Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 5 czerwca 2025 14:50
  • Data zakończenia: 5 czerwca 2025 15:13

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Która z poniższych działań ocenia efektywność ochrony podstawowej przed porażeniem prądem elektrycznym?

A. Pomiar rezystancji izolacji przewodów
B. Weryfikacja stanu izolacji podłóg
C. Sprawdzanie wyłącznika różnicowoprądowego
D. Pomiar impedancji w pętli zwarciowej
Zrozumienie różnych metod oceny ochrony przed porażeniem prądem elektrycznym jest kluczowe dla zapewnienia bezpieczeństwa użytkowników instalacji elektrycznych. Badanie wyłącznika różnicowoprądowego polega na ocenie jego zdolności do wykrywania i odłączania prądu w przypadku wystąpienia różnicy między prądem wpływającym a wypływającym. Choć jest to istotne dla funkcjonowania ochrony, nie mierzy bezpośrednio skuteczności izolacji przewodów. Pomiar impedancji pętli zwarciowej koncentruje się na ocenieniu, jak szybko prąd zwarciowy może przepłynąć przez instalację w razie awarii, co z kolei dotyczy głównie ochrony przed zwarciami, a nie izolacji. Badanie stanu izolacji podłóg, mimo że ważne, odnosi się do aspektów związanych z bezpieczeństwem użytkowników, ale nie odnosi się do oceny izolacji przewodów elektrycznych bezpośrednio. Z tych powodów, odpowiedzi te nie mogą być uznane za prawidłowe w kontekście pytania, które dotyczy skuteczności ochrony przed porażeniem prądem elektrycznym w instalacjach elektrycznych. Dobrze zrozumiane zasady dotyczące tych metod mogą pomóc w uniknięciu niebezpiecznych sytuacji związanych z elektrycznością. Kluczowe jest, aby technicy i inżynierowie elektrycy stosowali właściwe metody pomiarowe, zgodne z aktualnymi standardami, by zapewnić kompleksowe bezpieczeństwo w każdej instalacji.

Pytanie 2

W jakiej sytuacji poślizg silnika indukcyjnego wyniesie 100%?

A. Wirnik silnika osiągnie prędkość wyższą niż prędkość synchroniczna
B. Silnik będzie zasilany prądem w przeciwnym kierunku
C. Gdy silnik będzie zasilany, jego wirnik pozostanie w bezruchu
D. Silnik będzie funkcjonować w trybie jałowym
W przypadku zasilania silnika przeciwprądem, wirnik nie jest w stanie rozwijać normalnej prędkości obrotowej, jednak nie prowadzi to do 100% poślizgu. Zasilanie przeciwprądem powoduje, że wirnik obraca się w kierunku przeciwnym do kierunku pola magnetycznego, co może prowadzić do inwersji momentu obrotowego, ale nie zatrzymuje wirnika całkowicie. W praktycznych zastosowaniach, takie zjawisko jest wykorzystywane do regeneracji energii, ale nie jest to sytuacja, która generuje 100% poślizgu. Kiedy wirnik zostaje dopędzony powyżej prędkości synchronicznej, jego prędkość obrotowa przekracza pole magnetyczne, co prowadzi do negatywnego poślizgu, a nie do 100%. Przykładem może być silnik, który wchodzi w stan asynchroniczny przy dużym obciążeniu. Z kolei pozostawienie silnika na biegu jałowym nie skutkuje 100% poślizgiem, ponieważ wirnik wciąż obraca się, choć z obniżoną prędkością. Takie błędne zrozumienie poślizgu może prowadzić do niepoprawnych diagnoz w przypadku usterek czy awarii, co w końcu przekłada się na zwiększenie kosztów eksploatacji oraz skrócenie żywotności urządzeń. W związku z tym, kluczowe jest zrozumienie, jak różne sytuacje wpływają na poślizg silnika oraz jakie są ich praktyczne implikacje w kontekście efektywności i bezpieczeństwa pracy urządzeń elektrycznych.

Pytanie 3

Które z oznaczeń posiada trzonek źródła światła przedstawiony na ilustracji?

Ilustracja do pytania
A. GU10
B. G9
C. MR16
D. E27
Odpowiedź GU10 jest prawidłowa, ponieważ trzonek źródła światła przedstawiony na ilustracji ma charakterystyczne cechy, które są typowe dla tego rodzaju gniazda. Trzonki GU10 mają dwie wypustki po bokach, które umożliwiają łatwe i pewne mocowanie w oprawach oświetleniowych poprzez system 'push and twist'. Jest to szczególnie przydatne w zastosowaniach, gdzie wymagana jest wysoka stabilność i łatwość wymiany źródła światła, jak w przypadku halogenów oraz niektórych modeli lamp LED. W praktyce trzonki GU10 są często wykorzystywane w oświetleniu wnętrz, takich jak sufitowe lampy halogenowe czy reflektory. Używanie trzonków zgodnych z normą GU10 jest zalecane, aby zapewnić bezpieczeństwo oraz efektywność energetyczną, co jest zgodne z najlepszymi praktykami branżowymi w oświetleniu. Dodatkowo, trzonki te często pozwalają na korzystanie z energooszczędnych rozwiązań, co jest istotne w kontekście ochrony środowiska i redukcji kosztów energii.

Pytanie 4

Izolację przewodu YDY 5x6 450/700 V należy kontrolować induktorem przy napięciu

A. 2500 V
B. 500 V
C. 1000 V
D. 250 V
Pomiar rezystancji izolacji przewodu YDY 5x6 450/700 V powinien być przeprowadzany przy użyciu induktora na napięciu 1000 V. Taki poziom napięcia jest zgodny z normami i standardami branżowymi, które zalecają używanie wyższych napięć w celu uzyskania dokładnych i wiarygodnych wyników pomiarów izolacji. Przy pomiarze rezystancji izolacji na napięciu 1000 V można skutecznie sprawdzić, czy izolacja przewodu wytrzymuje wymagane napięcia robocze oraz czy nie występują mikrouszkodzenia, które mogłyby prowadzić do awarii. Przykładem zastosowania pomiaru na takim poziomie napięcia jest testowanie instalacji elektrycznych w budynkach przemysłowych, gdzie zabezpieczenie przed porażeniem prądem jest kluczowe. Dobrą praktyką jest także przeprowadzanie takich pomiarów w cyklu konserwacyjnym, aby zapobiec ewentualnym uszkodzeniom i zapewnić bezpieczeństwo użytkowników.

Pytanie 5

Zgodnie z polskim prawem budowlanym, instalacje elektryczne oraz piorunochronne w obiektach mieszkalnych powinny być poddawane okresowym badaniom

A. co najmniej raz na 10 lat
B. co najmniej raz na 5 lat
C. raz na pół roku
D. raz na rok
Wybierając częstotliwość badania instalacji elektrycznej i piorunochronnej, można napotkać wiele nieporozumień związanych z niewłaściwymi podejściami do tego tematu. Odpowiedzi sugerujące, że kontrole powinny odbywać się raz na pół roku, raz na rok, czy co najmniej raz na 10 lat, mogą wynikać z mylnego wrażenia, że częstotliwość badań powinna być uzależniona od intensywności użytkowania instalacji lub warunków zewnętrznych. Niemniej jednak, jest to podejście z gruntu błędne, ponieważ przepisy prawa budowlanego i normy dotyczące bezpieczeństwa elektrycznego jasno określają, iż standardowy okres pomiędzy badaniami powinien wynosić co najmniej 5 lat. Częstsze kontrole, takie jak raz na pół roku lub raz na rok, mogą nie tylko generować niepotrzebne koszty, ale również prowadzić do zbytniego obciążenia specjalistów, co może skutkować wypaleniem zawodowym i negatywnym wpływem na jakość przeprowadzanych badań. Z kolei nawiązanie do 10-letniego okresu między przeglądami jest zupełnie niezgodne z aktualnymi zaleceniami i normami, co może prowadzić do poważnych zagrożeń, gdyż długi okres bez kontroli stwarza ryzyko, że niebezpieczne usterki lub degradacja instalacji mogą pozostać niezauważone. W praktyce, niewłaściwe podejście do okresowości badań może nie tylko zagrażać bezpieczeństwu użytkowników, ale również wpływać na odpowiedzialność prawną właścicieli budynków, którzy są zobowiązani do zapewnienia bezpieczeństwa instalacji elektrycznych.

Pytanie 6

Jaka jest minimalna wartość rezystancji izolacji przewodu, gdy mierzymy induktorem w sieci o napięciu znamionowym badanego obwodu U < 500 V?

A. < 0,5 MΩ
B. ≥ 0,25 MΩ
C. < 0,25 MΩ
D. ≥ 0,5 MΩ
Odpowiedź z wartością ≥ 0,5 MΩ jest całkiem w porządku. Zgodnie z normami, jak PN-EN 61557-1, dla przewodów w sieciach do 500 V, ta minimalna wartość rezystancji izolacji wynosi właśnie 0,5 MΩ. To ważne, bo pomaga utrzymać bezpieczeństwo i zmniejsza ryzyko porażenia prądem czy zwarć w instalacjach elektrycznych. W praktyce, zanim technicy zaczną pracować przy instalacjach, zawsze wykonują pomiary rezystancji, żeby sprawdzić, czy wszystko jest w porządku. Jakby okazało się, że wartość jest niższa niż 0,5 MΩ, to trzeba działać, na przykład wymienić uszkodzone przewody lub poprawić izolację. Regularne sprawdzanie rezystancji izolacji to też dobry sposób na konserwację, co jest całkiem zgodne z najlepszymi praktykami w branży.

Pytanie 7

Jaką liczbę klawiszy oraz zacisków ma typowy pojedynczy łącznik schodowy?

A. Dwa klawisze i cztery zaciski
B. Jeden klawisz i trzy zaciski
C. Jeden klawisz i cztery zaciski
D. Dwa klawisze i trzy zaciski
Klasyczny pojedynczy łącznik schodowy to urządzenie elektryczne, które służy do włączania i wyłączania oświetlenia w pomieszczeniach. Posiada jeden klawisz, który umożliwia obsługę światła oraz trzy zaciski. Zaciski te są niezbędne do prawidłowego podłączenia łącznika w obwodzie elektrycznym. W typowej konfiguracji, jeden z zacisków jest podłączony do źródła zasilania, a dwa pozostałe do obwodów oświetleniowych, co umożliwia kontrolę oświetlenia z jednego miejsca. Przykładowe zastosowanie to montaż łącznika w korytarzu, gdzie można włączać i wyłączać światło centralne. Zgodnie z normą PN-IEC 60669, stosowanie łączników schodowych powinno zapewniać bezpieczeństwo oraz wygodę użytkowania. Właściwe zrozumienie budowy łącznika pozwala na jego efektywne wykorzystanie w instalacjach elektrycznych, co jest kluczowe dla zapewnienia prawidłowego działania systemów oświetleniowych.

Pytanie 8

W elektrycznych instalacjach w mieszkaniach oraz budynkach użyteczności publicznej prace konserwacyjne nie obejmują

A. czyszczenia lamp oświetleniowych
B. czyszczenia urządzeń w rozdzielniach
C. montażu nowych punktów świetlnych
D. wymiany gniazd zasilających
Fajnie, że zauważyłeś, że montaż nowych wypustów oświetleniowych to nie konserwacja. Konserwacja polega głównie na utrzymaniu istniejących systemów w dobrym stanie, jak czyszczenie lamp czy wymiana starych gniazdek. Nowe wypusty wymagają więcej planowania i czasem też papierkowej roboty, żeby wszystko było zgodne z przepisami. W praktyce chodzi o to, żeby przedłużać żywotność tego, co już mamy, natomiast nowe instalacje to zupełnie inna bajka, która wiąże się z projektowaniem i dodatkowymi formalnościami.

Pytanie 9

Jakie mogą być przyczyny nadmiernego przegrzewania się wyłącznika nadmiarowo-prądowego podczas długotrwałego zasilania sprawnego odbiornika?

A. Słabo dokręcone złącza wyłącznika
B. Zbyt wysoka moc zasilanego odbiornika
C. Zbyt niski prąd znamionowy wyłącznika
D. Niewłaściwe napięcie zasilania
Nieodpowiednie napięcie zasilające, za mały prąd znamionowy wyłącznika oraz zbyt duża moc zasilanego odbiornika mogą wydawać się logicznymi przyczynami nadmiernego nagrzewania się wyłącznika nadmiarowo-prądowego, jednak nie są one bezpośrednio związane z tym zjawiskiem w kontekście długotrwałego zasilania sprawnego odbiornika. Niewłaściwe napięcie zasilające może prowadzić do problemów z wydajnością urządzeń, jednak niekoniecznie skutkuje to nadmiernym nagrzewaniem się samego wyłącznika. Prąd znamionowy wyłącznika jest zaprojektowany tak, aby tolerować określone wartości prądu, a jego nadmierne obciążenie może rzeczywiście prowadzić do przegrzewania, lecz w przypadku sprawnego odbiornika działającego w granicach norm, nie powinno to być problemem. Z kolei zbyt duża moc zasilanego odbiornika może sprawić, że wyłącznik zareaguje i zadziała, co ochroni obwód, a nie spowoduje jego przegrzania. W praktyce, najczęściej występującym problemem jest właśnie niewłaściwe dokręcenie zacisków, co podkreśla rolę odpowiedniego montażu i konserwacji w zapewnieniu bezpieczeństwa i efektywności systemów elektrycznych.

Pytanie 10

Podczas inspekcji świeżo zainstalowanej sieci elektrycznej nie ma konieczności weryfikacji

A. wartości natężenia oświetlenia w miejscach pracy
B. doboru oraz oznaczenia przewodów
C. układu tablic informacyjnych i ostrzegawczych
D. doboru zabezpieczeń i urządzeń
Odpowiedź dotycząca wartości natężenia oświetlenia na stanowiskach pracy jest prawidłowa, ponieważ podczas oględzin nowo wykonanej instalacji elektrycznej, kluczowe jest sprawdzenie elementów, które bezpośrednio wpływają na bezpieczeństwo oraz funkcjonalność instalacji. Wartości natężenia oświetlenia są kontrolowane w kontekście ergonomii i komfortu pracy, ale ich pomiar nie jest wymagany w ramach odbioru samej instalacji elektrycznej. Zgodnie z normą PN-EN 12464-1, która określa wymagania dotyczące oświetlenia miejsc pracy, wartości natężenia powinny być dostosowane do rodzaju wykonywanej pracy, jednak ich pomiar jest bardziej związany z późniejszym użytkowaniem przestrzeni niż z samą instalacją elektryczną. Ważne jest, aby w trakcie odbioru zwracać szczególną uwagę na dobór i oznaczenie przewodów, zabezpieczeń oraz aparatury, które mają kluczowe znaczenie dla prawidłowego funkcjonowania instalacji i zapewnienia bezpieczeństwa użytkowników, co potwierdzają standardy branżowe i przepisy prawa budowlanego.

Pytanie 11

Jakie parametry powinno się zmierzyć podczas przeglądu instalacji elektrycznej funkcjonującej w systemie TN-S?

A. Rezystancję przewodów ochronnych i rezystancję uziemienia
B. Impedancję pętli zwarcia oraz pomiar prądu upływu
C. Rezystancję izolacji przewodów oraz impedancję pętli zwarcia
D. Rezystancję izolacji przewodów oraz rezystancję uziemienia
Rezystancja izolacji przewodów i rezystancja uziemienia, mimo że są ważnymi parametrami w analizie instalacji elektrycznych, nie są wystarczające do przeprowadzenia kompleksowego przeglądu w sieci TN-S. Zmierzona rezystancja izolacji informuje o stanie izolacji, ale nie dostarcza informacji o zabezpieczających mechanizmach w instalacji, które są kluczowe dla ochrony przed skutkami zwarcia. Ponadto, rezystancja uziemienia sama w sobie nie jest wystarczająca do zapewnienia bezpieczeństwa, ponieważ nie uwzględnia wymagań dotyczących szybkiego wyłączenia w przypadku awarii. Z kolei mierzona rezystancja przewodów ochronnych oraz rezystancja uziemienia, chociaż istotne, mogą prowadzić do mylnego wniosku o kompletnym bezpieczeństwie systemu, nie uwzględniając przy tym dynamiki systemu oraz potencjalnych zagrożeń związanych z zanikami uziemienia. Zastosowanie tylko pomiaru impedancji pętli zwarcia jest niewystarczające, ponieważ nie zapewnia pełnej oceny stanu instalacji, a brak pomiaru rezystancji izolacji może prowadzić do niedostrzegania uszkodzeń, które z czasem mogą stać się poważnym zagrożeniem. Z tego powodu, przeprowadzając przegląd instalacji elektrycznej, nie można pomijać żadnego z wymienionych parametrów, co jest zgodne z najlepszymi praktykami branżowymi i obowiązującymi normami.

Pytanie 12

Jakie zabezpieczenie przed porażeniem prądem w przypadku pośredniego dotyku zostało wdrożone, gdy pojedynczy odbiornik jest zasilany za pośrednictwem transformatora o przekładni 230 V/230 V, który jest skonstruowany w taki sposób, że nie można doprowadzić do zwarcia między jego uzwojeniami?

A. Izolacja odbiornika
B. Podwójna lub wzmocniona izolacja
C. Izolowanie miejsca pracy
D. Ochronne obniżenie napięcia
Izolowanie stanowiska jest koncepcją, która w teorii ma na celu zabezpieczenie osób pracujących w pobliżu urządzeń elektrycznych. Jednak nie zapewnia ona pełnej ochrony przed dotykiem pośrednim. Działa głównie w sytuacjach, gdy istnieje bezpośredni kontakt z elementami, które mogą stwarzać zagrożenie, ale nie eliminuje ryzyka, jakie może wynikać z nieprawidłowego działania transformatora. Z kolei podwójna lub wzmocniona izolacja to rozwiązanie, które stosuje się w przypadku urządzeń, gdzie istnieje ryzyko porażenia prądem ze względu na łatwy dostęp do elementów pod napięciem. Mimo że takie podejście jest skuteczne w wielu zastosowaniach, w omawianym przypadku, gdy transformator jest odpowiednio skonstruowany, izolacja nie ma kluczowego znaczenia. Ochronne obniżenie napięcia to osobna strategia, która polega na zredukowaniu napięcia do poziomu, który nie stanowi zagrożenia. Jednakże również nie jest adekwatne w kontekście analizy transformatora z jedną przekładnią, ponieważ nie eliminuje ryzyka, a jedynie je minimalizuje. Głównym błędem w rozumowaniu mogą być założenia, że każda z tych metod jest wystarczająca w każdej sytuacji, co prowadzi do nieprawidłowych decyzji w zakresie ochrony przed porażeniem elektrycznym.

Pytanie 13

Jakie urządzenia powinny być zastosowane do wykonania pomiaru rezystancji w sposób techniczny?

A. woltomierza i amperomierza
B. watomierza oraz woltomierza
C. omomierza i amperomierza
D. omomierza oraz woltomierza
Podczas analizy błędnych odpowiedzi warto zauważyć, że pomiar rezystancji nie może być prawidłowo przeprowadzony wyłącznie za pomocą omomierza i woltomierza, ani tym bardziej wykorzystując watomierz. Omomierz jest narzędziem specjalistycznym przeznaczonym do bezpośredniego pomiaru rezystancji, jednak nie jest on wystarczający, aby uzyskać dokładne wyniki w przypadku bardziej skomplikowanych układów elektrycznych, gdzie istotne są zarówno napięcie, jak i prąd. Z kolei amperomierz sam w sobie nie mierzy rezystancji, lecz natężenie prądu, co w praktyce nie pozwala na bezpośrednie określenie wartości rezystancji bez znajomości napięcia. Wykorzystanie watomierza, który mierzy moc, również nie ma zastosowania w kontekście pomiarów rezystancji, ponieważ nie umożliwia obliczenia wartości R. Typowym błędem myślowym jest przeświadczenie, że jakiekolwiek urządzenie pomiarowe związane z elektrycznością może być użyteczne do pomiaru rezystancji, co jest mylnym rozumieniem zasady działania tych narzędzi. Aby uzyskać prawidłowe wyniki, niezbędne jest zrozumienie podstawowych zasad dotyczących relacji między napięciem, prądem i rezystancją oraz znajomość odpowiednich narzędzi do ich pomiaru.

Pytanie 14

Do czynności związanych z oględzinami instalacji elektrycznej nie należy

A. weryfikacja oznaczeń obwodów oraz zabezpieczeń
B. pomiar rezystancji uziemienia
C. ocena dostępności urządzeń, co umożliwia ich wygodną obsługę oraz eksploatację
D. sprawdzenie prawidłowości oznaczeń przewodów neutralnych oraz ochronnych
Pomiar rezystancji uziemienia jest kluczowym procesem, który ma na celu zapewnienie odpowiedniej ochrony przed skutkami piorunów i zakłóceń elektrycznych. Uziemienie jest istotnym elementem w instalacjach elektrycznych, który chroni urządzenia oraz osoby przed niebezpieczeństwami związanymi z przepięciami oraz zwarciami. Odpowiednia rezystancja uziemienia powinna być zgodna z normami, takimi jak PN-IEC 60364, które zalecają, aby wartość rezystancji uziemienia nie przekraczała 10 Ω dla urządzeń w warunkach normalnych. W praktyce, pomiar ten może być przeprowadzany przy użyciu specjalistycznych urządzeń, takich jak mierniki rezystancji uziemienia, które pozwalają na szybkie i dokładne określenie wartości rezystancji. Właściwe wykonanie tego pomiaru jest niezbędne do zapewnienia bezpieczeństwa użytkowników oraz trwałości instalacji elektrycznej. Przykładowo, w budynkach użyteczności publicznej, takich jak szpitale czy szkoły, regularne pomiary rezystancji uziemienia są wymagane przynajmniej raz w roku w celu spełnienia norm bezpieczeństwa.

Pytanie 15

W jakiej odległości od siebie powinny być umieszczone miejsca montażu dwóch sufitowych lamp w pomieszczeniu o wymiarach 2 m × 4 m, aby uzyskać optymalną równomierność oświetlenia?

A. 2,5 m
B. 1,5 m
C. 2,0 m
D. 1,0 m
Odpowiedź 2,0 m jest prawidłowa, ponieważ w pomieszczeniu o wymiarach 2 m × 4 m, rozmieszczenie sufitowych opraw oświetleniowych w odległości 2,0 m od siebie zapewnia optymalną równomierność natężenia oświetlenia. Przyjmuje się, że dla pomieszczeń o takich wymiarach, każda lampa powinna pokrywać obszar, który nie jest większy niż 2 m, aby zminimalizować cienie i zapewnić jednolite oświetlenie. W praktyce, rozmieszczając oprawy w odległości 2,0 m, uzyskuje się efekt, w którym każdy punkt w pomieszczeniu jest równomiernie oświetlony, co jest szczególnie istotne w kontekście ergonomii i komfortu użytkowników. Dobre praktyki w projektowaniu oświetlenia wskazują, że zachowanie odległości 2,0 m między oprawami pozwala na zminimalizowanie zjawiska nadmiarowego oświetlenia w jednym miejscu, co mogłoby prowadzić do efektu olśnienia. Ponadto, właściwe rozmieszczenie opraw wpływa także na efektywność energetyczną całego systemu oświetleniowego.

Pytanie 16

Jakie narzędzie powinno być wykorzystane do wykonania kilku połączeń w nowej instalacji elektrycznej na listwach zaciskowych śrubowych?

A. Wkrętarki akumulatorowej z odpowiednim bitem
B. Klucza nasadowego
C. Klucza imbusowego
D. Wiertarki udarowej z wiertłem widiowym
Wkrętarka akumulatorowa z dopasowanym bitem to narzędzie idealne do wykonywania wielu połączeń w listwach zaciskowych śrubowych. Dzięki swojej konstrukcji i możliwości łatwej wymiany bitów, wkrętarka umożliwia szybkie i efektywne dokręcanie śrub, co jest kluczowe w instalacjach elektrycznych, gdzie często zachodzi potrzeba wielokrotnego podłączania i odłączania przewodów. Standardy branżowe, takie jak normy IEC 60364 dotyczące instalacji elektrycznych, podkreślają konieczność stosowania odpowiednich narzędzi do zapewnienia bezpieczeństwa i jakości wykonania połączeń. Wkrętarka akumulatorowa pozwala również na pracę w trudno dostępnych miejscach, co zwiększa jej funkcjonalność. Przykładem zastosowania może być instalacja oświetlenia, gdzie konieczne jest podłączenie wielu przewodów do jednego punktu, a użycie wkrętarki znacznie przyspiesza ten proces, zmniejszając ryzyko uszkodzenia elementów oraz poprawiając komfort pracy.

Pytanie 17

Przedstawiony na rysunku przełącznik funkcji przyrządu do pomiaru parametrów instalacji elektrycznych ustawiono na pomiar

Ilustracja do pytania
A. ciągłości przewodów.
B. rezystancji izolacji.
C. impedancji pętli zwarcia.
D. rezystancji uziemienia.
Prawidłowa odpowiedź to rezystancja uziemienia, co zostało wskazane przez ustawienie przełącznika na pozycję "RE". Pomiar rezystancji uziemienia jest kluczowy dla zapewnienia bezpieczeństwa instalacji elektrycznych. Uziemienie chroni użytkowników przed skutkami przepięć oraz zapewnia stabilność układu elektrycznego. W praktyce, pomiar rezystancji uziemienia pozwala na ocenę skuteczności systemu uziemiającego, co jest szczególnie istotne w obiektach przemysłowych, gdzie bezpieczeństwo jest kluczowe. Niskie wartości rezystancji uziemienia, zalecane w normach takich jak PN-IEC 60364-5-54, powinny wynosić poniżej 10 ohmów. Regularne pomiary są niezbędne do weryfikacji, czy system uziemiający spełnia te normy, a ich stosowanie w praktyce zapobiega zagrożeniom związanym z przepięciami i może ochronić przed pożarami czy porażeniem prądem.

Pytanie 18

Podłączenie odbiornika II klasy ochronności do gniazda z bolcem ochronnym skutkuje zadziałaniem wyłącznika różnicowoprądowego, natomiast podłączenie do innego gniazda w tym samym obwodzie nie wywołuje reakcji zabezpieczenia, a odbiornik działa normalnie. Jakiego rodzaju usterkę można stwierdzić w pierwszym gnieździe?

A. Zamieniony przewód ochronny z neutralnym
B. Odłączony przewód ochronny
C. Uszkodzona izolacja przewodu fazowego
D. Zamieniony przewód fazowy z neutralnym
Wybór odpowiedzi dotyczący "Odłączonego przewodu ochronnego" może wydawać się logiczny, jednak nie uwzględnia on całego kontekstu sytuacji. Gdyby przewód ochronny był odłączony, to odbiornik II klasy ochronności po podłączeniu do gniazda powinien zadziałać normalnie, ponieważ urządzenia tej klasy nie wymagają przewodu ochronnego do prawidłowego działania. W takim przypadku wyłącznik różnicowoprądowy nie zadziałałby, co wyklucza tę możliwość. Podobnie, odpowiedź sugerująca "Uszkodzoną izolację przewodu fazowego" jest również mylną interpretacją. Uszkodzona izolacja mogłaby prowadzić do upływu prądu i zadziałania wyłącznika różnicowoprądowego, a nie do jego zadziałania wyłącznie w przypadku konkretnego gniazda. Odpowiedź o "Zamienionych przewodach fazowym z neutralnym" również nie jest poprawna, ponieważ wymiana tych przewodów nie wywołałaby takiego efektu zadziałania zabezpieczenia tylko w jednym gniazdku, a nie w pozostałych. W przypadku zamiany przewodów fazowego i neutralnego, mogłoby dojść do poważnych problemów z bezpieczeństwem, ale nie zadziałałby wyłącznik różnicowoprądowy w opisany sposób. Te błędne koncepcje często wynikają z braku zrozumienia podstawowych zasady działania systemów elektrycznych oraz roli, jaką odgrywają różne przewody w zapewnieniu bezpieczeństwa instalacji.

Pytanie 19

Które z podanych wskazówek nie odnosi się do realizacji nowych instalacji elektrycznych w lokalach mieszkalnych?

A. Obwody oświetleniowe należy oddzielić od gniazd wtykowych
B. Odbiorniki o dużej mocy powinny być zasilane z osobnych obwodów
C. Gniazda wtykowe w każdym pomieszczeniu powinny pochodzić z wydzielonego obwodu
D. Gniazda wtykowe w kuchni powinny być podłączane do oddzielnego obwodu
Wymienione zależności, które sugerują różne podejścia do instalacji elektrycznych w pomieszczeniach mieszkalnych, mogą wydawać się rozsądne, jednak w rzeczywistości opierają się na błędnych założeniach. Na przykład, zasilanie gniazd wtykowych w kuchni z osobnego obwodu jest praktyką zalecaną ze względu na konieczność obsługi urządzeń o dużym poborze mocy, takich jak kuchenki czy zmywarki. Odbiorniki dużej mocy powinny być zasilane z wydzielonych obwodów, aby zapobiec przeciążeniom i zwiększyć bezpieczeństwo użytkowania. Oddzielenie obwodów oświetleniowych od gniazd wtykowych również ma swoje uzasadnienie, ponieważ pozwala na niezależne zarządzanie oświetleniem i zasilaniem urządzeń, co w praktyce ułatwia diagnostykę i naprawy awarii. Z perspektywy normatywnej, wszystkie te podejścia są zgodne z europejskimi standardami bezpieczeństwa instalacji elektrycznych, które mają na celu minimalizację ryzyka związanego z użytkowaniem energii elektrycznej. Błędne wnioski wynikają często z niepełnego zrozumienia zasad projektowania instalacji elektrycznych i mogą prowadzić do sytuacji niebezpiecznych, takich jak przeciążenia, które w skrajnych przypadkach mogą skutkować pożarami. Dlatego tak ważne jest, aby przestrzegać sprawdzonych zasad i standardów, aby zapewnić zarówno komfort, jak i bezpieczeństwo użytkowników instalacji elektrycznych.

Pytanie 20

Na podstawie danych katalogowych przedstawionych w tabeli określ, którym wyłącznikiem należy zastąpić uszkodzony wyłącznik różnicowoprądowy P304 25/0,03 A w instalacji mieszkaniowej trójfazowej o napięciu znamionowym 230/400 V.

Prąd znamionowy25 A25 A25 A25 A
Liczba biegunów2P4P4P2P
Znamionowy prąd różnicowy30 mA30 mA300 mA300 mA
Typ wyłączaniaACACACAC
Znamionowe napięcie izolacji500 V500 V500 V500 V
Częstotliwość znamionowa50 Hz50 Hz50 Hz50 Hz
Wytrzymałość elektryczna (liczba cykli)2 0002 0002 0002 000
Temperatura pracy-25°C ÷ 40°C-25°C ÷ 40°C-25°C ÷ 40°C-25°C ÷ 40°C
Znamionowa zwarciowa zdolność łączeniowa15 kA15 kA15 kA15 kA
A.B.C.D.

A. D.
B. A.
C. C.
D. B.
Wybranie odpowiedzi B. jest właściwe, ponieważ wyłącznik różnicowoprądowy P304 25/0,03 A ma specyfikację prądu znamionowego 25 A oraz prądu różnicowego 30 mA. W kontekście instalacji mieszkaniowych trójfazowych, istotne jest, aby odpowiedni wyłącznik miał te same parametry. Wyłącznik oznaczony literą B. również spełnia te normy: 25 A prądu znamionowego i 30 mA prądu różnicowego, co zapewnia efektywne zabezpieczenie przed porażeniem elektrycznym oraz przeciążeniem. Dodatkowo, typ wyłączania AC jest zgodny z typowymi wymaganiami dla instalacji domowych, gdzie obciążenia są zwykle jednofazowe, a występowanie prądów różnicowych jest minimalne. Zastosowanie wyłączników różnicowoprądowych zgodnych z tymi parametrami nie tylko zwiększa bezpieczeństwo użytkowników, ale także spełnia standardy określone w normach PN-EN 61008-1, które regulują kwestie instalacji elektrycznych. Znajomość tych zasad jest kluczowa dla każdego elektryka, aby zapewnić właściwe działanie instalacji elektrycznych.

Pytanie 21

Jakie są wartości znamionowe prądu oraz liczba biegunów wyłącznika oznaczonego symbolem S194 B3?

A. 19 A i 3 bieguny
B. 4 A i 3 bieguny
C. 9 A i 4 bieguny
D. 3 A i 4 bieguny
Wyłącznik oznaczony symbolem S194 B3 posiada prąd znamionowy równy 3 A oraz 4 bieguny. Jest to typowy wyłącznik stosowany w instalacjach elektrycznych, który może być użyty do ochrony obwodów przed przeciążeniami i zwarciami. Prąd znamionowy 3 A wskazuje, że urządzenie jest przeznaczone do zastosowań o niewielkim obciążeniu, co czyni je idealnym rozwiązaniem w przypadku małych instalacji domowych lub biurowych, gdzie nie zachodzi potrzeba stosowania wyłączników o wyższych prądach. Z kolei cztery bieguny oznaczają, że wyłącznik może działać w obwodach trójfazowych, co jest istotne w bardziej skomplikowanych układach elektrycznych. W praktyce, przy doborze wyłącznika, należy zawsze uwzględniać zarówno prąd znamionowy, jak i liczbę biegunów, aby zapewnić odpowiednią ochronę i bezpieczeństwo. Przykładem zastosowania tego typu wyłącznika jest instalacja w małych warsztatach czy laboratoriach, gdzie używane są urządzenia o niskim poborze mocy.

Pytanie 22

W jakim typie układu sieciowego możemy spotkać przewód PEN?

A. TT
B. TN-S
C. IT
D. TN-C
Odpowiedź TN-C jest prawidłowa, ponieważ w tym układzie sieciowym przewód PEN łączy funkcje przewodu neutralnego (N) i ochronnego (PE). Układ TN-C jest stosowany w wielu instalacjach elektrycznych, w tym w budynkach użyteczności publicznej oraz w przemyśle, gdzie zapewnia zarówno transport energii, jak i ochronę przed porażeniem elektrycznym. Kluczowym aspektem tego układu jest to, że przewód PEN jest wspólny dla wielu odbiorników i umożliwia efektywne prowadzenie instalacji przy ograniczeniu liczby przewodów. Zgodnie z normą PN-EN 60364, przewód PEN musi być odpowiednio zaprojektowany i wykonany, aby zapewnić wysoką niezawodność oraz bezpieczeństwo użytkowników. W praktyce stosowanie przewodu PEN w układzie TN-C jest również korzystne z punktu widzenia kosztów, ponieważ ogranicza ilość potrzebnych przewodów, co przekłada się na mniejsze wydatki materiałowe oraz prostotę instalacji. Na przykład w wielu budynkach mieszkalnych stosuje się układ TN-C, co pozwala na wydajne i bezpieczne zasilanie różnych urządzeń elektrycznych.

Pytanie 23

Na którym rysunku przedstawiono zgodne ze schematem połączenie układu sterowania oświetleniem?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Schemat C został zaprezentowany w sposób, który odpowiada zasadom prawidłowego montażu instalacji elektrycznych. W tym schemacie przewód fazowy (L) jest właściwie podłączony do jednego z łączników, co umożliwia sterowanie oświetleniem w sposób zgodny z normami. Przewód neutralny (N) nie jest połączony z łącznikami, co jest zgodne z dobrymi praktykami w instalacjach oświetleniowych, gdzie przewody neutralne zazwyczaj podłączane są bezpośrednio do źródła światła lub rozdzielnicy. Taki układ zapewnia bezpieczeństwo oraz minimalizuje ryzyko porażenia prądem. Zastosowanie schematu C w praktyce pozwala na efektywne i bezpieczne sterowanie oświetleniem, co jest kluczowe w projektowaniu oraz wykonawstwie instalacji elektrycznych. Warto również zwrócić uwagę na konieczność przestrzegania odpowiednich norm, takich jak PN-IEC 60364, które regulują sposób wykonywania instalacji elektrycznych, aby były one zarówno funkcjonalne, jak i bezpieczne dla użytkowników.

Pytanie 24

Który z podanych odbiorników energii elektrycznej charakteryzuje się najkorzystniejszym współczynnikiem mocy w aspekcie ekonomicznym?

A. Wzbudnik indukcyjny
B. Silnik asynchroniczny
C. Piec oporowy
D. Silnik uniwersalny
Wybór silnika uniwersalnego, wzbudnika indukcyjnego czy silnika asynchronicznego jako bardziej korzystnego z punktu widzenia współczynnika mocy jest mylny, ponieważ te urządzenia charakteryzują się istotnymi stratami energii i niższym współczynnikiem mocy, zazwyczaj wynoszącym od 0,6 do 0,9. Silnik uniwersalny, używany głównie w zastosowaniach domowych, takich jak odkurzacze, ma zdolność do pracy zarówno na prądzie stałym, jak i zmiennym, lecz jego zmienna charakterystyka obciążenia oraz niskie wartości współczynnika mocy w niektórych stanach roboczych obniżają jego efektywność energetyczną. Wzbudnik indukcyjny, stosowany głównie w aplikacjach wymagających regulacji, takich jak prądnice, może generować znaczące straty energii ze względu na zjawiska indukcyjne, co również wpływa na jego korzystność ekonomiczną. Silnik asynchroniczny, popularny w przemyśle, ma relatywnie dobry współczynnik mocy, ale wciąż nie osiąga efektywności pieca oporowego, a jego zastosowania często wymagają dodatkowych układów kompensacyjnych, które zwiększają koszty. Wybierając odpowiednie urządzenie, warto zwrócić uwagę na jego zastosowanie, a także na możliwe straty energii, które mogą znacząco wpłynąć na całkowity koszt eksploatacji.

Pytanie 25

W celu naprawy kabla przyłączeniowego, który został uszkodzony podczas prac ziemnych i został ułożony bez zapasu, potrzebne są

A. odcinek kabla oraz zgrzewarka
B. dwie mufy kablowe i odcinek kabla
C. odcinek kabla zakończony głowicami
D. mufa rozgałęźna oraz odcinek kabla
Odpowiedź, która wskazuje na użycie dwóch muf kablowych i odcinka kabla, jest prawidłowa, ponieważ podczas naprawy uszkodzonego kabla przyłączeniowego, kluczowe jest zapewnienie odpowiedniego połączenia i izolacji. Mufy kablowe pozwalają na skuteczne połączenie dwóch odcinków kabla, co jest szczególnie istotne w przypadku, gdy uszkodzenie występuje w obrębie zasięgu istniejącego kabla. Dwie mufy są potrzebne, aby połączyć nowy odcinek kabla z istniejącymi końcami kabla, co zapewnia, że cała instalacja będzie pracować prawidłowo. Praktycznym przykładem zastosowania tego rozwiązania może być sytuacja, w której kabel został uszkodzony przez maszynę budowlaną. W takim przypadku profesjonalne podejście obejmuje nie tylko wymianę uszkodzonego odcinka, ale również użycie muf w celu zapewnienia wodoodporności i ochrony przed uszkodzeniami mechanicznymi. Zgodnie z normami IEC 60502 oraz PN-EN 50393, stosowanie muf kablowych w połączeniach kablowych jest standardową praktyką, co dodatkowo potwierdza słuszność tego rozwiązania.

Pytanie 26

Który z łączników elektrycznych stosowanych do zarządzania oświetleniem w instalacjach budowlanych dysponuje czterema oddzielnymi zaciskami przyłączeniowymi oraz jednym klawiszem do sterowania?

A. Krzyżowy
B. Jednobiegunowy
C. Schodowy
D. Świecznikowy
Łącznik krzyżowy to całkiem sprytne urządzenie, które używamy w instalacjach elektrycznych do sterowania światłem z różnych miejsc. Ma cztery zaciski, więc można do niego podłączyć dwa łączniki schodowe i klawisz krzyżowy. Dzięki temu można włączać i wyłączać światło aż z trzech miejsc, co jest przydatne w dużych pomieszczeniach czy korytarzach, gdzie czasem ciężko dojść do włącznika. Używanie łączników krzyżowych według norm, takich jak PN-IEC 60669-1, nie tylko sprawia, że wszystko działa jak należy, ale zapewnia też bezpieczeństwo. Lokalne przepisy mówią, żeby stosować takie rozwiązania tam, gdzie potrzebujemy lepszej kontroli nad oświetleniem. Przykładowo, w korytarzu w domu mamy jeden włącznik przy drzwiach, drugi na schodach, a jak potrzeba to można dorzucić jeszcze jeden w innym miejscu, żeby było wygodniej.

Pytanie 27

W systemach sieciowych IT przy podwójnym uziemieniu, z zastosowaniem urządzenia różnicowoprądowego i napięciu izolacji 230/400 V, czas wyłączenia powinien wynosić - dla obwodu bez żyły neutralnej oraz dla obwodu z żyłą neutralną?

A. 0,8 s i 0,4 s
B. 0,4 s i 0,8 s
C. 0,2 s i 0,4 s
D. 0,4 s i 0,2 s
Wybór odpowiedzi, która nie odpowiada rzeczywistym wymaganiom czasów wyłączenia w układach sieci typu IT, może prowadzić do poważnych konsekwencji w zakresie bezpieczeństwa. Czas wyłączenia w obwodach z przewodem neutralnym rzeczywiście powinien wynosić 0,4 s, jednak czas dla obwodu bez przewodu neutralnego nie powinien być skracany poniżej 0,8 s. Odpowiedzi sugerujące 0,2 s oraz 0,4 s dla obwodu bez przewodu neutralnego błędnie interpretują zasady ochrony w układach elektrycznych, co może skutkować wydłużonym czasem reakcji urządzenia ochronnego w razie wystąpienia zagrożenia. Podobne błędy myślowe wynikają z niepełnego zrozumienia zjawisk zachodzących w obwodach elektrycznych. W przypadku awarii, krótszy czas wyłączenia niż wymagany może nie zapewnić skutecznej ochrony, co stwarza ryzyko porażenia prądem dla użytkowników. Ponadto, nieodpowiednie wartości czasów wyłączenia mogą prowadzić do niewłaściwego doboru urządzeń zabezpieczających oraz niezgodności z obowiązującymi normami, takimi jak IEC 60364. W kontekście projektowania instalacji elektrycznych, kluczowe jest stosowanie się do sprawdzonych standardów oraz dobrych praktyk, aby zapewnić bezpieczeństwo oraz niezawodność systemów elektrycznych.

Pytanie 28

Przedstawiona na ilustracji wstawka kalibrowa bezpiecznika przeznaczona jest do instalacji o napięciu znamionowym

Ilustracja do pytania
A. co najmniej 500 V i wkładek topikowych o prądzie znamionowym co najmniej 63 A
B. co najmniej 500 V i wkładek topikowych o prądzie znamionowym nie przekraczającym 63 A
C. nie wyższym niż 500 V i wkładek topikowych o prądzie znamionowym nie przekraczającym 63 A
D. nie wyższym niż 500 V i wkładek topikowych o prądzie znamionowym co najmniej 63 A
Wybrana odpowiedź jest poprawna, ponieważ na ilustracji przedstawiona jest wstawka kalibrowa bezpiecznika z oznaczeniami "63 A" oraz "500 V". Te oznaczenia wskazują, że wstawka jest przeznaczona do instalacji, w których napięcie znamionowe nie może przekraczać 500 V oraz dla wkładek topikowych o prądzie znamionowym nie przekraczającym 63 A. W praktyce, zastosowanie odpowiednich bezpieczników jest kluczowe dla zapewnienia bezpieczeństwa w systemach elektroenergetycznych oraz ochrony przed przeciążeniem i zwarciem. Standardy takie jak PN-EN 60269, które dotyczą bezpieczników, określają wymagania dotyczące ich instalacji oraz właściwości, co pozwala na ich prawidłowe zastosowanie w różnych warunkach. W przypadku stosowania wyższych napięć lub większych prądów, konieczne jest stosowanie innych typów wkładek, co zwiększa ryzyko uszkodzeń i zagrożeń. Dlatego tak ważne jest, aby podczas wyboru zabezpieczeń kierować się wskazaniami producentów oraz normami branżowymi.

Pytanie 29

Przystępując do działań konserwacyjnych, takich jak wymiana uszkodzonych elementów instalacji elektrycznej, należy postępować w następującej kolejności:

A. oznakować obszar prac, zabezpieczyć przed przypadkowym włączeniem, odłączyć instalację od źródła zasilania, upewnić się o braku napięcia
B. oznakować obszar prac, zabezpieczyć przed przypadkowym włączeniem, upewnić się o braku napięcia, odłączyć instalację od źródła zasilania
C. odłączyć instalację od źródła zasilania, zabezpieczyć przed przypadkowym włączeniem, upewnić się o braku napięcia, oznakować obszar prac
D. zabezpieczyć przed przypadkowym włączeniem, oznakować obszar prac, odłączyć instalację od źródła zasilania, upewnić się o braku napięcia
Podczas wykonywania prac konserwacyjnych w instalacjach elektrycznych niezwykle istotne jest przestrzeganie procedur bezpieczeństwa, które zapobiegają wypadkom. Wiele osób może pomylić kolejność działań, co prowadzi do niebezpiecznych sytuacji. Na przykład, pierwszym krokiem w odpowiedziach opisujących zabezpieczenie przed przypadkowym załączeniem przed wyłączeniem instalacji spod napięcia jest istotnym błędem. Jeśli instalacja nie została wyłączona, jakiekolwiek zabezpieczenia mogą być niewystarczające, co może skutkować niebezpieczeństwem dla osób pracujących w danym miejscu. Ponadto, potwierdzenie braku napięcia po zabezpieczeniu może prowadzić do fałszywego poczucia bezpieczeństwa. Bez uprzedniego wyłączenia instalacji, wszelkie późniejsze kroki są bezzasadne, ponieważ osoba może być narażona na ryzyko porażenia prądem. Z kolei oznakowanie miejsca pracy powinno odbywać się na końcu, co nie tylko może wprowadzić chaos, ale również nie zabezpiecza przed przypadkowymi włączeniami. Praktyczne zastosowanie tych zasad jest kluczowe; regularne szkolenia i przestrzeganie norm, takich jak PN-EN 50110-1, są niezbędne dla zapewnienia bezpieczeństwa. Ignorowanie właściwej kolejności działań naraża nie tylko pracowników, ale również instytucje na poważne konsekwencje prawne i finansowe, dlatego tak ważne jest zrozumienie i stosowanie się do ustalonych procedur.

Pytanie 30

Który rodzaj źródła światła przedstawiono na ilustracji?

Ilustracja do pytania
A. Wyładowcze niskoprężne.
B. Półprzewodnikowe.
C. Wyładowcze wysokoprężne.
D. Żarowe.
Wybór źródła światła wyładowczego niskoprężnego, żarowego lub wyładowczego wysokoprężnego jest błędny z kilku powodów. Źródła wyładowcze niskoprężne, takie jak lampy fluorescencyjne, wymagają odpowiednich warunków ciśnienia, aby generować światło, co jest zupełnie inne niż zasada działania źródeł półprzewodnikowych. Te lampy są również mniej efektywne energetycznie, a ich żywotność jest znacznie krótsza w porównaniu do źródeł LED. Źródła żarowe działają na zasadzie podgrzewania włókna, co prowadzi do znaczących strat energii w postaci ciepła, a ich niska efektywność sprawia, że są mniej preferowane w nowoczesnych zastosowaniach. Wyładowcze wysokoprężne lampy, chociaż bardziej efektywne niż ich niskoprężne odpowiedniki, mają ograniczone zastosowanie w porównaniu do technologii LED, a ich konstrukcja oraz waga mogą być problematyczne w wielu aplikacjach. Często błędne założenia wynikają z nieznajomości różnic technicznych między tymi klasami źródeł światła oraz ich zastosowaniami w praktyce. Współczesne normy dotyczące oświetlenia, takie jak EN 12464-1, zwracają uwagę na znaczenie efektywności energetycznej oraz jakości światła, co wyklucza tradycyjne technologie na rzecz bardziej innowacyjnych rozwiązań, jak diody LED.

Pytanie 31

Którą wielkość fizyczną można zmierzyć przyrządem pokazanym na rysunku?

Ilustracja do pytania
A. Luminancję.
B. Światłość.
C. Temperaturę barwową światła.
D. Natężenie oświetlenia.
Poprawna odpowiedź to natężenie oświetlenia, które jest mierzonym parametrem przez luksomierz, przyrząd specjalistyczny zaprojektowany do oceny ilości światła padającego na określoną powierzchnię. Natężenie oświetlenia wyrażane jest w luksach (lx), co odnosi się do strumienia świetlnego padającego na powierzchnię jednego metra kwadratowego. W praktyce, luksomierze są używane w wielu dziedzinach, takich jak architektura, fotografia czy ergonomia, aby zapewnić odpowiednie warunki oświetleniowe, które wpływają na komfort oraz efektywność pracy. Na przykład, w biurach często normy dotyczące natężenia oświetlenia wynoszą od 300 do 500 luksów, co jest wystarczające do prowadzenia typowych prac biurowych. Użycie luksomierzy pozwala na optymalizację warunków oświetleniowych, co jest istotne dla zdrowia i wydajności pracowników. To narzędzie jest również kluczowe w budownictwie ekologicznym, gdzie odpowiednie oświetlenie wpływa na oszczędność energii.

Pytanie 32

Jaką klasę mają oprawy stosowane do oświetlenia miejscowego?

A. III
B. II
C. IV
D. I
Wybór opraw klasy II, III lub IV wskazuje na nieporozumienie dotyczące standardów bezpieczeństwa i funkcji oświetlenia miejscowego. Klasa II opisuje oprawy, które są podwójnie izolowane, co sprawia, że nie wymagają uziemienia, ale nie są one rekomendowane do zastosowań, gdzie istnieje ryzyko kontaktu z wodą lub innymi cieczyami, co często ma miejsce w miejscach pracy. Wybierając te oprawy na stanowiska robocze, narażamy użytkowników na potencjalne zagrożenia elektryczne. Klasa III z kolei odnosi się do urządzeń zasilanych z niskonapięciowych źródeł, co może być stosowane w niektórych aplikacjach, ale nie jest odpowiednie do typowego oświetlenia miejscowego, które wymaga wyższego napięcia dla efektywnego działania. Klasa IV dotyczy produktów przeznaczonych do zastosowań specjalnych, które są często chronione przed czynnikami zewnętrznymi, ale nie mają zastosowania w standardowych warunkach biurowych czy przemysłowych. Wybór niewłaściwej klasy oprawy może prowadzić do poważnych konsekwencji zdrowotnych i bezpieczeństwa, dlatego zrozumienie tych różnic jest kluczowe w procesie projektowania efektywnego oświetlenia miejscowego. Podstawowym błędem myślowym jest zakładanie, że wszystkie oprawy mogą być stosowane zamiennie, co ignoruje różnice w wymaganiach bezpieczeństwa i funkcjonalności. W kontekście standardów branżowych, stosowanie opraw klasy I jest najlepszą praktyką, ponieważ minimalizuje ryzyko porażenia prądem i zapewnia bezpieczeństwo pracy.

Pytanie 33

Określ typ usterki, która blokuje załączenie prawidłowego wyłącznika różnicowoprądowego zainstalowanego w systemie elektrycznym?

A. Uszkodzenie izolacji przewodu ochronnego
B. Zwarcie doziemne przewodu neutralnego
C. Przerwa w przewodzie ochronnym
D. Przerwa w przewodzie neutralnym
Uszkodzenie izolacji przewodu ochronnego, przerwa w przewodzie neutralnym oraz przerwa w przewodzie ochronnym to zjawiska, które mogą wpływać na bezpieczeństwo instalacji elektrycznej, lecz nie są bezpośrednio związane z niemożnością załączenia wyłącznika różnicowoprądowego. Przede wszystkim, uszkodzenie izolacji przewodu ochronnego oznacza, że przewód ten może przewodzić prąd do uziemienia, co z kolei może prowadzić do niebezpiecznych sytuacji, ale nie uniemożliwia załączenia RCD. Podobnie, przerwa w przewodzie neutralnym może wpłynąć na stabilność pracy urządzeń, jednak RCD może funkcjonować, jeżeli prąd wpływający i wypływający są zgodne, nawet gdy przewód neutralny jest przerwany przy końcach obwodu. Przerwa w przewodzie ochronnym jest niebezpieczna i może być powodem zagrożenia, ale nie działa bezpośrednio na zasadzie RCD. Typowe błędy myślowe prowadzące do takich nieprawidłowych wniosków mogą obejmować mylenie funkcji przewodów neutralnych i ochronnych oraz niezrozumienie zasady działania wyłączników różnicowoprądowych. Wiedza na temat tych zjawisk jest kluczowa dla bezpiecznego projektowania i eksploatacji instalacji elektrycznych, a ich nieznajomość może prowadzić do poważnych konsekwencji w zakresie bezpieczeństwa użytkowników oraz całych systemów elektrycznych.

Pytanie 34

Jakiego urządzenia dotyczy przedstawiony opis przeglądu?
Podczas rutynowej inspekcji stanu technicznego systemu elektrycznego przeprowadzono przegląd z uwzględnieniem:
1. oceny stanu ochrony przed porażeniem prądem,
2. kontrolnego sprawdzenia funkcjonowania wyłącznika za pomocą przycisku testowego,
3. pomiaru rzeczywistej wartości prądu różnicowego, który wyzwala,
4. pomiaru czasu wyłączenia,
5. weryfikacji napięcia dotykowego dla wartości prądu wyzwalającego.

A. Elektronicznego przekaźnika czasowego
B. Wyłącznika różnicowoprądowego
C. Wyłącznika nadprądowego
D. Ochronnika przepięć
Wyłącznik różnicowoprądowy jest urządzeniem zabezpieczającym, które ma na celu ochronę ludzi przed porażeniem prądem elektrycznym oraz zabezpieczenie instalacji elektrycznej przed skutkami zwarć. Opisane w pytaniu działania, takie jak badanie stanu ochrony przeciwporażeniowej, kontrolne sprawdzenie działania wyłącznika oraz pomiar czasu wyłączania, to podstawowe procedury diagnostyczne dla tego typu urządzeń. Standardy, takie jak IEC 61008 oraz IEC 61009, definiują wymogi dotyczące wyłączników różnicowoprądowych, w tym jak powinny być testowane i monitorowane. Przykładowo, regularne pomiary wartości prądu zadziałania oraz sprawdzanie napięcia dotykowego przy prądzie wyzwalającym są niezbędne, aby upewnić się, że wyłącznik działa prawidłowo w sytuacji awaryjnej. Dbanie o sprawność wyłączników różnicowoprądowych jest kluczowe dla zapewnienia bezpieczeństwa w obiektach użyteczności publicznej i mieszkalnych, gdzie występuje ryzyko porażenia prądem. W praktyce każdy wyłącznik różnicowoprądowy powinien być testowany przynajmniej raz na pół roku, co jest zgodne z wytycznymi zawartymi w normach branżowych.

Pytanie 35

Przeglądy instalacji elektrycznej w budynkach mieszkalnych powinny być przeprowadzane nie rzadziej niż co

A. 10 lat
B. 5 lat
C. 2 lata
D. 1 rok
Przeglądy instalacji elektrycznej co 2 lata, 1 rok czy 10 lat mogą być mylące, ponieważ każdy z tych okresów nie uwzględnia rzeczywistych wymagań dotyczących bezpieczeństwa i stanu technicznego instalacji. Przegląd co 2 lata może wydawać się rozsądny w kontekście częstotliwości, jednak nie odpowiada on rzeczywistym potrzebom użytkowników, ponieważ pomija dłuższe, udokumentowane okresy, w których instalacja może funkcjonować prawidłowo bez poważnych usterek. Z kolei roczny przegląd wydaje się być nadmiernie rygorystyczny i nieekonomiczny, co może prowadzić do zbędnych kosztów. Przegląd co 10 lat z kolei może stwarzać złudne poczucie bezpieczeństwa, ponieważ przez tak długi okres mogą wystąpić zmiany w warunkach użytkowania, które mogą wpłynąć na stan instalacji, takie jak zużycie materiałów czy zmiany norm prawnych. Dlatego kluczowe jest, aby stosować się do ustalonej przez normy praktyki pięcioletniej, co jest uzasadnione zarówno technicznie, jak i prawnymi wymaganiami. Niedostateczna częstotliwość przeglądów może prowadzić do poważnych konsekwencji, takich jak awarie, które niosą za sobą nie tylko ryzyko dla zdrowia i życia, ale również mogą skutkować wysokimi kosztami naprawy i odszkodowań.

Pytanie 36

Narzędzie przedstawione na ilustracji przeznaczone jest

Ilustracja do pytania
A. do zaciskania końcówek oczkowych.
B. do zaciskania końcówek tulejkowych.
C. do docinania przewodów.
D. do ściągania izolacji z żył przewodów.
Podane odpowiedzi sugerują różne funkcje narzędzia, które nie są zgodne z jego rzeczywistym przeznaczeniem. Zaciskanie końcówek tulejkowych czy oczkowych wymaga użycia innych narzędzi, takich jak szczypce zaciskowe, które mają zupełnie inną budowę i mechanizm działania. Narzędzia te są projektowane tak, aby zapewnić odpowiednie ciśnienie na końcówki, co jest kluczowe dla prawidłowego połączenia elektrycznego. Z kolei ściąganie izolacji z żył przewodów różni się od prostego cięcia przewodów, które powinno być realizowane narzędziami takimi jak nożyce do przewodów, które są dedykowane do tego celu. Typowe błędy myślowe w tym kontekście mogą wynikać z nieznajomości specyfikacji technicznych narzędzi czy mylenia ich funkcji. Zrozumienie różnicy między tymi narzędziami oraz ich zastosowaniem w praktyce jest kluczowe dla właściwego wykonania prac elektrycznych oraz zapewnienia bezpieczeństwa w instalacjach. Każde z tych narzędzi ma swoją unikalną rolę i stosowanie niewłaściwego narzędzia może prowadzić do uszkodzeń oraz zagrożeń dla bezpieczeństwa.

Pytanie 37

Ile maksymalnie gniazd wtyczkowych można zainstalować w jednym obwodzie w systemach odbiorczych?

A. 2 szt.
B. 12 szt.
C. 10 szt.
D. 6 szt.
Maksymalna liczba gniazd wtyczkowych, które można podłączyć do jednego obwodu w instalacjach elektrycznych, wynosi 10 sztuk. Taka wartość wynika z przepisów zawartych w normie PN-IEC 60364 oraz wytycznych dotyczących projektowania instalacji elektrycznych. Ograniczenie to ma na celu zapewnienie bezpieczeństwa użytkowania oraz ochrony przed przeciążeniem obwodu. W praktyce, jeżeli do obwodu podłączonych jest zbyt wiele gniazd, może to prowadzić do znacznego wzrostu obciążenia, co z kolei zwiększa ryzyko przegrzania przewodów, a w skrajnych przypadkach może prowadzić do pożaru. Warto zwrócić uwagę na rzeczywiste obciążenie urządzeń, które będą podłączane do gniazd, a także na rodzaj przewodów użytych w danym obwodzie. Przykładowo, jeśli planujemy podłączenie urządzeń o wysokim poborze mocy, takich jak czajniki elektryczne czy grzejniki, lepiej jest zredukować liczbę gniazd do mniejszej wartości, aby zabezpieczyć obwód przed nadmiernym przeciążeniem. Dobrą praktyką jest także stosowanie zabezpieczeń w postaci wyłączników różnicowoprądowych oraz odpowiedniego doboru przekrojów przewodów, co dodatkowo zwiększa bezpieczeństwo korzystania z instalacji elektrycznej.

Pytanie 38

Kabel oznaczony symbolem DYd 750 jest wykonany z

A. linki pokrytej polwinitem
B. drutu pokrytego polwinitem
C. drutu pokrytego gumą
D. linki pokrytej gumą
Wybór odpowiedzi wskazujący na linki izolowane gumą lub drut izolowany gumą jest błędny z kilku powodów. Po pierwsze, linki izolowane gumą są zazwyczaj stosowane w specyficznych warunkach, gdzie wymagana jest elastyczność, ale nie oferują one takich właściwości mechanicznych i elektrycznych jak drut izolowany polwinitem. Guma, jako materiał izolacyjny, ma ograniczoną odporność na działanie wysokich temperatur oraz chemikaliów, co może prowadzić do szybszego starzenia się izolacji oraz ryzyka uszkodzenia przewodu. Druty izolowane gumą również nie są preferowane w zastosowaniach wymagających dużej stabilności mechanicznej, co jest istotne w standardach takich jak PN-EN 60228. Ponadto, wybór drutu izolowanego polwinitem zapewnia lepsze parametry przewodzenia prądu, co jest kluczowe w kontekście ograniczenia strat energetycznych i efektywności instalacji. W przypadku użycia linki izolowanej polwinitem, chociaż materiał izolacyjny jest poprawny, forma linki zmienia charakterystykę przewodu. Linki często stosuje się w aplikacjach wymagających elastyczności, natomiast w przypadku przewodu DYd 750, korzyści płynące z użycia drutu są bardziej adekwatne do jego zastosowania w stałych instalacjach elektrycznych, co czyni tę odpowiedź także niewłaściwą. Dlatego, aby uniknąć powszechnych błędów w rozumieniu właściwości materiałów izolacyjnych oraz konstrukcji przewodów, należy zapoznać się z odpowiednimi normami oraz dobrymi praktykami w branży elektrotechnicznej.

Pytanie 39

Jakie uszkodzenie mogło wystąpić w instalacji elektrycznej, dla której wyniki pomiarów rezystancji izolacji przedstawiono w tabeli?

Rezystancja izolacji, MΩ
Zmierzona międzyWymagana
L1–L2L2–L3L1–L3L1–PENL2–PENL3–PEN
2,101,051,101,401,300,991,00

A. Przeciążenie jednej z faz.
B. Zwarcie międzyfazowe.
C. Jednofazowe zwarcie doziemne.
D. Zawilgocenie izolacji jednej z faz.
Przeciążenie jednej z faz, mimo że jest to problem, który może wystąpić w instalacjach elektrycznych, nie jest odpowiedzią w tym przypadku. Przeciążenie związane jest z nadmiernym przepływem prądu przez przewody, co prowadzi do ich nagrzewania się. W tej sytuacji jednak, wyniki pomiarów rezystancji izolacji wykazują, że wszystkie fazy mają wartości powyżej 1 MΩ, co wyklucza obecność przeciążenia. Przeciążenie fazy charakteryzuje się innymi objawami, takimi jak wzrost temperatury przewodów czy wyłączanie się zabezpieczeń, co nie jest zgodne z danymi z tabeli. Z kolei zwarcie międzyfazowe również nie znajduje potwierdzenia w wynikach pomiarów, ponieważ wymagałoby niskich rezystancji międzyfazowych, co w tym przypadku nie ma miejsca. Warto pamiętać, że zwarcie międzyfazowe najczęściej prowadzi do natychmiastowego wyłączenia zabezpieczeń, a nieprawidłowe wartości rezystancji nie są jedynym objawem tego zjawiska. Jednofazowe zwarcie doziemne, mimo że może wpływać na rezystancję L3 do PEN, nie byłoby jedynym czynnikiem mającym wpływ na pozostałe fazy, które w tym przypadku wykazywały poprawne wartości. Kluczowe jest, aby podczas analizy wyników pomiarów izolacji brać pod uwagę wszystkie aspekty, a nie jedynie pojedyncze parametry, co pozwala na trafną diagnozę stanu instalacji elektrycznej.

Pytanie 40

Jaka maksymalna wartość impedancji pętli zwarcia może wystąpić w trójfazowym układzie elektrycznym o napięciu znamionowym 230/400 V, aby ochrona przeciwporażeniowa była skuteczna w przypadku uszkodzenia izolacji, wiedząc, że zasilanie tego układu ma przerwać instalacyjny wyłącznik nadprądowy B10?

A. 7,7 Ω
B. 2,3 Ω
C. 8,0 Ω
D. 4,6 Ω
Wartości impedancji pętli zwarcia 2,3 Ω, 7,7 Ω oraz 8,0 Ω nie są odpowiednie z różnych powodów. Impedancja pętli zwarcia o wartości 2,3 Ω może wydawać się atrakcyjna, ale jest zbyt niska, co może prowadzić do nieprawidłowego działania wyłącznika nadprądowego, czyniąc go bardziej podatnym na fałszywe wyzwolenia. Wyłączniki nadprądowe mają swoje charakterystyki czasowe, a przy zbyt niskiej impedancji prąd zwarciowy może być niewystarczający do ich skutecznego działania w momentach awaryjnych. Z kolei wartość 7,7 Ω, choć nieco bardziej akceptowalna, przekracza maksymalne wartości, które zapewniają odpowiednią ochronę w standardowych instalacjach, co może prowadzić do niebezpieczeństwa porażenia. Zbyt wysoka impedancja pętli zwarcia powoduje, że prąd zwarciowy, który z reguły musi być odpowiednio wysoki, aby wyzwolić zabezpieczenia, może nie osiągnąć wartości progowej przy zwarciu, co w konsekwencji skutkuje wydłużonym czasem wyłączenia zasilania i narażeniem użytkowników na niebezpieczeństwo. Wartość 8,0 Ω jest jeszcze bardziej niekorzystna, ponieważ znacznie przekracza parametry zalecane przez normy, co może prowadzić do poważnych zagrożeń w przypadku uszkodzenia izolacji. Zrozumienie tych zasad jest kluczowe dla inżynierów oraz techników, którzy projektują instalacje elektryczne, aby zapewnić ich bezpieczeństwo i zgodność z normami branżowymi.