Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 9 maja 2025 11:29
  • Data zakończenia: 9 maja 2025 11:42

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Skrót "cz." na etykiecie odczynnika chemicznego wskazuje, że

A. zawartość głównego składnika wynosi 99-99,9%
B. zawartość głównego składnika wynosi 99,9-99,99%
C. odczynnik jest przeznaczony do analiz spektralnych
D. zawartość zanieczyszczeń nie przekracza 0,01-0,001%
Zrozumienie oznaczenia 'cz.' jest kluczowe dla każdego, kto pracuje w laboratoriach chemicznych. Wiele osób myli to oznaczenie z innymi wskaźnikami czystości chemikaliów, co prowadzi do nieporozumień. Na przykład, pierwsza z dostępnych odpowiedzi sugeruje, że skrót ten odnosi się do możliwości stosowania odczynnika do analiz spektralnych. To podejście jest błędne, ponieważ czystość chemiczna nie jest bezpośrednio związana z metodą analizy, ale raczej z jakością używanego odczynnika. Zastosowanie reagentów o wysokiej czystości jest ważne w kontekście dokładności wyników, a nie samego sposobu przeprowadzania analizy. Kolejna sugestia dotycząca zawartości głównego składnika na poziomie 99,9-99,99% również jest myląca. Oznaczenie 'cz.' jednoznacznie wskazuje na zakres 99-99,9%, co jest akceptowane w standardach laboratoryjnych. Ostatnia odpowiedź, mówiąca o maksymalnej zawartości zanieczyszczeń, sugeruje jakoby czystość była mierzona w bardziej rygorystyczny sposób niż w rzeczywistości. Zanieczyszczenia zawsze są obecne, ale ich akceptowalny poziom w odczynnikach chemicznych to właśnie 0,1-0,01% dla klasy reagentów czystych. Pojawiające się błędne koncepcje często wynikają z mylenia terminologii i różnorodności standardów stosowanych w praktyce laboratoryjnej, co może prowadzić do nieodpowiednich wyborów reagenty, a tym samym do błędnych wyników badań.

Pytanie 3

W przypadku kontaktu ze stężonym roztworem zasady, co należy zrobić jak najszybciej?

A. zastosować 5% roztwór wodorowęglanu sodu
B. polać 3% roztworem wody utlenionej
C. skorzystać z amoniaku
D. zmyć bieżącą wodą
W przypadku oblania się stężonym roztworem zasady kluczowe jest jak najszybsze zneutralizowanie i usunięcie kontaktu z substancją. Zmycie bieżącą wodą jest najbardziej efektywną i odpowiednią metodą, ponieważ pozwala na rozcieńczenie zasady oraz fizyczne usunięcie jej z powierzchni skóry lub materiału. Woda działa jako rozpuszczalnik, który zmniejsza stężenie zasady, co z kolei minimalizuje ryzyko uszkodzenia tkanek. W praktyce, zaleca się pod bieżącą wodą przepłukać obszar kontaktu przez co najmniej 15 minut, aby zapewnić skuteczne usunięcie substancji. Ponadto, w sytuacjach laboratoryjnych, przestrzega się standardów BHP, które nakładają obowiązek posiadania odpowiednich stacji do płukania oczu i ciała, aby szybko reagować na takie wypadki. Warto również pamiętać o noszeniu odpowiednich środków ochrony osobistej, takich jak rękawice i gogle, co może zminimalizować ryzyko kontaktu z niebezpiecznymi substancjami. Tylko w przypadku, gdy zasada nie jest zmyta, można myśleć o dalszym postępowaniu, jednak zawsze należy wrócić do podstawowej metody usuwania substancji.

Pytanie 4

Aby uzyskać roztwór CuSO4 o stężeniu 15%, w jakim stosunku należy połączyć roztwory 10% oraz 20%?

A. 2:3
B. 2:1
C. 3:2
D. 1:1
Stosowanie niepoprawnych odpowiedzi na pytanie o mieszanie roztworów stężonych prowadzi do błędnych wniosków dotyczących proporcji, które są niezbędne do uzyskania określonego stężenia. Na przykład, odpowiedź 2:3 sugeruje, że w bardziej stężonym roztworze (20%) powinno być więcej, co jednak nie jest zgodne z zasadą mieszania stężeń. Przy tej proporcji stężenie końcowe przekroczyłoby 15%, co jest niepożądane. Podobnie, odpowiedzi 3:2 i 1:1 sugerują niewłaściwe rozkłady, które również prowadzą do niemożności osiągnięcia zamierzonego stężenia. W przypadku roztworów o różnych stężeniach kluczowe jest zrozumienie, że roztwór o niższym stężeniu (10%) musi być obecny w większej ilości w celu zredukowania średniego stężenia. Typowe błędy myślowe, które mogą prowadzić do takich niepoprawnych wniosków, to ignorowanie zasady zachowania masy oraz niewłaściwe stosowanie matematyki do obliczeń stężenia. W praktyce chemicznej istotne jest przestrzeganie reguły, że dla uzyskania roztworu o pożądanym stężeniu należy stosować równania do obliczeń, co jest zgodne z dobrymi praktykami w laboratoriach chemicznych.

Pytanie 5

W przypadku odczynnika, w którym nawet najczulsze techniki analizy chemicznej nie są w stanie wykryć zanieczyszczeń, a jego badanie wymaga zastosowania metod opartych na zjawiskach fizycznych, zalicza się on do kategorii czystości

A. chemicznie czysty
B. techniczny
C. czysty do analizy
D. czysty
Odpowiedź "chemicznie czysty" jest prawidłowa, ponieważ odnosi się do substancji, w której zanieczyszczenia chemiczne są na tak niskim poziomie, że nie można ich wykryć nawet za pomocą zaawansowanych technik analizy chemicznej. W praktyce oznacza to, że substancja ta jest odpowiednia do zastosowań wymagających najwyższej klasy czystości, takich jak w laboratoriach analitycznych, produkcji farmaceutyków czy w materiałach do badań naukowych. W zgodzie z normami ISO oraz standardami dla chemikaliów do analizy, substancje chemicznie czyste muszą spełniać określone wymagania dotyczące zawartości zanieczyszczeń, co czyni je niezastąpionymi w precyzyjnych analizach. Na przykład, do analizy spektroskopowej często używa się chemicznie czystych rozpuszczalników, które nie wprowadzają dodatkowych sygnałów do pomiarów, co pozwala uzyskać wyniki o wysokiej rozdzielczości i dokładności.

Pytanie 6

Do kolby destylacyjnej wprowadzono 200 cm3 zanieczyszczonego acetonu o gęstości d = 0,9604 g/cm3 oraz czystości 90% masowych. W celu oczyszczenia przeprowadzono proces destylacji, w wyniku czego uzyskano 113,74 g czystego acetonu. Jakie były straty acetonu podczas destylacji?

A. 65,80%
B. 34,20%
C. 81,77%
D. 18,33%
Wybierając inne odpowiedzi, można napotkać kilka typowych pułapek myślowych. Często zdarza się, że studenci mylnie zakładają, iż straty acetonu można obliczyć jako prostą różnicę między masą początkową a masą końcową bez uwzględnienia rzeczywistej zawartości czystego acetonu. W takich przypadkach dochodzi do nieprawidłowego założenia co do ilości czystego acetonu w początkowej próbce. Ponadto, niektóre osoby mogą błędnie oszacować straty, nie uwzględniając gęstości substancji oraz jej czystości, co prowadzi do znacznych odchyleń w obliczeniach. Straty mogą być również źle interpretowane jako różnica objętości, co nie jest adekwatne, gdyż konieczne jest przejście na jednostki masy dla porównania. Aby uniknąć tych błędów, ważne jest, by przy każdej analizie chemicznej szczegółowo zrozumieć, jakie dane są potrzebne do prawidłowego obliczenia. Rekomenduje się także stosowanie standardowych procedur analitycznych oraz dokumentację każdego kroku procesu, co zwiększa transparentność i umożliwia identyfikację potencjalnych błędów. Dobre praktyki w laboratoriach chemicznych zakładają również regularne szkolenie personelu oraz dbałość o dokładność pomiarów, co może znacząco wpłynąć na jakość uzyskiwanych wyników.

Pytanie 7

Jaką metodą nie można rozdzielać mieszanin?

A. ekstrakcja
B. chromatografia
C. aeracja
D. krystalizacja
Aeracja to proces, który nie jest metodą rozdzielania mieszanin, lecz techniką stosowaną w różnych dziedzinach, takich jak oczyszczanie wody czy hodowla ryb, w celu wzbogacenia medium w tlen. Proces ten polega na wprowadzeniu powietrza do cieczy, co ma na celu zwiększenie stężenia tlenu rozpuszczonego w wodzie. Aeracja znajduje zastosowanie w biotechnologii wodnej oraz przy oczyszczaniu ścieków, gdzie tlen jest niezbędny dla organizmów aerobowych, które degradować mogą zanieczyszczenia organiczne. W przeciwieństwie do metod takich jak chromatografia, krystalizacja czy ekstrakcja, które mają na celu separację konkretnych składników z mieszaniny, aeracja koncentruje się na poprawie warunków środowiskowych. Chromatografia jest szeroko stosowana w laboratoriach chemicznych do analizy substancji, krystalizacja służy do oczyszczania substancji chemicznych poprzez tworzenie kryształów, a ekstrakcja umożliwia oddzielenie substancji na podstawie ich różnej rozpuszczalności. Właściwe zrozumienie tych procesów jest kluczowe dla ich efektywnego zastosowania w przemyśle chemicznym i biotechnologii.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Próbkę uzyskaną z próbki ogólnej poprzez jej zmniejszenie nazywa się

A. ogólną
B. średnią
C. pierwotną
D. śladową
Wybór odpowiedzi 'pierwotna', 'ogólna' czy 'śladowa' opiera się na nieporozumieniach dotyczących podstawowych pojęć związanych z przygotowaniem próbek. Odpowiedź 'pierwotna' sugeruje, że próbka jest reprezentatywna dla całej populacji, co jednak nie jest prawdą. W rzeczywistości, pierwotna próbka to ta, która została zebrana bez jakiejkolwiek obróbki, co nie odzwierciedla rzeczywistych właściwości populacji. Odpowiedź 'ogólna' jest myląca, ponieważ termin ten w kontekście próbek mógłby oznaczać całą zbieraną populację, a nie jej analizowaną reprezentację. Z kolei odpowiedź 'śladowa' odnosi się do próbek, które są w tak małej ilości, że mogą nie być użyteczne do rzetelnej analizy statystycznej lub chemicznej. Przygotowanie śladowej próbki może prowadzić do błędnych wniosków, gdyż nie przedstawia ona wiarygodnego obrazu całości, co może być szczególnie niebezpieczne w zastosowaniach przemysłowych czy medycznych. W teorii próbkowania istotne jest zrozumienie, że każda z tych błędnych odpowiedzi nie uwzględnia faktu, iż średnia próbka jest niezbędna do zapewnienia reprezentatywności i dokładności w pomiarach, co jest kluczowe w kontekście analizy danych i podejmowania decyzji.

Pytanie 10

Ogólna próbka, jednostkowa lub pierwotna powinna

A. być tym większa, im bardziej jednorodny jest skład produktu
B. być tym mniejsza, im większa jest niejednorodność składu produktu
C. mieć masę 1-10 kg dla produktów stałych lub objętość 1-10 dm3 dla cieczy
D. być tym większa, im bardziej niejednorodny jest skład produktu
Odpowiedź jest poprawna, ponieważ w przypadku próbek ogólnych, jednostkowych lub pierwotnych, ich wielkość powinna wzrastać w miarę zwiększania się niejednorodności składu produktu. Zgodnie z zasadami statystyki i analizy chemicznej, im większa jest różnorodność składników, tym większa próbka jest potrzebna do uzyskania reprezentatywności wyników analizy. Przykładowo, w przemyśle spożywczym, jeśli surowiec ma zróżnicowany skład (np. mieszanka różnych nasion), to do analizy jakościowej lub ilościowej powinno się pobrać większą próbkę, aby uwzględnić wszystkie warianty składników. Normy takie jak ISO 17025 podkreślają znaczenie reprezentatywności próbek w kontekście uzyskiwania wiarygodnych wyników analitycznych. W praktyce, właściwe podejście do pobierania próbek może znacznie wpłynąć na jakość końcowych danych, co jest kluczowe w kontekście kontroli jakości i zapewnienia zgodności z normami.

Pytanie 11

Substancje chemiczne, które zazwyczaj wykorzystuje się w eksperymentach preparatywnych oraz w jakościowych analizach, charakteryzujące się czystością w przedziale 99-99,9%, nazywa się

A. czystymi do badań
B. czystymi spektralnie
C. czystymi
D. czystymi chemicznie
Wybór innych odpowiedzi może wynikać z błędnego zrozumienia terminów związanych z czystością chemiczną. Odpowiedź 'spektralnie czyste' odnosi się specjalnie do odczynników, które muszą spełniać dodatkowe wymogi dotyczące czystości w kontekście analiz spektroskopowych. W takim przypadku czystość nie wystarcza, aby zapewnić dokładność wyników, ponieważ zanieczyszczenia mogą wpływać na widmo emitowane przez próbkę, co jest kluczowe w spektroskopii. Natomiast odpowiedź 'czyste do analiz' sugeruje, że odczynniki te są przygotowane do konkretnego zastosowania analitycznego, ale niekoniecznie spełniają wymagania dotyczące czystości chemicznej. Z kolei odpowiedź 'chemicznie czyste' jest zbyt ogólna, ponieważ nie określa konkretnego zakresu czystości, który jest szczególnie istotny w analizach laboratoryjnych. Często w praktyce laboratoria posługują się wytycznymi dotyczącymi czystości, które mogą być różne w zależności od zastosowania, a nieprzestrzeganie tych standardów może prowadzić do fałszywych wyników i nieefektywności badań. Dlatego znajomość terminologii i standardów jest kluczowa w pracy laboratoryjnej.

Pytanie 12

W jakiej standardowej temperaturze są kalibrowane szklane naczynia pomiarowe?

A. 19°C
B. 21°C
C. 25°C
D. 20°C
Szklane naczynia miarowe, takie jak pipety, kolby czy cylinder miarowy, są kalibrowane w standardowej temperaturze 20°C. Kalibracja w tej temperaturze jest uznawana za normę, ponieważ zmiany temperatury mogą wpływać na objętość cieczy oraz na precyzję pomiarów. Przykładowo, w laboratoriach chemicznych, gdzie dokładność pomiarów jest kluczowa, naczynia miarowe są używane przy tej temperaturze, aby zapewnić wiarygodność wyników eksperymentów. W praktyce oznacza to, że przy pomiarach z użyciem tych naczyń, operatorzy powinni dążyć do utrzymania temperatury 20°C, aby uniknąć błędów wynikających z rozszerzalności cieczy oraz materiałów, z których wykonane są naczynia. Ponadto, zgodnie z międzynarodowymi standardami ISO i zaleceniami PTB (Physikalisch-Technische Bundesanstalt), kalibracja powinna być przeprowadzana w 20°C dla wszystkich podstawowych pomiarów objętości, co wzmacnia znaczenie tej wartości w praktyce laboratoryjnej.

Pytanie 13

Masa molowa kwasu azotowego(V) wynosi 63,0 g/mol. Jakie jest stężenie molowe 20% roztworu tego kwasu o gęstości 1,1 g/cm3?

A. 5,30 mol/dm3
B. 3,60 mol/dm3
C. 3,49 mol/dm3
D. 6,30 mol/dm3
Wybór niepoprawnych odpowiedzi może wynikać z nieprawidłowego zrozumienia procesu obliczania stężenia molowego i roli gęstości roztworu. Na przykład, odpowiedzi sugerujące zbyt wysokie stężenia molowe mogą być wynikiem braku uwzględnienia objętości roztworu. Kluczowym krokiem w obliczeniach jest zrozumienie, że stężenie molowe definiuje ilość moli substancji w jednostce objętości roztworu. W przypadku roztworu 20% kwasu azotowego(V) istotne jest, aby poprawnie obliczyć masę kwasu w roztworze oraz odpowiednią objętość tego roztworu, której wartość można uzyskać poprzez podzielenie masy roztworu przez jego gęstość. Pomijanie tego kroku prowadzi do błędnych wniosków. Na przykład, jeśli ktoś obliczy masę 20 g kwasu, ale błędnie przyjmie objętość roztworu jako 1 dm³, uzyskałby stężenie molowe znacznie zawyżone, co nie ma odzwierciedlenia w rzeczywistości. Dodatkowo, przy obliczeniach warto pamiętać o odpowiednich jednostkach; każdy etap obliczeń powinien być dokładnie sprawdzany pod kątem jednostek, aby uniknąć pomyłek. W kontekście praktycznym, znajomość poprawnych metod obliczeniowych jest niezbędna w laboratoriach chemicznych, gdzie precyzyjne stężenia mają bezpośredni wpływ na wyniki eksperymentów, a błędy mogą prowadzić do niepoprawnych wyników analitycznych.

Pytanie 14

Jaką masę siarczanu(VI) miedzi(II)-woda(1/5) należy poddać suszeniu, aby otrzymać 300 g soli bezwodnej?

CuSO4 · 5H2O → CuSO4 + 5H2O
(MCuSO4·5H2O = 249,5 g/mol, MCuSO4 = 159,5 g/mol, MH2O = 18,0 g/mol)

A. 584,1 g
B. 469,3 g
C. 210,0 g
D. 390,5 g
Odpowiedź 469,3 g jest prawidłowa, ponieważ obliczenia opierają się na stosunku mas molowych soli bezwodnej i uwodnionej. Siarczan(VI) miedzi(II) w postaci uwodnionej (CuSO4·5H2O) zawiera cząsteczki wody, które muszą zostać usunięte podczas procesu suszenia, aby uzyskać sól bezwodną (CuSO4). Masy molowe: CuSO4 wynoszą około 159,61 g/mol, a CuSO4·5H2O to 249,68 g/mol. Stosując proporcje, można ustalić, że masa siarczanu(VI) miedzi(II)-woda, potrzebna do uzyskania 300 g soli bezwodnej, wynosi około 469,3 g. Praktyczne zastosowanie tej wiedzy jest istotne w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów i soli jest kluczowe dla uzyskania wiarygodnych wyników badań. Dobre praktyki laboratoryjne sugerują, aby zawsze przeprowadzać obliczenia masy przed rozpoczęciem doświadczenia, co pozwala uniknąć błędów i strat materiałowych.

Pytanie 15

Do rozpuszczania próbek wykorzystuje się wodę królewską, która stanowi mieszaninę stężonych kwasów

A. HCl i HNO3 w proporcji objętościowej 3:1
B. H2SO4 i HCl w proporcji objętościowej 3:1
C. H2SO4 i HCl w proporcji objętościowej 1:3
D. HNO3 i HCl w proporcji objętościowej 3:1
Wybór odpowiedzi, która wskazuje na stosunek HNO3 i HCl w proporcji 3:1, jest mylący. Choć kwasy te rzeczywiście stanowią składniki wody królewskiej, to ich stosunek objętościowy jest kluczowy dla skuteczności tej mieszanki. Stosunek 3:1, z HCl jako głównym składnikiem, zapewnia, że reakcja chemiczna między tymi kwasami przebiega efektywnie, co jest istotne przy rozpuszczaniu metali szlachetnych. Z kolei propozycja użycia H2SO4 w połączeniu z HCl w różnych proporcjach, takich jak 1:3 czy 3:1, jest nieprawidłowa, ponieważ kwas siarkowy (H2SO4) nie jest składnikiem wody królewskiej. W rzeczywistości, H2SO4 ma inne właściwości chemiczne i nie działa synergicznie z HCl w kontekście rozpuszczania metali szlachetnych. Powszechnym błędem jest mylenie tych kwasów, co może prowadzić do niewłaściwego użycia i, co ważniejsze, do niebezpiecznych sytuacji w laboratoriach. Warto zauważyć, że skuteczność wody królewskiej, jako rozpuszczalnika dla metali, wynika z odpowiednich proporcji, które stymulują reakcję chemiczną. Dlatego ważne jest, aby mieć pełne zrozumienie właściwych stosunków oraz zastosowań tych substancji w praktyce laboratoryjnej.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Który z poniższych sposobów homogenizacji próbki jest najbardziej odpowiedni do przygotowania próbki gleby do analizy chemicznej?

A. Pobranie losowego fragmentu bez rozdrabniania
B. Suszenie gleby przed pobraniem próbki bez mieszania
C. Dokładne wymieszanie i rozdrobnienie całej próbki
D. Przesianie gleby przez sitko o dużych oczkach bez mieszania
Homogenizacja próbki gleby to kluczowy etap przygotowania materiału do analiz chemicznych, bo tylko wtedy wyniki są powtarzalne i wiarygodne. Dokładne wymieszanie i rozdrobnienie całej próbki pozwala uzyskać reprezentatywną mieszaninę – każda pobrana część ma w przybliżeniu taki sam skład jak całość. W praktyce w laboratoriach stosuje się najpierw suszenie gleby, potem rozdrabnianie w moździerzu lub młynku, a następnie dokładne mieszanie, czasem dodatkowo przesiewanie przez drobne sito (np. 2 mm), żeby usunąć kamienie i korzenie. Bez tego etapu nie ma sensu przeprowadzać analiz, bo próbka może być niejednorodna i nie oddawać faktycznego składu gruntu. To podstawa w każdej procedurze dotyczącej badań środowiskowych, rolniczych czy przemysłowych. Moim zdaniem, jeśli ktoś pominie ten krok, to nawet najlepszy sprzęt i odczynniki nic nie dadzą – można otrzymać wyniki całkowicie przypadkowe. Dobre praktyki laboratoryjne (GLP) wręcz wymagają standaryzacji homogenizacji, bo to wpływa na jakość i porównywalność danych. Warto pamiętać, że nawet w terenie, tuż po pobraniu próbki, zaleca się wstępne wymieszanie, a dopiero potem dalsze przygotowanie w laboratorium.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Na podstawie informacji zawartych w tabeli określ, który parametr spośród podanych należy oznaczyć w pierwszej kolejności.

Tabela. Sposoby utrwalania próbek wody i ścieków, miejsce analizy, dopuszczalny czas przechowywania próbek
Oznaczany parametrRodzaj naczynia do przechowywania próbkiSposób utrwalania próbkiMiejsce wykonania analizyDopuszczalny czas przechowywania próbki
Chlorkiszklane
lub polietylenowe
-laboratorium96 godzin
Chlor pozostałyszklane-w miejscu
pobrania próbki
-
ChZTszklanezakwaszenie do pH<2,
schłodzenie
do temperatury 2-5°C
laboratorium24 godziny
Kwasowośćszklane
lub polietylenowe
schłodzenie
do temperatury 2-5°C
laboratorium4 godziny
Manganszklane
lub polietylenowe
zakwaszenie do pH<2,
schłodzenie
do temperatury 2-5°C
laboratorium48 godziny

A. Kwasowość.
B. Chemiczne zapotrzebowanie na tlen (ChZT).
C. Mangan.
D. Chlor pozostały.
Odpowiedzi takie jak 'Chemiczne zapotrzebowanie na tlen (ChZT)', 'Kwasowość' czy 'Mangan' są nieprawidłowe w kontekście priorytetów w oznaczaniu parametrów jakości wody. Chemiczne zapotrzebowanie na tlen, choć istotne, jest wskaźnikiem obciążenia organicznego, który niekoniecznie odzwierciedla bieżący stan dezynfekcji wody. Oznaczanie ChZT powinno następować po ocenie wskaźników dezynfekcji, ponieważ jego analiza wymaga więcej czasu i jest mniej pilna w kontekście bezpieczeństwa zdrowotnego. Kwasowość z kolei jest parametrem, który może mieć wpływ na stabilność wody, jednak nie jest bezpośrednio związana z ryzykiem biologicznym, co sprawia, że nie powinna być pierwszym priorytetem w procedurach monitorowania. Mangan jest związkem, który wpływa na barwę i smak wody, ale jego obecność nie wskazuje na skuteczność dezynfekcji. Pomijając oznaczanie chloru pozostałego, można przeoczyć kluczowy element gwarantujący bezpieczeństwo, co jest sprzeczne z dobrymi praktykami zarządzania jakością wody, które kładą nacisk na bieżące monitorowanie i reagowanie na zagrożenia.

Pytanie 20

Zjawisko fizyczne, które polega na rozkładaniu struktury krystalicznej substancji stałej oraz przenikaniu jej cząsteczek lub jonów do cieczy, nosi nazwę

A. roztwarzaniem
B. sublimacją
C. stapianiem
D. rozpuszczaniem
Rozpuszczanie to proces, w którym substancja stała, zwana solutem, ulega rozkładowi w rozpuszczalniku, tworząc jednorodną mieszaninę, znaną jako roztwór. W czasie tego procesu, cząsteczki lub jony solutu odrywają się od sieci krystalicznej i są otaczane przez cząsteczki rozpuszczalnika. Przykładem może być rozpuszczanie soli kuchennej (NaCl) w wodzie, gdzie jony sodu i chlorkowe oddzielają się i są stabilizowane przez cząsteczki wody. Zjawisko to jest kluczowe w wielu dziedzinach, takich jak chemia analityczna, gdzie przygotowanie roztworów o określonym stężeniu jest niezbędne do przeprowadzania reakcji chemicznych i analiz. Ponadto, zrozumienie rozpuszczania ma zastosowanie w technologii, farmacji, a także biotechnologii, gdzie przygotowanie odpowiednich roztworów jest niezbędne do badań i produkcji. Znajomość procesów rozpuszczania oraz czynników wpływających na ten proces, takich jak temperatura, pH czy obecność innych substancji, jest fundamentalna dla wielu praktycznych zastosowań oraz badań naukowych.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Do wykonania preparatu według zamieszczonej procedury należy przygotować wagę, łyżeczkę, palnik gazowy, trójnóg, bagietkę, szczypce metalowe oraz

Procedura otrzymywania tlenku magnezu przez prażenie węglanu magnezu.
Odważoną ilość węglanu magnezu ubić dokładnie w tyglu (wcześniej zważonym) i przykryć pokrywką.
Początkowo ogrzewać niewielkim kopcącym płomieniem, a następnie gdy tygiel ogrzeje się, ogrzewać
silniej w temperaturze czerwonego żaru przez około 20 minut. Po zakończeniu prażenia tygiel odstawić
do ostudzenia chroniąc przed wilgocią. Zważyć tygiel z preparatem i obliczyć wydajność.

A. tygiel z pokrywką, trójkąt ceramiczny, eksykator.
B. tygiel z pokrywką, siatkę grzewczą, zlewkę z zimną wodą.
C. tygiel, trójkąt ceramiczny, krystalizator.
D. tygiel, siatkę grzewczą, eksykator.
Poprawna odpowiedź zawiera tygiel z pokrywką, trójkąt ceramiczny oraz eksykator, które są kluczowymi elementami w procesie prażenia węglanu magnezu do uzyskania tlenku magnezu. Tygiel z pokrywką jest niezbędny do przeprowadzenia reakcji chemicznych w kontrolowanych warunkach, chroniąc substancję przed zanieczyszczeniami oraz zapewniając właściwą izolację termiczną. Trójkąt ceramiczny pełni rolę podpory dla tygla, umożliwiając równomierne ogrzewanie nad płomieniem palnika gazowego. Eksykator jest istotny po zakończeniu prażenia, gdyż pozwala na schłodzenie produktu w warunkach niskiej wilgotności, co zapobiega jego absorpcji wody z otoczenia. Odpowiednie korzystanie z tych narzędzi jest zgodne z najlepszymi praktykami laboratoriami chemicznymi, co jest szczególnie ważne w kontekście uzyskiwania czystych i stabilnych produktów chemicznych. Zrozumienie procedur oraz standardów bezpieczeństwa w laboratoriach chemicznych jest kluczowe dla osiągnięcia sukcesu w eksperymentach.

Pytanie 25

Do wykrywania pierwiastków w niskich stężeniach w badaniach spektrograficznych należy używać reagentów

A. spektralnie czystych
B. czystych
C. czystych do badań
D. chemicznie czystych
Odpowiedź 'spektralnie czyste' jest prawidłowa, ponieważ oznaczanie pierwiastków śladowych w metodach spektrograficznych wymaga stosowania reagentów o wysokiej czystości, które nie zawierają zanieczyszczeń mogących wpływać na wyniki analizy. Spektralna czystość reagentów odnosi się do minimalizacji obecności innych pierwiastków, które mogłyby wprowadzać błędy w pomiarach, co jest kluczowe w przypadku analiz o niskich granicach detekcji. Standardowe praktyki w laboratoriach chemicznych wskazują na konieczność stosowania reagentów, które były poddawane odpowiednim procesom oczyszczania, takim jak destylacja czy chromatografia, aby uzyskać ich spektralne czystości. Przykładem mogą być reakcje analityczne w spektrometrii mas, gdzie nawet drobne zanieczyszczenia mogą prowadzić do fałszywych identyfikacji i ilościowych pomiarów. W ten sposób, zachowanie standardów spektralnej czystości reagentów w praktyce laboratoryjnej jest niezbędne dla uzyskania wiarygodnych wyników analizy.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Który z wskaźników nie jest używany w alkacymetrii?

A. Skrobia
B. Oranż metylowy
C. Błękit tymolowy
D. Fenoloftaleina
Oranż metylowy, fenoloftaleina oraz błękit tymolowy to wskaźniki, które odgrywają kluczową rolę w alkacymetrii, a ich zastosowanie jest oparte na ich zdolności do zmiany koloru w odpowiedzi na zmiany pH roztworu. Oranż metylowy, zmieniający kolor przy pH 3,1 - 4,4, jest szczególnie użyteczny w reakcjach, gdzie dominują kwasy. Fenoloftaleina, zmieniająca barwę z bezbarwnej na różową w zakresie pH 8,2 - 10,0, znajduje zastosowanie w titracji zasadowej, gdzie istotne jest ustalenie momentu, w którym zasadowość roztworu jest wystarczająca do neutralizacji kwasu. Błękit tymolowy, zmieniający kolor w pH 6,0 - 7,6, jest często wykorzystywany w analizach, gdzie pH roztworu zbliża się do neutralności. W związku z tym, mylenie skrobi z tymi wskaźnikami może wynikać z nieporozumienia dotyczącego ich funkcji. Skrobia, będąca naturalnym polisacharydem, nie działa jako wskaźnik pH, lecz jest używana jako reagent do wykrywania jodu, co pokazuje różnice w ich zastosowaniach. Zrozumienie różnic w zastosowaniach tych substancji jest kluczowe, aby uniknąć błędnych wniosków w praktyce laboratoryjnej.

Pytanie 28

Przebieg: Po zważeniu dwóch suchych zlewek, odważ kolejno: do jednej 3,63 g Co(NO3)2·6H2O, a do drugiej 3,75 g Na2CO3·10H2O. Następnie do obu zlewek wlej 25 cm3 gorącej wody i mieszając za pomocą bagietki doprowadź do całkowitego rozpuszczenia soli. Do roztworu Co(NO3)2 dodaj gorący roztwór Na2CO3 podczas mieszania. Otrzymany roztwór schłodź w łaźni wodnej z 3 kostkami lodu do temperatury pokojowej. Schłodzony roztwór przefiltruj przy użyciu zestawu do sączenia pod próżnią. Osad na lejku przepłucz wodą destylowaną, aż osiągnie obojętny odczyn przesączu. Przesączony osad osusz z sączkiem międzyposiadającym złożone arkusze bibuły w temperaturze pokojowej. Po wyschnięciu osad zważ i oblicz wydajność. Określ, jaki czynnik wpływa na skład jakościowy uzyskanego węglanu kobaltu(II)?

A. Kolejność ważenia reagentów
B. Wpływ przemycia osadu
C. Tempo sączenia
D. Precyzja obliczeń wydajności
Efekt przemycia osadu ma istotny wpływ na skład jakościowy otrzymanego węglanu kobaltu(II), ponieważ skuteczne przemywanie osadu pozwala usunąć zanieczyszczenia, które mogą wpływać na właściwości fizyczne i chemiczne finalnego produktu. W praktyce laboratorium chemicznego, przemywanie osadu wodą destylowaną jest kluczowym krokiem, który pozwala na eliminację rozpuszczalnych w wodzie związków, takich jak pozostałości reagentów czy inne sole, które mogą skompromitować czystość końcowego produktu. Przykładem mogą być zanieczyszczenia anionowe, które mogą wchodzić w reakcje z produktem końcowym, co wpływa na jego właściwości reaktancyjne czy rozpuszczalność. Dobre praktyki laboratoryjne sugerują, że przemywanie powinno być kontynuowane do momentu uzyskania obojętnego odczynu przesączu, co zapewnia, że resztki reagenta zostały skutecznie usunięte. Zastosowanie tego standardu w procesie syntezy chemicznej jest niezbędne dla uzyskania materiałów o wysokiej czystości, co jest kluczowe w wielu zastosowaniach przemysłowych i badawczych.

Pytanie 29

Które z poniższych działań należy wykonać przed rozpoczęciem pracy z nowym szkłem laboratoryjnym?

A. Włożyć szkło do zamrażarki na 30 minut
B. Ogrzać szkło w suszarce do 200°C bez mycia
C. Przetrzeć szkło suchą szmatką
D. Dokładnie umyć, wypłukać wodą destylowaną i wysuszyć
Przed przystąpieniem do pracy w laboratorium, odpowiednie przygotowanie szkła laboratoryjnego jest kluczowe dla uzyskania wiarygodnych wyników analitycznych. Zaleca się, aby każdy nowy element szkła został dokładnie umyty, wypłukany wodą destylowaną i następnie wysuszony. To nie jest tylko formalność – na powierzchni nowego szkła mogą pozostawać resztki środków produkcyjnych, pyłów, opiłków lub nawet tłuszczów używanych w procesie produkcji i transportu. Takie zanieczyszczenia potrafią znacząco wpłynąć na przebieg reakcji chemicznych, fałszować wyniki pomiarów czy powodować wytrącanie się niepożądanych osadów. W praktyce laboratoryjnej normą jest wieloetapowe mycie szkła: najpierw wodą z detergentem, następnie dokładne płukanie wodą z kranu, a na końcu kilkukrotne płukanie wodą destylowaną. Suszenie zapewnia, że do wnętrza próbki nie dostanie się woda o nieznanym składzie. Moim zdaniem, sumienne podejście do czystości szkła jest jedną z najważniejszych zasad pracy laboranta. Każdy zawodowiec wie, że nawet drobny brud czy mgiełka tłuszczu mogą przekreślić godziny żmudnej pracy. W wielu laboratoriach, szczególnie tych akredytowanych, są nawet specjalne protokoły przygotowania sprzętu – warto je poznać i stosować, bo to naprawdę się opłaca.

Pytanie 30

Jakie jest stężenie roztworu NaOH, który zawiera 4 g wodorotlenku sodu w 1 dm3 (masa molowa NaOH = 40 g/mol)?

A. 1 mol/dm3
B. 0,1 mol/dm3
C. 0,01 mol/dm3
D. 0,001 mol/dm3
Wybór stężenia 0,01 mol/dm³ to efekt błędnego spojrzenia na obliczenia dotyczące ilości moli i objętości roztworu. Żeby dobrze określić stężenie, najpierw trzeba znać masę molową substancji i przeprowadzić odpowiednie obliczenia. Przy 4 g NaOH, wydaje mi się, że pomyliłeś się, myśląc, że stężenie wynosi 0,01 mol/dm³. To wynika z nieprzypadkowego dzielenia masy przez masę molową. Liczba moli to masa substancji podzielona przez jej masę molową, czyli 4 g / 40 g/mol to 0,1 mol. Jeszcze trzeba uważać z objętościami, bo jeżeli pomylisz decymetry sześcienne z mililitrami, to mogą wyjść naprawdę duże błędy. Stężenie 0,001 mol/dm³ też wskazuje na nieprawidłowe rozumienie związku między masą a objętością. Może to być przez złą konwersję jednostek albo popełnione błędy w obliczeniach, co w pracy z roztworami chemicznymi jest kluczowe. Dobrze jest przed obliczeniami upewnić się, że wszystkie jednostki są zrozumiane i poprawnie zastosowane. Dlatego w laboratoriach precyzja w obliczeniach i umiejętność dobrej interpretacji wyników to podstawa, żeby wyjść z wiarygodnymi i powtarzalnymi rezultatami.

Pytanie 31

Aby przygotować miano kwasu solnego, konieczne jest odważenie węglanu sodu o masie wynoszącej około 400 mg. Jaką precyzję powinna mieć waga używana do odważenia węglanu sodu?

A. 1 g
B. 0,1 g
C. 0,01 g
D. 0,001 g
Wybór wag o dokładności większej niż 0,001 g, jak 0,01 g, 0,1 g, czy 1 g, jest niewłaściwy w kontekście ważenia substancji o masie rzędu 400 mg. Odpowiednia dokładność wag jest podstawowym czynnikiem wpływającym na precyzję analityczną. W przypadku wag 0,1 g oznacza to, że błąd pomiaru może wynosić aż 100 mg, co jest absolutnie nieakceptowalne. Podobnie, 0,01 g daje nam 10 mg błędu, co może znacząco wpłynąć na wyniki analizy, zwłaszcza w delikatnych reakcjach chemicznych, gdzie nawet małe odchylenia mogą prowadzić do błędnych wyników. Waga o dokładności 1 g nie jest w ogóle odpowiednia do ważenia próbki o masie 400 mg, ponieważ błąd pomiarowy byłby zbyt duży, aby zapewnić wymaganą precyzję. To prowadzi do typowego błędu myślowego, polegającego na przypuszczeniu, że niższa dokładność jest wystarczająca dla wszystkich zastosowań. W praktyce laboratorium chemicznego, aby uzyskać wiarygodne wyniki, niezbędne jest stosowanie wag analitycznych, które zapewniają możliwie najmniejszy błąd pomiarowy, co jest zgodne z rygorystycznymi standardami analitycznymi, takimi jak ISO 17025, które podkreślają znaczenie dokładności w laboratoriach badawczych.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Aby przyspieszyć reakcję, należy zwiększyć stężenie substratów

A. zwiększyć, a temperaturę podnieść
B. zwiększyć, a temperaturę zmniejszyć
C. zmniejszyć, a temperaturę obniżyć
D. zmniejszyć, a temperaturę podnieść
Zwiększenie szybkości reakcji chemicznych trochę się sprowadza do tego, jak ważne są substraty i temperatura. Kiedy podnosisz stężenie substratów, to więcej cząsteczek jest dostępnych do reakcji, więc mają większe szanse na zderzenie. Z drugiej strony, wyższa temperatura podkręca energię kinetyczną cząsteczek, co sprawia, że zderzają się częściej i mocniej, co pomaga im pokonać energię aktywacji. Na przykład w biochemii, jak mamy reakcje enzymatyczne, zwiększenie stężenia substratu może pomóc osiągnąć maksymalną prędkość reakcji, co jest zgodne z zasadą Vmax. W praktyce w przemyśle chemicznym, dobrze jest dostosować stężenie i temperaturę, żeby zoptymalizować wydajność i rentowność. Ciekawe jest to, że czasami, jak w reakcjach równowagi, podwyższenie stężenia reagentów może przesunąć równowagę w stronę produktów, co też jest korzystne dla wydajności reakcji.

Pytanie 35

Aby przygotować 200 g roztworu chlorku potasu o stężeniu 5% (m/m), ile substancji należy zastosować?

A. 20 g KCl i 180 g wody
B. 10 g KCl i 190 g wody
C. 5 g KCl i 200 g wody
D. 10 g KCl i 200 g wody
Aby przygotować 200 g roztworu chlorku potasu (KCl) o stężeniu 5% (m/m), należy obliczyć masę substancji rozpuszczonej w odniesieniu do całkowitej masy roztworu. W przypadku stężenia 5% oznacza to, że 5% masy całkowitej roztworu stanowi KCl. Zatem, masa KCl w 200 g roztworu wynosi: 200 g * 0,05 = 10 g. Pozostała masa roztworu to masa wody, którą można obliczyć odejmując masę KCl od masy całkowitej roztworu: 200 g - 10 g = 190 g. Dlatego prawidłowym składnikiem do sporządzenia tego roztworu jest 10 g KCl i 190 g wody. Tego rodzaju obliczenia są niezwykle istotne w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskiwania powtarzalnych i wiarygodnych wyników eksperymentów. Stosowanie się do zasad i standardów, takich jak Good Laboratory Practice (GLP), zapewnia wysoką jakość wyników badań. Dodatkowo, umiejętność obliczania stężenia roztworów jest podstawą w pracach laboratoryjnych, biochemicznych oraz w wielu zastosowaniach przemysłowych.

Pytanie 36

Zastosowanie łaźni wodnej nie jest zalecane w trakcie prac, w których stosuje się

A. etanol
B. cynk
C. sód
D. glicerynę
Odpowiedzi związane z gliceryną, cynkiem i etanolem są błędne, ponieważ nie stwarzają one takich zagrożeń jak sód w kontekście używania łaźni wodnej. Gliceryna jest substancją niepalną i nie reaguje z wodą w sposób zagrażający bezpieczeństwu, a wręcz przeciwnie, często jest stosowana w różnych zastosowaniach laboratoryjnych, w tym w przygotowywaniu roztworów. Cynk, choć może reagować z kwasami, nie wykazuje takiej reaktywności z wodą jak sód, a w laboratoriach jest często używany w wielu reakcjach chemicznych, które nie wymagają omijania łaźni wodnej. Etanol natomiast, mimo że jest łatwopalny, w normalnych warunkach nie reaguje z wodą w sposób, który byłby niebezpieczny. Błąd w myśleniu polega na generalizacji zagrożeń związanych z różnymi substancjami chemicznymi. Ważne jest, aby zrozumieć, że każdy z tych materiałów ma unikalne właściwości chemiczne, a ich potencjalne zagrożenia muszą być oceniane indywidualnie według przyjętych standardów bezpieczeństwa. Zrozumienie tych różnic pozwala na właściwe podejście do pracy z różnymi substancjami chemicznymi i zapewnia bezpieczne warunki pracy.

Pytanie 37

Aby oszacować czystość MgCO3, poddano prażeniu próbkę o wadze 5 g tej soli aż do osiągnięcia stałej masy. W trakcie prażenia zachodzi reakcja:
MgCO3 → MgO + CO2 Całkowity ubytek masy wyniósł 2,38 g.
(Masy molowe reagentów to: MgCO3 – 84 g/mol, MgO – 40 g/mol, CO2 – 44 g/mol) Jaką czystość miała próbka węglanu magnezu?

A. 100% czystej substancji
B. 90,7% czystej substancji
C. około 50% czystej substancji
D. bliżej nieokreśloną masę domieszek
Analizując inne odpowiedzi, istotne jest zrozumienie, dlaczego niektóre z nich są błędne. Wskazanie, że węglan magnezu zawiera około 50% czystej substancji, jest nieuzasadnione, gdyż nie uwzględnia rzeczywistego ubytku masy podczas prażenia. Przykładowo, pominięcie obliczeń ilości powstałego CO2 prowadzi do znacznego zaniżenia jakości próbki. Z kolei stwierdzenie, że węglan magnezu zawiera 100% czystej substancji, jest nierealistyczne, ponieważ każda próbka chemiczna może zawierać zanieczyszczenia, a proces prażenia ujawnia ich obecność. Kolejna odpowiedź, mówiąca o bliżej nieokreślonej masie domieszek, sugeruje brak analizy ilościowej, co jest fundamentalnym błędem w chemii analitycznej. W praktyce laboratorium chemicznego, każda analiza powinna opierać się na solidnych obliczeniach i znajomości reakcji chemicznych. Często, błędy myślowe prowadzące do takich odpowiedzi wynikają z ignorowania relacji mas molowych oraz z podstawowych zasad stoichiometrii. Zrozumienie tych reguł jest kluczowe dla poprawnego przeprowadzania analiz chemicznych, co wpływa na jakość wyników oraz ich interpretację. Znajomość standardów analitycznych i dobrych praktyk w chemii pozwala uniknąć takich nieścisłości.

Pytanie 38

Jak przebiega procedura unieszkodliwiania rozlanego kwasu siarkowego(VI)?

A. spłukaniu miejsc z kwasem gorącą wodą
B. dokładnym spłukaniu miejsc z kwasem roztworem wodorotlenku sodu
C. dokładnym spłukaniu miejsc z kwasem roztworem węglanu sodu
D. zbieraniu kwasu tlenkiem wapnia w celu późniejszej utylizacji
Spłukiwanie plam kwasu siarkowego roztworem węglanu sodu może wydawać się atrakcyjną opcją, ponieważ węglan sodu neutralizuje kwasy, jednak w praktyce ta metoda jest mało skuteczna w przypadku silnych kwasów, takich jak kwas siarkowy(VI). W wyniku reakcji może powstać dwutlenek węgla, co generuje dodatkowe ryzyko, zwłaszcza w pomieszczeniach zamkniętych, gdzie gromadzenie się gazu może prowadzić do niebezpiecznych warunków. Z kolei spłukiwanie roztworem wodorotlenku sodu, mimo że również jest techniką neutralizacji, może prowadzić do powstania niebezpiecznych odpadów alkalicznych. Takie podejście może spowodować dalsze zanieczyszczenie środowiska i zwiększenie ryzyka dla zdrowia ludzi i zwierząt. Ponadto, spłukiwanie gorącą wodą nie ma sensu, ponieważ ciepło może przyspieszyć proces parowania, co prowadzi do uwolnienia szkodliwych oparów kwasu siarkowego do atmosfery. Ważne jest, aby zrozumieć, że każda technika unieszkodliwiania substancji niebezpiecznych musi być oparta na solidnych podstawach chemicznych oraz najlepszych praktykach, takich jak stosowanie odpowiednich reagentów do neutralizacji oraz zapewnienie bezpieczeństwa operacji.

Pytanie 39

Na diagramie przedstawiającym proces pobierania prób środowiskowych do analizy literą Y oznaczono próbkę

A. wtórną
B. do analizy
C. ogólną
D. laboratoryjną
Odpowiedzi takie jak ogólna, wtórna czy do analizy mogą wydawać się poprawne w kontekście pobierania próbek, ale w rzeczywistości nie oddają istoty klasyfikacji próbek w kontekście laboratoryjnym. Próbka ogólna jest zbiorem różnych elementów, które mogą nie odzwierciedlać dokładnych warunków danego miejsca, co może prowadzić do błędnych wniosków. Próbki wtórne z kolei są pobierane z już przetworzonych lub istniejących próbek, co uniemożliwia ich bezpośrednią analizę w pierwotnych warunkach. Odpowiedź sugerująca próbkę do analizy odnosi się do ogólnego pojęcia, które nie precyzuje, w jaki sposób próbka ma być wykorzystana ani jakie są jej wymagania. Błędne przekonanie może prowadzić do mylnego założenia, że każda próbka nadaje się do analizy, podczas gdy rzeczywistość wymaga rygorystycznych standardów pobierania, transportu i przechowywania, aby zapewnić integralność wyników. Prawidłowe określenie rodzaju próbki jest kluczowe dla sukcesu analitycznego, ponieważ różne typy próbek wymagają różnych metod przygotowania i analizy. W związku z tym, zrozumienie różnicy między próbą laboratoryjną a innymi typami próbek jest niezbędne dla praktyków zajmujących się analityką środowiskową.

Pytanie 40

Na podstawie danych w tabeli określ, dla oznaczania którego parametru zalecaną metodą jest chromatografia jonowa.

ParametrMetoda podstawowa
pHmetoda potencjometryczna, kalibracja przy zastosowaniu minimum dwóch wzorców o pH zależnym od wartości oczekiwanych w próbkach wody
azotany(V)chromatografia jonowa
fosforany(V)spektrofotometria
Na, K, Ca, MgAAS (spektrometria absorpcji atomowej)
zasadowośćmiareczkowanie wobec fenoloftaleiny oraz oranżu metylowego
tlen rozpuszczony, BZT₅metoda potencjometryczna

A. BZT5
B. pH
C. PO43-
D. NO3-
Wybór odpowiedzi związanych z pH, PO43- i BZT5 jako metod pomiarowych nie tylko nie odpowiada na pytanie dotyczące zalecanej metody dla NO3-, ale również wskazuje na zrozumienie różnych technik analitycznych oraz ich zastosowań. Oznaczanie pH jest zazwyczaj realizowane za pomocą elektrod szklanych lub pojemników pH-metrów, co jest odpowiednią metodą dla tego parametru, jednakże nie ma związku z chromatografią jonową. Podobnie, oznaczanie fosforanów, takich jak PO43-, wymaga zastosowania metod spektrofotometrycznych, podczas gdy BZT5, jako wskaźnik jakości wody, najczęściej wymaga oceny biologicznej. Pojedyncze metody analityczne, choć mogą być użyteczne w różnych kontekstach, nie są uniwersalne dla wszystkich rodzajów analizy chemicznej. Typowe błędy myślowe prowadzące do wyboru tych odpowiedzi polegają na niepełnym zrozumieniu specyfikacji analitycznych oraz na myleniu różnych klas substancji chemicznych z metodami ich oznaczania. Właściwe zrozumienie, która technika jest najbardziej odpowiednia dla danego rodzaju analitu, jest kluczowe dla uzyskania wiarygodnych wyników analitycznych.