolejnego, co minimalizuje ryzyko błędów i kolizji. Na przykład, w systemie linii produkcyjnej, może być niezbędne, aby roboty miały czas na przeniesienie komponentów, zanim uruchomi się kolejny proces. Użycie kwalifikatora 'L' jest zgodne z najlepszymi praktykami projektowania systemów automatyki, gdzie czas i synchronizacja działań są kluczowe dla efektywności i bezpieczeństwa operacji.

Pytanie 35

Jaki typ systemu wizualizacji procesów przemysłowych powinien być użyty do ustawiania parametrów produkcji, gdy nie ma dostępnego miejsca na komputer?

A. Specjalistyczne środowisko wizualizacyjne ISO/OSI.
B. Panel operatorski HMI.
C. System SCADA.
D. Aplikacja oparta na architekturze NET Framework.
Panel operatorski HMI (Human-Machine Interface) jest kluczowym elementem w nowoczesnych systemach automatyki przemysłowej, umożliwiającym operatorom interakcję z maszynami i procesami produkcyjnymi. Jego podstawową funkcją jest wprowadzanie i monitorowanie parametrów pracy maszyn bezpośrednio na urządzeniu, co jest niezwykle istotne w sytuacjach, gdy przestrzeń robocza jest ograniczona. W odróżnieniu od rozbudowanych systemów SCADA, które wymagają stacji komputerowej do nadzoru i sterowania, panele HMI mają kompaktową budowę, co umożliwia ich łatwe umiejscowienie w obiektach produkcyjnych. Przykładami zastosowania paneli HMI mogą być linie montażowe, gdzie operatorzy mogą szybko reagować na zmiany w procesie, wprowadzać korekty oraz monitorować stany awaryjne. W kontekście standardów branżowych, panele HMI wspierają interoperacyjność z różnymi protokołami komunikacyjnymi, co jest zgodne z dobrymi praktykami inżynieryjnymi w automatyce przemysłowej. Dodatkowo, panele te często posiadają funkcje diagnostyczne, co zwiększa efektywność utrzymania ruchu.

Pytanie 36

Aby prawidłowo zidentyfikować element wykonawczy na schemacie instalacji pneumatycznej, należy podać numer elementu oraz użyć odpowiadającego mu symbolu literowego

A. Z
B. S
C. A
D. V
Odpowiedź A jest prawidłowa, ponieważ w układach pneumatycznych symbol literowy 'A' oznacza element wykonawczy, który jest kluczowy dla funkcjonowania całego systemu. Elementy wykonawcze, takie jak siłowniki pneumatyczne, przekształcają energię sprężonego powietrza w ruch mechaniczny. Zastosowanie symbolu literowego w połączeniu z numerem elementu pozwala na jednoznaczną i precyzyjną identyfikację danego komponentu w dokumentacji technicznej oraz w praktyce inżynierskiej. Dzięki temu, inżynierowie i technicy mogą szybko zrozumieć rolę danego elementu w systemie oraz jego interakcje z innymi komponentami. W praktyce, takie oznaczenia ułatwiają również serwis i konserwację, ponieważ podczas wymiany lub naprawy elementów łatwiej jest zidentyfikować potrzebne komponenty. Warto również odwołać się do europejskich standardów, takich jak ISO 1219, które definiują normy dotyczące schematów układów pneumatycznych, co dodatkowo podkreśla znaczenie precyzyjnego oznaczenia elementów w dokumentacji.

Pytanie 37

Nieprzerwane monitorowanie wibracji silnika elektrycznego w systemie napędowym oraz analiza spektrum drgań umożliwiają wczesne zidentyfikowanie

A. zwarcia w uzwojeniach stojana lub wirnika
B. pogorszenia stanu izolacji uzwojeń stojana lub wirnika
C. przerw w obwodzie zasilania silnika
D. uszkodzenia łożysk
Ciągły pomiar wibracji silnika elektrycznego oraz analiza widma drgań są kluczowymi technikami w diagnozowaniu stanu technicznego maszyn. Uszkodzenia łożysk to jeden z najczęściej występujących problemów w układach napędowych, które mogą prowadzić do poważnych awarii, a ich wczesne wykrycie pozwala na zapobieganie kosztownym przestojom produkcyjnym. Zastosowanie analizy drgań umożliwia identyfikację charakterystycznych częstotliwości, które są związane z uszkodzonymi łożyskami. Na przykład, jeśli łożysko ulega degradacji, generuje drgania o specyficznych częstotliwościach, które można zidentyfikować i monitorować. W praktyce, standardy takie jak ISO 10816 dotyczące pomiaru drgań maszyn, dostarczają wytycznych dotyczących interpretacji wyników. Dzięki tej metodzie inżynierowie mogą podejmować decyzje dotyczące konserwacji w oparciu o rzeczywisty stan maszyny, co znacząco zwiększa efektywność zarządzania utrzymaniem ruchu w zakładach przemysłowych.

Pytanie 38

Wysokoobrotowy silnik pneumatyczny o budowie turbinowej powinien być smarowany olejem mineralnym w sposób

A. ciągły, podawanym pompą olejową o stałej wydajności
B. ciągły, naolejonym powietrzem z instalacji zasilającej
C. cykliczny, smarownicą przed uruchomieniem silnika
D. cykliczny, smarownicą co dwa tygodnie
Poprawna odpowiedź to "ciągły, naolejonym powietrzem z instalacji zasilającej." Silniki pneumatyczne wysokoobrotowe o konstrukcji turbinowej wymagają ciągłego smarowania, aby zapewnić ich prawidłowe działanie i minimalizować zużycie komponentów. W praktyce, smarowanie ciągłe przy użyciu naolejonego powietrza z instalacji zasilającej pozwala na dostarczenie oleju do wszystkich ruchomych części silnika równomiernie i bez przerw. Taki system smarowania jest bardziej efektywny niż smarowanie okresowe, ponieważ eliminuje ryzyko niewystarczającego smarowania w trakcie pracy silnika. W branży inżynieryjnej stosuje się go zgodnie z normami, które podkreślają znaczenie ciągłego smarowania w aplikacjach wymagających dużych prędkości obrotowych, co przekłada się na dłuższą żywotność urządzenia i większą wydajność. Dodatkowo, odpowiednie smarowanie wpływa na redukcję tarcia oraz minimalizację ryzyka awarii, co jest kluczowe w zastosowaniach przemysłowych i energetycznych.

Pytanie 39

Jakie elementy mechanizmów mechatronicznych są zabezpieczane i konserwowane poprzez proces cynkowania?

A. Elementy napędowe
B. Elementy sygnalizacyjne
C. Elementy sterujące
D. Elementy konstrukcyjne
Wybór elementów sterowniczych, sygnalizacyjnych lub napędowych jako tych, które zabezpiecza się poprzez cynkowanie, jest mylny, ponieważ te elementy nie są zasadniczo narażone na korozję w takim samym stopniu jak elementy konstrukcyjne. Elementy sterownicze, jak np. złącza, przekaźniki czy moduły elektroniczne, zwykle są projektowane w taki sposób, aby minimalizować kontakt z czynnikami atmosferycznymi, co sprawia, że ich ochrona przed korozją nie polega na cynkowaniu, lecz na stosowaniu osłon i odpowiednich obudów. Z kolei elementy sygnalizacyjne, takie jak lampki LED czy wskaźniki, również nie wymagają cynkowania, gdyż ich funkcjonalność opiera się na działaniu elektronicznym, zatem ochrona tych komponentów koncentruje się na zabezpieczeniu ich przed uszkodzeniami mechanicznymi oraz wpływem wilgoci. Napędowe elementy urządzeń, takie jak silniki czy przekładnie, są z kolei odpowiednio smarowane i często mają zastosowane powłoki ochronne, ale ich konserwacja nie polega na cynkowaniu. W rzeczywistości cynkowanie jest najlepsze dla elementów, które są stale narażone na działanie środowiska, co nie dotyczy powyższych kategorii elementów. Przy wyborze metody ochrony przed korozją, kluczowe jest zrozumienie, jakie konkretne warunki i czynniki będą miały wpływ na dany komponent.

Pytanie 40

Wskaż operator w języku IL, który musi być użyty w programie sterującym, aby zrealizować wywołanie bloku funkcyjnego FUN_1?

A. RET FUN_1
B. ST FUN_1
C. LD FUN_1
D. CAL FUN_1
Operator "CAL" w języku IL (Instruction List) jest kluczowym elementem programowania w systemach sterowania, pozwalającym na efektywne wywoływanie bloków funkcyjnych, takich jak FUN_1. Użycie operatora "CAL" oznacza, że w danym punkcie programu następuje przekazanie kontroli do zdefiniowanej funkcji, co jest niezbędne dla realizacji zadań automatyzacji procesów. Bloki funkcyjne stanowią podstawowy element programowania w systemach PLC, a ich wywoływanie za pomocą "CAL" pozwala na modularne podejście do tworzenia aplikacji. Przykładowo, w przypadku złożonych systemów, operator ten umożliwia wielokrotne wykorzystanie tych samych bloków funkcyjnych w różnych częściach programu, co sprzyja optymalizacji kodu i zmniejsza ryzyko błędów. W praktyce, każdy programista PLC powinien być dobrze zaznajomiony z tym operatorem oraz jego zastosowaniami, aby efektywnie projektować systemy automatyzacji, zgodnie z najlepszymi praktykami branżowymi.
Strona wykorzystuje pliki cookies do poprawy doświadczenia użytkownika oraz analizy ruchu. Szczegóły