Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 28 kwietnia 2025 17:52
  • Data zakończenia: 28 kwietnia 2025 18:11

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Z kolby miarowej o pojemności 1 dm3, zawierającej roztwór HCl o stężeniu 0,1 mol/dm3, pobrano pipetą 2,5 cm3, a następnie przeniesiono do kolby miarowej o pojemności 20 cm3 i rozcieńczono wodą "do kreski" miarowej. Jakie stężenie ma otrzymany roztwór?

A. 0,1250 mol/dm3
B. 0,0500 mol/dm3
C. 0,0005 mol/dm3
D. 0,0125 mol/dm3
Nieprawidłowe odpowiedzi mogą wynikać z kilku typowych błędów obliczeniowych i nieporozumień dotyczących zasad rozcieńczania roztworów. Na przykład, wybór stężenia 0,0005 mol/dm³ może być konsekwencją błędnego przeliczenia objętości lub liczby moli, gdzie użytkownik mógł zaniżyć wyniki przez omyłkowe zastosowanie niewłaściwych jednostek. Odpowiedź 0,0500 mol/dm³ sugeruje, że osoba myślała o stężeniu przed rozcieńczeniem, nie uwzględniając faktu, że dodanie wody do roztworu zmienia całkowitą objętość. W przypadku stężenia 0,1250 mol/dm³, błąd może wynikać z mylenia stężenia początkowego z końcowym, co jest częstym błędem w obliczeniach chemicznych. Tego rodzaju nieprawidłowości mogą prowadzić do poważnych konsekwencji w praktycznych zastosowaniach chemicznych, takich jak niepoprawne przygotowanie odczynników do doświadczeń czy analiz, które mogą skutkować błędnymi wynikami. Dlatego w laboratoriach niezwykle istotne jest stosowanie odpowiednich procedur obliczeniowych oraz dokładne sprawdzanie wszystkich obliczeń, aby uniknąć takich pomyłek, które mogą wpłynąć na jakość i dokładność prowadzonych badań.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Które spośród substancji wymienionych w tabeli pozwolą pochłonąć wydzielający się tlenek węgla(IV)?

IIIIIIIVV
Ca(OH)2(aq)NaOH(s)HNO3(stęż)CuO(s)CaO(s)

A. II, IV, V.
B. I, III, IV.
C. I, II, V
D. I, II, IV.
W przypadku wyboru odpowiedzi, która nie obejmuje substancji I, II i V, można zauważyć, że nie uwzględnia się kluczowych właściwości reakcji chemicznych między tlenkiem węgla(IV) a substancjami, które są zasadami. Takie podejście prowadzi do nieporozumień dotyczących chemii gazów i ich interakcji z zasadami. Odpowiedzi zawierające substancje III (HNO3) i IV (CuO) są w rzeczywistości błędne, ponieważ HNO3 jest kwasem azotowym, który nie ma zdolności do reakcji z CO2 w sposób, który prowadziłby do jego absorpcji; zamiast tego reaguje on z zasadami, a jego właściwości jako kwasu oznaczają, że nie będzie on efektywnym reagentem w kontekście usuwania CO2. CuO, czyli tlenek miedzi(II), również nie jest substancją, która mogłaby reagować z CO2, a jego zastosowanie koncentruje się bardziej na reakcjach utleniania i redukcji metali, co nie ma związku z pochłanianiem tego gazu. Zrozumienie właściwości substancji chemicznych oraz ich reakcji jest kluczowe do prawidłowego wyboru reagentów w procesach przemysłowych. Ignorowanie tych faktów może prowadzić do nieefektywnych rozwiązań w kontekście zarządzania emisją CO2, co jest szczególnie istotne w dobie globalnych wysiłków na rzecz ochrony środowiska oraz zrównoważonego rozwoju.

Pytanie 4

Jakie jest stężenie procentowe roztworu HCl (M=36,46 g/mol) o gęstości 1,19 g/cm3 oraz stężeniu molowym 12 mol/dm3?

A. 19,6%
B. 78,3%
C. 36,8%
D. 39,2%
W przypadku stężeń procentowych, zrozumienie roli gęstości oraz stężenia molowego jest kluczowe dla prawidłowego oszacowania wartości procentowych. Odpowiedzi wskazujące na błędne wartości stężenia często wynikają z pomyłek w obliczeniach lub nieodpowiedniego zastosowania definicji stężenia. Niezrozumienie, że stężenie procentowe odnosi się do masy substancji w stosunku do masy całego roztworu, może prowadzić do błędnych wyników. Na przykład, niektóre odpowiedzi mogły powstać poprzez pomieszanie jednostek, takich jak gęstość i stężenie molowe, co jest powszechnym błędem w obliczeniach chemicznych. Ponadto, pomijanie przeliczeń masy do stężenia procentowego nie tylko prowadzi do błędnych wniosków, ale także może wpływać na całkowity wynik eksperymentu. W praktyce laboratoryjnej niezbędne jest zrozumienie, że błędne założenia dotyczące masy roztworu lub objętości mogą znacznie zafałszować wyniki. Dlatego kluczowe jest przestrzeganie dobrych praktyk przy obliczaniu stężeń, w tym dokładne ważenie substancji oraz stosowanie odpowiednich wzorów do obliczeń, aby uniknąć pomyłek i uzyskać wiarygodne dane eksperymentalne.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Odlanie cieczy z nad osadu to

A. dekantacja
B. sedymentacja
C. filtracja
D. destylacja
Dekantacja to proces polegający na oddzieleniu cieczy od osadu poprzez jej zlanie. Jest to technika powszechnie stosowana w laboratoriach chemicznych oraz w przemyśle, szczególnie w produkcji napojów, takich jak wino czy piwo. W praktyce dekantacja umożliwia uzyskanie klarownej cieczy, eliminując niepożądane cząstki stałe. W przypadku win, na przykład, dekantacja jest kluczowym etapem, który pozwala na usunięcie osadu powstałego podczas fermentacji, co poprawia jakość i smak trunku. Proces ten jest zgodny z zasadami dobrych praktyk laboracyjnych, które zalecają stosowanie efektywnych metod separacji, minimalizujących ryzyko kontaminacji. Ważnym aspektem dekantacji jest także precyzja, z jaką należy przeprowadzić ten proces, aby uniknąć zmieszania cieczy z osadem. W kontekście analizy jakości cieczy, dekantacja może być również używana w analizie chemicznej do przygotowania próbek do dalszych badań, co podkreśla jej znaczenie w szerokim zakresie zastosowań.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Mianowanie roztworu o stężeniu przybliżonym można wykonać poprzez

A. miareczkowanie tym samym roztworem mianowanym o ściśle określonym stężeniu.
B. miareczkowanie innym roztworem, który nie jest mianowany.
C. zmierzenie gęstości tego roztworu.
D. miareczkowanie innym roztworem mianowanym o ściśle określonym stężeniu.
Mianowanie roztworu o stężeniu przybliżonym można skutecznie przeprowadzić poprzez miareczkowanie innym roztworem mianowanym o ściśle określonym stężeniu, ponieważ pozwala to na precyzyjne określenie ilości molesów substancji czynnej w analizowanym roztworze. W praktyce, podczas miareczkowania wykorzystuje się znany roztwór o dokładnie zmierzonym stężeniu, co pozwala na dokładne obliczenia i analizę wyników. Na przykład, w laboratoriach chemicznych często wykorzystuje się miareczkowanie kwasu solnego roztworem wodorotlenku sodu o znanym stężeniu, co umożliwia precyzyjne określenie stężenia kwasu. Zgodnie z normami branżowymi, takimi jak ISO 8655, precyzyjne miareczkowanie jest kluczowe dla uzyskania wiarygodnych wyników analitycznych. Dodatkowo, stosowanie roztworów mianowanych eliminuje wiele zmiennych, które mogłyby wpłynąć na wynik, takich jak niejednorodność roztworów niemianowanych, co czyni je bardziej niezawodnymi w kontekście stosowania w analizach laboratoryjnych.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Woda używana w laboratorium chemicznym, uzyskana poprzez filtrację przez wymieniacz jonowy, jest określana mianem wody

A. demineralizowanej
B. redestylowanej
C. mineralizowanej
D. destylowanej
Woda mineralizowana to woda, która zawiera rozpuszczone minerały, takie jak wapń, magnez czy potas. Jej stosowanie w laboratoriach chemicznych jest nieodpowiednie, ponieważ te minerały mogą wprowadzać zakłócenia w reakcjach chemicznych oraz analizach, prowadząc do błędnych wyników. Woda redestylowana nie jest powszechnie używana jako termin w laboratoriach; destylacja jest procesem polegającym na odparowaniu cieczy i skropleniu jej pary, co może usunąć zanieczyszczenia, ale nie jest to proces wymiany jonów, który koncentruje się na eliminacji soli. Destylowana woda, choć czysta, może nie spełniać norm jakości demineralizowanej, ponieważ nie do końca eliminuje wszystkie rozpuszczone substancje chemiczne. Typowym błędem jest mylenie procesu destylacji z demineralizacją, co prowadzi do niewłaściwego doboru wody do eksperymentów. W laboratorium kluczowe jest stosowanie wody o odpowiednim stopniu czystości, a demineralizowana woda jest standardem, który zapewnia powtarzalność i precyzję wyników, co jest niezbędne w badaniach naukowych.

Pytanie 11

Czysty odczynnik (skrót: cz.) charakteryzuje się poziomem czystości wynoszącym

A. 90-99%
B. 99,9-99,99%
C. 99-99,9%
D. 99,99-99,999%
Odpowiedź 99-99,9% jest poprawna, gdyż odczynnik czysty (skrót: cz.) jest definiowany przez stopień czystości, który powinien mieścić się w określonym zakresie. Zgodnie z normami międzynarodowymi, substancje charakteryzujące się czystością w tym zakresie są uznawane za wysokiej jakości, co ma kluczowe znaczenie w takich dziedzinach jak chemia analityczna, farmacja czy przemysł spożywczy. W praktyce, substancje o czystości 99-99,9% mogą być wykorzystywane w wytwarzaniu leków, gdzie nawet niewielkie zanieczyszczenie może wpłynąć na skuteczność i bezpieczeństwo preparatu. Przykłady takich substancji to wiele reagentów używanych w laboratoriach, które muszą spełniać wysokie standardy czystości, aby zapewnić wiarygodne wyniki w badaniach. Ponadto, ogólnie przyjęte normy, takie jak ISO 9001, podkreślają znaczenie monitorowania i zapewniania jakości materiałów, co jest istotne w kontekście czystości chemicznej.

Pytanie 12

Skrót "cz." na etykiecie odczynnika chemicznego wskazuje, że

A. zawartość zanieczyszczeń nie przekracza 0,01-0,001%
B. zawartość głównego składnika wynosi 99-99,9%
C. odczynnik jest przeznaczony do analiz spektralnych
D. zawartość głównego składnika wynosi 99,9-99,99%
Skrót 'cz.' oznacza, że zawartość głównego składnika odczynnika chemicznego wynosi od 99% do 99,9%. Jest to standard stosowany w chemii analitycznej, gdzie wysoka czystość substancji chemicznych jest kluczowa dla uzyskiwania wiarygodnych wyników analiz. W praktyce oznacza to, że stosując reagenty oznaczone tym skrótem, możemy mieć wysoką pewność co do ich jakości i niezawodności. Przykładem zastosowania jest przygotowanie roztworów wzorcowych, gdzie precyzyjne stężenie substancji chemicznych jest niezbędne do przeprowadzenia dokładnych pomiarów. Reagenty o wysokiej czystości są również niezbędne w laboratoriach badawczych, gdzie niewielkie zanieczyszczenia mogą prowadzić do błędów w wynikach eksperymentów. Standardy takie jak ISO 9001 czy ASTM E2412-10 podkreślają znaczenie stosowania reagentów o określonej czystości w różnych procesach laboratoryjnych.

Pytanie 13

Jaki jest błąd względny pomiaru na wadze o precyzji 0,1 g dla próbki o wadze 1 g?

A. 100%
B. 1%
C. 10%
D. 0,1%
Błąd względny ważenia określa stosunek błędu pomiaru do wartości mierzonej, wyrażony w procentach. W przypadku wagi o dokładności 0,1 g, oznacza to, że maksymalny błąd pomiaru przy ważeniu próbki o masie 1 g wynosi 0,1 g. Aby obliczyć błąd względny, stosujemy wzór: (błąd pomiaru / wartość mierzona) * 100%. Wstawiając dane: (0,1 g / 1 g) * 100% = 10%. Taki błąd względny jest szczególnie istotny w laboratoriach, gdzie precyzyjność pomiarów jest kluczowa, na przykład w analizach chemicznych, gdzie nawet niewielkie odchylenia mogą prowadzić do błędnych wyników. W praktyce, znajomość błędu względnego pozwala ocenić jakość pomiaru oraz dostosować metodykę ważenia do wymogów analizy. Przy wyborze wagi, warto zwrócić uwagę na jej dokładność oraz na to, w jaki sposób błąd względny wpływa na wyniki końcowe, co jest kluczowe w kontekście standardów jakości, takich jak ISO 17025.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Jaką masę siarczanu(VI) miedzi(II)-woda(1/5) należy poddać suszeniu, aby otrzymać 300 g soli bezwodnej?

CuSO4 · 5H2O → CuSO4 + 5H2O
(MCuSO4·5H2O = 249,5 g/mol, MCuSO4 = 159,5 g/mol, MH2O = 18,0 g/mol)

A. 390,5 g
B. 584,1 g
C. 469,3 g
D. 210,0 g
Odpowiedź 469,3 g jest prawidłowa, ponieważ obliczenia opierają się na stosunku mas molowych soli bezwodnej i uwodnionej. Siarczan(VI) miedzi(II) w postaci uwodnionej (CuSO4·5H2O) zawiera cząsteczki wody, które muszą zostać usunięte podczas procesu suszenia, aby uzyskać sól bezwodną (CuSO4). Masy molowe: CuSO4 wynoszą około 159,61 g/mol, a CuSO4·5H2O to 249,68 g/mol. Stosując proporcje, można ustalić, że masa siarczanu(VI) miedzi(II)-woda, potrzebna do uzyskania 300 g soli bezwodnej, wynosi około 469,3 g. Praktyczne zastosowanie tej wiedzy jest istotne w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów i soli jest kluczowe dla uzyskania wiarygodnych wyników badań. Dobre praktyki laboratoryjne sugerują, aby zawsze przeprowadzać obliczenia masy przed rozpoczęciem doświadczenia, co pozwala uniknąć błędów i strat materiałowych.

Pytanie 16

Procedura oznaczenia kwasowości mleka. Do wykonania analizy, zgodnie z powyższą procedurą, potrzebne są

Do kolby stożkowej o pojemności 300 cm3 pobrać dokładnie 25 cm3 badanego mleka i rozcieńczyć wodą destylowaną do objętości 50 cm3. Dodać 2-3 krople fenoloftaleiny i miareczkować mianowanym roztworem wodorotlenku sodu do uzyskania lekko różowego zabarwienia.

A. pipeta jednomiarowa o pojemności 25 cm3, zlewka o pojemności 300 cm3, biureta.
B. pipeta wielomiarowa o pojemności 25 cm3, kolba stożkowa o pojemności 300 cm3, biureta, cylinder miarowy o pojemności 100 cm3.
C. cylinder miarowy o pojemności 50 cm3, kolba stożkowa o pojemności 300 cm3, biureta.
D. pipeta jednomiarowa o pojemności 25 cm3, kolba stożkowa o pojemności 300 cm3, biureta, cylinder miarowy o pojemności 25 cm3.
Wybrana odpowiedź jest prawidłowa, ponieważ dokładnie odpowiada wymaganym materiałom do analizy kwasowości mleka zgodnie z ustaloną procedurą. Pipeta jednomiarowa o pojemności 25 cm3 jest kluczowym narzędziem do precyzyjnego odmierzania próbki mleka, co jest niezbędne dla zachowania dokładności wyniku analizy. Kolba stożkowa o pojemności 300 cm3 pozwala na rozcieńczenie próbki mleka z wodą destylowaną, co jest istotne dla uzyskania właściwej reakcji podczas miareczkowania. Biureta służy do precyzyjnego dozowania odczynnika w procesie miareczkowania, co jest standardem w laboratoriach chemicznych, a cylinder miarowy o pojemności 25 cm3 umożliwia dokładne odmierzenie wody destylowanej. Zastosowanie tych narzędzi zgodnie z dobrą praktyką laboratoryjną zapewnia wiarygodność wyników i powtarzalność analiz, co jest niezwykle istotne w kontekście kontroli jakości produktów mleczarskich.

Pytanie 17

Podstawowy zestaw do filtracji składa się ze statywu oraz

A. zlejka Büchnera, zlewki i bagietki
B. zlejka, zlewki i pipety
C. z dwóch zlewek i bagietki
D. zlejka, dwóch zlewek i bagietki
Podstawowy zestaw do sączenia rzeczywiście składa się z statywu oraz zlejki, dwóch zlewek i bagietki. Statyw jest kluczowy, ponieważ zapewnia stabilność i bezpieczeństwo podczas procesu sączenia, co jest szczególnie ważne w laboratoriach chemicznych i biologicznych, gdzie manipulacja cieczami może być niebezpieczna. Zlejka służy do przechwytywania cieczy, która jest sączona, natomiast zlewki są wykorzystywane do przechowywania oraz transportowania różnych odczynników i próbek. Bagietka, z kolei, jest narzędziem pomocniczym używanym do kierowania cieczy lub do mieszania składników w zlewkach. Przykładem zastosowania tego zestawu jest filtracja próbki cieczy w celu usunięcia zawiesin, co jest powszechnie stosowane w analizach chemicznych oraz podczas przygotowywania rozwiązań o określonym stężeniu. W laboratoriach stosuje się również standardowe procedury bezpieczeństwa, które obejmują wykorzystanie odpowiednich narzędzi i zachowywanie porządku, aby uniknąć kontaminacji.

Pytanie 18

Mianowanie roztworu KMnO4 następuje według poniższej procedury:
Około 0,2 g szczawianu sodu, ważonego z dokładnością ±0,1 mg, przenosi się do kolby stożkowej, rozpuszcza w około 100 cm3 wody destylowanej, następnie dodaje się 10 cm3 roztworu kwasu siarkowego(VI) i podgrzewa do temperatury około 70 °C. Miareczkowanie przeprowadza się roztworem KMnO4 do momentu uzyskania trwałego, jasnoróżowego koloru.
Powyższa procedura odnosi się do miareczkowania

A. redoksymetrycznego
B. kompleksometrycznego
C. potencjometrycznego
D. alkacymetrycznego
Miareczkowanie alkacymetryczne, potencjometryczne oraz kompleksometryczne to trzy różne techniki analizy chemicznej, które różnią się zasadami działania oraz rodzajem reakcji, które są stosowane. Miareczkowanie alkacymetryczne koncentruje się na zmianach pH roztworu oraz zastosowaniu wskaźników kwasowo-zasadowych, co jest nieodpowiednie w przypadku reakcji redoks, jak ta z manganianem(VII) potasu, gdzie zmiany kolorystyczne są spowodowane reakcjami utleniania i redukcji, a nie zmianą pH. Potencjometryczne metody pomiaru polegają na stosowaniu elektrody do pomiaru potencjału elektrochemicznego, co również nie pasuje do opisanego przypadku, ponieważ nie wykorzystuje się elektrochemicznych pomiarów do oceny końcowego punktu miareczkowania. Z kolei miareczkowanie kompleksometryczne opiera się na tworzeniu kompleksów między metalami a ligandami, co jest również nieadekwatne do działania manganianu(VII), który działa jako utleniacz. Właściwe zrozumienie tych technik jest kluczowe, aby uniknąć zamieszania i oszczędzić czas w laboratoriach, gdzie precyzyjne pomiary są niezbędne do uzyskania wiarygodnych wyników analitycznych. Często błędne rozumienie różnic między tymi metodami może prowadzić do niewłaściwej interpretacji wyników oraz nieprawidłowego doboru odczynników, co może mieć poważne konsekwencje w badaniach chemicznych.

Pytanie 19

Aby uzyskać całkowicie bezwodny Na2CO3, przeprowadzono prażenie 143 g Na2CO3·10H2O (M = 286 g/mol). Po upływie zalecanego czasu prażenia odnotowano utratę masy 90 g. W związku z tym prażenie należy

A. uznać za zakończone
B. kontynuować, aż do potwierdzenia, że masa soli nie ulega zmianie
C. powtórzyć, ponieważ sól uległa rozkładowi
D. kontynuować, ponieważ sól nie została całkowicie odwodniona
Prażenie Na2CO3·10H2O pod kątem uzyskania bezwodnego Na2CO3 polega na usunięciu cząsteczek wody związanych z solą. Odpowiedź 'kontynuować, aż do upewnienia się, że masa soli pozostaje stała' jest prawidłowa, ponieważ proces dehydratacji powinien być monitorowany, aż do momentu, gdy nie będzie już zauważalnych zmian masy. W praktyce chemicznej, gdy masa przestaje się zmieniać, można uznać, że reakcja osiągnęła równowagę i całkowite odwodnienie zostało zakończone. Przykładem może być proces przygotowywania soli w laboratorium, gdzie często stosuje się metody termiczne do usuwania wody. Kontrola masy jest kluczowa, aby uniknąć niepożądanych produktów ubocznych, które mogą powstać w wyniku nadmiernego ogrzewania. Dobre praktyki laboratoryjne obejmują także stosowanie odpowiednich technik ważenia oraz monitorowania temperatury, aby zapewnić optymalne warunki prażenia.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Ustalanie miana roztworu polega na

A. zważeniu substancji i rozpuszczeniu jej w wodzie
B. miareczkowaniu przy użyciu roztworu o precyzyjnie znanym stężeniu roztworu oznaczanej próbki
C. określaniu przybliżonego stężenia roztworu
D. miareczkowaniu próbki roztworu o dokładnie znanym stężeniu przy pomocy roztworu nastawianego
Poprawna odpowiedź dotyczy miareczkowania próbki roztworu o znanym stężeniu za pomocą roztworu nastawianego. Jest to kluczowy proces analityczny w chemii, stosowany do precyzyjnego określania stężenia substancji chemicznych w roztworach. W praktyce, miareczkowanie polega na dodawaniu roztworu titranta o znanym stężeniu do roztworu próbki aż do osiągnięcia punktu końcowego, w którym zachodzi reakcja chemiczna. Użycie roztworu nastawianego, którego stężenie zostało ustalone i potwierdzone na podstawie ścisłych standardów, zapewnia wysoką dokładność i powtarzalność wyników analizy. Na przykład, w laboratoriach analitycznych często stosuje się roztwory wzorcowe, które są przygotowane w zgodzie z normami ISO, co pozwala na uzyskanie wiarygodnych wyników. Miareczkowanie jest nie tylko fundamentalną techniką w chemii analitycznej, ale także w biologii, farmacji, a także w przemyśle spożywczym do kontroli jakości produktów.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Materiał uzyskany przez zmieszanie prób pobranych w ustalonych odstępach czasu określa się mianem próbki

A. proporcjonalnej
B. ogólną okresową
C. ogólnej
D. złożonej
Odpowiedź "ogólną okresową" jest prawidłowa, ponieważ odnosi się do próbek, które są zbierane z określonymi odstępami czasowymi, co pozwala na uzyskanie reprezentatywnego obrazu danego zjawiska lub procesu w określonym czasie. Próbki te są kluczowe w wielu dziedzinach, takich jak monitorowanie jakości środowiska, analizy chemiczne czy badania statystyczne. Przykładem może być analiza jakości wody, gdzie próbki są pobierane regularnie, aby ocenić zmiany w zanieczyszczeniu w czasie. W praktyce, stosowanie próbek ogólnych okresowych pozwala na zminimalizowanie wpływu przypadkowych zjawisk i uzyskanie bardziej wiarygodnych danych. Przy takich badaniach istotne jest również przestrzeganie norm ISO, które zalecają określone metody pobierania próbek, aby zapewnić ich jednorodność i reprezentatywność. Zrozumienie tego konceptu jest kluczowe dla profesjonalistów zajmujących się badaniami, jakością oraz kontrolą procesów.

Pytanie 24

W celu usunięcia drobnych zawiesin z roztworu przed analizą spektrofotometryczną stosuje się:

A. sączenie przez sączek o drobnych porach lub filtr membranowy
B. suszenie roztworu w suszarce laboratoryjnej
C. dekantację bez sączenia
D. podgrzewanie roztworu do wrzenia
Sączenie przez sączek o drobnych porach lub filtr membranowy to standardowa metoda przygotowania próbek do analiz spektrofotometrycznych, szczególnie gdy zależy nam na usunięciu nawet najmniejszych cząstek zawieszonych. W branży laboratoryjnej takie podejście uchodzi za dobrą praktykę, bo pozwala skutecznie oddzielić fazę ciekłą od niepożądanych drobin, które mogłyby rozpraszać światło i zakłócać pomiar. Filtry membranowe wyróżniają się bardzo drobną porowatością (np. 0,22–0,45 µm), przez co nawet mikroskopijne cząstki nie przechodzą dalej. Użycie sączka o drobnych porach jest też bezpieczne dla składu chemicznego roztworu, nie powoduje dodatkowych reakcji i nie wpływa na wyniki analizy. Moim zdaniem, to wręcz obowiązkowa czynność przed większością analiz spektrofotometrycznych, szczególnie gdy pracujemy z próbkami środowiskowymi, farmaceutycznymi czy biologicznymi. Warto wspomnieć, że profesjonalne laboratoria stosują filtry strzykawkowe lub sączki z tworzyw sztucznych, bo są wygodne i minimalizują ryzyko zanieczyszczeń. Odpowiednia filtracja gwarantuje, że absorbancja mierzona spektrofotometrycznie odzwierciedla wyłącznie skład roztworu, a nie „szum” od cząstek zawieszonych. Takie przygotowanie próbek to po prostu podstawa rzetelnych wyników.

Pytanie 25

Błąd związany z odczytem poziomu cieczy w kolbie miarowej, spowodowany niewłaściwą pozycją oka w stosunku do skali, nazywany jest błędem

A. losowym
B. paralaksy
C. dokładności
D. instrumentalnym
Wybór 'paralaksy' to strzał w dziesiątkę! To dotyczy błędu w odczycie, który ma związek z tym, jak nasze oczy widzą coś z określonego kąta. Tak naprawdę paralaksa to ciekawe zjawisko optyczne – jakby obiekt wydaje się zmieniać, kiedy patrzymy na niego z różnych miejsc. W laboratorium, przy pomiarach cieczy w kolbie miarowej, bardzo ważne jest, żeby dobrze ustawić wzrok na menisku. Jak nie patrzymy z odpowiedniego poziomu, to możemy źle odczytać, ile płynu mamy. To jest kluczowe, zwłaszcza w chemii, gdzie dokładność to podstawa. No i jest kilka standardów, jak ISO 8655, które mówią, jak powinno się to robić, żeby wyniki były wiarygodne. Także pamiętaj, patrząc na menisk, rób to na wysokości oczu, żeby uniknąć błędów – to naprawdę robi różnicę.

Pytanie 26

Jakie urządzenie jest wykorzystywane do oczyszczania próbki gazowej?

A. płuczka
B. zestaw sit
C. rozdzielacz
D. chłodnica
Płuczka jest urządzeniem stosowanym do oczyszczania gazów, które działa na zasadzie przepływu gazu przez ciecz. Proces ten pozwala na usunięcie zanieczyszczeń, takich jak pyły, drobne cząstki stałe oraz różne substancje chemiczne, które mogą być rozpuszczalne w cieczy. W praktyce płuczki wykorzystywane są w różnych gałęziach przemysłu, w tym w energetyce, przemyśle chemicznym oraz w procesach oczyszczania spalin. Standardy branżowe, takie jak ISO 14001 dotyczące zarządzania środowiskowego, podkreślają znaczenie redukcji emisji szkodliwych substancji do atmosfery, co czyni płuczki kluczowym elementem w systemach kontroli zanieczyszczeń. Przykładowo, w elektrowniach węglowych płuczki są używane do oczyszczania spalin przed ich emisją do atmosfery, co przyczynia się do ochrony środowiska oraz spełnienia norm prawnych dotyczących jakości powietrza.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Zaleca się schładzanie próbek wody transportowanych do laboratorium do temperatury

A. 16±2°C
B. 12±1°C
C. 9±1°C
D. 5±3°C
Odpowiedź 5±3°C jest prawidłowa, ponieważ zgodnie z normami, takimi jak ISO 5667, próbki wody powinny być transportowane w temperaturze, która minimalizuje zmiany ich właściwości chemicznych oraz biologicznych. Obniżenie temperatury próbek do przedziału 2°C – 8°C (5±3°C) pozwala na spowolnienie procesów metabolismu mikroorganizmów oraz chemicznych reakcji, co jest kluczowe dla zachowania autentyczności analizowanych próbek. Przykładowo, w przypadku analizy składu chemicznego wody pitnej, zbyt wysoka temperatura transportu może prowadzić do degradacji związków organicznych lub wzrostu liczby mikroorganizmów, co skutkuje błędnymi wynikami. Dobre praktyki laboratoryjne zalecają także stosowanie odpowiednich kontenerów oraz lodu lub żeli chłodzących w celu utrzymania właściwej temperatury, co jest istotne w kontekście zgodności z wymaganiami prawnymi oraz normami badań środowiskowych.

Pytanie 29

Roztwory, które wykorzystuje się do kalibracji pehametrów, to

A. kalibracyjne
B. buforowe
C. kwasowe
D. zasadowe
Roztwory buforowe są kluczowe w kalibracji pehametrów, ponieważ utrzymują stałe pH pomimo dodania niewielkich ilości kwasów lub zasad. Dzięki swojej właściwości stabilizacji pH, roztwory buforowe pozwalają na dokładne pomiary, co jest niezbędne w różnych zastosowaniach laboratoryjnych i przemysłowych. Przykładowo, w laboratoriach analitycznych, gdzie pomiar pH jest istotny dla jakości analizowanych próbek, kalibracja pehametru za pomocą roztworów buforowych zapewnia wiarygodność wyników. Standardami ISO dla pomiaru pH zaleca się stosowanie roztworów buforowych o znanych wartościach pH, co umożliwia precyzyjne ustawienie punktów kalibracyjnych. Dobre praktyki wymagają także, aby roztwory buforowe były świeże i odpowiednio przechowywane, aby uniknąć zmian ich właściwości chemicznych. Właściwa kalibracja przyczynia się do minimalizacji błędów pomiarowych, a tym samym zwiększa dokładność wyników i niezawodność procesów analitycznych.

Pytanie 30

Woda, która została poddana dwukrotnej destylacji, to woda

A. redestylowana
B. ultra czysta
C. odmineralizowana
D. odejonizowana
Woda dwukrotnie destylowana to woda, która została poddana procesowi destylacji dwa razy, co pozwala na usunięcie znacznej większości zanieczyszczeń i rozpuszczonych substancji chemicznych. Dzięki temu uzyskuje się wodę o wysokiej czystości, często określaną mianem wody redestylowanej. Woda redestylowana jest szczególnie cenna w zastosowaniach laboratoryjnych i przemysłowych, gdzie wymagana jest wysoka jakość wody, np. w analizach chemicznych, w produkcji farmaceutyków, czy w zastosowaniach technologicznych, takich jak chłodzenie urządzeń. W kontekście standardów, woda redestylowana spełnia wymagania norm dotyczących czystości wody, takich jak te ustalone przez Farmakopeę. Przykładem jej zastosowania może być przygotowanie roztworów do badań, gdzie obecność nawet minimalnych zanieczyszczeń może wpłynąć na wyniki. Dlatego jej produkcja i wykorzystanie powinny odbywać się zgodnie z najlepszymi praktykami, aby zapewnić najwyższą jakość.

Pytanie 31

Aby otrzymać czystą substancję, próbka z nitroaniliną została poddana procesowi krystalizacji. Jaką masę nitroaniliny użyto do krystalizacji, jeśli uzyskano 1,5 g czystego związku, a wydajność krystalizacji wyniosła 75%?

A. 0,02 g
B. 2 g
C. 0,5 g
D. 50 g
W przypadku obliczeń związanych z krystalizacją często dochodzi do nieporozumień dotyczących interpretacji wydajności oraz masy próbki. Wydajność krystalizacji to kluczowy parametr, który informuje nas, jaką część początkowej masy substancji udało się uzyskać w formie czystego związku. Niektórzy mogą błędnie zakładać, że masa odważki powinna być równa masie czystego produktu, co jest znamienne dla błędnej interpretacji wyników. Odpowiedzi, które sugerują masę mniejszą niż rzeczywista masa próbki, ignorują fakt, że wydajność jest zawsze wyrażana jako wartość mniejsza niż 1 lub 100%. To prowadzi do poważnych błędów w obliczeniach. Na przykład, odpowiedzi, które sugerują masy takie jak 0,02 g czy 0,5 g, pomijają podstawowy związek pomiędzy masą uzyskanego produktu a jego wydajnością. Ważne jest również to, aby zrozumieć, że przy krystalizacji nie tylko ilość, ale także jakość uzyskanego produktu jest kluczowa. W praktyce, niewłaściwe obliczenia mogą prowadzić do nieefektywnego procesu oczyszczania, co może mieć poważne konsekwencje w przemyśle chemicznym. W kontekście standardów branżowych, takie błędy mogą skutkować niezgodnością z wymaganiami jakościowymi, co jest nieakceptowalne w produkcji farmaceutyków i chemikaliów specjalistycznych. Z tego powodu niezwykle ważne jest, aby zrozumieć i zastosować poprawne metody obliczeń w każdym etapie procesu chemicznego.

Pytanie 32

Technika oddzielania płynnych mieszanin, w której wykorzystuje się różnice w prędkości migracji składników przez odpowiednią bibułę, nazywa się

A. chromatografią
B. adsorpcją
C. filtracją
D. destylacją
Chromatografia to technika rozdzielania składników mieszanin, która opiera się na różnicach w ich powinowactwie do fazy stacjonarnej i fazy ruchomej. Proces ten umożliwia analizę oraz oczyszczanie substancji chemicznych, a jego zastosowanie jest szerokie, od analizy jakościowej w laboratoriach chemicznych po przemysł farmaceutyczny, gdzie służy do czyszczenia składników aktywnych. W chromatografii cieczowej, która jest jedną z najczęstszych metod, próbka jest rozdzielana na podstawie różnic w szybkości migracji jej składników przez bibulę lub kolumnę wypełnioną odpowiednim materiałem. Zastosowanie chromatografii obejmuje zarówno naukę, jak i przemysł, umożliwiając kontrolę jakości, identyfikację substancji oraz badania środowiskowe, co czyni ją kluczowym narzędziem w analizach chemicznych. Standardy ISO oraz metodyka Good Laboratory Practice (GLP) regulują stosowanie chromatografii, zapewniając wysoką jakość wyników i bezpieczeństwo w laboratoriach.

Pytanie 33

Z próbek przygotowuje się ogólną próbkę

A. analitycznych
B. laboratoryjnych
C. wtórnych
D. pierwotnych
Przygotowanie próbki ogólnej z próbek pierwotnych jest kluczową procedurą w wielu dziedzinach analityki. Próbki pierwotne to te, które są pozyskiwane bezpośrednio z miejsca danego badania, co zapewnia ich reprezentatywność i integralność. Umożliwia to właściwe odwzorowanie warunków, w jakich dana substancja występuje w naturze. Na przykład w analizach środowiskowych, takich jak badanie jakości wód czy gleby, próbki pierwotne pobierane są bezpośrednio z miejsca, co pozwala na dokładne przeanalizowanie ich właściwości chemicznych i fizycznych. Zgodnie z normami ISO, odpowiednie pobieranie próbek jest istotne dla zachowania właściwych standardów jakości i rzetelności wyników. W praktyce, przygotowanie próbki ogólnej z próbek pierwotnych pozwala na przeprowadzenie dalszych analiz, takich jak spektrometria, chromatografia czy mikroskopia, co daje możliwość uzyskania danych nie tylko o składzie chemicznym, ale także o potencjalnych zanieczyszczeniach i ich źródłach. Zrozumienie tej procedury jest kluczowe dla wszelkich prac badawczych i przemysłowych, dlatego istotne jest, aby praktycy i naukowcy stosowali się do ścisłych wytycznych dotyczących pobierania i przygotowania próbek.

Pytanie 34

Losowo należy pobierać próbki z opakowań

A. z kilku punktów w obrębie opakowania
B. z krawędzi opakowania
C. z górnej części opakowania
D. z dolnej części opakowania
Odpowiedź "z kilku miejsc przekroju opakowania" jest poprawna, ponieważ losowe pobieranie próbek z różnych miejsc w opakowaniu zapewnia reprezentatywność próbki. Jest to kluczowe w wielu dziedzinach, takich jak analiza jakościowa, zapewnienie bezpieczeństwa produktów oraz kontrola procesów technologicznych. W praktyce oznacza to, że próbki należy pobierać z różnych warstw i lokalizacji w obrębie opakowania, aby zminimalizować ryzyko błędnych wniosków wynikających z niejednorodności składu. W odniesieniu do standardów takich jak ISO 2859-1, który określa metody pobierania próbek dla kontroli jakości, ważne jest, aby każda próbka była reprezentatywna dla całej partii. Takie podejście zwiększa wiarygodność wyników analiz laboratoryjnych i umożliwia dostarczenie rzetelnych informacji na temat jakości produktu. Przykładowo, w przemyśle spożywczym, pobieranie próbek z różnych miejsc opakowania pozwala na identyfikację ewentualnych zanieczyszczeń lub niezgodności jakościowych, co jest fundamentem dla zapewnienia bezpieczeństwa konsumentów.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Proces oddzielania mieszaniny niejednorodnej, który zachodzi w wyniku opadania cząstek pod działaniem grawitacji, nazywamy

A. dekantacja
B. sedymentacja
C. absorpcja
D. hydratacja
Sedymentacja to proces fizyczny, w którym cząstki stałe w zawiesinie opadają na dno pod wpływem siły grawitacji. Jest to kluczowy mechanizm w wielu dziedzinach, takich jak inżynieria środowiska, geologia czy chemia analityczna. W praktyce sedymentacja jest wykorzystywana do oczyszczania ścieków, gdzie cząstki stałe są usuwane z cieczy, co pozwala na oczyszczenie wody. Dobrą praktyką w analizach chemicznych jest zastosowanie sedymentacji w etapach przygotowania próbek, co pozwala na wyizolowanie cząstek osadowych i ich dalsze badanie. Proces ten jest również podstawą wielu technologii, takich jak separacja i recykling materiałów, gdzie skuteczne oddzielanie składników jest kluczowe dla efektywności całego procesu produkcyjnego. W kontekście norm i regulacji, aplikacje sedymentacji muszą spełniać odpowiednie standardy jakości, co gwarantuje bezpieczeństwo i efektywność działań przemysłowych.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

W trakcie reakcji estryfikacji opisanej równaniem CH3COOH + C2H5OH ↔ CH3COOC2H5 + H2O użyto molowego stosunku alkoholu do kwasu wynoszącego 1:10. W rezultacie tego

A. równowaga reakcji została silnie przesunięta w lewo
B. alkohol uległ całkowitej reakcji
C. uzyskano ester o 100% wydajności
D. równowaga reakcji została silnie przesunięta w prawo
W przypadku reakcji estryfikacji, zastosowanie molowego stosunku alkoholu do kwasu acetylenowego wynoszącego 1:10 powoduje, że ilość dostępnego alkoholu jest znacznie większa w porównaniu do kwasu. Zgodnie z zasadą Le Chateliera, zwiększenie ilości reagentu (w tym przypadku alkoholu) prowadzi do przesunięcia równowagi reakcji w stronę produktów. W tym konkretnym przypadku oznacza to, że równowaga reakcji przesunie się w prawo, co skutkuje większą produkcją estru (CH3COOC2H5) oraz wody (H2O). Praktycznie, taki stosunek reagentów jest często stosowany w przemyśle chemicznym, aby zwiększyć wydajność produkcji estrów, co jest szczególnie istotne w syntezach organicznych i w produkcji aromatów. Warto zauważyć, że aby uzyskać optymalne wyniki, ważne jest monitorowanie warunków reakcji, takich jak temperatura oraz obecność katalizatorów, co może również wpływać na szybkość i wydajność reakcji.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Aby przygotować 250 cm3 0,2-molowego roztworu wodorotlenku sodu, należy odważyć

MNaOH = 40g / mol

A. 2,00 g stałego NaOH.
B. 0,05 g stałego NaOH.
C. 2,50 g stałego NaOH.
D. 25,0 g stałego NaOH.
Aby przygotować 250 cm3 0,2-molowego roztworu wodorotlenku sodu (NaOH), konieczne jest zrozumienie podstawowych zasad obliczania masy substancji chemicznych. W przypadku NaOH, jego masa molowa wynosi 40 g/mol. Przygotowując roztwór o stężeniu 0,2 mola w 250 cm3, obliczamy ilość moli, co daje nam 0,05 mola NaOH (0,2 mol/l * 0,25 l). Następnie, aby obliczyć potrzebną masę, stosujemy wzór: masa = liczba moli * masa molowa. Czyli, 0,05 mola * 40 g/mol = 2 g NaOH. W praktyce, takie obliczenia są kluczowe w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów ma dużą wagę. Używając tej wiedzy, można z sukcesem przygotowywać różnorodne roztwory, co jest istotne w wielu dziedzinach nauki i przemysłu, takich jak chemia analityczna, synergia materiałów czy wytwarzanie farmaceutyków. Zrozumienie tych podstawowych zasad pozwoli na bardziej efektywne i bezpieczne przeprowadzanie eksperymentów chemicznych.