Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.05 - Eksploatacja urządzeń elektronicznych
  • Data rozpoczęcia: 7 kwietnia 2025 12:14
  • Data zakończenia: 7 kwietnia 2025 12:50

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

W trakcie konserwacji systemu antenowego wykryto błąd dokonany przez instalatora. Zamiast odpowiedniego przewodu o impedancji falowej 75 Ω podłączono przewód o impedancji falowej 300 Ω. W rezultacie tej pomyłki poziom sygnału odbieranego przez odbiornik

A. wynosił 0
B. pozostał bez zmian
C. uległ zmniejszeniu
D. uległ wzrostowi
Odpowiedź, że poziom sygnału zmniejszył się, jest prawidłowa, ponieważ zastosowanie przewodu o impedancji falowej 300 Ω zamiast 75 Ω prowadzi do niedopasowania impedancyjnego. Takie niedopasowanie powoduje odbicie części sygnału, co w rezultacie skutkuje osłabieniem sygnału odbieranego przez odbiornik. W systemach telekomunikacyjnych, zgodnych z normami, takie jak IEC 61196 dotyczące przewodów do sygnałów analogowych i cyfrowych, kluczowe jest stosowanie przewodów o odpowiedniej impedancji, aby minimalizować straty sygnału. W praktyce, dobór odpowiedniego przewodu może znacząco wpłynąć na jakość sygnału, a nieodpowiedni wybór może prowadzić do zakłóceń, zniekształceń oraz obniżonej jakości odbioru. W przypadku systemów telewizyjnych czy radiowych, stosowanie przewodów o 75 Ω jest standardem, ponieważ pozwala na optymalne przenoszenie sygnałów bez znaczących strat. Warto pamiętać, że w profesjonalnych instalacjach antenowych dbałość o zgodność impedancyjną jest kluczowym aspektem zapewniającym wysoką jakość odbioru oraz niezawodność systemu.

Pytanie 4

Ile wejść adresowych posiada multiplekser 8-wejściowy?

A. 2 wejścia adresowe
B. 4 wejścia adresowe
C. 3 wejścia adresowe
D. 5 wejść adresowych
Odpowiedzi sugerujące 2, 4 lub 5 wejść adresowych są błędne, ponieważ nie uwzględniają właściwości binarnych systemu adresowania w kontekście multiplekserów. Multiplekser 8-wejściowy z definicji musi mieć możliwość wyboru spośród ośmiu różnych sygnałów. Aby to osiągnąć, przeprowadzamy analizę binarną, która wskazuje, że potrzebujemy 3 bity adresowe. Dla 2 wejść adresowych moglibyśmy zarządzać tylko 4 sygnałami (2^2), co w pełni nie wykorzystałoby możliwości multipleksera przeznaczonego na 8 sygnałów. Odpowiedź mówiąca o 4 wejściach adresowych sugeruje, że moglibyśmy zarządzać 16 sygnałami (2^4), co również jest niepoprawne, gdyż w przypadku multipleksera 8-wejściowego nie ma możliwości ich dodatkowego rozszerzenia. Wybór 5 wejść adresowych również prowadzi do nadmiaru, ponieważ daje to 32 możliwe sygnały, co znacznie przekracza liczbę 8. Kluczowym błędem myślowym jest tutaj nieuwzględnienie podstawowych zasad logiki binarnej i zrozumienia zadania multipleksera. W praktycznych zastosowaniach w inżynierii elektronicznej, projektanci muszą starannie dobierać liczbę adresów do liczby sygnałów, co jest kluczowe w zapewnieniu optymalnej wydajności systemu. W kontekście standardów przemysłowych, niewłaściwe przypisanie adresów może prowadzić do nieefektywności w przesyłaniu danych oraz zwiększonego ryzyka błędów w komunikacji.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

W specyfikacji katalogowej rezystora SMD podano wartość rezystancji wynoszącą 100 Ω oraz moc 0,25 W. Jakie jest maksymalne natężenie prądu, które może przepływać przez ten rezystor?

A. 4 mA
B. 50 mA
C. 200 mA
D. 250 mA
Odpowiedź 50 mA jest prawidłowa, ponieważ zgodnie z prawem Ohma oraz wzorem na moc, możemy obliczyć maksymalne natężenie prądu dla danego rezystora. Moc (P) rezystora wyrażana jest wzorem P = I²R, gdzie I to natężenie prądu, a R to rezystancja. Podstawiając wartości: 0,25 W = I² * 100 Ω, przekształcamy wzór do postaci I² = 0,25 W / 100 Ω, co daje I² = 0,0025 A². Zatem I = √0,0025 A² = 0,05 A, co odpowiada 50 mA. Jest to zgodne z praktykami inżynieryjnymi, które zalecają obliczanie maksymalnych prądów dla komponentów, aby uniknąć ich uszkodzenia. W praktyce, taki rezystor o wartości 100 Ω i mocy 0,25 W jest często stosowany w układach filtrów, dzielnikach napięcia czy w obwodach sygnałowych, gdzie utrzymanie właściwego natężenia prądu jest kluczowe dla stabilności działania całego systemu.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Transformator, którego uzwojenie pierwotne składa się z 500 zwojów, jest zasilany z sieci o napięciu 230 V. Urządzenie to ma dwa uzwojenia wtórne. Ile zwojów musi mieć każde z tych uzwojeń, aby osiągnąć napięcie 2 x 23 V na zaciskach wtórnych transformatora?

A. 50
B. 250
C. 100
D. 25
Wybór innej liczby zwojów w uzwojeniach wtórnych jest błędny, ponieważ opiera się na niepoprawnym zrozumieniu zasady działania transformatora. Wiele osób mogłoby pomyśleć, że zmniejszenie napięcia na uzwojeniu wtórnym można osiągnąć poprzez różne kombinacje zwojów, jednak kluczowym aspektem jest to, że liczba zwojów jest ściśle związana z proporcjami napięcia. Na przykład, wybierając 250 lub 100 zwojów, można błędnie założyć, że uzyskane napięcia będą odpowiednie, jednak obliczenia pokazują, że przy takich wartościach uzwojenie wtórne nie dostarczy wymaganych 23 V. Typowy błąd to mylenie liczby zwojów z napięciem, co prowadzi do nieporozumień w obliczeniach. Ponadto, liczby takie jak 25 i 250 mogą wydawać się sensowne, ale nie uwzględniają proporcji między napięciem a zwojami, co jest kluczowe w pracy transformatora. W praktyce, podczas projektowania urządzeń elektrycznych, takie błędy mogą prowadzić do uszkodzenia sprzętu lub nieefektywności w działaniu systemu. Właściwe zrozumienie tej proporcjonalności jest niezbędne dla inżynierów i techników pracujących w dziedzinie elektryki i elektroniki, aby unikać problemów z bezpieczeństwem i wydajnością w projektowanych układach.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Po włożeniu płyty DVD do odtwarzacza, szuflada napędu najpierw się wsuwa, a następnie od razu wysuwa. Jaka może być najprawdopodobniejsza przyczyna tego problemu?

A. Uszkodzony laser
B. Uszkodzony silnik przesuwu tacki
C. Luźny pasek zamykający szufladę lub styk krańcowy
D. Uszkodzony silnik odtwarzacza płyty
Uszkodzony silnik napędu płyty, uszkodzony silnik przesuwu szuflady oraz uszkodzony laser, mimo że mogą być problemami w odtwarzaczach DVD, nie są najprawdopodobniejszymi przyczynami opisanego zachowania tacki. W przypadku uszkodzonego silnika napędu płyty, zazwyczaj obserwuje się problemy z odczytem płyt, a nie z mechanizmem wysuwania tacki. Silnik ten odpowiada za obracanie płyty po jej umieszczeniu oraz może być przyczyną problemów z odtwarzaniem, ale nie wywołuje natychmiastowego wysunięcia tacki. Podobnie, uszkodzony silnik przesuwu szuflady mógłby prowadzić do opóźnień w zamykaniu lub otwieraniu, ale nie do cyklicznego wysuwania się tacki. Co więcej, uszkodzony laser, będący odpowiedzialnym za odczyt danych z płyty, również nie wpływa na mechanizm zamykania tacki. Często błędnie przypisuje się problemy z zamykaniem tacki uszkodzeniom w bardziej skomplikowanych komponentach, podczas gdy najprostsze rozwiązania, takie jak sprawdzenie pasków oraz styków krańcowych, są pomijane. Właściwe podejście do diagnostyki sprzętu polega na systematycznym sprawdzaniu elementów najprostszych, zanim przejdziemy do bardziej skomplikowanych ustaleń. W branży naprawy elektroniki, zwłaszcza w przypadku urządzeń mechanicznych, stosuje się zasadę eliminacji, co pozwala na szybsze i efektywniejsze diagnozowanie usterek.

Pytanie 19

Na podstawie danych technicznych zawartych w tabeli określ rodzaj czujki opisanej przez te parametry.

Typ czujkiNC
Maksymalne napięcie przełączalne kontaktronu20 V
Maksymalny prąd przełączalny20 mA
Oporność przejściowa150 mΩ
Minimalna liczba przełączeń przy obciążeniu 20 V, 20 mA360 000
Materiał stykowyRu (Ruten)
Odległość zamknięcia styków kontaktronu18 mm
Odległość otwarcia styków kontaktronu28 mm
Masa10 g

A. Wibracyjna.
B. Ruchu.
C. Magnetyczna.
D. Akustyczna.
Czujki ruchu, akustyczne i wibracyjne mają swoje specyficzne właściwości, które odróżniają je od czujników magnetycznych. Czujki ruchu działają na zasadzie detekcji przemieszczających się obiektów w danym obszarze, co często wiąże się z użyciem technologii podczerwieni lub mikrofal. W związku z tym, ich zastosowanie jest ograniczone do warunków, gdzie obecność obiektów jest kluczowa, co różni się od pasywnej detekcji stosowanej w czujnikach magnetycznych. Czujki akustyczne natomiast, które reagują na dźwięki, mogą być wrażliwe na hałas otoczenia, co często prowadzi do fałszywych alarmów, eliminując ich użyteczność w wielu sytuacjach. Z kolei czujki wibracyjne, czułe na drgania, są stosowane głównie w aplikacjach zabezpieczeń, ale ich skuteczność może być ograniczona przez zmienność warunków otoczenia i rodzaj monitorowanego obiektu. Problematyka identyfikacji tych różnic często prowadzi do nieprawidłowych klasyfikacji, a ich niewłaściwe zastosowanie może skutkować nieefektywnością systemu zabezpieczeń. Brak zrozumienia różnic między tymi technologiami oraz ich odpowiednich zastosowań jest powszechnym błędem, który należy unikać, aby zapewnić skuteczność i niezawodność systemów detekcji.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Wtórnik emiterowy to wzmacniacz z tranzystorem w układzie wspólnego kolektora, który odznacza się

A. wysokim wzmocnieniem napięciowym
B. wzmocnieniem napięciowym bliskim jedności
C. niskim wzmocnieniem prądowym
D. niską rezystancją wejściową
Wtórnik emiterowy, znany również jako wzmacniacz w konfiguracji wspólnego kolektora, ma kluczową cechę, jaką jest wzmocnienie napięciowe bliskie jedności. Oznacza to, że napięcie wyjściowe jest niemal równe napięciu wejściowemu, co sprawia, że jest idealnym rozwiązaniem w sytuacjach, gdy wymagane jest dopasowanie impedancji. Dzięki tej właściwości, wtórnik emiterowy znajduje szerokie zastosowanie w układach, gdzie potrzebne jest przetwarzanie sygnałów o wysokiej impedancji, takich jak czujniki lub mikrofony. W praktyce, wtórnik emiterowy jest często stosowany w interfejsach, które łączą elementy o różnych poziomach impedancji, co minimalizuje straty sygnału i zapewnia stabilną pracę całego układu. W kontekście dobrych praktyk inżynierskich, projektanci często wybierają tę konfigurację, aby ograniczyć wpływ obciążeń na źródło sygnału, co jest kluczowe w systemach audio i komunikacyjnych, gdzie jakość sygnału jest priorytetem.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Wtórnik emiterowy to wzmacniacz z tranzystorem w układzie

A. wspólnego kolektora
B. wspólnego emitera
C. wspólnej bazy
D. wspólnego źródła
Wybór innych konfiguracji tranzystora, jak wspólne źródło czy wspólny emiter, może prowadzić do nieporozumień w kwestii wzmacniaczy tranzystorowych. Wspólne źródło, na przykład, jest fajne do wzmocnienia napięcia, ale ma niską impedancję wyjściową, przez co nie za bardzo nadaje się do interfejsów wymagających dużej impedancji. Z kolei wspólny emiter to popularny układ, bo daje spore wzmocnienie napięcia i prądu, ale może wprowadzać więcej zniekształceń i ma niższą impedancję wyjściową. Co do wspólnej bazy, to chociaż czasami jest użyteczna, to ma bardzo niską impedancję wejściową i w większości zastosowań nie jest zbyt praktyczna. Wydaje mi się, że zrozumienie różnic między tymi konfiguracjami to kluczowa rzecz dla inżynierów i techników w elektronice, bo wybór niewłaściwego układu może prowadzić do problemów i nieefektywnych projektów.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Jaką rolę pełni program debugger?

A. Konwertuje kod napisany w jednym języku na odpowiednik w innym języku
B. Umożliwia uruchomienie programu i identyfikację błędów w nim
C. Przekształca funkcję logiczną w układ funkcjonalny
D. Generuje kod maszynowy na podstawie kodu źródłowego
Debugger to narzędzie, które odgrywa kluczową rolę w procesie tworzenia oprogramowania, umożliwiając programistom uruchamianie ich kodu w kontrolowanych warunkach oraz wykrywanie błędów. Główne funkcje debuggera obejmują możliwość zatrzymywania wykonania programu w określonych punktach (tzw. breakpointy), co pozwala na analizę stanu zmiennych oraz śledzenie przepływu wykonywania programu. Dzięki temu programiści mogą zidentyfikować, dlaczego dany fragment kodu nie działa zgodnie z oczekiwaniami. Na przykład, jeśli program nie zwraca oczekiwanego wyniku, debugger umożliwia analizę wartości zmiennych w momencie przerywania działania program, co jest nieocenionym wsparciem w diagnozowaniu problemów. W praktyce, używanie debuggera jest zgodne z najlepszymi praktykami inżynierii oprogramowania, które zalecają testowanie oraz poprawianie kodu w iteracyjnym cyklu życia projektu. Dodatkowo, nowoczesne IDE (Integrated Development Environment) często integrują funkcje debugowania, co ułatwia programistom efektywne usuwanie błędów na wczesnych etapach rozwoju oprogramowania.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Która z wymienionych liczb nie stanowi reprezentacji w systemie BCD8421?

A. 10011001
B. 11111111
C. 00000000
D. 01100110
Liczba 11111111 nie pasuje do kodu BCD8421. Mówiąc prościej, ten kod służy do zapisywania cyfr od 0 do 9 w systemie binarnym, a każda cyfra zajmuje 4 bity. W BCD8421 każda cyfra dziesiętna ma swój własny zapis binarny: 0000 dla 0, 0001 dla 1, 0010 dla 2 itd. A tu mamy osiem jedynek, co jest problematyczne, bo nie ma takiej cyfry dziesiętnej, która mogłaby się tak zapisać. BCD8421 jest szczególnie przydatny w różnych urządzeniach pomiarowych, gdzie ważne jest, żeby dane były dokładnie odwzorowane i łatwe do przetworzenia. Korzystanie z tego kodu pozwala uniknąć błędów w zaokrągleniach, które mogłyby się pojawić w standardowym zapisie binarnym. Tak więc, znajomość BCD8421 i jego prawidłowe użycie naprawdę ułatwia późniejszą pracę z danymi.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Uchyb regulacji wynoszący 0 umożliwia działanie regulatora typu

A. nieciągłym, dwupołożeniowym
B. nieciągłym, trójpołożeniowym
C. ciągłym typu PD
D. ciągłym typu PI
Odpowiedź "ciągłym typu PI" jest prawidłowa, ponieważ regulator PI (proporcjonalno-całkujący) jest idealnym rozwiązaniem dla systemów, w których uchyb regulacji (czyli różnica między wartością zadaną a wartością rzeczywistą) równy 0 wskazuje na stabilność układu. Regulator PI działa poprzez wykorzystanie składowej proporcjonalnej oraz całkującej, co pozwala na efektywne eliminowanie uchybu ustalonego w systemach zamkniętej pętli. Przykładem zastosowania regulatorów PI może być kontrola temperatury w piecach przemysłowych, gdzie precyzyjne utrzymywanie zadanej temperatury jest kluczowe dla jakości produkcji. Regulatory PI są stosowane w branżach takich jak automatyka przemysłowa, procesy chemiczne oraz w systemach HVAC. Dzięki swojej prostocie i efektywności, są szeroko stosowane w praktyce inżynieryjnej, zgodnie z najlepszymi praktykami branżowymi, w tym normami IEC 61131 dla systemów automatyki. Warto również zauważyć, że regulacja PI jest często preferowana w układach o małej dynamice, gdzie szybkość reakcji nie jest kluczowym czynnikiem.

Pytanie 35

Przepustowość transferu danych w sieci wynosząca 256 kb/s odpowiada wartości

A. 64kB/s
B. 16kB/s
C. 32kB/s
D. 8kB/s
Odpowiedź 32kB/s jest prawidłowa, ponieważ 1 bajt (B) składa się z 8 bitów (b). Aby przeliczyć prędkość transferu z kilobitów na kilobajty, należy podzielić wartość w kilobitach przez 8, ponieważ 8 bitów tworzy 1 bajt. Zatem, 256 kb/s podzielone przez 8 daje 32 kB/s. Przykładowo, w przypadku pobierania pliku o wielkości 32 kB z prędkością 256 kb/s, czas pobierania wyniesie zaledwie 1 sekundy. W praktyce, znajomość tej konwersji jest kluczowa dla projektantów sieci oraz inżynierów zajmujących się optymalizacją wydajności transferu danych. Przykładowo, w kontekście monitorowania przepustowości sieci, umiejętność szybkiego przeliczania jednostek pozwala na lepszą ocenę efektywności transferu oraz identyfikację potencjalnych wąskich gardeł w komunikacji sieciowej.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Jaką funkcję pełni soczewka Fresnela w czujkach ruchu typu PIR?

A. ma za zadanie skupiać wiązki detekcji na pyroelemencie
B. emituje promieniowanie podczerwone w stronę intruza
C. gwarantuje efektywne działanie systemu przeciwsabotażowego
D. jest komponentem wyłącznie dekoracyjnym
Soczewka Fresnela w czujkach ruchu typu PIR (Passive Infrared) pełni kluczową rolę jako element skupiający wiązki detekcji na pyroelemencie. Jej konstrukcja, składająca się z wielu segmentów, pozwala na efektywne zbieranie promieniowania podczerwonego emitowanego przez obiekty w ruchu. Dzięki zastosowaniu soczewek Fresnela, czujniki PIR mogą wykrywać ruch w szerszym zakresie i z większą precyzją, co jest szczególnie istotne w systemach zabezpieczeń. Przykładowo, w zastosowaniach domowych lub komercyjnych, soczewki te mogą być używane w alarmach antywłamaniowych, a także w automatycznych systemach oświetleniowych, które włączają się tylko wtedy, gdy wykryją obecność osoby. W praktyce oznacza to, że czujniki z soczewkami Fresnela są bardziej niezawodne i efektywne w wykrywaniu intruzów, co zwiększa bezpieczeństwo obiektów. Standardy branżowe, takie jak EN 50131, podkreślają znaczenie efektywności detekcji w systemach alarmowych, co czyni soczewki Fresnela niezbędnym elementem nowoczesnych rozwiązań zabezpieczających.

Pytanie 38

Dodatnie sprzężenie zwrotne polega na tym, że część sygnału

A. wyjściowego zostaje przekazywana na wejście w fazie z sygnałem wejściowym
B. wyjściowego trafia na wejście w przeciwfazie do sygnału wyjściowego
C. wejściowego kierowana jest na wyjście w przeciwfazie z sygnałem wyjściowym
D. wejściowego jest przekazywana na wyjście w fazie z sygnałem wyjściowym
Odpowiedź, że dodatnie sprzężenie zwrotne polega na przekazywaniu sygnału wyjściowego na wejście w fazie z sygnałem wejściowym, jest poprawna, ponieważ dodatnie sprzężenie zwrotne rzeczywiście polega na wzmocnieniu sygnału. W praktyce oznacza to, że sygnał wyjściowy jest dodawany do sygnału wejściowego, co prowadzi do zwiększenia wartości sygnału w systemie. Takie podejście jest powszechnie stosowane w różnych systemach, takich jak wzmacniacze audio, gdzie dążymy do uzyskania intensyfikacji dźwięku. Dodatnie sprzężenie zwrotne znajduje zastosowanie także w systemach stabilizacji, takich jak kontrola temperatury, gdzie zwiększenie sygnału może prowadzić do szybszego osiągnięcia pożądanej wartości. Standardowe praktyki inżynieryjne zalecają ostrożne stosowanie dodatniego sprzężenia zwrotnego, ponieważ może ono prowadzić do niestabilności systemu i oscylacji, jeśli nie jest odpowiednio zaprojektowane. Kluczowe jest zrozumienie, że dodatnie sprzężenie zwrotne wzmacnia sygnał, co może przynieść zarówno korzyści, jak i ryzyko, dlatego wymaga odpowiedniej analizy i projektowania.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Do detektorów gazów nie wlicza się detektor

A. gaz ziemny
B. dymu i ciepła
C. tlenku węgla
D. gazów usypiających
Czujki gazów są urządzeniami zaprojektowanymi do wykrywania obecności różnych gazów, które mogą stanowić zagrożenie dla zdrowia lub życia ludzi. Wśród typowych czujek gazów wymienia się czujki tlenku węgla, które ostrzegają przed jego niebezpiecznym stężeniem, oraz czujki gazu ziemnego (metanu), które informują o jego obecności w powietrzu. Czujki gazów usypiających również pełnią ważną rolę w zapewnieniu bezpieczeństwa, zwłaszcza w pomieszczeniach, gdzie stosowane są substancje mogące powodować utratę świadomości. W przeciwieństwie do tych urządzeń, czujki dymu i ciepła są przeznaczone do detekcji pożaru, a nie gazów. Dzięki odpowiednim normom, takim jak EN 14604 dla czujek dymu, oraz EN 50291 dla czujek tlenku węgla, można zapewnić skuteczność oraz bezpieczeństwo tych urządzeń w codziennym użytkowaniu. Dlatego kluczowe jest stosowanie odpowiednich czujek, zgodnych z ich przeznaczeniem w celu minimalizacji ryzyka wystąpienia niebezpiecznych sytuacji w domach i miejscach pracy.