Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 30 maja 2025 19:02
  • Data zakończenia: 30 maja 2025 19:45

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Wylicz koszt wymiany pięciu okien o wymiarach 120×150 cm każde, jeśli cena jednostkowa tej usługi to 65,00 zł/m.

A. 1404,00 zł
B. 1950,00 zł
C. 1560,00 zł
D. 1755,00 zł
Żeby obliczyć, ile kosztuje wymiana pięciu okien o wymiarach 120x150 cm, najpierw trzeba policzyć pole jednego okna. To proste – 120 cm razy 150 cm daje nam 18000 cm². Potem przeliczamy to na metry kwadratowe, dzieląc przez 10000, co daje 1,8 m² na jedno okno. Jak już mamy pięć okien, to całkowite pole wychodzi 5 razy 1,8 m², czyli 9 m². Koszt za metr kwadratowy to 65 zł, więc całkowity koszt wymiany tych okien to 9 m² razy 65 zł, co daje 585 zł. Pamiętaj, że zawsze musisz sprawdzić jednostki, żeby uniknąć błędów. To może się wydawać nudne, ale w praktyce wiedza o kosztach materiałów i robocizny jest kluczowa do dobrego planowania budżetu. Precyzyjne obliczenia pomagają lepiej zarządzać finansami w budownictwie.

Pytanie 2

Rzeczywiste wymiary pomieszczenia biurowego wynoszą 8 x 5 m. Jakie będą jego wymiary na rysunku sporządzonym w skali 1:200?

A. 40,0 x 25,0 cm
B. 8,0 x 5,0 cm
C. 4,0 x 2,5 cm
D. 16,0 x 10,0 cm
Obliczanie wymiarów w skali ma kluczowe znaczenie dla prawidłowego przedstawienia projektów. Odpowiedzi takie jak 8,0 x 5,0 cm, 16,0 x 10,0 cm i 40,0 x 25,0 cm mogą wydawać się na pierwszy rzut oka logiczne, jednak wszystkie one mają swoje wady w kontekście skali 1:200. Pierwsza odpowiedź, równa rzeczywistym wymiarom w centymetrach, nie uwzględnia przeliczenia, co skutkuje błędem w odwzorowaniu. Z kolei 16,0 x 10,0 cm oraz 40,0 x 25,0 cm to wartości, które są wynikiem błędnych przeliczeń; mogą sugerować wykorzystanie niewłaściwej skali, co jest problematyczne w profesjonalnych projektach. Błąd taki często wynika z braku zrozumienia zasady przeliczania skali, co jest fundamentalne w projektowaniu. Profesjonaliści w dziedzinach takich jak architektura czy inżynieria muszą dokładnie przeliczać wymiary, aby uniknąć niezgodności konstrukcyjnych i problemów w realizacji projektów. Używanie niewłaściwej skali może prowadzić do kosztownych błędów w wykonawstwie, dlatego kluczowe jest, aby dobrze rozumieć podstawowe zasady przeliczania wymiarów w rysunkach technicznych.

Pytanie 3

Jakie metody należy zastosować, aby zabezpieczyć metalowe elementy przed korozją podczas wznoszenia ścian z bloczków gipsowych?

A. Pokryć lakierem asfaltowym
B. Aplikować mleczko cementowe
C. Nałożyć farbę olejną
D. Zastosować pokost lniany
Odpowiedzi wskazane jako alternatywy dla pokrycia lakierem asfaltowym mają swoje ograniczenia i nie zapewniają tak efektywnej ochrony przed korozją. Smarowanie pokostem lnianym, chociaż ma swoje zastosowania w konserwacji drewna, nie jest wystarczające dla metalowych elementów, gdyż nie tworzy trwałej, elastycznej powłoki, a jego ochrona jest ograniczona do warunków atmosferycznych. Podobnie, malowanie farbą olejną, mimo że może zapewnić pewien poziom ochrony, nie jest wystarczająco odporne na wilgoć i czynniki chemiczne, które mogą przyspieszać proces korozji. Farby olejne mogą również wymagać częstej konserwacji, co jest niepraktyczne w długoterminowej ochronie metalowych elementów budowlanych. Z kolei, pokrycie lakierem asfaltowym, który często jest wykorzystywany w budownictwie, tworzy barierę, która nie tylko chroni przed wodą, ale również przed substancjami chemicznymi. Naniesienie mleczka cementowego na metalowe elementy również nie jest skutecznym rozwiązaniem, ponieważ mleczko cementowe jest bardziej przeznaczone do poprawy przyczepności betonu niż do zabezpieczania metalu przed korozją. Użytkownicy mogą nie doceniać znaczenia odpowiednich metod ochrony, co prowadzi do stosowania mniej skutecznych rozwiązań. Ważne jest, aby w budownictwie stosować sprawdzone metody zabezpieczania, takie jak lakier asfaltowy, które zgodne są z najlepszymi praktykami branżowymi.

Pytanie 4

Na podstawie fragmentu instrukcji producenta oblicz, ile palet pustaków potrzeba do wymurowania dwóch ścian wysokości 4 m, długości 8,5 m i grubości 19 cm każda.

Fragment instrukcji producenta
Wymiary pustaka250×188×220 mm
Masa pustakaok. 8,5 kg
Zużyciegrubość ściany - 25 cm22 szt/m²
grubość ściany - 19 cm17 szt./m²
Liczba pustaków na palecie120 szt.

A. 13 palet
B. 10 palet
C. 9 palet
D. 12 palet
Odpowiedź 10 palet jest poprawna, ponieważ wymagała od nas precyzyjnego obliczenia całkowitej powierzchni dwóch ścian, co stanowi kluczowy element w procesie budowlanym. Obliczając powierzchnię jednej ściany o wysokości 4 m i długości 8,5 m, otrzymujemy 34 m². Dla dwóch ścian daje to łącznie 68 m². Następnie, biorąc pod uwagę, że grubość każdej ściany wynosi 19 cm, musimy uwzględnić odpowiednią ilość pustaków, które potrzebujemy na każdy metr kwadratowy. Przyjmując standardową wartość zużycia pustaków, powinniśmy obliczyć całkowitą liczbę pustaków potrzebnych do wymurowania ścian. Po podzieleniu tej liczby przez ilość pustaków na palecie (zwykle około 6-7 pustaków na paletę), otrzymujemy wynik około 9,63 palety, który zaokrąglamy do 10. Takie podejście zgodne jest z praktykami branżowymi, które podkreślają znaczenie precyzyjnych obliczeń w planowaniu materiałów budowlanych, co pozwala uniknąć niedoborów i opóźnień w realizacji projektu budowlanego.

Pytanie 5

Aby wykonać tynk ciągniony, należy zastosować

A. paki oraz profilowane kielnie
B. profile przesuwane po prowadnicach
C. pneumatyczne urządzenia natryskowe
D. stalowe listewki kierunkowe
Użycie profili na prowadnicach to kluczowa sprawa przy robieniu tynku ciągnionego. W tej metodzie chodzi o nałożenie zaprawy tynkarskiej na ścianę za pomocą tych profili, co pozwala równomiernie rozprowadzić materiał. Dzięki profilowanym prowadnicom łatwiej kontrolować grubość tynku i uzyskać gładką powierzchnię. W praktyce najpierw montuje się te profile na ścianie, a potem nakłada się zaprawę i wygładza narzędziami tynkarskimi. Ta technika jest zgodna z normami budowlanymi, które mówią, że tynki muszą być robione w sposób zapewniający trwałość i odpowiednie parametry. No i tynk ciągniony jest często stosowany w budynkach, gdzie estetyka jest bardzo ważna, jak w obiektach publicznych czy domach jednorodzinnych - tam gładkie ściany są pożądane przez inwestorów.

Pytanie 6

Do murowania elementów palenisk wykonanych z ceramiki używa się zaprawy

A. szamotowej
B. ciepłochronnej
C. wodoszczelnej
D. polimerowej
Wybór niewłaściwej zaprawy do murowania ceramicznych elementów palenisk może prowadzić do poważnych problemów konstrukcyjnych oraz operacyjnych. Ciepłochronne zaprawy, mimo że posiadają dobre właściwości izolacyjne, nie są przystosowane do bezpośredniego kontaktu z wysokimi temperaturami generowanymi w paleniskach. Ich skład chemiczny często nie zawiera elementów odpornych na działanie ognia, co może prowadzić do degradacji i osłabienia struktur w wysokotemperaturowych warunkach. Polimerowe zaprawy, z kolei, charakteryzują się elastycznością i przyczepnością, lecz ich zastosowanie w kontekście ceramiki ogniotrwałej jest niewłaściwe. Wysoka temperatura może zniszczyć ich struktury, co prowadzi do utraty właściwości spoiny i w konsekwencji do awarii konstrukcji. W przypadku wodoszczelnych zapraw, ich funkcja ochrony przed wilgocią nie ma zastosowania w obszarze palenisk, gdzie kluczowe są właściwości odporności na ciepło i ogień. Często popełnianym błędem jest zakładanie, że zaprawy o innych właściwościach chemicznych mogą być stosowane w miejscach, gdzie wymagane są cechy szamotowe. Zrozumienie specyfiki materiałów budowlanych jest kluczowe dla zapewnienia bezpieczeństwa i trwałości konstrukcji grzewczych.

Pytanie 7

Do zbudowania 1 m2 ściany o grubości 25 cm z pełnych cegieł budowlanych potrzebne jest 0,084 m3 zaprawy cementowo-wapiennej. Jaką kwotę należy przeznaczyć na zaprawę do postawienia ściany o powierzchni 12 m2, jeśli cena jednostkowa zaprawy wynosi 250,00 zł/m3?

A. 242,00 zł
B. 2 420,00 zł
C. 2 520,00 zł
D. 252,00 zł
Aby obliczyć koszt zaprawy cementowo-wapiennej potrzebnej do wymurowania ściany o powierzchni 12 m2, należy najpierw ustalić, ile zaprawy potrzebujemy na tę powierzchnię. Z danych wynika, że do wymurowania 1 m2 ściany potrzeba 0,084 m3 zaprawy. Dlatego na 12 m2 ściany potrzebne będzie: 12 m2 * 0,084 m3/m2 = 1,008 m3 zaprawy. Następnie, mnożąc objętość zaprawy przez cenę jednostkową, otrzymujemy całkowity koszt: 1,008 m3 * 250,00 zł/m3 = 252,00 zł. Przykładowo, wiedza na temat kosztów materiałów budowlanych jest kluczowa w procesie budowy, ponieważ pozwala na odpowiednie planowanie budżetu oraz unikanie nieprzewidzianych wydatków. Również zrozumienie ilości materiałów potrzebnych do realizacji projektu budowlanego pomaga w efektywnym zarządzaniu czasem i zasobami, co jest istotne dla przekroczenia standardów branżowych w zakresie efektywności i oszczędności.

Pytanie 8

Tynk dwu warstwowy składa się z jakich elementów?

A. narzutu i gładzi
B. obrzutki i gładzi
C. gruntownika i narzutu
D. obrzutki i narzutu
Tynk dwuwarstwowy składa się z dwóch kluczowych warstw: obrzutki i narzutu. Obrzutka, będąca pierwszą warstwą, ma na celu przygotowanie podłoża poprzez zwiększenie przyczepności oraz wyrównanie powierzchni. Jest to warstwa o grubszej strukturze, wykonana z materiałów, takich jak zaprawy cementowe, które zapewniają odpowiednią nośność i trwałość. Narzut, będący drugą warstwą, nakładany jest na obrzutkę i pełni rolę estetyczną oraz ochronną. Jego zadaniem jest zapewnienie gładkiej powierzchni, która jest odporniejsza na czynniki atmosferyczne. Praktycznym przykładem zastosowania tynku dwuwarstwowego jest elewacja budynków mieszkalnych, gdzie odpowiednia aplikacja tych warstw wpływa na trwałość ścian zewnętrznych oraz estetykę budynku. Zgodnie z normami budowlanymi, tynk dwuwarstwowy powinien być stosowany w sposób właściwy, aby zapewnić nie tylko wygląd, ale także długowieczność i wytrzymałość elewacji.

Pytanie 9

Zaprawa murarska powstaje z połączenia wody, dodatków lub domieszek oraz spoiwa

A. nieorganicznego i kruszywa drobnego
B. organicznym i kruszywa grubego
C. nieorganicznym i kruszywa grubego
D. organicznym i kruszywa drobnego
Zrozumienie, z czego składa się zaprawa murarska, to naprawdę ważna sprawa, jeśli chcemy, żeby nasze konstrukcje były trwałe. Często ludzie się mylą i nie rozumieją, jak dobierać materiały. Jeśli ktoś myśli, że w zaprawie mogą być spoiwa organiczne, to się myli, bo w tradycyjnych zaprawach używa się spoiw nieorganicznych, a to one właściwie zapewniają wytrzymałość i odporność na różne czynniki zewnętrzne. Pamiętaj, że kruszywo drobne, a nie grube, jest kluczowe dla dobrej konsystencji zaprawy. Jak użyjesz kruszywa grubego, to może się okazać, że w strukturze będą ubytki, co jest kiepskie dla trwałości. Nieodpowiedni skład zaprawy to też szansa na osłabienie całej konstrukcji, co wynika z braku zrozumienia, jak działają te składniki. Standardy budowlane są jasno określone, więc lepiej stosować się do nich, żeby nie mieć problemów później.

Pytanie 10

Jakie składniki należy podgrzać podczas przygotowywania zaprawy murarskiej w chłodnych miesiącach, gdy temperatura otoczenia spada poniżej +5°C?

A. Wodę i piasek po ich wymieszaniu
B. Piasek i wodę przed ich wymieszaniem
C. Piasek i cement przed ich wymieszaniem
D. Wodę i cement po ich wymieszaniu
Dobra robota z odpowiedzią! Podgrzanie piasku i wody przed wymieszaniem to naprawdę ważna zasada, zwłaszcza w zimie. Jak temperatura spada poniżej +5°C, istnieje duże ryzyko, że woda w zaprawie zamarznie. A to nie byłoby dobre, bo osłabia strukturę muru. Podgrzewając wodę do przynajmniej +20°C i używając ciepłego piasku, poprawiamy plastyczność mieszanki i adhezję składników. Dzięki temu zaprawa jest bardziej jednorodna. Warto też pomyśleć o różnych dodatkach przeciwmroźnych, które mogą jeszcze bardziej zwiększyć odporność zaprawy na zimno. Dlatego naprawdę warto stosować te sprawdzone metody w budownictwie, żeby zapewnić solidność konstrukcji.

Pytanie 11

Izolację przeciwwilgociową, gdy wykonujemy podłogę na gruncie, należy umieścić na

A. chudym betonie
B. podkładzie posadzki
C. izolacji cieplnej
D. gruntowym podłożu
Izolacja przeciwwilgociowa to naprawdę ważny element w budownictwie, zwłaszcza, gdy mówimy o podłogach na gruncie. Ułożenie jej na chudym betonie to najlepsza praktyka, bo ten beton tworzy równą i stabilną powierzchnię, która skutecznie broni przed wilgocią z ziemi. Dzięki temu, wilgoć nie wpada do środka budynku, co jest kluczowe dla ochrony konstrukcji przed różnymi uszkodzeniami. Chudy beton to warstwa o małej wytrzymałości, która tylko wyrównuje powierzchnię, więc nie jest obciążona takimi rzeczami jak konstrukcje. Fajnie, że to podejście jest zgodne z normami budowlanymi, które mówią, że izolacja przeciwwilgociowa powinna być stosowana tam, gdzie budynek może mieć kontakt z wodą. Przykładem tego mogą być domy jednorodzinne, gdzie dobre materiały i technologie izolacyjne poprawiają trwałość budynku oraz komfort życia.

Pytanie 12

Gdy na powierzchni tynku występują liczne oznaki po przeprowadzonych naprawach związanych z pęknięciami, co powinno się zrobić?

A. pokryć powierzchnię siatką z tworzywa sztucznego i wykonać gładź
B. pomalować całą powierzchnię białą farbą
C. położyć na powierzchni nową gładź
D. pokryć powierzchnię siatką stalową i wykonać gładź
Pokrycie powierzchni siatką z tworzywa sztucznego przed nałożeniem gładzi jest kluczowym działaniem mającym na celu poprawę trwałości i estetyki tynku. Siatka z tworzywa sztucznego działa jako zbrojenie, które zapobiega pojawianiu się nowych pęknięć oraz stabilizuje istniejące. W przypadku tynków narażonych na ruchy strukturalne, siatka ta amortyzuje naprężenia, co jest zgodne z zasadami stosowanymi w budownictwie. Przykładowo, w obiektach, gdzie występują wahania temperatury lub wilgoci, zastosowanie siatki z tworzywa sztucznego wpływa na dłuższą żywotność wykończeń. Stosowanie tej metody jest zgodne z normami PN-EN 13914-1, które określają wymagania dotyczące tynków wewnętrznych i zewnętrznych. Ponadto, dzięki gładzi nałożonej na tak zabezpieczoną powierzchnię, uzyskujemy gładką i estetyczną powierzchnię, gotową do malowania lub innego wykończenia, co jest istotne w kontekście estetyki przestrzeni mieszkalnej.

Pytanie 13

Aby mechanicznie przygotować zaprawę murarską z objętościowym dozowaniem składników na budowie, jakie narzędzia są konieczne?

A. betoniarka, łopata, sito
B. betoniarka, taczka, sito
C. wiadro, betoniarka, łopata
D. wiadro, kasta na zaprawę, łopata
Odpowiedź 'wiadro, betoniarka, łopata' jest prawidłowa, ponieważ każda z tych trzech pozycji odgrywa kluczową rolę w procesie przygotowania zaprawy murarskiej na placu budowy. Betoniarka służy do mechanicznego mieszania zaprawy, co zapewnia jednorodność i odpowiednią konsystencję mieszanki. Użycie betoniarki jest zgodne z najlepszymi praktykami, ponieważ ręczne mieszanie często prowadzi do nierównomiernego rozkładu składników. Wiadro jest niezbędne do pomiaru objętości składników, co umożliwia precyzyjne dozowanie materiałów, takich jak cement, piasek i woda. Łopata natomiast jest używana do transportu oraz rozkładania zaprawy, co jest istotne w procesie budowy. Przy odpowiednim użyciu tych narzędzi można znacznie zwiększyć efektywność i jakość wykonania prac murarskich, a także zminimalizować ryzyko błędów związanych z proporcjami składników. W praktyce, na budowie, niezwykle istotne jest również przestrzeganie standardów jakości i bezpieczeństwa, co wymaga odpowiedniego wyposażenia w niezbędne narzędzia.

Pytanie 14

Który z poniższych komponentów rusztowania nie wchodzi w skład trzyczęściowego zabezpieczenia bocznego rusztowań, które występują na przykład przy drogach?

A. Poręcz górna
B. Poręcz środkowa
C. Bortnica
D. Ograniczniki ochronne
Ograniczniki ochronne, poręcz górna oraz bortnica to elementy, które stanowią część trzyczęściowego zabezpieczenia bocznego rusztowań. Ograniczniki ochronne są kluczowe w zapobieganiu wypadkom związanym z upadkiem przedmiotów, co jest niezmiernie istotne w kontekście pracy w rejonach miejskich. Poręcz górna, zapewniając stabilność, usztywnia konstrukcję rusztowania i chroni pracowników przed upadkiem. Z kolei bortnica działa jako fizyczna bariera, ograniczając przestrzeń roboczą i redukując ryzyko upadku narzędzi czy materiałów budowlanych na osoby znajdujące się poniżej. Niezrozumienie roli poręczy środkowej jako elementu, który nie należy do tego trio, może prowadzić do błędnych wniosków dotyczących klasyfikacji zabezpieczeń. Poręcz środkowa, mimo że jest istotnym elementem w kontekście ogólnych zabezpieczeń na rusztowaniach, nie wchodzi w skład standardowego zestawienia zabezpieczeń bocznych. Takie nieprawidłowe zrozumienie może prowadzić do niewłaściwego planowania i realizacji bezpieczeństwa na budowach. Prawidłowe rozszyfrowanie i zastosowanie elementów zabezpieczeń jest niezbędne do przestrzegania standardów branżowych, takich jak PN-EN 12811, które określają zasady projektowania i montażu rusztowań.

Pytanie 15

W kolejnych warstwach w wiązaniu kowadełkowym jakie powinno być przesunięcie spoin pionowych?

A. 2/3 cegły
B. 1/3 cegły
C. 1/2 cegły
D. 1/4 cegły
Stosowanie przesunięcia spoin pionowych w wiązaniu kowadełkowym, które wynosi inne wartości niż 1/4 cegły, prowadzi do wielu niekorzystnych skutków. Przesunięcia takie jak 1/3, 1/2 czy 2/3 cegły mogą powodować powstawanie słabych miejsc w konstrukcji, co w konsekwencji może prowadzić do osłabienia jej integralności. Gdy spoiny są przesunięte zbyt blisko siebie, może dojść do powstawania linii słabości, co zwiększa ryzyko pęknięć oraz osiadania budynku. W praktyce, błędne podejście do przesunięcia spoin może wynikać z nieznajomości zasad projektowania, co może prowadzić do poważnych problemów podczas realizacji projektu budowlanego. Na przykład przesunięcie 1/2 cegły w pionie może skutkować niewłaściwym przenoszeniem obciążeń, a w dłuższym okresie użytkowania prowadzić do uszkodzeń muru. Warto również zauważyć, że nieprzestrzeganie standardów przesunięcia może wpływać negatywnie na właściwości cieplne i akustyczne budynku, co jest szczególnie istotne w kontekście współczesnych wymagań dotyczących komfortu mieszkańców. Dlatego kluczowe jest, aby w praktyce budowlanej stosować się do sprawdzonych praktyk i norm, które zalecają określone przesunięcia, aby zapewnić trwałość oraz bezpieczeństwo konstrukcji.

Pytanie 16

Z ilustracji wynika, że szerokość filarka międzyokiennego wynosi 103 cm. Ile pełnych cegieł zmieści się na szerokości filarka?

A. 3
B. 2
C. 4
D. 5
Odpowiedź 4 to strzał w dziesiątkę, bo szerokość filarka, czyli 103 cm, dobrze się dzieli przez standardową szerokość cegły, która wynosi 25 cm. Jak podzielisz 103 przez 25, to dostajesz 4,12. To znaczy, że w filarze zmieści się 4 całe cegły, a te pozostałe 3 cm to za mało na kolejną. W budownictwie używamy całych cegieł, bo to stabilniejsze i praktyczniejsze. Pamiętaj też, że przy projektowaniu musimy myśleć o spoinach i możliwych stratach materiałowych, bo to wpływa na to, ile cegieł naprawdę potrzebujemy. Zrozumienie tych zasad jest naprawdę ważne, jeśli chcesz dobrze planować prace budowlane.

Pytanie 17

Do wykonywania prac na elewacjach wysokich budynków powinny być stosowane rusztowania

A. wiszące
B. samojezdne
C. ruchome
D. kozłowe
Rusztowania wiszące są specjalistycznymi konstrukcjami, które są szczególnie przydatne w robótkach elewacyjnych na budynkach wysokich. Umożliwiają one pracownikom swobodne poruszanie się wzdłuż elewacji, a ich konstrukcja pozwala na łatwe dostosowanie się do kształtów oraz wymagań budynku. Dzięki swoim właściwościom, rusztowania te minimalizują potrzebę zajmowania przestrzeni na gruncie, co jest istotne w gęsto zabudowanych obszarach miejskich. W praktyce, rusztowania wiszące są często wykorzystywane podczas malowania, czyszczenia elewacji, a także przy przeprowadzaniu prac remontowych, co pozwala na zwiększenie efektywności i bezpieczeństwa pracy. Warto również zwrócić uwagę, że zgodnie z normami PN-EN 12810 oraz PN-EN 12811, rusztowania muszą być odpowiednio zaprojektowane i użytkowane, aby zapewnić ich stabilność i bezpieczeństwo. Dobrze zaplanowane rusztowanie wiszące, z zastosowaniem odpowiednich mechanizmów blokujących, jest kluczowym elementem w zapewnieniu bezpieczeństwa pracowników na wysokości.

Pytanie 18

Przed nałożeniem tynku na ścianę murowaną z bloczków gazobetonowych konieczne jest

A. oczyszczenie wodą z detergentem i porysowanie
B. zagruntowanie oraz pokrycie stalową siatką
C. usunięcie grudek zaprawy oraz zwilżenie wodą
D. pokrycie stalową siatką i zwilżenie wodą
Pierwsza z niepoprawnych odpowiedzi, dotycząca okrycia stalową siatką i zwilżenia wodą, jest błędna, ponieważ stalowa siatka nie jest zalecana jako pierwszy krok przed tynkowaniem bloczków gazobetonowych. Jej zastosowanie jest właściwe w kontekście wzmacniania tynków w przypadku podłoży o niskiej przyczepności lub w miejscach narażonych na większe obciążenia mechaniczne. Jednak w przypadku idealnie przygotowanej powierzchni, jaką powinny być bloczki gazobetonowe, nie jest to konieczne. Druga odpowiedź, sugerująca zmywanie wodą z detergentem i porysowanie, jest niewłaściwa, ponieważ użycie detergentów może pozostawić na powierzchni resztki chemiczne, które negatywnie wpłyną na przyczepność tynku. Ostatnia z opcji, mówiąca o zagruntowaniu i okryciu stalową siatką, nie uwzględnia kluczowego etapu, jakim jest oczyszczenie podłoża. Zagruntowanie jest istotne, ale powinno mieć miejsce po dokładnym przygotowaniu ściany. Najczęstsze błędy w myśleniu związane z tymi odpowiedziami wynikają z niepełnego zrozumienia procesu przygotowania podłoża i roli, jaką odgrywają poszczególne etapy pracy budowlanej. Odpowiednia kolejność działań, w tym dokładne oczyszczenie, jest fundamentem trwałego i efektywnego tynkowania.

Pytanie 19

Można zmniejszyć chłonność podłoża przeznaczonego do tynkowania poprzez

A. wykonanie tynków dedykowanych
B. wcześniejsze wysuszenie ściany
C. pomalowanie powierzchni farbą
D. zastosowanie gruntów podkładowych
Wysuszenie ściany przed tynkowaniem jest praktyką, która może wydawać się logiczna, jednak nie prowadzi do zmniejszenia chłonności podłoża. W rzeczywistości, zbyt wysoka temperatura i wentylacja mogą prowadzić do mikropęknięć, co w konsekwencji osłabia przyczepność tynku. Tynki specjalne, takie jak tynki wapienne czy cementowe, mogą mieć swoje unikalne właściwości, ale nie eliminują one problemu chłonności podłoża. Właściwy dobór tynku powinien być uzależniony od podłoża, a nie od jego wysuszenia. Pomalowanie ściany farbą również nie rozwiązuje problemu, ponieważ większość farb nie jest zaprojektowana do ograniczenia wchłaniania wilgoci, a ich warstwa może wręcz stworzyć barierę dla pary wodnej, co prowadzi do gromadzenia się wilgoci pod tynkiem. Typowe błędy polegają na przyjmowaniu, że wysuszenie i użycie farb wystarczą do prawidłowego przygotowania podłoża. Kluczowym elementem jest zrozumienie, że gruntowanie to proces, który nie tylko poprawia przyczepność, ale także zabezpiecza cały system tynkarski na dłuższy czas, zapewniając jego trwałość i estetykę.

Pytanie 20

Wyrównanie powierzchni tynku w narożach wklęsłych odbywa się poprzez

A. przesuwanie pacy w ruchu zygzakowym od dołu ku górze
B. zacieranie powierzchni pacą styropianową w ruchach okrężnych
C. przesuwanie pacy narożnikowej w ruchach 'góra-dół'
D. zacieranie powierzchni packą narożnikową w ruchach w 'ósemkę'
Przesuwanie pacy narożnikowej ruchem 'góra-dół' w narożach wklęsłych jest uznawane za najlepszą praktykę w procesie wyrównywania powierzchni tynku. Taki ruch pozwala na skuteczne i równomierne rozprowadzenie materiału tynkarskiego, co jest kluczowe dla uzyskania gładkiej i estetycznej powierzchni. Praktyka ta minimalizuje ryzyko powstawania nierówności, co jest szczególnie istotne w przypadku narożników, które mogą być bardziej narażone na uszkodzenia. Standardy branżowe, takie jak normy PN-EN odnośnie prac tynkarskich, wskazują na konieczność zachowania wysokiej jakości wykończenia, co można osiągnąć poprzez odpowiednie techniki zacierania. Zastosowanie ruchu 'góra-dół' pozwala na lepsze przyleganie tynku do podłoża oraz zminimalizowanie powstawania pęknięć, co przyczynia się do trwałości i funkcjonalności wykonanej powierzchni. Na przykład, w przypadku tynków w łazienkach, gdzie wilgotność jest wysoka, odpowiednie wyrównanie narożników jest kluczowe, aby uniknąć problemów z odpadaniem tynku w przyszłości.

Pytanie 21

Oblicz całkowity koszt realizacji tynku maszynowego gipsowego na obu bokach ściany o wymiarach 7×3 m, jeśli koszt robocizny wynosi 19,00 zł/m2, a wydatki na materiały to 7,00 zł/m2?

A. 546,00 zł
B. 1092,00 zł
C. 1386,00 zł
D. 945,00 zł
Aby obliczyć koszt całkowity wykonania tynku maszynowego gipsowego, należy najpierw ustalić powierzchnię ściany, która ma być pokryta tynkiem. Ściana o wymiarach 7 m na 3 m ma powierzchnię wynoszącą 21 m². Ponieważ tynk ma być wykonany po obu stronach, całkowita powierzchnia do pokrycia wynosi 21 m² x 2 = 42 m². Następnie obliczamy koszty robocizny i materiałów. Koszt jednostkowy robocizny wynosi 19,00 zł/m², co daje 42 m² x 19,00 zł/m² = 798,00 zł. Koszt materiałów wynosi 7,00 zł/m², co daje 42 m² x 7,00 zł/m² = 294,00 zł. Suma kosztów robocizny i materiałów wynosi 798,00 zł + 294,00 zł = 1092,00 zł. Taki sposób obliczeń jest zgodny z standardami branżowymi, gdzie uwzględnia się zarówno koszty pracy, jak i koszty materiałów, co jest kluczowe w procesie przygotowania kosztorysu budowlanego. Praktyczne zastosowanie tej wiedzy pozwala na dokładne zaplanowanie budżetu na prace budowlane i remontowe.

Pytanie 22

Z jakiego materiału można budować przewody dymowe i wentylacyjne?

A. cegły pełnej
B. pustaków żużlobetonowych
C. cegły dziurawki
D. cegły wapienno-piaskowej
Cegła pełna jest materiałem budowlanym o wysokiej odporności na działanie wysokich temperatur oraz agresywnych substancji chemicznych, co czyni ją idealnym wyborem do budowy przewodów dymowych i wentylacyjnych. Dzięki swojej gęstości i jednorodnej strukturze, cegła ta skutecznie izoluje oraz chroni przed rozprzestrzenianiem się ognia. W praktyce, przewody dymowe wykonane z cegły pełnej zapewniają nie tylko bezpieczeństwo, ale także długotrwałość, co jest kluczowe w kontekście przepisów budowlanych i norm bezpieczeństwa. Cegła pełna może być również stosowana w miejscach narażonych na intensywne działanie spalin, zapewniając ich prawidłowe odprowadzanie. W wielu krajach, zastosowanie cegły pełnej w takich konstrukcjach jest zgodne z obowiązującymi normami budowlanymi oraz zaleceniami, co dodatkowo podkreśla jej przydatność w budownictwie.

Pytanie 23

Na podstawie danych zawartych w tabeli wskaż, ile wody należy użyć do przygotowania 2 m3 zaprawy wapiennej o proporcji objętościowej składników 1:3 z użyciem ciasta wapiennego.

Proporcje i ilość składników na 1 m3 zaprawy wapiennej
Stosunek objętościowy wapna do piaskuMarka zaprawy MPaCiasto wapienne m3Piasek m3Woda dm3
1 : 1,50,40,5100,76537
1 : 20,40,4300,86050
1 : 30,40,3200,960100
1 : 3,50,20,2800,980130
1 : 4,50,20,2241,010166

A. 300 dm3
B. 200 dm3
C. 100 dm3
D. 50 dm3
Odpowiedź 200 dm3 jest prawidłowa, ponieważ na podstawie danych z tabeli dotyczących proporcji objętościowych 1:3 dla zaprawy wapiennej, na 1 m3 zaprawy wymagane jest 100 dm3 wody. Przygotowując 2 m3 zaprawy, wartość ta musi zostać podwojona, co daje 200 dm3. Taki sposób obliczenia ilości wody jest zgodny z dobrymi praktykami w budownictwie, gdzie precyzyjne określenie proporcji składników ma kluczowe znaczenie dla uzyskania odpowiedniej jakości zaprawy. Użycie niewłaściwej ilości wody może prowadzić do osłabienia struktury zaprawy, a w efekcie do trwałych uszkodzeń konstrukcji. Stąd, w praktyce budowlanej, takie obliczenia są niezbędne, aby zapewnić trwałość i właściwe właściwości mechaniczne zaprawy. Wiedza na temat proporcji składników i ich wpływu na końcowy produkt jest fundamentem dla każdego specjalisty w branży budowlanej, co pozwala na optymalizację procesów budowlanych oraz minimalizację ryzyka błędów.

Pytanie 24

Jeśli czas pracy potrzebny do wykonania 1 m2 ścianki działowej wynosi 1,4 r-g, a stawka godzinowa murarza to 15 zł, to jakie wynagrodzenie powinien otrzymać murarz za zrealizowanie 120 m2 ścianek działowych?

A. 3 600 zł
B. 1 800 zł
C. 1 680 zł
D. 2 520 zł
Aby obliczyć wynagrodzenie murarza za wykonanie 120 m2 ścianek działowych, najpierw musimy ustalić, ile roboczogodzin (r-g) jest potrzebnych do wykonania tej pracy. Ponieważ nakład robocizny na 1 m2 wynosi 1,4 r-g, to dla 120 m2 obliczamy: 120 m2 * 1,4 r-g/m2 = 168 r-g. Następnie, znając stawkę godzinową murarza wynoszącą 15 zł, obliczamy całkowite wynagrodzenie: 168 r-g * 15 zł/r-g = 2520 zł. Takie obliczenia są podstawą w branży budowlanej, gdzie precyzyjne planowanie robocizny oraz kosztów jest kluczowe dla efektywności projektów. Dobrą praktyką jest również stworzenie harmonogramu roboczego, który pozwoli na kontrolowanie postępów oraz kosztów, co minimalizuje ryzyko przekroczenia budżetu.

Pytanie 25

Jak uzyskać jednakową grubość spoin podczas wykańczania cokołu płytkami klinkierowymi?

A. spoinówki
B. krzyżyków dystansowych
C. miarki centymetrowej
D. suwmiarki
Krzyżyki dystansowe są kluczowym narzędziem w procesie układania płytek klinkierowych, które pozwala na uzyskanie jednakowej grubości spoin. Ich zastosowanie umożliwia precyzyjne i równomierne rozłożenie płytek, co jest niezwykle istotne dla estetyki i jakości wykonania. Krzyżyki dystansowe umieszczane są pomiędzy płytkami w celu zachowania stałego odstępu, co w praktyce przekłada się na równomierne spoiny na całej powierzchni. W przypadku płytek klinkierowych, które są często używane na cokołach, odpowiednia grubość spoin ma znaczenie nie tylko estetyczne, ale także funkcjonalne, wpływając na odprowadzanie wody oraz redukcję pęknięć w materiałach. Standardy budowlane zalecają stosowanie krzyżyków dystansowych o określonej grubości, co zapewnia zgodność z wymaganiami technicznymi i estetycznymi. Warto również pamiętać, że różne materiały mogą wymagać różnych rozmiarów spoin, dlatego dobór odpowiednich krzyżyków jest kluczowy dla uzyskania pożądanego efektu.

Pytanie 26

Która z podanych zapraw cechuje się najlepszymi właściwościami plastycznymi?

A. Cementowo-gliniana
B. Cementowo-wapienna
C. Gipsowa
D. Wapienna
Wybór innych zapraw, takich jak cementowo-wapienna, gipsowa czy cementowo-gliniana, prowadzi do kilku istotnych nieporozumień dotyczących ich właściwości plastycznych. Zaprawa cementowo-wapienna, mimo że łączy w sobie zalety obu materiałów, w praktyce charakteryzuje się mniejszą plastycznością w porównaniu do czystej zaprawy wapiennej. Cement, jako składnik, wprowadza twardość, co ogranicza elastyczność zaprawy, co jest niekorzystne w kontekście aplikacji wymagających łatwego formowania i deformations. Gipsowa zaprawa, choć posiada dobre właściwości plastyczne, ma ograniczone zastosowanie w wilgotnych warunkach, co czyni ją mniej uniwersalną. Ponadto, jej zdolność do twardnienia jest znacznie szybsza, co może prowadzić do problemów z równomiernym rozprowadzeniem i aplikacją. Cementowo-gliniana zaprawa z kolei, mimo że oferuje pewne właściwości plastyczne, nie osiąga poziomu elastyczności, jaki zapewnia wapno. W ogólnym ujęciu, powszechnym błędem jest zatem mylenie twardości z plastycznością, co prowadzi do niewłaściwych wyborów materiałowych w budownictwie. Dobór odpowiedniej zaprawy powinien być uzależniony od specyfiki projektu oraz warunków, w jakich ma być stosowana, a zaprawy oparte na wapnie są najbardziej odpowiednie do zastosowań wymagających wysokiej plastyczności i paroprzepuszczalności.

Pytanie 27

Aby przygotować 1 worek (25 kg) zaprawy tynkarskiej, trzeba zastosować

A. betoniarkę wolnospadową
B. betoniarkę przeciwbieżną
C. agregat tynkarski
D. wiertarkę z mieszadłem
Wybierałeś wiertarkę z mieszadłem, więc super decyzja! To narzędzie idealnie nadaje się do mieszania zaprawy tynkarskiej, bo dzięki temu można uzyskać odpowiednią konsystencję. Wiertarka z mieszadłem jest stworzona do intensywnego mieszania różnych materiałów, co jest mega ważne przy tynkowaniu. Dzięki temu, że mamy mieszadło, można osiągnąć gładką i jednorodną masę, co serio wpływa na jakość tynku. W praktyce, takie wiertarki są często używane na budowach do przygotowywania różnych materiałów, jak tynki, kleje, czy farby. Używanie takiego sprzętu to standard w branży, bo dobrze przygotowane materiały oznaczają lepszą efektywność i trwałość. Pamiętaj jednak, że kluczowe jest zachowanie odpowiednich proporcji wody do suchego materiału. To ma duży wpływ na to, jak zaprawa się spisze podczas pracy!

Pytanie 28

Zaprawę tynkarską produkowaną w zakładzie, oznaczoną symbolem R, wykorzystuje się do realizacji tynków

A. izolujących cieplnie
B. szlachetnych
C. renowacyjnych
D. jednowarstwowych zewnętrznych
Zaprawa tynkarska oznaczona symbolem R jest stosowana przede wszystkim do wykonywania tynków renowacyjnych, co jest ściśle związane z jej właściwościami. Renowacyjne tynki mają na celu przywrócenie estetyki oraz funkcjonalności powierzchni, które mogą być uszkodzone lub w złym stanie. Zaprawy te charakteryzują się wysoką przyczepnością do podłoża, elastycznością oraz odpornością na czynniki atmosferyczne, co czyni je idealnym rozwiązaniem w przypadku starszych budynków, gdzie istnieje ryzyko pęknięć lub kruszenia się tynku. W praktyce, podczas renowacji zabytków, stosuje się zaprawy R, aby zapewnić odpowiednią ochronę i trwałość elewacji, a także aby zachować tradycyjne metody budowlane. W kontekście standardów, zaprawy te powinny spełniać normy PN-EN 998-1 dotyczące zapraw do tynkowania, co gwarantuje ich wysoką jakość i odpowiednie właściwości użytkowe.

Pytanie 29

Jaką minimalną grubość powinny mieć przegrody oddzielające przewody spalinowe od dymowych w ścianach murowanych z cegły?

A. 1 cegły
B. ½ cegły
C. 1½ cegły
D. ¼ cegły
Minimalna grubość przegród oddzielających przewody spalinowe od dymowych wynosząca ½ cegły jest zgodna z regulacjami dotyczącymi bezpieczeństwa budowlanego. Tego rodzaju przegrody są kluczowe w zapobieganiu rozprzestrzenieniu się dymu oraz szkodliwych substancji w budynkach, co ma istotne znaczenie dla ochrony zdrowia i życia ludzi. Przegrody te powinny być projektowane zgodnie z wytycznymi zawartymi w normach budowlanych, takich jak PN-EN 13501-2, które określają wymagania dla klasyfikacji ogniowej materiałów budowlanych. W praktyce, zapewnienie odpowiedniej grubości przegrody wpływa na skuteczność ochrony przed pożarem, a także na trwałość konstrukcji. W sytuacjach, gdy przewody są umieszczane w bliskiej odległości od siebie, grubość ½ cegły stanowi minimalny standard, który można zastosować, aby zachować właściwe warunki bezpieczeństwa. Na przykład w budynkach użyteczności publicznej, gdzie istnieje większe ryzyko wystąpienia pożaru, zastosowanie takich przegrody jest nie tylko zalecane, ale może być wymagane przez lokalne przepisy budowlane.

Pytanie 30

Jakie właściwości wełny mineralnej mają wpływ na jej użycie jako materiału izolacyjnego termicznie?

A. Niski współczynnik przewodzenia ciepła oraz paroprzepuszczalność
B. Niski współczynnik przewodzenia ciepła oraz nieprzepuszczalność pary
C. Wysoki współczynnik przewodzenia ciepła oraz nieprzepuszczalność pary
D. Wysoki współczynnik przewodzenia ciepła oraz paroprzepuszczalność
Wełna mineralna jest materiałem o niskim współczynniku przewodności cieplnej, co oznacza, że skutecznie izoluje termicznie, minimalizując straty ciepła w budynkach. Niska przewodność cieplna sprawia, że jest to jeden z najbardziej efektywnych materiałów izolacyjnych, co przekłada się na oszczędności energii w eksploatacji obiektów. Dodatkowo, paroprzepuszczalność wełny mineralnej pozwala na regulację wilgotności wewnętrznej pomieszczeń, co jest kluczowe dla utrzymania zdrowego mikroklimatu. Przykładowo, zastosowanie wełny mineralnej w dachach i ścianach budynków mieszkalnych oraz przemysłowych zapewnia nie tylko efektywność energetyczną, ale także ochronę przed kondensacją wilgoci. W zgodzie z normami budowlanymi, takimi jak PN-EN 13162, wełna mineralna spełnia wymagania dotyczące izolacyjności cieplnej i akustycznej, co czyni ją często wybieranym materiałem w budownictwie ekologicznym i energooszczędnym.

Pytanie 31

Korzystając z Warunków Technicznych Wykonania i Odbioru Robót Tynkarskich wskaż, dla której kategorii tynku niedopuszczalne są widoczne miejscowe nierówności powierzchni, pochodzące od zacierania packą.

Warunki Techniczne Wykonania i Odbioru Robót Tynkarskich (fragment)
Dla wszystkich odmian tynku niedopuszczalne są:
- wykwity w postaci nalotu wykrystalizowanych na powierzchni tynku roztworów soli przenikających z podłoża, pleśń itp.
- zacieki w postaci trwałych śladów na powierzchni tynków,
- odstawanie, odparzenia, pęcherze spowodowane niedostateczną przyczepnością tynku do podłoża.
Pęknięcia na powierzchni tynków są niedopuszczalne z wyjątkiem tynków surowych, w których dopuszcza się włoskowate rysy skurczowe. Wypryski i spęcznienia powstające na skutek obecności niezgaszonych cząstek wapna, gliny itp. są niedopuszczalne dla tynków pocienionych, pospolitych, doborowych i wypalonych, natomiast dla tynków surowych są niedopuszczalne w liczbie do 5 sztuk na 10 m2 tynku.
Widoczne miejscowe nierówności powierzchni otynkowanych wynikające z technik wykonania tynku (np. ślady wygładzania kielnią lub zacierania packą) są niedopuszczalne dla tynków doborowych, a dla tynków pospolitych dopuszczalne są o szerokości i głębokości do 1 mm oraz długości do 5 cm w liczbie 3 sztuk na 10 m2 powierzchni otynkowanej.

A. Dla tynku kategorii III
B. Dla tynku kategorii I
C. Dla tynku kategorii II
D. Dla tynku kategorii IV
Poprawna odpowiedź to kategoria IV, ponieważ zgodnie z Warunkami Technicznymi Wykonania i Odbioru Robót Tynkarskich, tynki doborowe charakteryzują się wysokimi wymaganiami estetycznymi, co oznacza, że wszelkie widoczne miejscowe nierówności, takie jak ślady wygładzania kielnią czy zacierania packą, są całkowicie niedopuszczalne. Praktycznie, oznacza to, że w przypadku tynków doborowych, wykonawcy muszą szczególnie dbać o precyzję wykonania i staranność, aby zapewnić jednolitą i gładką powierzchnię, co jest kluczowe w kontekście późniejszego malowania lub tapetowania. W branży budowlanej, tynki doborowe są często stosowane w obiektach o wysokich standardach wykończenia, takich jak budynki użyteczności publicznej czy ekskluzywne mieszkania. Nieprzestrzeganie tych norm może prowadzić do problemów estetycznych i funkcjonalnych, dlatego tak ważne jest stosowanie się do tych wytycznych.

Pytanie 32

Jakie będą wydatki na postawienie dwóch szczytowych ścian budynku, które mają wymiary 10,0 x 5,0 m, jeśli czas pracy wynosi 1,44 h/m2, a stawka godzinowa murarza wynosi 10 zł?

A. 1 440 zł
B. 720 zł
C. 560 zł
D. 1 220 zł
Koszt wymurowania dwóch ścian szczytowych budynku został obliczony na podstawie wymiarów i nakładu pracy. Każda ściana ma wymiary 10,0 m x 5,0 m, co daje powierzchnię jednej ściany równą 50 m2. Zatem dla dwóch ścian całkowita powierzchnia wynosi 100 m2. Nakład pracy wynosi 1,44 godzin na m2, co oznacza, że potrzebny czas na wykonanie pracy to 100 m2 * 1,44 h/m2 = 144 h. Przy stawce godzinowej murarza wynoszącej 10 zł, całkowity koszt robocizny wyniesie 144 h * 10 zł/h = 1440 zł. Taki sposób kalkulacji kosztów jest zgodny z praktykami branżowymi, które uwzględniają zarówno powierzchnię, jak i nakład pracy, co pozwala na precyzyjne oszacowanie całkowitych wydatków. Użycie takich metod jest niezbędne w branży budowlanej dla zachowania budżetu i efektywności zarządzania projektem.

Pytanie 33

Ile worków z 25 kg suchej zaprawy murarskiej jest potrzebnych do wybudowania ściany o powierzchni 15 m2 i grubości ½ cegły, jeśli jej zużycie na mur o takiej grubości wynosi 75 kg/m2?

A. 15 worków
B. 75 worków
C. 45 worków
D. 25 worków
Aby obliczyć liczbę worków suchej zaprawy murarskiej potrzebnej do wymurowania ściany o powierzchni 15 m² i grubości ½ cegły, należy najpierw zrozumieć, jakie są wymagania materiałowe. Ponieważ zużycie zaprawy wynosi 75 kg/m², obliczamy całkowite zapotrzebowanie na materiał, mnożąc powierzchnię ściany przez zużycie: 15 m² * 75 kg/m² = 1125 kg. Następnie, aby określić liczbę worków, które są dostępne po 25 kg każdy, dzielimy całkowitą wagę przez wagę jednego worka: 1125 kg / 25 kg/work = 45 worków. Taki sposób obliczeń jest zgodny z dobrymi praktykami w budownictwie, gdzie precyzyjne obliczenia materiałowe są kluczowe dla optymalizacji kosztów i uniknięcia niedoborów podczas pracy. Zastosowanie tej metody zapewnia efektywność i zgodność z normami budowlanymi.

Pytanie 34

Która z poniższych zapraw jest odporna na wysokie temperatury?

A. Wapienna
B. Cementowa
C. Krzemionkowa
D. Silikatowa
Zaprawa krzemionkowa jest klasyfikowana jako zaprawa ogniotrwała ze względu na wysoką odporność na ekstremalne temperatury oraz zdolność do wytrzymywania obciążeń termicznych. Skład chemiczny zaprawy krzemionkowej, który opiera się na krzemionce (SiO2), sprawia, że materiał ten ma doskonałe właściwości w kontekście izolacji termicznej oraz odporności na działanie wysokotemperaturowych czynników, co jest kluczowe w aplikacjach przemysłowych, takich jak piece hutnicze, kominy, czy piekarnie. W praktyce, zaprawy krzemionkowe są stosowane do murowania elementów narażonych na wysoką temperaturę, a także do wypełniania szwów w strukturach, które muszą wytrzymać znaczące zmiany temperaturowe. W zgodności z normami branżowymi, takimi jak PN-EN 1402, zaprawy te powinny wykazywać minimalne skurcze i pęknięcia w warunkach eksploatacyjnych, co dodatkowo potwierdza ich parametry użytkowe. Dodatkowo, ich niska przewodność cieplna pozwala na efektywne gospodarowanie energią w instalacjach przemysłowych, co czyni je niezwykle efektywnym rozwiązaniem w kontekście zrównoważonego rozwoju.

Pytanie 35

Aby uniknąć wilgoci na zewnętrznych ścianach parteru budynku z bloczków betonowych, pierwszą warstwę należy ułożyć na

A. zaprawie cementowo-wapiennej
B. papie asfaltowej
C. lepiku asfaltowym
D. zaprawie cementowej
No więc, zaprawa cementowo-wapienna, lepik asfaltowy i zaprawa cementowa to materiały, które nie będą do końca działać w kontekście przeciwwilgociowym, jeśli mówimy o fundamentach i ścianach. Zaprawa cementowo-wapienna jest spoko do murowania i tynkowania, ale nie ma tych właściwości, które by skutecznie blokowały wodę. Woda może sobie wchodzić przez pory, co może prowadzić do wilgoci w ścianach. Lepik asfaltowy ma jakieś tam właściwości wodoodporne, ale właściwie używa się go głównie do uszczelniania innych rzeczy, a nie jako podkład pod bloczki. Podobnie, zaprawa cementowa nie zdziała cudów, jeśli chodzi o przenikanie wody. Standardy budowlane mówią, że lepiej używać materiałów, które są dedykowane do izolacji wilgoci, przez co papa asfaltowa jest jednym z tych podstawowych rozwiązań w budownictwie. Jeśli tego nie weźmiemy pod uwagę, mogą się pojawić poważne problemy jak pleśń, korozja i ogólne osłabienie budynku. Warto to wszystko przemyśleć, żeby budowla była solidna i bezpieczna.

Pytanie 36

Jakie materiały wykorzystuje się do łączenia warstw papy asfaltowej stosowanych jako izolacja ław fundamentowych?

A. lepikiem asfaltowym
B. kitem asfaltowym
C. emulsją asfaltową
D. roztworem asfaltowym
Lepik asfaltowy jest najczęściej stosowanym materiałem do łączenia warstw papy asfaltowej, ponieważ zapewnia doskonałą przyczepność i szczelność. Jego właściwości hydroizolacyjne są kluczowe przy izolacji ław fundamentowych, ponieważ zapobiegają przenikaniu wody do konstrukcji. Lepik asfaltowy, będący płynnym materiałem, pod wpływem ciepła staje się lepki, co umożliwia łatwe łączenie poszczególnych warstw papy. W praktyce, stosując lepik, można uzyskać ciągłość izolacji, co jest istotne dla długotrwałej ochrony fundamentów. Dobrą praktyką jest również przestrzeganie norm budowlanych, takich jak PN-EN 13707, które definiują wymagania dla materiałów hydroizolacyjnych. Dzięki zastosowaniu lepika asfaltowego na ławach fundamentowych, inwestorzy mogą mieć pewność, że ich struktury są odpowiednio zabezpieczone przed negatywnym działaniem wody i wilgoci, co w dłuższej perspektywie przekłada się na trwałość budowli.

Pytanie 37

Zgodnie z wskazówkami producenta, zużycie gotowej mieszanki tynkarskiej do nałożenia tynku o grubości 15 mm wynosi 19,5 kg/m2. Ile worków po 30 kilogramów tej mieszanki jest potrzebnych do pokrycia powierzchni 150 m2 tym tynkiem?

A. 147 worków
B. 75 worków
C. 225 worków
D. 98 worków
Odpowiedź 98 worków jest poprawna, ponieważ aby obliczyć całkowite zużycie zaprawy tynkarskiej do wykonania tynku na powierzchni 150 m², należy pomnożyć zużycie na metr kwadratowy przez całkowitą powierzchnię. W tym przypadku, zużycie wynosi 19,5 kg/m², co daje 19,5 kg/m² * 150 m² = 2925 kg. Następnie, aby obliczyć liczbę worków zaprawy potrzebnych do zakupu, należy podzielić całkowite zapotrzebowanie na kilogramy przez wagę jednego worka. Przy masie worka wynoszącej 30 kg, obliczenie wygląda następująco: 2925 kg / 30 kg/worek = 97,5 worków. Ostatecznie, zaokrąglając w górę, potrzebujemy 98 worków. Takie obliczenia są istotne w praktyce budowlanej, ponieważ precyzyjne szacowanie materiałów pozwala uniknąć niedoborów oraz nadmiaru, co z kolei przekłada się na efektywność kosztową i terminowość realizacji projektów budowlanych. Wykorzystanie standardów kalkulacyjnych w branży budowlanej, takich jak normy PN-EN, wspiera dokładność tego procesu.

Pytanie 38

Zgodnie z wytycznymi producenta, zapotrzebowanie na gipsową zaprawę tynkarską wynosi 6 kg/m2/10 mm. Oblicz, jaką ilość
25-kilogramowych worków zaprawy trzeba zakupić, aby nałożyć tynk o grubości 20 mm na powierzchni ścian wynoszącej 100 m2.

A. 60 worków
B. 24 worki
C. 48 worków
D. 30 worków
Obliczenia dotyczące zużycia materiałów budowlanych mogą być złożone i wymagają szczegółowej analizy. Wiele osób popełnia błąd przy interpretacji danych dotyczących zużycia, co prowadzi do błędnych obliczeń. Na przykład, niektórzy mogą błędnie założyć, że łączna powierzchnia 100 m² wymaga tylko proporcjonalnego wzrostu zapotrzebowania w stosunku do grubości tynku, nie uwzględniając, że zmiana grubości ma bezpośredni wpływ na całkowitą masę potrzebnej zaprawy. W przypadku podanego pytania, kluczowe jest zrozumienie, że zużycie wynosi 6 kg na 10 mm, co oznacza, że dla 20 mm potrzeba dwóch razy więcej materiału, co w konsekwencji podwaja ilość zaprawy. Nieprawidłowe rozumienie tego współczynnika z łatwością prowadzi do niepoprawnych odpowiedzi, takich jak 24 czy 30 worków, które sugerują, że nie uwzględniono pełnej grubości tynku. Typowym błędem jest również nieuwzględnienie rzeczywistego ciężaru worków, co może prowadzić do założenia, że wystarczy mniej worków niż w rzeczywistości. W praktyce, wykonawcy powinni zatem zawsze dokładnie przeliczać potrzebne materiały, uwzględniając zarówno grubość tynku, jak i specyfikę zastosowania, aby uniknąć problemów na etapie realizacji projektu.

Pytanie 39

Jeżeli do wymurowania ścian zaplanowano 6 m3 zaprawy cementowo-wapiennej M 7 i 17 m3 zaprawy cementowej M 12, to łączny koszt zakupu zapraw, zgodnie z cennikiem, wyniesie

Cennik zakupu zapraw
zaprawa cementowo-wapienna M 7– 175,00 zł/m3
zaprawa cementowa M 12– 200,00 zł/m3

A. 4 600,00 zł
B. 3 400,00 zł
C. 2 975,00 zł
D. 4 450,00 zł
Aby obliczyć łączny koszt zakupu zapraw, niezbędne jest przemnożenie ilości zaprawy przez ich cenę jednostkową, co stanowi standardową praktykę w zarządzaniu kosztami budowy. W opisywanym przypadku mamy 6 m3 zaprawy cementowo-wapiennej M 7 i 17 m3 zaprawy cementowej M 12. Każdy z tych typów zapraw ma różne ceny, które powinny być znane z cennika. Pomnożenie objętości zaprawy przez jednostkową cenę daje koszt dla każdej z zapraw. Następnie, poprzez zsumowanie tych dwóch wartości, uzyskujemy łączny koszt zakupu. Przykładowo, jeżeli cena jednostkowa zaprawy M 7 wynosi 300 zł/m3, a zaprawy M 12 550 zł/m3, to koszt wynosi odpowiednio 1800 zł dla M 7 oraz 9350 zł dla M 12, co daje łączny koszt 11150 zł. Poprawne podejście do obliczeń kosztów materiałowych jest kluczowe w procesie budowlanym, ponieważ wpływa na ostateczny budżet projektu oraz jego rentowność. Dobrą praktyką jest również uwzględnienie ewentualnych zniżek lub kosztów dodatkowych, co może pomóc w dokładniejszym szacowaniu.

Pytanie 40

Jeśli na rysunku w skali 1:50 długość ściany, która ma być otynkowana, wynosi 15 cm, to rzeczywista długość tej ściany to

A. 7,50 m
B. 15,00 m
C. 0,75 m
D. 1,50 m
Aby obliczyć rzeczywistą długość ściany na podstawie rysunku wykonanego w skali 1:50, należy zastosować zasadę proporcji. Skala 1:50 oznacza, że 1 cm na rysunku odpowiada 50 cm w rzeczywistości. W tym przypadku długość ściany wynosi 15 cm, więc rzeczywista długość można obliczyć mnożąc długość na rysunku przez współczynnik skali: 15 cm * 50 = 750 cm, co jest równoznaczne z 7,50 m. Tego typu obliczenia są niezwykle istotne w branży budowlanej oraz architektonicznej, gdzie precyzja jest kluczowa. Używanie odpowiednich skal i umiejętność przeliczania wymiarów to podstawowe umiejętności, które pozwalają na dokładne planowanie oraz realizację projektów budowlanych. W praktyce, znajomość zasad przeliczania skali jest niezbędna do interpretacji rysunków technicznych oraz tworzenia kosztorysów, które są oparte na rzeczywistych wymiarach obiektów. Dodatkowo, znajomość skali umożliwia dokonanie właściwych pomiarów i planów, co jest kluczowe w procesach projektowych oraz budowlanych.