Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.05 - Eksploatacja urządzeń elektronicznych
  • Data rozpoczęcia: 30 maja 2025 00:31
  • Data zakończenia: 30 maja 2025 00:36

Egzamin zdany!

Wynik: 40/40 punktów (100,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W jaki sposób należy połączyć wyjście układu TTL z wejściem układu CMOS, gdy oba układy są zasilane napięciem +5 V?

A. Zastosować diodę separującą
B. Zastosować rezystor podciągający
C. Rozdzielić wejście-wyjście trymerem
D. Rozdzielić wejście-wyjście kondensatorem
Zastosowanie rezystora podciągającego do połączenia wyjścia układu TTL z wejściem układu CMOS jest właściwym rozwiązaniem, ponieważ pozwala na zapewnienie odpowiedniego poziomu napięcia na wejściu układu CMOS, co jest kluczowe dla jego poprawnej pracy. Układy CMOS charakteryzują się wysoką impedancją wejściową, co oznacza, że są bardzo wrażliwe na poziomy napięcia. Rezystor podciągający, podłączony do zasilania, pozwala na utrzymanie wysokiego poziomu logicznego (1) na wejściu nawet, gdy wyjście układu TTL jest w stanie wysokiej impedancji. Przykładem zastosowania tego rozwiązania może być sytuacja, gdy wyjście TTL jest odłączone lub nieaktywne, co mogłoby prowadzić do stanów nieokreślonych na wejściu CMOS. Właściwe wartości rezystora podciągającego są zazwyczaj w zakresie od 1 kΩ do 10 kΩ, co zapewnia odpowiednią równowagę między szybkością reakcji a poborem prądu. Dobre praktyki w zakresie projektowania układów cyfrowych zalecają stosowanie rezystorów podciągających, aby uniknąć przypadkowych przełączeń i zagwarantować stabilność działania układów współpracujących.

Pytanie 2

Dzięki działaniu negatywnego sprzężenia zwrotnego, wzmocnienie tego układu

A. wynosi 0
B. pozostaje takie samo
C. zwiększa się
D. zmniejsza się
Ujemne sprzężenie zwrotne jest kluczowym mechanizmem w wielu układach elektronicznych, które pozwala na stabilizację wzmocnienia oraz redukcję zniekształceń sygnału. W przypadku zastosowania ujemnego sprzężenia zwrotnego, część sygnału wyjściowego jest przekazywana z powrotem do wejścia, co zmniejsza ogólne wzmocnienie układu. Przykładem zastosowania ujemnego sprzężenia zwrotnego mogą być wzmacniacze operacyjne, gdzie taka technika pozwala na uzyskanie stabilnych parametrów pracy, niezależnych od zmian warunków otoczenia czy elementów składowych. Dzięki temu, poprzez odpowiednie dostosowanie wartości rezystorów w układzie, można kontrolować stopień ujemnego sprzężenia zwrotnego, a tym samym wzmocnienie. W praktyce, wzmocnienie spada w wyniku zastosowania sprzężenia zwrotnego, co prowadzi do wyższej linearności odpowiedzi układu oraz zmniejszenia szumów, co jest zgodne z najlepszymi praktykami w inżynierii elektronicznej.

Pytanie 3

Jakie jest zastosowanie funkcji NTP w urządzeniach elektronicznych, które są połączone z Internetem?

A. Weryfikacji tożsamości użytkownika
B. Synchronizacji bieżącego czasu
C. Zmiany oprogramowania
D. Pobrania adresu IP z serwera DHCP
Funkcja NTP (Network Time Protocol) jest kluczowym protokołem w systemach komputerowych, który służy do synchronizacji czasu w urządzeniach podłączonych do sieci. Dzięki NTP, urządzenia mogą uzyskiwać dokładny czas z serwerów NTP, które są często zsynchronizowane z atomowymi zegarami, co zapewnia wysoką precyzję. Synchronizacja czasu jest fundamentalna w wielu aplikacjach, takich jak systemy bankowe, transakcje online, czy rejestracje zdarzeń w systemach monitorowania. Przykładowo, systemy bezpieczeństwa i audytów wymagają precyzyjnego znacznika czasu do prawidłowego funkcjonowania, aby móc jednoznacznie określić moment zdarzenia. NTP jest również zgodny z normami IETF, co czyni go standardem w dziedzinie synchronizacji czasu w sieciach komputerowych. Niezgodność czasowa może prowadzić do poważnych problemów, takich jak utrata danych czy błędy w komunikacji, co podkreśla znaczenie NTP w codziennym funkcjonowaniu złożonych systemów informatycznych.

Pytanie 4

Urządzenie, które pozwala na odbiór sygnałów o różnych częstotliwościach z dwóch lub więcej anten odbiorczych, tak aby te sygnały były przesyłane do odbiornika za pomocą jednego kabla, to

A. głowica odbiorcza
B. mieszacz
C. zwrotnica antenowa
D. dzielnik sygnału
Zwrotnica antenowa to kluczowe urządzenie w systemach odbioru sygnałów telekomunikacyjnych, które pozwala na efektywne zarządzanie sygnałami z różnych źródeł. Dzięki zwrotnicy możliwe jest jednoczesne odbieranie sygnałów o różnych częstotliwościach z dwóch lub więcej anten, co znacznie zwiększa elastyczność i wydajność systemów komunikacyjnych. Przykładem zastosowania zwrotnicy antenowej jest instalacja w systemach telewizyjnych, gdzie wiele anten odbierających sygnały z różnych nadajników jest podłączonych do jednego odbiornika. W praktyce, zwrotnica kieruje odpowiednie sygnały do odbiornika w sposób, który minimalizuje straty i zakłócenia. Dodatkowo, zwrotnice antenowe są zgodne z normami branżowymi, co zapewnia ich niezawodność i efektywność w trudnych warunkach odbioru. Zastosowanie zwrotnic w telekomunikacji jest istotne, ponieważ pozwala na optymalizację pasma częstotliwościowego oraz zapewnia lepszą jakość odbieranego sygnału, co jest kluczowe w kontekście nowoczesnych technologii, takich jak DVB-T czy DVB-S.

Pytanie 5

Które z poniższych urządzeń elektronicznych wymaga zaprogramowania po jego zainstalowaniu, zanim zacznie działać?

A. Telefon analogowy
B. Konwerter satelitarny
C. Domofon cyfrowy
D. Detektor gazu
Domofon cyfrowy to urządzenie, które po zainstalowaniu wymaga zaprogramowania, aby móc w pełni wykorzystać jego funkcje. Konfiguracja domofonu obejmuje ustawienie numerów mieszkańców, przypisanie dzwonków do poszczególnych lokali oraz skonfigurowanie opcji komunikacji z mieszkańcami. W zależności od modelu, programowanie może obejmować także dodawanie użytkowników do systemu, definiowanie uprawnień czy integrację z innymi systemami zabezpieczeń w budynku. Przykłatami zastosowania są nowoczesne budynki mieszkalne, gdzie domofon cyfrowy współpracuje z systemami monitoringu oraz automatyki budynkowej, co podnosi komfort i bezpieczeństwo mieszkańców. Dobry projekt systemu domofonowego uwzględnia standardy branżowe, takie jak systemy interkomowe zgodne z normą IEC 60947-5-1, co zapewnia wysoką jakość i niezawodność działania tego typu urządzeń.

Pytanie 6

W wzmacniaczu mocy działającym w klasie A prąd przez element aktywny tego wzmacniacza (tranzystor) przepływa przez czas

A. wynoszący połowę okresu sygnału sterującego
B. krótszy od pół okresu sygnału sterującego
C. krótszy niż pełen okres, lecz dłuższy niż pół okresu sygnału sterującego
D. wynoszący pełen okres sygnału sterującego
Wzmacniacze mocy pracujące w klasie A charakteryzują się tym, że element aktywny, zazwyczaj tranzystor, prowadzi prąd przez cały okres sygnału sterującego. Oznacza to, że w każdym cyklu sygnału, niezależnie od jego amplitudy czy kształtu, tranzystor jest aktywny przez pełny okres. To podejście zapewnia wysoką liniowość i małe zniekształcenia, co jest kluczowe w aplikacjach audio, gdzie jakość dźwięku jest priorytetem. W praktyce, wzmacniacze klasy A są często wykorzystywane w drobnych systemach audio, gdzie wymagane jest odtwarzanie sygnałów o wysokiej wierności. Przykładem mogą być wzmacniacze lampowe, które zyskały popularność wśród audiofilów właśnie dzięki jakości dźwięku. Wzmacniacze te są również stosowane w systemach RF (radio-frequency), gdzie ich stabilność i linearność są kluczowe. Znajomość działania wzmacniaczy klasy A jest niezbędna dla inżynierów pracujących w branży audio oraz telekomunikacyjnej, co czyni tę wiedzę niezwykle istotną w kontekście standardów branżowych.

Pytanie 7

Jakie parametry zasilacza są wymagane do zasilenia 3 metrów taśmy LED, jeżeli moc jednego metra taśmy wynosi 4,8 W, a napięcie zasilania taśmy LED to 12 V?

A. 12 V/1,2 A 6 W
B. 12 V/1,5 A 12 W
C. 12 V/1,5 A 15 W
D. 12 V/1,2 A 9 W
Aby prawidłowo zasilić 3 metry taśmy LED o mocy 4,8 W na metr i napięciu 12 V, konieczne jest dokładne obliczenie sumarycznej mocy oraz prądu, jaki będzie potrzebny. Całkowita moc taśmy wynosi 3 m x 4,8 W/m = 14,4 W. Zasilacz powinien mieć zapas mocy, aby zapewnić jego stabilne działanie, dlatego zaleca się wybór zasilacza o mocy minimum 15 W. Ponadto, prąd potrzebny do zasilenia taśmy LED można obliczyć korzystając ze wzoru: P = U * I, gdzie P to moc, U to napięcie, a I to prąd. W naszym przypadku, I = P/U = 14,4 W / 12 V = 1,2 A. Jednak ze względu na dodatkowe obciążenia oraz zabezpieczenie przed przeciążeniem, zasilacz powinien mieć wartość prądu wyższą, co czyni 1,5 A odpowiednim wyborem. Dlatego poprawna odpowiedź to 12 V/1,5 A 15 W. Stosowanie zasilaczy z nadmiarem mocy jest standardową praktyką w branży, co zapewnia dłuższą żywotność urządzeń oraz ich niezawodność.

Pytanie 8

Tranzystor pracuje w układzie wspólnego emitera. Podstawowym zadaniem zaznaczonego na rysunku kondensatora C w tym układzie jest

Ilustracja do pytania
A. realizacja pętli ujemnego sprzężenia zwrotnego.
B. odseparowanie składowej stałej napięcia wyjściowego.
C. minimalizacja wpływu tętnień napięcia zasilającego.
D. ograniczenie od góry pasma przenoszenia układu.
Wiesz, kondensator C w układzie wspólnego emitera to naprawdę ważny element. Jego rola polega na tym, żeby oddzielić składową stałą od zmiennej. Dzięki niemu sygnały zmienne mogą swobodnie przechodzić, a składowa stała zostaje zablokowana. To jest super istotne, zwłaszcza w wzmacniaczach. Jak masz różne stopnie wzmacniacza, to każdy z nich może działać na swoim punkcie pracy, co w praktyce przekłada się na lepszą jakość sygnału wyjściowego. A to ma znaczenie, zwłaszcza w audio, bo każdy chce mieć czystszy dźwięk. W projektach wzmacniaczy fajnie jest mieć takie kondensatory, bo pomagają w stabilizacji całego układu i zmniejszają zakłócenia. To jest zgodne z tym, co się robi w inżynierii elektronicznej. I wiesz, nowoczesne wzmacniacze operacyjne też często z tego korzystają, żeby wszystko działało jak najlepiej.

Pytanie 9

Do dokumentacji konstrukcyjnej nie zalicza się

A. karta kalkulacyjna
B. dokumentacja opisowa
C. rysunek techniczny elektryczny
D. rysunek techniczny mechaniczny
Karta kalkulacyjna nie jest elementem dokumentacji konstrukcyjnej, ponieważ jej głównym celem jest wspieranie analizy i obliczeń, a nie bezpośrednie przedstawienie informacji technicznych dotyczących budowy czy projektowania. Dokumentacja konstrukcyjna zwykle obejmuje rysunki techniczne, zarówno elektryczne, jak i mechaniczne, które przedstawiają szczegółowe informacje o konstrukcji, zastosowanych materiałach oraz technologiach. Rysunek techniczny elektryczny ilustruje układy elektryczne, a rysunek techniczny mechaniczny pokazuje detale mechaniczne, takie jak wymiary, tolerancje i materiały. Dokumentacja opisowa zawiera natomiast ogólne informacje oraz specyfikacje techniczne dotyczące projektu, co jest niezbędne do zrozumienia celu i wymagań konstrukcyjnych. Na podstawie norm, takich jak PN-EN 61082 dotycząca dokumentacji technicznej, możemy zauważyć, że odpowiednie dokumenty muszą być starannie przygotowane, aby zapewnić zgodność z wymaganiami projektowymi oraz bezpieczeństwem użytkowania. Przykład zastosowania tej wiedzy można zobaczyć w procesie projektowania nowych urządzeń, gdzie każda z tych dokumentacji odgrywa kluczową rolę w komunikacji pomiędzy zespołami inżynieryjnymi.

Pytanie 10

Stopniowo zmniejszający się zasięg działania bezprzewodowych urządzeń do zdalnego sterowania pracujących w paśmie 433 MHz może świadczyć o

A. usterce w obwodzie anteny nadajników
B. niewystarczającym napięciu zasilającym odbiornik
C. pogarszających się warunkach atmosferycznych
D. utonie pojemności baterii zasilającej nadajniki
Utrata pojemności baterii zasilającej nadajniki jest najczęstszym powodem zmniejszenia zasięgu bezprzewodowych urządzeń zdalnego sterowania, szczególnie w przypadku pracy w paśmie 433 MHz. Baterie z czasem tracą swoją wydajność, co prowadzi do obniżenia napięcia zasilającego nadajniki. W rezultacie, moc sygnału emitowanego przez nadajnik maleje, co skutkuje zmniejszeniem zasięgu, a w skrajnych przypadkach, utratą łączności z odbiornikiem. Przykładem zastosowania tej wiedzy może być regularne monitorowanie poziomu naładowania baterii urządzeń zdalnego sterowania, co pozwala na wcześniejsze wykrycie problemów z zasięgiem i wymianę baterii zanim dojdzie do całkowitej utraty funkcjonalności. Zgodnie z dobrymi praktykami branżowymi, zaleca się używanie wysokiej jakości baterii oraz regularne przeprowadzanie przeglądów urządzeń zdalnego sterowania, co może znacznie zwiększyć ich niezawodność oraz wydajność w dłuższej perspektywie.

Pytanie 11

Która z podanych cech nie charakteryzuje się właściwościami idealnego wzmacniacza operacyjnego?

A. Nieskończenie wielkie różnicowe wzmocnienie napięciowe
B. Nieskończenie wielka rezystancja wejściowa
C. Nieskończenie szeroki zakres przenoszenia
D. Nieskończenie wielka rezystancja wyjściowa
Nieskończona duża rezystancja wyjściowa jest cechą, która nie opisuje idealnego wzmacniacza operacyjnego. W idealnym wzmacniaczu operacyjnym zakłada się, że rezystancja wyjściowa powinna być nieskończenie mała, co pozwala na uzyskanie maksymalnej mocy wyjściowej i minimalizację strat sygnału przy obciążeniu. W praktyce oznacza to, że wzmacniacz operacyjny powinien być w stanie dostarczyć sygnał do obciążenia bez zauważalnej zmiany napięcia wyjściowego. Na przykład, w zastosowaniach audio, niską rezystancję wyjściową wzmacniacza operacyjnego zapewnia, że poziom sygnału nie ulega degradacji, co przekłada się na lepszą jakość dźwięku. Takie podejście jest zgodne ze standardami branżowymi, gdzie oczekuje się, że wzmacniacze operacyjne będą miały zdolność do pracy w różnych warunkach obciążenia. Rezystancja wyjściowa na poziomie zbliżonym do zera pomaga również w stabilizacji sygnału podczas pracy w pętli sprzężenia zwrotnego, co jest kluczowe w wielu aplikacjach analogowych oraz cyfrowych.

Pytanie 12

Zawarte w tabeli dane techniczne dotyczą czujki

Typ czujkiNC
Dwa tory detekcjiPIR+MW
Wymiary obudowy65 x 138 x 58 mm
Zakres temperatur pracy-40°C...+55°C
Zalecana wysokość montażu2,4 m
Maksymalny pobór prądu20 mA
Zasięg działania15 m

A. akustycznej.
B. zalania.
C. ruchu.
D. czadu.
Czujki ruchu są kluczowymi elementami nowoczesnych systemów zabezpieczeń, a ich działanie opiera się na technologii detekcji PIR (pasywnej podczerwieni) oraz MW (mikrofali). W przedstawionej tabeli, informacja o "dwóch torach detekcji PIR+MW" jasno wskazuje, że czujka jest zaprojektowana do wykrywania ruchu. Technologia PIR jest odpowiedzialna za detekcję zmian w promieniowaniu podczerwonym, co jest skuteczne w monitorowaniu obiektów emitujących ciepło, takich jak ludzie. Z kolei technologia mikrofalowa pozwala na wykrywanie ruchu w większym zakresie, co zwiększa niezawodność czujnika. Praktyczne zastosowanie czujek ruchu znajduje się w systemach alarmowych, automatyce budynkowej oraz inteligentnych domach, gdzie mogą służyć do automatycznego włączenia oświetlenia lub alarmu, gdy wykryją obecność. Zastosowanie takich czujników jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa i komfortu użytkowania, co czyni je niezbędnymi w nowoczesnych instalacjach.

Pytanie 13

W skład urządzenia pomiarowego w automatycznym systemie regulacji wchodzi

A. wyłącznie czujnik
B. przetwornik z członem wykonawczym
C. czujnik oraz przetwornik
D. przetwornik oraz regulator
Urządzenie pomiarowe w automatyce to kluczowa sprawa! Składa się z czujnika i przetwornika. Czujnik to ten, który mierzy różne wartości, jak temperatura czy ciśnienie, i przekształca je na sygnał elektryczny. Na przykład, termopara to fajny czujnik, który właśnie tak działa – mierzy temperaturę i daje napięcie, które jest proporcjonalne do tej temperatury. Przetwornik z kolei zmienia ten sygnał elektryczny tak, żeby regulator mógł go zrozumieć. W praktyce to oznacza, że sygnał analogowy, jak na przykład napięcie z czujnika, zamienia się w sygnał cyfrowy, który komputery mogą analizować. Zintegrowany układ czujnika i przetwornika daje super możliwości, jeśli chodzi o monitorowanie i kontrolowanie różnych procesów, co jest mega istotne w wielu branżach, na przykład w przemyśle chemicznym czy automatyce budynkowej. Fajnie jest wiedzieć, że odpowiednie dobieranie czujników i przetworników w automatyzacji zapewnia precyzję i niezawodność systemów regulacji.

Pytanie 14

Liczba 364 w systemie dziesiętnym po przekształceniu na kod BCD (ang. Binary-Coded Decimal) przyjmie formę

A. B3C6D4
B. 16C
C. 1101100
D. 0011 0110 0100
Odpowiedź 0011 0110 0100 jest poprawna, ponieważ reprezentuje liczbę 364 w systemie BCD, znanym jako kod dziesiętny binarny. W BCD każda cyfra liczby dziesiętnej jest kodowana oddzielnie jako czterobitowa wartość binarna. Dla liczby 364, cyfry 3, 6 i 4 są konwertowane na ich odpowiedniki binarne: 3 to 0011, 6 to 0110, a 4 to 0100. Po złączeniu tych wartości otrzymujemy 0011 0110 0100. Stosowanie kodu BCD jest powszechne w systemach cyfrowych, takich jak w zegarach cyfrowych, kalkulatorach i różnych urządzeniach elektronicznych, gdzie istotne jest bezpośrednie wyświetlanie cyfr dziesiętnych. Dzięki BCD możliwe jest łatwe przetwarzanie i reprezentowanie danych numerycznych w formacie zrozumiałym dla użytkowników. Ponadto, z punktu widzenia standardów, BCD jest często stosowany w interfejsach i protokołach komunikacyjnych, gdzie precyzyjne odwzorowanie cyfr dziesiętnych jest kluczowe.

Pytanie 15

Obniżenie stałej czasowej T w regulatorze PI skutkuje

A. podwyższeniem przeregulowania oraz obniżeniem czasu regulacji
B. obniżeniem przeregulowania oraz wydłużeniem czasu regulacji
C. obniżeniem przeregulowania oraz obniżeniem czasu regulacji
D. podwyższeniem przeregulowania oraz wydłużeniem czasu regulacji
Odpowiedź, że zmniejszenie stałej czasowej T w regulatorze PI prowadzi do zwiększenia przeregulowania oraz zmniejszenia czasu regulacji, jest poprawna. Zmniejszenie T skutkuje szybszą reakcją regulatora na zmiany w systemie, co przekłada się na krótszy czas regulacji. W praktycznych zastosowaniach inżynieryjnych, takich jak systemy automatyki przemysłowej, skrócony czas regulacji jest kluczowy dla osiągnięcia stabilności i wydajności procesu. Przykładowo, w systemach HVAC (ogrzewanie, wentylacja, klimatyzacja) zastosowanie regulatora PI z mniejszą stałą czasową T pozwala na szybsze dostosowywanie temperatury i wilgotności w pomieszczeniach, co zwiększa komfort użytkowników. Jednakże, zbyt szybka reakcja może prowadzić do wystąpienia przeregulowania, co jest zjawiskiem, w którym system przekracza wartość docelową przed ustabilizowaniem się, co może prowadzić do nieefektywności i nawet uszkodzenia sprzętu. Dlatego ważne jest, aby przy projektowaniu regulatorów PI kierować się zasadami dobrych praktyk inżynieryjnych, zapewniając odpowiednie dobieranie stałych czasowych w kontekście konkretnego zastosowania.

Pytanie 16

Na który z parametrów fali nośnej oddziałuje sygnał modulujący w modulacji PM?

A. Amplitudy
B. Częstotliwości
C. Fazy
D. Pulsacji
Modulacja fazy (PM) jest techniką, w której zmiana sygnału modulującego wpływa na fazę fali nośnej. W przeciwieństwie do modulacji amplitudy (AM) czy częstotliwości (FM), w PM istotne jest utrzymanie stałej amplitudy fali nośnej. Zmiana fazy umożliwia przesyłanie informacji w postaci skoków fazowych, co jest szczególnie korzystne w systemach telekomunikacyjnych, takich jak łączność bezprzewodowa czy systemy satelitarne. Przykładem zastosowania modulacji fazy jest standard komunikacyjny PSK (Phase Shift Keying), który jest często wykorzystywany w transmisji danych. W praktyce, modulacja PM pozwala na uzyskanie większej odporności na zakłócenia oraz lepszą efektywność widmową. W kontekście dobrych praktyk branżowych, modulacja fazy znajduje zastosowanie w systemach wymagających niskiego opóźnienia oraz wysokiej niezawodności przesyłania informacji, co czyni ją istotnym narzędziem w nowoczesnych technologiach komunikacyjnych.

Pytanie 17

Jakiego przyrządu pomiarowego powinno się użyć do zmierzenia wartości skutecznej napięcia prostokątnego o częstotliwości 100 Hz?

A. Woltomierza AC z opcją TRUE RMS
B. Woltomierza AC bez opcji TRUE RMS
C. Galwanometru do pomiaru napięcia zmiennego
D. Galwanometru do pomiaru napięcia stałego
Woltomierz AC z funkcją TRUE RMS jest odpowiednim narzędziem do pomiaru wartości skutecznej napięcia przebiegu prostokątnego, zwłaszcza przy częstotliwości 100 Hz. Funkcja TRUE RMS (Root Mean Square) pozwala na dokładne określenie wartości skutecznej napięcia, niezależnie od kształtu jego przebiegu. W przypadku przebiegów prostokątnych, które mają wyraźnie zdefiniowane wartości szczytowe, tradycyjne woltomierze AC bez funkcji TRUE RMS mogą dawać zafałszowane wyniki, ponieważ są zaprojektowane do pomiaru przebiegów sinusoidalnych. Użycie woltomierza z funkcją TRUE RMS jest zgodne z najlepszymi praktykami w pomiarach elektrycznych, co zapewnia rzetelność wyników. Przykładowo, w zastosowaniach przemysłowych, gdzie często spotyka się różnorodne kształty przebiegów napięcia, posługiwanie się woltomierzem TRUE RMS jest kluczowe dla precyzyjnej analizy parametrów elektrycznych urządzeń, takich jak silniki elektryczne czy generatory. Takie podejście zwiększa efektywność diagnostyki i pozwala na lepsze zarządzanie energią.

Pytanie 18

Elementem systemu antenowego, który pozwala na połączenie dwóch źródeł sygnału antenowego, aby przesłać je do telewizora za pomocą jednego przewodu antenowego, jest

A. rozgałęźnik
B. symetryzator
C. konwerter
D. zwrotnica
Zwolnica jest elementem instalacji antenowej, który pełni kluczową rolę w sumowaniu sygnałów z dwóch lub więcej źródeł antenowych. Jej głównym zadaniem jest umożliwienie przesyłania zintegrowanego sygnału do odbiornika telewizyjnego przez pojedynczy przewód, co znacząco upraszcza instalację i zmniejsza ilość używanego sprzętu. Przykładowo, w przypadku korzystania z dwóch anten - jednej na pasmo UHF i drugiej na VHF - zwrotnica łączy sygnały z obu anten, eliminując potrzebę stosowania oddzielnych kabli do każdej z nich. W praktyce, zwrotnice są projektowane w oparciu o zasady inżynierii radiowej, co zapewnia minimalizację strat sygnału oraz odpowiednią impedancję. Standardy branżowe, takie jak IEC 60728-11, regulują parametry techniczne zwrotnic, aby zapewnić ich skuteczność w różnych warunkach instalacyjnych. Prawidłowe użycie zwrotnicy pozwala na zwiększenie jakości odbioru sygnału oraz uproszczenie systemu kablowego, co jest szczególnie ważne w przypadku rozbudowanych instalacji antenowych w budynkach i na obiektach komercyjnych.

Pytanie 19

Multimetr prezentuje wyniki pomiarów w formacie trzech i pół cyfry. Jaka jest dokładność pomiaru napięcia tego multimetru w zakresie do 20 V?

A. 1 mV
B. 100 mV
C. 10 mV
D. 100 uV
Odpowiedź 10 mV jest prawidłowa, ponieważ multimetr z wyświetlaczem w formacie trzy i pół cyfry oznacza, że może wyświetlić do 1999 jednostek. W przypadku pomiaru napięcia na zakresie 20 V, rozdzielczość instrumentu oblicza się jako maksymalna wartość podzielona przez liczbę wyświetlanych jednostek. W tym przypadku, zakres pomiarowy wynosi 20 V, co przekłada się na 20 000 mV. Dzieląc tę wartość przez 1999, otrzymujemy około 10 mV, co stanowi najmniejszą zmianę napięcia, którą multimetr jest w stanie zarejestrować. Taka rozdzielczość jest szczególnie przydatna w zastosowaniach, gdzie precyzyjne pomiary napięcia są wymagane, jak w laboratoriach elektronicznych czy podczas kalibracji urządzeń. Użytkownicy multimetrów powinni zwracać uwagę na rozdzielczość przy wyborze zakresu pomiarowego, ponieważ wyższa rozdzielczość umożliwia dokładniejsze analizy i diagnozy.

Pytanie 20

Jakie IP może mieć drukarka sieciowa z wbudowanym interfejsem Ethernet (np. BROTHER HL-4040CN) działająca w prywatnej klasie C jako serwer druku, przy domyślnej masce podsieci 255.255.255.0?

A. 192.168.255.1
B. 198.162.1.1
C. 192.168.0.0
D. 192.168.0.255
Odpowiedź 192.168.255.1 jest poprawna, ponieważ mieści się w zakresie adresów IP przeznaczonych dla prywatnych sieci klasy C. Klasa C obejmuje adresy od 192.168.0.0 do 192.168.255.255, a domyślna maska podsieci 255.255.255.0 oznacza, że pierwsze trzy oktety adresu definiują sieć, a ostatni oktet służy do identyfikacji urządzeń w tej sieci. Adres 192.168.255.1 to adres, który można przydzielić do urządzenia w sieci 192.168.255.0, co czyni go idealnym dla drukarki sieciowej. Tego typu konfiguracja jest powszechnie stosowana w domowych i biurowych sieciach lokalnych, gdzie drukarki są udostępniane wielu użytkownikom. Warto również zauważyć, że adres 192.168.255.255 jest adresem rozgłoszeniowym dla tej podsieci, a 192.168.255.0 to adres identyfikujący samą sieć. Dlatego adres 192.168.255.1 jest w pełni funkcjonalny i zgodny z dobrymi praktykami zarządzania adresacją IP.

Pytanie 21

Do przetwornicy 12 V DC/ 230 V AC 1 000 W podłączono działający silnik indukcyjny o mocy 120 W. Silnik nie funkcjonuje prawidłowo. Żarówka o mocy 200 W podłączona do tej przetwornicy działa poprawnie. Zmierzona wartość napięcia wyjściowego przetwornicy wynosi 229 V. Na podstawie obserwacji oraz wyniku pomiaru można wnioskować, że

A. przetwornica dysponuje zbyt niską mocą, aby zasilić silnik
B. przetwornica nie generuje przebiegu sinusoidalnego
C. napięcie wyjściowe jest zbyt wysokie
D. akumulator zasilający przetwornicę jest wyczerpany
Silnik indukcyjny wymaga do prawidłowego działania napięcia o określonym przebiegu, najlepiej sinusoidalnym. Przetwornice z reguły powinny wytwarzać taki przebieg, aby urządzenia elektryczne mogły pracować bez zakłóceń. W przypadku silników indukcyjnych, ich działanie opiera się na zjawisku magnetycznym, które jest silnie uzależnione od jakości dostarczonego napięcia. Jeśli przetwornica nie generuje przebiegu sinusoidalnego, lecz na przykład przebieg prostokątny lub modyfikowany, może to prowadzić do nieprawidłowej pracy silnika. Przykładem praktycznym jest sytuacja, gdy używamy przetwornicy, aby zasilać urządzenia wymagające stabilnego napięcia, jak komputery czy silniki, ponieważ niewłaściwy przebieg może prowadzić do uszkodzeń urządzeń. Zgodnie z normami, takimi jak IEC 61000, jakość napięcia i jego przebieg są kluczowe dla zapewnienia niezawodności działania urządzeń. W przypadku silników indukcyjnych, które mogą być bardziej wrażliwe na jakość zasilania, zaleca się użycie przetwornic o czystym przebiegu sinusoidalnym.

Pytanie 22

Co oznacza skrót EPG w telewizorach cyfrowych?

A. system kontroli rodzicielskiej dla wybranych programów
B. moduł poprawiający czułość odbiornika
C. przewodnik programowy wyświetlany na ekranie
D. mechanizm eliminacji błędów w odbieranym sygnale
EPG, czyli Electronic Program Guide, to system, który dostarcza użytkownikom listę dostępnych programów telewizyjnych w formie graficznego interfejsu na ekranie telewizora. Dzięki temu narzędziu widzowie mogą łatwo przeszukiwać nadchodzące programy, sprawdzać ich opisy, a także ustalać przypomnienia o ulubionych audycjach. EPG działa na bazie danych, które są regularnie aktualizowane przez operatorów telewizyjnych, co pozwala na bieżące informowanie o dostępnych programach. W praktyce, korzystanie z EPG znacząco zwiększa komfort oglądania telewizji, pozwalając na łatwe planowanie seansów oraz eliminując konieczność przeszukiwania długich list kanałów. W branży telewizyjnej EPG stało się standardem, szczególnie w usługach cyfrowych i kablowych, oferując użytkownikom zintegrowane doświadczenie, które obejmuje także możliwość dostępu do treści na żądanie. EPG jest zgodne z różnymi standardami, takimi jak DVB, co zapewnia jego funkcjonalność na wielu platformach i urządzeniach.

Pytanie 23

Wykonano pomiary rezystancji Rab czujki ruchu typu NC połączonej w konfiguracji 2EOL/NC z rezystorami R1 = R2 = 1,1 kΩ zgodnie ze schematem. Na podstawie zamieszczonych w tabeli wyników pomiarów oraz schematu połączeń można stwierdzić, że

Stan
styków
naruszeniesabotażnaruszenie
i sabotaż
brak naruszenia
i sabotażu
Rab [kΩ]2,21,1

Ilustracja do pytania
A. uszkodzone są styki NC i TMP.
B. uszkodzony jest wyłącznie styk TMP.
C. uszkodzony jest wyłącznie styk NC.
D. czujka ruchu działa poprawnie.
Czujka ruchu działa poprawnie, co zostało potwierdzone pomiarami rezystancji R_ab wynoszącymi 1,1 kΩ w stanie braku naruszenia i sabotażu. Taka wartość odpowiada oczekiwanym wartościom dla sprawnych czujek tego typu, które powinny wykazywać stabilną rezystancję w czasie normalnej pracy. Dobrą praktyką w systemach zabezpieczeń jest regularne sprawdzanie rezystancji obwodów czujników, co pozwala na wczesne wykrywanie ewentualnych usterek. Na przykład, w instalacjach alarmowych, regularna konserwacja i testowanie czujników pozwala na zapewnienie ich niezawodności. Oprócz pomiarów rezystancji, warto również zwracać uwagę na inne parametry, takie jak czas reakcji czujnika czy jego zasięg działania. W przypadku czujek ruchu, zgodność z wartościami określonymi przez producenta jest kluczowa, ponieważ niewielkie odchylenia mogą wskazywać na problemy, które mogą zagrażać bezpieczeństwu. Dlatego też, w kontekście wymagań branżowych, zaleca się stosowanie odpowiednich protokołów testowania oraz dokumentowanie wyników, co przyczynia się do ogólnej poprawy efektywności systemów zabezpieczeń.

Pytanie 24

Po włożeniu płyty DVD do odtwarzacza, szuflada napędu najpierw się wsuwa, a następnie od razu wysuwa. Jaka może być najprawdopodobniejsza przyczyna tego problemu?

A. Luźny pasek zamykający szufladę lub styk krańcowy
B. Uszkodzony laser
C. Uszkodzony silnik przesuwu tacki
D. Uszkodzony silnik odtwarzacza płyty
Luźny pasek zamykania szuflady lub styk krańcowy to najczęstsze przyczyny problemów z tacką napędu DVD. W przypadku, gdy pasek zamykania jest luźny, mechanizm nie może prawidłowo zamknąć tacki, co prowadzi do jej natychmiastowego wysunięcia. Dobrą praktyką jest regularne sprawdzanie stanu pasków w urządzeniach mechanicznych oraz ich wymiana, gdy zauważymy oznaki zużycia. Ponadto, styki krańcowe pełnią kluczową rolę w sygnalizowaniu, czy tacka jest w prawidłowej pozycji. Jeśli styk nie działa poprawnie, system może odbierać błędne informacje i niepotrzebnie aktywować mechanizm wysuwania. W takich przypadkach warto zapoznać się z dokumentacją techniczną producenta, aby zrozumieć zasady działania mechanizmu oraz procedury diagnostyczne. Rozumienie tego mechanizmu jest szczególnie istotne dla techników zajmujących się naprawą sprzętu audio-wideo oraz dla użytkowników, którzy chcą samodzielnie rozwiązywać problemy z urządzeniami.

Pytanie 25

Według standardu przesyłania sygnału telewizyjnego w Polsce (64QAM, FEC 3/4), minimalna wartość sygnału na wyjściu z gniazda antenowego powinna wynosić

A. 42 dBμV
B. 26 dBμV
C. 30 dBμV
D. 48 dBμV
Wybór 48 dBμV jako minimalnego poziomu sygnału na wyjściu gniazda antenowego w systemie telewizyjnym opartym na modulacji 64QAM oraz kodowaniu FEC 3/4 jest zgodny z zaleceniami branżowymi. W przypadku sygnałów telewizyjnych, decydujące znaczenie ma nie tylko poziom sygnału, ale także jego jakość oraz odporność na zakłócenia. Standardy telewizyjne wskazują, że poziom 48 dBμV zapewnia odpowiednią rezerwę sygnału, co ma kluczowe znaczenie dla stabilności odbioru, zwłaszcza w warunkach nieidealnych, takich jak zjawiska atmosferyczne, przeszkody terenowe czy zakłócenia elektromagnetyczne. W praktyce, poziom sygnału powinien być dostosowany do specyfiki instalacji, a także do odległości od nadajnika. W przypadku wielu instalacji antenowych, poziom sygnału na wyjściu gniazda powinien również uwzględniać straty sygnału na drodze do odbiornika, dlatego 48 dBμV jest uważany za optymalny, aby zapewnić niezawodny i wysokiej jakości odbiór sygnału telewizyjnego w systemach cyfrowych. Warto również dodać, że przy ustawianiu anteny oraz projektowaniu systemów telewizyjnych, stosowanie się do standardów takich jak DVB-T (Digital Video Broadcasting - Terrestrial) oraz ich wymagań dotyczących poziomu sygnału jest kluczowe dla uzyskania optimalnych warunków pracy systemu.

Pytanie 26

W urządzeniach do zdalnego sterowania wykorzystuje się diody do przesyłania danych

A. RGB
B. IR
C. mikrofalowe
D. Zenera
Dioda podczerwieni to mega ważny element w zdalnym sterowaniu. Działa tak, że emituje promieniowanie, którego ludzkie oko nie widzi, ale urządzenia potrafią to wykryć. Można to zobaczyć w pilotach do telewizorów czy audio, gdzie dioda IR wysyła sygnały w postaci impulsów świetlnych. Dzięki temu można wygodnie sterować różnymi sprzętami. Są różne standardy, jak RC5 czy NEC, które mówią, jak kodować te sygnały. Dobrze to widać na przykładzie pilota telewizyjnego, który sprawia, że korzystanie z telewizora jest o wiele prostsze i przyjemniejsze.

Pytanie 27

Jakie są komponenty sprzętowe sieci komputerowych?

A. urządzenia dostępu
B. sterowniki urządzeń
C. oprogramowanie komunikacyjne
D. protokoły
Urządzenia dostępu stanowią kluczowy element infrastruktury sieci komputerowych, ponieważ umożliwiają użytkownikom oraz urządzeniom podłączenie się do sieci. Do najpopularniejszych urządzeń dostępu należą modemy, routery oraz punkty dostępu (access points). Modem łączy sieć domową z Internetem, router rozdziela połączenie internetowe na wiele urządzeń, a punkty dostępu rozszerzają zasięg sieci bezprzewodowej. W kontekście standardów, przykładami mogą być urządzenia zgodne z protokołami IEEE 802.11, które definiują normy dla sieci WLAN, oraz urządzenia obsługujące IPv4 i IPv6, które są niezbędne do komunikacji w Internecie. W praktyce, wybór odpowiednich urządzeń dostępu wpływa na efektywność i bezpieczeństwo sieci, co czyni je fundamentem każdej infrastruktury komputerowej.

Pytanie 28

Na podstawie analizy instalacji telewizyjnej nie jest możliwe określenie

A. uszkodzeń elektroniki konwertera
B. uszkodzenia powłoki kabla
C. zniekształceń lustra czaszy anteny
D. korozji czaszy anteny
Odpowiedź wskazująca, że na podstawie oględzin instalacji telewizyjnej nie można określić uszkodzenia elektroniki konwertera jest poprawna, ponieważ konwerter jest elementem, który przetwarza sygnał z anteny na sygnał, który może być odbierany przez telewizor. Uszkodzenia elektroniki konwertera, takie jak awarie układów scalonych czy uszkodzenia spowodowane przepięciami, mogą nie być widoczne podczas wizualnej inspekcji. W praktyce, aby ocenić stan elektroniki konwertera, konieczne jest przeprowadzenie testów parametrów sygnału oraz diagnostyki elektronicznej. Obejmuje to m.in. użycie specjalistycznych narzędzi, jak mierniki sygnału, które pozwalają na sprawdzenie jakości sygnału oraz analizy parametrów pracy konwertera. Zgodnie z dobrymi praktykami, zaleca się również regularne przeglądy i konserwację instalacji, aby zminimalizować ryzyko awarii elementów elektronicznych.

Pytanie 29

W dokumentacji urządzenia podano, że zakres napięcia zasilania wynosi od 10,8 V do 14,4 V. Wskaż odpowiednie ustawienie zasilacza w momencie uruchamiania tego układu.

A. 15,4 V
B. 10,1 V
C. 13,8 V
D. 18,7 V
Wybór napięcia zasilania 13,8 V jest właściwy, ponieważ mieści się w określonym zakresie napięcia zasilania urządzenia, wynoszącym od 10,8 V do 14,4 V. Ustalając napięcie na poziomie 13,8 V, zapewniamy stabilne zasilanie, które jest optymalne dla wielu urządzeń elektronicznych, w tym systemów telekomunikacyjnych i innych aplikacji wymagających precyzyjnego zasilania. Utrzymanie napięcia w tym zakresie nie tylko zapewnia prawidłową pracę układu, ale także minimalizuje ryzyko uszkodzenia komponentów. W praktyce, wiele zasilaczy ma możliwość precyzyjnego ustawienia napięcia, co pozwala na dostosowanie do specyficznych wymagań urządzenia. Zgodnie ze standardami branżowymi, takich jak IEC 60950, ważne jest, aby unikać zasilania urządzeń napięciem powyżej ich maksymalnych specyfikacji, co może prowadzić do uszkodzeń termicznych lub innych awarii. Dlatego też, wybór 13,8 V jako napięcia zasilania jest nie tylko poprawny, ale również praktycznie zalecany dla zapewnienia długotrwałej i niezawodnej pracy układu.

Pytanie 30

Jakie dwa rezystory połączone w sposób równoległy powinny zostać użyte, aby zastąpić uszkodzony rezystor o parametrach 200 Q / 0,5 W?

A. OMŁT 600 ? / 0,5 W i ML 300 ? / 0,5 W
B. OMŁT 600 ? / 0,25 W i ML 400 ? / 0,5 W
C. OMŁT 800 ? / 0,25 W i OMŁT 400 ? / 0,25 W
D. OMŁT 400 ? / 0,5 W i ML 300 ? / 0,5 W
Wybór rezystorów OMŁT 600 ? / 0,5 W oraz ML 300 ? / 0,5 W jest naprawdę dobry. Jak połączysz je równolegle, to dostajesz całkiem fajną wartość rezystancji, około 200 ?, która ładnie zastępuje uszkodzony rezystor. Z moich doświadczeń, przy połączeniu równoległym, liczy się całkowita rezystancja według wzoru: 1/R_total = 1/R1 + 1/R2. Tutaj to wygląda tak: 1/R_total = 1/600 + 1/300, co po przekształceniu daje R_total = 200 ?. Tak naprawdę, ważne jest też, żeby pamiętać o mocy znamionowej tych rezystorów. Połączenie dwóch z mocą 0,5 W jest wystarczające, bo całkowita moc, jaką będą brały, jest poniżej ich maksymalnych wartości. To, moim zdaniem, jest zgodne z zasadami, które mówią o dobieraniu elementów elektronicznych. Dzięki temu nie tylko zapewniasz bezpieczeństwo, ale i niezawodność układu. Co więcej, takie podejście pozwala lepiej zarządzać ciepłem, a to jest kluczowe w elektronice, żeby uniknąć przegrzewania.

Pytanie 31

Urządzenie, które pozwala na przesył sygnału telewizyjnego z kilku anten poprzez jeden kabel, to

A. rozgałęźnik
B. konwerter
C. symetryzator
D. zwrotnica
Zwolnica to urządzenie, które odgrywa kluczową rolę w systemach telewizyjnych, umożliwiając przesyłanie sygnału z wielu anten przez jedno łącze. Dzięki swojej konstrukcji, zwrotnica separuje sygnały z różnych źródeł, takich jak różne anteny, i kieruje je do jednego przewodu, co jest szczególnie przydatne w instalacjach, gdzie dostęp do wielu źródeł sygnału jest ograniczony. To rozwiązanie jest powszechne w budynkach wielorodzinnych oraz w rejonach z różnorodnym pokryciem sygnałem telewizyjnym. Przykładami zastosowania zwrotnic są instalacje w domach, gdzie użytkownicy chcą odbierać sygnał z kilku anten, np. naziemnych oraz satelitarnych, bez konieczności układania wielu przewodów. Standardy branżowe, takie jak DVB-T, nakładają wymagania dotyczące efektywności sygnału, a wykorzystanie zwrotnic pozwala na ich spełnienie, eliminując straty sygnału i zakłócenia. Ponadto, zwrotnice są projektowane z myślą o minimalizacji strat sygnałowych i zapewnieniu wysokiej jakości obrazu oraz dźwięku.

Pytanie 32

Tuner DVB-T pozwala na odbiór sygnałów

A. telewizji satelitarnej cyfrowej
B. telewizji naziemnej cyfrowej
C. telewizji satelitarnej analogowej
D. telewizji naziemnej analogowej
Tuner DVB-T (Digital Video Broadcasting - Terrestrial) jest urządzeniem zaprojektowanym do odbioru sygnałów cyfrowej telewizji naziemnej. W odróżnieniu od analogowej telewizji, która jest stopniowo wycofywana, DVB-T pozwala na odbiór sygnałów w wysokiej jakości, co jest możliwe dzięki kompresji danych oraz cyfrowemu przesyłaniu. W praktyce oznacza to, że użytkownicy mogą korzystać z lepszej jakości obrazu i dźwięku, a także z dodatkowych usług, takich jak napisy czy wiele kanałów w ramach jednego multipleksu. Standard DVB-T jest powszechnie stosowany w wielu krajach, co czyni go rozwiązaniem uniwersalnym. Przykładem zastosowania tunera DVB-T mogą być telewizory i dekodery, które umożliwiają odbiór kanałów telewizyjnych dostępnych w danym regionie bez potrzeby korzystania z kabli czy satelitów. Dodatkowo, tunery te są kompatybilne z różnymi formatami kodowania, co zwiększa ich funkcjonalność i elastyczność w użytkowaniu.

Pytanie 33

Jakiego typu procesor jest używany w wzmacniaczach z cyfrowym przetwarzaniem dźwięku?

A. CISC
B. RISC
C. AVR
D. DSP
Wzmacniacze z cyfrowym przetwarzaniem dźwięku (DSP - Digital Signal Processing) wykorzystują specjalizowane procesory, które są zoptymalizowane do realizacji skomplikowanych algorytmów manipulacji sygnałem. Procesory DSP charakteryzują się zdolnością do szybkiego przetwarzania danych w czasie rzeczywistym, co jest kluczowe w zastosowaniach audio, takich jak filtracja, kompresja, echo czy inny efekt dźwiękowy. Dzięki architekturze, która umożliwia równoległe przetwarzanie wielu operacji matematycznych, DSP potrafią efektywnie zarządzać dużymi zestawami danych audio. Przykłady zastosowań obejmują profesjonalne systemy nagłośnienia, gdzie jakość dźwięku ma kluczowe znaczenie, oraz w sprzęcie konsumenckim, takim jak procesory w soundbarach czy systemach hi-fi. Rekomendacje branżowe wskazują, że zastosowanie DSP w audio to standard w nowoczesnych urządzeniach, co potwierdza ich niezastąpioną rolę w obróbce dźwięku.

Pytanie 34

Do jakiego celu wykorzystuje się komparator?

A. filtrowania napięć
B. wzmacniania sygnału
C. porównania dwóch napięć
D. sumowania dwóch sygnałów
Komparator to kluczowe urządzenie elektroniczne używane w wielu aplikacjach inżynieryjnych, które pozwala na precyzyjne porównanie dwóch napięć. Działa on na zasadzie analizy napięcia wejściowego względem napięcia odniesienia, co skutkuje generowaniem sygnału wyjściowego, który informuje o tym, które napięcie jest wyższe. Przykładowe zastosowanie komparatorów obejmuje systemy automatyki, gdzie mogą być używane do detekcji poziomu napięcia w różnych układach zasilania. W praktycznych zastosowaniach, takich jak układy alarmowe czy systemy wykrywania, komparatory działają jako czujniki, które aktywują alarm w odpowiedzi na zmiany w napięciu, co zwiększa bezpieczeństwo. Zgodnie z najlepszymi praktykami branżowymi, komparatory powinny być projektowane z uwzględnieniem parametrów takich jak histereza, aby zapobiegać fałszywym sygnałom wyjściowym w przypadku fluktuacji napięcia. Warto również zaznaczyć, że komparatory są szeroko wykorzystywane w układach analogowych oraz cyfrowych, co czyni je fundamentalnym narzędziem w inżynierii elektronicznej.

Pytanie 35

Urządzenie, które sumuje sygnały o odmiennych częstotliwościach (pochodzące z różnych MUX’ów) z dwóch lub więcej anten odbiorczych, aby przesłać je do odbiornika przy pomocy jednego przewodu, to

A. zwrotnica antenowa
B. multiswitch
C. głowica antenowa
D. konwerter
Zwrotnica antenowa jest kluczowym urządzeniem w systemach telewizyjnych oraz radiowych, które umożliwia integrację sygnałów z wielu anten. Jej zastosowanie pozwala na efektywne przesyłanie różnorodnych sygnałów, pochodzących z różnych multipleksów (MUX’ów), jednym przewodem do odbiornika. W praktyce, zwrotnice antenowe są wykorzystywane w instalacjach domowych oraz większych systemach telewizyjnych, gdzie wymagane jest połączenie sygnałów z kilku źródeł, co znacząco redukuje liczbę potrzebnych kabli i ułatwia instalację. Z punktu widzenia branżowych standardów, zwrotnice antenowe muszą spełniać określone parametry dotyczące tłumienia sygnału, izolacji oraz pasma przenoszenia, aby zapewnić jak najwyższą jakość odbieranego sygnału. Dzięki zastosowaniu zwrotnic antenowych, możliwe jest również unikanie zakłóceń, co jest kluczowe w kontekście jakości odbioru sygnału. W związku z tym, są one szeroko rekomendowane w dokumentacji dotyczącej projektowania systemów antenowych.

Pytanie 36

Sieć komputerowa obejmująca obszar miasta to sieć

A. PAN
B. MAN
C. LAN
D. WAN
Odpowiedź 'MAN' (Metropolitan Area Network) jest poprawna, ponieważ odnosi się do sieci komputerowej o zasięgu miejskim, która łączy różne lokalizacje w obrębie jednego miasta lub aglomeracji. Sieci MAN są zazwyczaj używane do połączeń między biurami, uczelniami, a także dostawcami usług internetowych w danym regionie, co pozwala na efektywną wymianę danych. W praktyce, sieci te mogą wykorzystywać różnorodne technologie, takie jak Ethernet, Wi-Fi czy światłowody. Przykładem zastosowania sieci MAN może być system komunikacji miejskiej, który łączy różne punkty obsługi pasażerów oraz sieci zarządzania ruchem. W branży telekomunikacyjnej, MAN stanowi istotny element architektury sieci, umożliwiając zbudowanie infrastruktury, która wspiera usługi szerokopasmowe i wideo, zapewniając jednocześnie odpowiednią przepustowość i niskie opóźnienia. Zgodnie z dobrymi praktykami, projektowanie sieci MAN powinno uwzględniać aspekty skalowalności i niezawodności, co jest kluczowe dla zapewnienia ciągłości usług.

Pytanie 37

Jaką wartość napięcia odczytuje cyfrowy multimetr z aktywowaną funkcją True RMS na wyjściu obciążonego transformatora głośnikowego, który zasila szkolną instalację radiowęzłową, pokazując wartość 22,8 V?

A. Międzyszczytową
B. Średnią
C. Maksymalną
D. Skuteczną
Odpowiedź 'Skuteczna' jest prawidłowa, ponieważ multimetr cyfrowy z funkcją True RMS mierzy wartość skuteczną napięcia, co jest szczególnie istotne w przypadku sygnałów zmiennych, takich jak napięcie na wyjściu transformatora głośnikowego. Wartość skuteczna (RMS, Root Mean Square) określa równoważną wartość DC, która dostarcza tę samą moc do obciążenia. W praktyce oznacza to, że jeśli transformator głośnikowy zasilany jest napięciem zmiennym, wskazanie multimetru 22,8 V oznacza, że ta wartość skuteczna dostarcza równoważną moc do podłączonego obciążenia, co jest kluczowe w zastosowaniach audio. W branży audio i elektroakustycznej, pomiar wartości skutecznej jest standardem, ponieważ pozwala na dokładną ocenę wydajności systemu, zapewniając stabilność i jakość dźwięku. Dobrą praktyką jest stosowanie multimetrów z funkcją True RMS, które poprawnie mierzą napięcia w systemach, gdzie występują zniekształcenia sygnału, co jest często spotykane w instalacjach radiowęzłowych.

Pytanie 38

Jaką wartość prądu z akumulatora o napięciu 6 V zużywa przetwornica napięcia 6 VDC / 12 VDC przy założonym teoretycznie 100% współczynniku sprawności energetycznej, podczas zasilania czterech zewnętrznych kamer systemu monitoringu napięciem 12 V, z których każda wymaga prądu rzędu około 50 mA?

A. 0,4 A
B. 0,3 A
C. 0,2 A
D. 0,1 A
Odpowiedź 0,4 A jest poprawna, ponieważ możemy to obliczyć na podstawie całkowitego prądu pobieranego przez cztery kamery, z których każda pobiera 50 mA. Łączny prąd wynosi więc 4 kamery x 50 mA = 200 mA, co odpowiada 0,2 A. Ze względu na założoną 100% sprawność przetwornicy, musimy również uwzględnić, że przetwornica musi pobrać więcej prądu z akumulatora, aby zasilić kamery z wyższym napięciem. Przetwornice napięcia, w tym przypadku przetwornica DC-DC, działają na zasadzie konwersji energii, a ich sprawność nie może być niższa niż prąd wyjściowy. Dlatego, aby uzyskać 0,2 A na wyjściu 12 V, z akumulatora 6 V musimy pobrać 0,4 A. W praktyce w systemach monitoringu często korzysta się z takich przetwornic, aby zwiększyć napięcie dla urządzeń wymagających wyższego napięcia zasilania, jednocześnie musimy dbać o efektywność energetyczną systemu, co jest zgodne z najlepszymi praktykami w projektowaniu systemów elektronicznych.

Pytanie 39

Jaki jest standardowy poziom napięcia zasilania dla jednego urządzenia podłączonego do portu USB (pomijając USB Power Delivery)?

A. 5 V
B. 1,2 V
C. 12 V
D. 1,5 V
Standardowe napięcie zasilania dla pojedynczego urządzenia podłączonego do portu USB, wyłączając USB Power Delivery, wynosi 5 V. To napięcie zostało ustandaryzowane w specyfikacji USB 2.0, która jest powszechnie stosowana w urządzeniach elektronicznych. Przykładem zastosowania tego napięcia jest ładowanie telefonów komórkowych, tabletów i wielu innych urządzeń przenośnych. W przypadku portów USB-A oraz USB-C standardowe napięcie 5 V jest kluczowe dla zapewnienia odpowiedniego poziomu energii, który pozwala na funkcjonowanie urządzeń peryferyjnych, takich jak myszki, klawiatury czy drukarki. Ważne jest również, że napięcie to jest zgodne z zasadami bezpieczeństwa i normami, co przyczynia się do minimalizacji ryzyka uszkodzeń sprzętu. Przykładem różnic w zasilaniu USB może być USB Power Delivery, które umożliwia przesyłanie wyższych napięć i mocy, ale standardowe napięcie 5 V pozostaje podstawą dla większości codziennych zastosowań.

Pytanie 40

Jakie urządzenie należy zastosować do pomiaru indukcyjności cewki?

A. mostka RLC
B. analizatora
C. watomierza
D. omomierza
Odpowiedź 'mostek RLC' jest prawidłowa, ponieważ mostek RLC jest dedykowanym narzędziem do pomiaru indukcyjności, pojemności oraz rezystancji. Działa na zasadzie porównywania nieznanej wartości z wartościami referencyjnymi, co pozwala na uzyskanie dokładnych wyników. W praktyce, mostki RLC są często wykorzystywane w laboratoriach oraz w przemyśle elektronicznym do testowania komponentów, gdzie precyzyjne pomiary indukcyjności są kluczowe, np. w projektowaniu filtrów, transformatorów czy cewek. Standardy branżowe, takie jak normy IEC, podkreślają znaczenie stosowania odpowiednich narzędzi do pomiarów w celu zapewnienia jakości oraz bezpieczeństwa urządzeń elektronicznych. Dodatkowo, mostek RLC pozwala na przeprowadzenie analizy rezonansowej, co ma istotne znaczenie w zastosowaniach RF (radiofrekwencyjnych), gdzie zachowanie indukcyjności w określonych warunkach częstotliwościowych jest kluczowe dla prawidłowego funkcjonowania obwodów.