Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 16 kwietnia 2025 21:07
  • Data zakończenia: 16 kwietnia 2025 21:49

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Jaką metodą powinno się ustalić wysokość stanowiska instrumentu w niwelacji punktów rozrzuconych?

A. Ortogonalną
B. Niwelacji reperów
C. Biegunową
D. Niwelacji siatkowej
Wybór innych metod, takich jak niwelacja siatkowa, biegunowa czy ortogonalna, w kontekście wyznaczania wysokości stanowiska instrumentu w niwelacji punktów rozproszonych, może prowadzić do wielu nieporozumień i błędów. Niwelacja siatkowa, choć użyteczna w pracach terenowych, nie koncentruje się na precyzyjnym wyznaczeniu wysokości instrumentu, lecz na rozkładzie danych pomiarowych w siatce, co nie zawsze zapewnia wymagany poziom dokładności w lokalizacji punktów. Z kolei niwelacja biegunowa skupia się na pomiarach kątów i odległości, co jest efektywne w innych aspektach geodezji, lecz nie dostarcza informacji dotyczących wysokości bezpośrednio związanych z punktem pomiarowym. Metoda ortogonalna, z kolei, polega na stosowaniu prostych kątów do ustalenia odniesienia, co w kontekście niwelacji może być zbyt uproszczonym podejściem, prowadzącym do błędów w pomiarach wysokości. W praktyce, te metody nie są przystosowane do dokładnego wyznaczania wysokości stanowiska instrumentów, co jest kluczowym krokiem w procesie niwelacji, a ich niewłaściwe zastosowanie może skutkować znacznymi różnicami w wynikach pomiarowych. Dlatego tak ważne jest stosowanie odpowiednich procedur i metod, aby zapewnić wiarygodność i precyzję wyników w geodezyjnych badaniach terenowych.

Pytanie 3

Który z wymienionych obiektów przestrzennych zalicza się do pierwszej kategorii szczegółów terenowych?

A. Plac zabaw
B. Tama
C. Boisko sportowe
D. Most
Most jest obiektem przestrzennym, który pełni kluczową rolę w infrastrukturze transportowej. Jest to konstrukcja, która umożliwia przemieszczanie się ludzi oraz pojazdów nad przeszkodami, takimi jak rzeki, doliny czy inne drogi. Z perspektywy planowania przestrzennego i urbanistyki, mosty są niezwykle istotne, ponieważ łączą różne obszary geograficzne, co wpływa na rozwój społeczno-gospodarczy regionów. Przykładem zastosowania mostów mogą być mosty wiszące, które charakteryzują się dużą wytrzymałością i mogą być budowane w miejscach, gdzie inne rodzaje mostów byłyby niepraktyczne. Wzorcowe projekty mostów powinny odnosić się do norm, takich jak Eurokod, które definiują wymagania dotyczące bezpieczeństwa, użyteczności i trwałości tego typu infrastruktury. Ponadto, mosty mogą wpływać na ekosystemy rzeczne, dlatego ich projektowanie powinno uwzględniać zasady zrównoważonego rozwoju, co oznacza minimalizowanie wpływu na środowisko.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Jakie jest przybliżone znaczenie błędu względnego dla odcinka o długości 500,00 m, który został zmierzony z błędem średnim ±10 cm?

A. 1/2000
B. 1/500
C. 1/1000
D. 1/5000
Wybór niepoprawnych odpowiedzi może wynikać z nieprawidłowego zrozumienia definicji błędu względnego oraz sposobu jego obliczania. Przykładem są ułamki 1/1000 i 1/2000, które mogą wydawać się uzasadnione, jednak nie uwzględniają rzeczywistego stosunku błędu do wartości pomiaru. W przypadku błędu bezwzględnego 10 cm w odniesieniu do długości 500 m, błędy te sugerują, że niektórzy mogą mylić jednostki miary lub nieprawidłowo interpretować pojęcie błędu względnego jako małego udziału w dłuższym odcinku. Pamiętaj, że błąd względny informuje nas o tym, jak znaczący jest błąd pomiarowy w stosunku do całkowitych wymiarów obiektu. Kolejną typową pomyłką jest mylenie błędu względnego z wartością bezwzględną; błąd bezwzględny to po prostu wartość błędu, natomiast błąd względny to jego stosunek do całkowitych wymiarów. Odpowiedzi takie jak 1/500 mogą się wydawać realne, jednak nie uwzględniają rzeczywistego wpływu błędu na całkowitą długość. Przy analizowaniu wyników pomiarów warto stosować standardy metrologiczne, które pomogą w wyciąganiu poprawnych wniosków oraz w ocenie dokładności i precyzji narzędzi pomiarowych.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Na podstawie zamieszczonych w tabeli współrzędnych punktów kontrolowanych, wyznaczonych w wyniku pomiarów, oblicz liniowe przemieszczenie punktu nr 21.

Nr punktuPomiar pierwotnyPomiar wtórny
Xp [m]Yp [m]Xw [m]Yw [m]
20130,220242,256130,225242,255
21125,212258,236125,220258,240
22134,515234,515134,510234,510
23138,310230,025138,313230,026

A. p = 5 mm
B. p = 3 mm
C. p = 9 mm
D. p = 10 mm
Poprawna odpowiedź to p = 9 mm. Aby obliczyć liniowe przemieszczenie punktu nr 21, kluczowe jest zrozumienie, jak różnice w współrzędnych X i Y wpływają na obliczenie przemieszczenia. Najpierw musimy znaleźć różnice pomiędzy współrzędnymi pierwotnymi a wtórnymi. Po ich obliczeniu, korzystamy ze wzoru na odległość między dwoma punktami w układzie kartezjańskim, który oparty jest na twierdzeniu Pitagorasa. Zastosowanie tego podejścia nie tylko pozwala na precyzyjne wyznaczenie przemieszczenia, ale także jest zgodne z międzynarodowymi standardami pomiarów geodezyjnych. W praktyce, takie obliczenia są niezbędne w wielu aplikacjach inżynieryjnych, takich jak monitorowanie deformacji budynków, infrastruktury czy w analizach związanych ze zmianami środowiskowymi. Regularne stosowanie tej metody zapewnia wysoką jakość pomiarów oraz ich wiarygodność.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

W teodolicie, okrąg lub ring z zaznaczonym podziałem kątowym określa się jako

A. alidadą
B. spodarką
C. celownikiem
D. limbusem
Limbus w teodolicie to element, który zawiera podziałką kątową, co pozwala na precyzyjne pomiary kątów poziomych i pionowych. W praktyce limbusem określa się okrągły lub pierścieniowy element instrumentu, na którym naniesione są wartości kątowe. Umożliwia on użytkownikowi łatwe odczytywanie zmierzonych kątów, co jest kluczowe w geodezji oraz inżynierii lądowej. Teodolit jest niezbędnym narzędziem w pomiarach terenowych, a limbusem posługują się geodeci do określania pozycji punktów i tworzenia map. Warto zaznaczyć, że zgodnie z normami geodezyjnymi, precyzja pomiarów wykonanych przy użyciu teodolitu jest kluczowa dla zapewnienia jakości realizowanych projektów. Użycie limbusa pozwala na uzyskanie dokładnych wyników, które są zgodne z wymaganiami branżowymi, a jego właściwa kalibracja i konserwacja są podstawą sukcesu w pomiarach.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Na jakiej nakładce tematycznej mapy zasadniczej powinien być zaznaczony włąz studzienki kanalizacyjnej?

A. Wysokościowej
B. Sytuacyjnej
C. Topograficznej
D. Ewidencyjnej
Właściwym miejscem do wykreślenia włązu studzienki kanalizacyjnej na mapie zasadniczej jest nakładka sytuacyjna. Nakładka ta ma za zadanie przedstawienie układu obiektów na danym terenie, w tym również infrastruktury technicznej, takiej jak sieci kanalizacyjne. W przypadku studzienek kanalizacyjnych, ich lokalizacja jest kluczowa, ponieważ wpływa na zarządzanie infrastrukturą miejską, w tym na prace konserwacyjne, inspekcję oraz ewentualne awarie. W praktyce, włązy studzienek powinny być oznaczone w sposób umożliwiający ich łatwe zlokalizowanie na mapach i w terenie, co jest zgodne z obowiązującymi normami, takimi jak PN-EN ISO 19110, dotycząca opisu obiektów geograficznych. Dzięki temu, pracownicy odpowiedzialni za obsługę sieci kanalizacyjnych będą mogli szybko reagować na potrzebne interwencje, co jest niezwykle istotne dla zapewnienia sprawności systemu odprowadzania ścieków i minimalizowania ryzyka związanego z ich awariami.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Na mapach terenowych nie uwzględnia się obiektów budowlanych

A. murowanych mieszkalnych w etapie projektowania
B. drewnianych, które nie są zamieszkałe
C. drewnianych przeznaczonych do wyburzenia
D. murowanych gospodarczych w stanie surowym
Odpowiedź 'murowanych mieszkalnych w fazie projektu' jest poprawna, ponieważ na szkicach polowych, które służą do przedstawiania istniejących warunków i elementów zagospodarowania przestrzennego, nie zaznacza się budynków, które są jedynie na etapie planowania. Budynki znajdujące się w fazie projektu nie mają jeszcze fizycznej obecności, co oznacza, że nie powinny być uwzględniane w dokumentacji przedstawiającej aktualny stan terenu. W praktyce architektonicznej i urbanistycznej, zgodnie z wytycznymi i standardami dotyczącymi prowadzenia dokumentacji, należy odzwierciedlać jedynie te obiekty, które są już zrealizowane lub w trakcie realizacji. Taka zasada pozwala na zachowanie przejrzystości i wiarygodności dokumentów, co jest kluczowe w procesie planowania przestrzennego oraz w analizach dotyczących zagospodarowania terenu. Przykładem zastosowania tej zasady jest przygotowanie raportów dotyczących uwarunkowań środowiskowych, gdzie zazwyczaj ujmuje się jedynie obiekty istniejące oraz infrastrukturę, a nie plany przyszłych inwestycji.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Pomiar odległości wynoszącej 100,00 m zawiera błąd średni ±5 cm. Jaka jest wartość błędu względnego tej odległości?

A. 1/500
B. 1/1000
C. 1/2000
D. 1/5000
Błąd pomiarowy jest nieodłącznym elementem każdej procedury pomiarowej, a jego właściwe zrozumienie jest kluczowe dla uzyskiwania wiarygodnych wyników. W analizie odległości 100,00 m z błędem średnim ±5 cm, nieprawidłowe odpowiedzi często wynikają z niepoprawnego zastosowania wzorów lub błędnego zrozumienia, czym jest błąd względny. Odpowiedzi, które wskazują na błędy względne takie jak 1/5000, 1/1000 czy 1/500, mogą powstawać przez mylenie błędu względnego z błędem absolutnym, co prowadzi do niepoprawnych obliczeń. Zrozumienie różnicy między błędem absolutnym a względnym jest kluczowe, jako że błąd absolutny odnosi się do konkretnej wartości, natomiast błąd względny jest proporcjonalny do tej wartości. Ponadto, w praktyce inżynierskiej i naukowej, niewłaściwe obliczenia mogą prowadzić do nieprecyzyjnych analiz danych czy wadliwych projektów. Dlatego też, stosowanie standardów metrologicznych oraz odpowiednich procedur obliczeniowych jest niezbędne, aby uniknąć typowych pułapek myślowych, które mogą zafałszować wyniki. Wiedza o tym, jak właściwie wyliczać błąd względny, a także jego kontekst w praktyce pomiarowej, jest niezbędna dla prawidłowego interpretowania wyników i ich analizy.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Jaki błąd jest wskaźnikiem precyzji tyczenia?

A. Błąd średni tyczenia
B. Błąd względny tyczenia
C. Błąd graniczny tyczenia
D. Błąd przypadkowy tyczenia
Błąd średni tyczenia to naprawdę ważna sprawa, jeśli chodzi o dokładność w pomiarach. Mówiąc prościej, to średnia różnica między tym, co zmierzyliśmy, a tym, co jest rzeczywiste. Dzięki temu wiemy, jak dobrze nam idzie w terenie. W praktyce, na przykład przy ustalaniu granic działki, precyzyjność pomiaru jest kluczowa. Jeśli coś pójdzie nie tak, mogą pojawić się konflikty z sąsiadami. No i w dokumentach geodezyjnych też musimy być dokładni. W branży są różne normy, jak te z ISO/TS, które pokazują, jakie błędy są akceptowalne. To naprawdę dowodzi, jak istotny jest błąd średni w geodezji. Analizując go, geodeci mogą zdecydować, czy trzeba coś poprawić czy powtórzyć pomiary, co zdecydowanie wpływa na jakość danych geodezyjnych.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Jaką metodą powinno się wykonać pomiar kątów w celu określenia współrzędnych punktu, który jest niedostępny, stosując metodę wcięcia kątowego w przód?

A. Kierunkową
B. Sektorową
C. Wypełnienia horyzontu
D. Pojedynczego kąta
Wybór metod wypełnienia horyzontu, sektorowej czy kierunkowej w kontekście wyznaczania współrzędnych punktu niedostępnego przy wcięciu kątowym w przód prowadzi do licznych nieporozumień dotyczących technik pomiarowych. Metoda wypełnienia horyzontu, choć użyteczna w innych kontekstach, polega na pomiarze kątów w wielu kierunkach w celu uzyskania pełnej charakterystyki otoczenia. Taka technika jest czasochłonna i nieefektywna, gdyż wymaga podejmowania pomiarów w różnych azymutach, co nie jest konieczne przy pomiarze pojedynczego kąta. Metoda sektorowa, z kolei, skupia się na podziale obszaru na sektory, co w przypadku punktów trudnodostępnych w praktyce przynosi więcej komplikacji niż korzyści, gdyż może prowadzić do błędów w ocenie odległości i kątów. Zastosowanie metody kierunkowej również nie jest optymalne w tej sytuacji, ponieważ polega na pomiarze kątów w kierunku wybranym przez operatora, co może skutkować zniekształceniem wyników, zwłaszcza w trudnym terenie. Wybór niewłaściwej metody może wynikać z braku zrozumienia podstawowych zasad pomiarów kątowych, co jest kluczowe dla uzyskania precyzyjnych rezultatów w geodezji. Dlatego istotne jest, aby przed przystąpieniem do pomiarów, zrozumieć specyfikę i zalety konkretnej metody, aby uniknąć typowych błędów myślowych i zwiększyć efektywność prowadzonych prac.

Pytanie 29

W jakim rodzaju niwelacji teoretyczna całkowita różnica wysokości pomiędzy punktem startowym a końcowym wynosi 0 mm?

A. Wiszącym
B. Otwartym
C. Wyliczeniowym
D. Zamkniętym
Ciąg niwelacyjny zamknięty charakteryzuje się tym, że jego teoretyczna suma różnic wysokości między punktem końcowym a początkowym wynosi 0 mm. Oznacza to, że w takim ciągu, po wykonaniu pomiarów na zamkniętej pętli, wysokości wszystkich punktów są wyważone i nie wykazują różnicy, co jest istotne w kontekście dokładności pomiarów niwelacyjnych. Zastosowanie ciągów zamkniętych jest kluczowe w inżynierii budowlanej oraz geodezji, gdzie precyzyjne wyznaczanie wysokości ma fundamentalne znaczenie. W przypadku pomiarów niwelacyjnych, idea zamkniętej pętli pozwala na skompensowanie błędów systematycznych i losowych, co zwiększa wiarygodność wyników. Standardy takie jak PN-EN ISO 17123-2 zalecają stosowanie takich ciągów w procesach weryfikacji i kalibracji instrumentów geodezyjnych. Przykładem praktycznego zastosowania może być budowa mostów, gdzie dokładność pomiarów wysokościowych jest kluczowa dla stabilności konstrukcji.

Pytanie 30

Jakie jest odchylenie zamkniętego ciągu niwelacyjnego, jeśli wysokości reperu początkowego i końcowego są równe, a suma różnic zmierzonych przewyższeń na tym samym odcinku wynosi [∆h]p= -8 mm?

A. f∆h = 0 mm
B. f∆h = -8 mm
C. f∆h = -16 mm
D. f∆h = 8 mm
W przypadku pozostałych odpowiedzi występują różne nieporozumienia dotyczące zasad obliczania odchyłek w niwelacji. Odpowiedź f∆h = -16 mm sugeruje, że pomiar przewyższeń zostały podwojone, co jest błędnym podejściem, ponieważ odchyłka powinna być bezpośrednio związana z różnicą pomiędzy pomiarami a rzeczywistymi wartościami wysokości. Odpowiedź f∆h = 8 mm również nie ma sensu, ponieważ pomiar przewyższeń był ujemny, co powinno prowadzić do zrozumienia, że wynik powinien być oznaczony jako ujemny, nie dodatni. Warto zauważyć, że pomiar przewyżek w geodezji wymaga precyzyjnego podejścia do interpretacji danych i uwzględnienia wszelkich potencjalnych źródeł błędów. Wybór odpowiedzi f∆h = 0 mm nie uwzględnia faktu, że mamy do czynienia z rzeczywistą różnicą wynoszącą -8 mm, co oznacza, że istnieje wyraźna odchyłka, a nie brak jakiejkolwiek odchyłki. Kluczowym błędem w rozumieniu tych odpowiedzi jest nieuwzględnienie rzeczywistych pomiarów i ich interpretacji, co prowadzi do nieprawidłowych wniosków o istniejących błędach pomiarowych. W geodezji, zwłaszcza podczas niwelacji, istotne jest, aby lokalizować i rozumieć te odchylenia, aby poprawić dokładność i wiarygodność danych.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Kontrolę numeracji pikiet na szkicu oraz w dzienniku pomiarowym wykonuje się podczas pomiarów terenowych, aby zapewnić

A. poprawność prowadzenia szkicu polowego
B. poprawność prowadzenia dziennika pomiarowego
C. poprawność przy kartowaniu pikiet na mapę
D. zgodność prowadzenia szkicu polowego i dziennika pomiarowego
Zgodność prowadzenia szkicu polowego i dziennika pomiarowego jest kluczowym aspektem w procesie pomiarów terenowych, ponieważ obie te formy dokumentacji muszą odzwierciedlać te same dane pomiarowe i ich układ w terenie. Utrzymanie spójności między szkicem a dziennikiem pomiarowym pozwala na skuteczne śledzenie postępu prac oraz zapewnia, że późniejsza analiza danych będzie oparta na rzetelnych informacjach. Przykładowo, w przypadku wykrycia błędów w jednej z form dokumentacji, ich identyfikacja i korekta będą znacznie łatwiejsze, gdy obie dokumentacje będą ze sobą zgodne. W branży geodezyjnej istnieją ustalone standardy, które nakładają obowiązek prowadzenia takich dokumentów w sposób ułatwiający ich wzajemne weryfikowanie. W praktyce, podczas realizacji pomiarów, geodeta powinien regularnie sprawdzać, czy numery pikiet w szkicu odpowiadają tym wpisanym w dzienniku, co minimalizuje ryzyko błędów oraz ułatwia dalsze etapy pracy, takie jak kartowanie czy przygotowanie mapy. Właściwe utrzymanie zgodności dokumentacji jest nie tylko kwestią organizacyjną, ale również wpływa na jakość końcowych rezultatów pracy geodezyjnej.

Pytanie 33

Jaki jest błąd wartości wyrównanej, jeśli kąt poziomy został zmierzony 4 razy, a średni błąd pojedynczego pomiaru kąta wynosi ±10cc?

A. M = ±4cc
B. M = ±2cc
C. M = ±5cc
D. M = ±3cc
Odpowiedzi, które proponują inne wartości błędu wartości wyrównanej, nie uwzględniają kluczowego aspektu, jakim jest liczba pomiarów. W przypadku pomiarów kątów, zasada redukcji błędów przy wielokrotnym pomiarze jest właściwie stosowana zgodnie z regułą statystyczną, która mówi, że z każdym dodatkowym pomiarem poprawiamy dokładność wyniku. Kiedy ktoś wybiera błąd równy ±2cc, ±3cc lub ±4cc, błędnie interpretuje wpływ powtórzeń na zmniejszenie niepewności pomiarowej. To prowadzi do niedoszacowania rzeczywistego błędu, co jest typowym błędem zarówno w zrozumieniu parametrów pomiarowych, jak i w ich zastosowaniach praktycznych. Warto zwrócić uwagę, że błąd pomiaru nie jest liniowy, a jego redukcja w przypadku powtórzeń jest opisana twierdzeniem o niepewności pomiarowej. W praktyce, poprawne podejście do obliczania błędów pomiarowych ma ogromne znaczenie podczas analizy danych, szczególnie w kontekście zapewnienia jakości i rzetelności wyników w inżynierii i naukach przyrodniczych. Zastosowanie błędnych wartości błędów może prowadzić do niewłaściwych decyzji projektowych oraz wpływać na bezpieczeństwo i efektywność realizowanych projektów.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Jaką kategorię szczegółów terenowych, biorąc pod uwagę wymagania precyzyjności pomiaru, reprezentują budynki mieszkalne?

A. III grupy
B. IV grupy
C. I grupy
D. II grupy
Budynki mieszkalne to ważny element w I grupie szczegółów terenowych. To zgodne z tym, co mówią różne normy i standardy w branży. W sumie, te obiekty mają naprawdę spore znaczenie dla planowania przestrzennego, architektury, no i inżynierii lądowej. Kluczowe jest, żeby dokładnie wiedzieć, gdzie te budynki stoją i jakie mają wymiary. To wpływa na to, jak projektujemy infrastrukturę i urbanizację. Na przykład, jak bierzesz pozwolenie na budowę, to wymiary i lokalizacja muszą być zgodne z miejscowym planem zagospodarowania przestrzennego. Często w takich sytuacjach korzysta się z technologii GPS lub pomiarów geodezyjnych. Dodatkowo, by spełnić standardy budowlane, precyzyjne pomiary to podstawa, żeby wszystko było okej z ochroną środowiska i bezpieczeństwem budowli. Wiedza na temat klasyfikacji tych terenowych szczegółów, w tym budynków mieszkalnych, to naprawdę kluczowa sprawa dla każdego, kto chce pracować w geodezji czy urbanistyce.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Aktualną miarę na linii pomiarowej, podczas pomiaru szczegółów metodą ortogonalną, określamy mianem

A. podpórką
B. odciętą
C. rzędnej
D. czołówką
Odpowiedź 'odcięta' jest poprawna, ponieważ w kontekście pomiarów ortogonalnych, odcięta to miara bieżąca na linii pomiarowej, która wskazuje współrzędne punktu w układzie współrzędnych kartezjańskich. Zastosowanie odciętej polega na określeniu odległości od punktu referencyjnego w kierunku poziomym, co jest kluczowe przy precyzyjnych pomiarach geodezyjnych i inżynieryjnych. W praktyce, odcięta jest często wykorzystywana w projektach budowlanych, gdzie precyzyjne wyznaczenie lokalizacji elementów konstrukcyjnych jest niezbędne dla zapewnienia stabilności i bezpieczeństwa budowli. Przykładem może być stosowanie odciętych podczas wyznaczania granic działek, czy też w procesie budowy infrastruktury drogowej, gdzie precyzyjne pomiary wpływają na jakość i funkcjonalność finalnego produktu. Dobrą praktyką jest regularne kalibrowanie sprzętu pomiarowego oraz przestrzeganie standardów ISO w zakresie pomiarów geodezyjnych, co zapewnia wysoką jakość uzyskiwanych danych.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Jaką osnowę powinno się założyć do geodezyjnej obsługi dużego zakładu przemysłowego, którego realizacja przebiegać będzie w etapach?

A. Realizacyjną typu A
B. Realizacyjną wydłużoną
C. Realizacyjną dwurzędową
D. Realizacyjną jednorzędową
Wybór osnowy typu A, tej wydłużonej i jednorzędowej, często robi się z powodu specyficznych wymagań projektowych, ale w przypadku dużych zakładów, może to przynieść sporo problemów. Osnowa realizacyjna typu A, chociaż sprawdza się w mniejszych inwestycjach, nie jest wystarczająco elastyczna, gdy prace prowadzi się w wielu lokalizacjach równocześnie. Skupianie się na pojedynczych punktach kontrolnych ogranicza możliwości koordynacji działań, co może powodować straty czasowe. Z kolei osnowa wydłużona, mimo że powoduje większy zasięg pomiarów, nie oferuje takiej dokładności, jakiej potrzebujemy w złożonych projektach. W dużych inwestycjach, jak budowa zakładów, ważne jest, aby osnowa dostosowała się do zmieniających się warunków budowlanych, a pomiary były jak najdokładniejsze. Osnowa jednorzędowa, choć łatwa w użyciu, nie spełnia wymagań dotyczących dokładności ani możliwości jednoczesnego prowadzenia różnych prac. Mylenie się, że wybór prostszej osnowy ułatwi sprawę, może prowadzić do sporych komplikacji i wydłużenia czasu realizacji projektu.

Pytanie 40

Długość odcinka zmierzonego na mapie o skali 1:500 wynosi 11,1 cm. Jaka jest rzeczywista długość tego odcinka w terenie?

A. 55,50 m
B. 2,22 m
C. 5,55 m
D. 22,20 m
Odpowiedź 55,50 m to dobry wybór. Jeśli popatrzysz na scale 1:500, to każdy centymetr na mapie oznacza 500 centymetrów w rzeczywistości. Czyli, żeby znaleźć długość w terenie, wystarczy pomnożyć długość na mapie, czyli 11,1 cm przez 500. Jak to zrobimy, to wychodzi 11,1 cm * 500 = 5550 cm, co daje nam 55,50 m. Rozumienie, jak działa skala, jest mega ważne w geodezji i kartografii, bo precyzyjne pomiary to podstawa przy wszelkich projektach budowlanych czy drogowych. Na przykład, przy projektowaniu jakiejś infrastruktury miejskiej, znajomość skali mapy pozwala lepiej przenieść to, co zaplanowaliśmy na rzeczywistość. To ma spore znaczenie, żeby wszystko było zgodne z planami zagospodarowania i innymi standardami, jak normy geodezyjne. Generalnie, umiejętność przeliczania wymiarów z map na rzeczywiste odległości to coś, co powinien umieć każdy inżynier czy geodeta.