Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 10 kwietnia 2025 21:29
  • Data zakończenia: 10 kwietnia 2025 21:39

Egzamin niezdany

Wynik: 12/40 punktów (30,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jaki typ pamięci powinien być umieszczony na płycie głównej komputera w miejscu, które wskazuje strzałka?

Ilustracja do pytania
A. SO-DIMM DDR2
B. SD-RAM DDR3
C. SIMM
D. FLASH
SD-RAM DDR3 jest typem pamięci używanym w nowoczesnych komputerach osobistych i serwerach. Charakterystyczną cechą pamięci DDR3 jest szybsza prędkość przesyłania danych w porównaniu do jej poprzednich wersji, jak DDR2. DDR3 oferuje większe przepustowości i mniejsze zużycie energii, co czyni ją bardziej efektywną energetycznie. Pamięci DDR3 zazwyczaj pracują przy napięciu 1,5V, co jest niższe od DDR2, które pracuje przy 1,8V, co przekłada się na mniejsze zużycie energii i mniejsze wydzielanie ciepła. Dzięki temu, DDR3 jest idealnym wyborem do systemów, które wymagają wysokiej wydajności oraz stabilności. W praktyce, DDR3 jest stosowane w komputerach przeznaczonych do zadań takich jak przetwarzanie grafiki, gry komputerowe, czy też przy obróbce multimediów. Standardy takie jak JEDEC określają parametry techniczne i zgodność modułów DDR3, zapewniając, że każdy moduł spełnia określone wymagania jakości i wydajności. Wybór DDR3 dla miejsca wskazanego strzałką na płycie głównej jest właściwy, ponieważ sloty te są zaprojektowane specjalnie dla tego typu pamięci, zapewniając ich prawidłowe działanie i optymalną wydajność.

Pytanie 2

Narzędzia do dostosowywania oraz Unity Tweak Tool to aplikacje w systemie Linux przeznaczone do

A. przydzielania uprawnień do zasobów systemowych
B. ustawiania zapory systemowej
C. personalizacji systemu
D. administracji kontami użytkowników
Wybór innych odpowiedzi, jak zarządzanie kontami użytkownika czy ustawienia zapory systemowej, pokazuje, że chyba nie do końca się zrozumiało, o co chodzi z narzędziami dostrajania i Unity Tweak Tool. Jak to działa? Zarządzanie kontami to raczej sprawy administracyjne, dotyczące tworzenia i usuwania kont, a nie personalizacji. Narzędzia te na pewno nie mają nic wspólnego z konfiguracją zapory systemowej, która dba o bezpieczeństwo. A co do nadawania uprawnień do zasobów, to też nie ma związku z tym, co robią narzędzia dostrajania. Często myli się ogólne zarządzanie systemem z jego personalizacją. Warto wiedzieć, że personalizacja to głównie to, jak system wygląda i działa dla nas, a nie jak zarządzać jego ustawieniami czy zabezpieczeniami. Dlatego lepiej skupić się na tym, co te narzędzia w rzeczywistości robią, a nie na aspektach administracyjnych, które są zupełnie czym innym.

Pytanie 3

Które z poniższych poleceń systemu Windows generuje wynik przedstawiony na rysunku?

Ilustracja do pytania
A. netstat
B. msconfig
C. tracert
D. ipconfig
Polecenie tracert w systemie Windows służy do śledzenia trasy pakietów sieciowych z komputera do docelowego serwera. Daje wgląd w każdy przeskok w sieci co jest pomocne przy identyfikacji miejsc gdzie może dochodzić do opóźnień. Jednak nie dostarcza informacji o aktualnych połączeniach sieciowych jak netstat. Polecenie ipconfig jest przeznaczone do wyświetlania konfiguracji sieciowej interfejsów na komputerze. Pozwala użytkownikowi zobaczyć adres IP maskę podsieci i bramę domyślną ale nie pokazuje aktywnych połączeń co czyni je nieodpowiednim wyborem w tym kontekście. Z kolei msconfig to narzędzie konfiguracyjne które umożliwia zarządzanie uruchamianiem systemu i usługami. Jest użyteczne dla optymalizacji procesu startu systemu ale nie ma żadnego związku z monitorowaniem połączeń sieciowych. Częstym błędem jest mylenie funkcji poszczególnych poleceń co prowadzi do niepoprawnego postrzegania ich zastosowań. Zrozumienie właściwości każdego polecenia jest kluczem do prawidłowego ich użycia w kontekście zarządzania systemem i siecią. Dlatego ważnym jest aby znać specyfikę i zastosowanie każdego z narzędzi aby efektywnie z nich korzystać i rozwiązywać problemy związane z działaniem systemu czy sieci. Właściwe użycie polecenia w zależności od potrzeb pozwala na skuteczne zarządzanie komputerem i siecią co jest fundamentem dobrych praktyk w administracji systemowej i sieciowej.

Pytanie 4

Aby podłączyć drukarkę igłową o wskazanych parametrach do komputera, należy umieścić kabel dołączony do drukarki w porcie

A. Centronics
B. Ethernet
C. FireWire
D. USB
Wybór interfejsu USB, Ethernet czy FireWire w kontekście drukarki igłowej marki OKI jest błędny ze względu na specyfikę i standardy komunikacyjne tych technologii. Interfejs USB, pomimo swojej popularności w nowoczesnych urządzeniach, nie był standardem stosowanym w starszych drukarkach igłowych, które zazwyczaj korzystają z równoległych połączeń, jak Centronics. Zastosowanie USB wymagałoby użycia adapterów, co może wprowadzać dodatkowe opóźnienia i problemy z kompatybilnością. Interfejs Ethernet jest przeznaczony głównie dla drukarek sieciowych, co oznacza, że jego zastosowanie w kontekście drukarki igłowej, która może nie obsługiwać tego standardu, jest niewłaściwe. FireWire, choć szybszy od USB w określonych zastosowaniach, nie jest typowym interfejsem do komunikacji z drukarkami igłowymi i w praktyce nie znajduje zastosowania w takich urządzeniach. Typowym błędem jest mylenie różnych technologii komunikacyjnych oraz przywiązywanie ich do nieodpowiednich typów urządzeń, co często prowadzi do problemów z konfiguracją i użytkowaniem sprzętu. W praktyce, skuteczne podłączenie drukarki igłowej powinno polegać na stosowaniu standardów, które były pierwotnie zaprojektowane dla tych urządzeń, co zapewnia stabilność i niezawodność połączenia.

Pytanie 5

Aby zrealizować usługę zdalnego uruchamiania systemów operacyjnych na komputerach stacjonarnych, należy w Windows Server zainstalować rolę

A. Hyper-V
B. Application Server
C. WDS (Usługi wdrażania systemu Windows)
D. IIS (Internet Information Services)
WDS (Usługi wdrażania systemu Windows) to rola serwera w systemie Windows Server, która umożliwia zdalne wdrażanie systemów operacyjnych na stacjach roboczych w sieci. WDS korzysta z technologii PXE (Preboot Execution Environment), co pozwala na uruchomienie komputerów zdalnie i przeprowadzenie instalacji systemu operacyjnego bez konieczności fizycznej obecności administratora przy każdym z urządzeń. Przykładowo, w dużych środowiskach korporacyjnych, gdzie jest wiele stacji roboczych, WDS znacznie przyspiesza proces instalacji i konfiguracji systemów, eliminując potrzebę ręcznego wprowadzania nośników instalacyjnych. WDS obsługuje również funkcje takie jak klonowanie obrazów systemu oraz zarządzanie dostępnymi obrazami instalacyjnymi, co jest zgodne z najlepszymi praktykami dotyczącymi zarządzania i automatyzacji procesów IT. Warto również zauważyć, że WDS można integrować z innymi technologiami, takimi jak System Center Configuration Manager, co umożliwia jeszcze bardziej zaawansowane zarządzanie aplikacjami i systemami operacyjnymi w organizacji.

Pytanie 6

Schemat ilustruje fizyczną strukturę

Ilustracja do pytania
A. gwiazdy
B. szyny
C. magistrali
D. drzewa
Topologia gwiazdy jest jedną z najczęściej stosowanych topologii sieci komputerowych ze względu na swoją efektywność i łatwość zarządzania. W tej topologii wszystkie urządzenia sieciowe są podłączone do centralnego punktu, którym zazwyczaj jest switch lub hub. Dzięki temu w przypadku awarii jednego z kabli lub urządzeń tylko ten jeden komponent zostaje odcięty od sieci, co znacząco zwiększa niezawodność całego systemu. Topologia gwiazdy jest łatwa w rozbudowie ponieważ wystarczy dodać nowy kabel do huba lub switcha aby podłączyć dodatkowe urządzenie. Jest to popularne rozwiązanie w lokalnych sieciach komputerowych (LAN) zwłaszcza w biurach i instytucjach ze względu na prostotę instalacji i administrowania. W praktyce stosowanie topologii gwiazdy pozwala na centralne zarządzanie ruchem sieciowym co może być realizowane za pomocą odpowiedniego oprogramowania na switchu. Dzięki temu administratorzy mogą monitorować i optymalizować przepustowość sieci oraz zarządzać bezpieczeństwem danymi przesyłanymi między urządzeniami. Topologia gwiazdy odpowiada także obecnym standardom sieciowym jak Ethernet co dodatkowo ułatwia jej wdrażanie w nowoczesnych infrastrukturach sieciowych.

Pytanie 7

Wartość liczby 1100112 zapisanej w systemie dziesiętnym wynosi

A. 51
B. 52
C. 53
D. 50
Odpowiedzi 50, 52 i 53 wydają się być wynikiem błędnego zrozumienia zasad konwersji między systemami liczbowymi. Osoby, które wskazały te wartości, często mogą myśleć, że liczby w systemie binarnym są prostsze do odczytania lub przeliczenia, co prowadzi do przemieszania wartości potęg liczby 2. Na przykład, wybór 50 jako odpowiedzi może sugerować, że osoba zakłada, iż suma cyfr binarnych ma prostą reprezentację w systemie dziesiętnym, co jest błędne. Należy pamiętać, że każda cyfra w liczbie binarnej ma określoną wagę, a ta waga jest mnożona przez odpowiednią potęgę liczby 2, a nie dodawana bezpośrednio. Użytkownicy mogą też źle zrozumieć pojęcie wartości pozycyjnej w systemie liczbowym, co prowadzi do pomylenia miejsc, na których znajdują się 1 i 0 w liczbie binarnej. W praktyce, błędy te mogą wpływać na kodowanie informacji w systemach komputerowych, gdzie precyzyjne konwersje są kluczowe dla poprawnego funkcjonowania oprogramowania. Zrozumienie tej problematyki jest szczególnie istotne w kontekście inżynierii oprogramowania i rozwoju aplikacji, gdzie konwersje między różnymi formatami danych są na porządku dziennym. W związku z tym, aby zminimalizować tego typu błędy myślowe, warto zwrócić uwagę na dokładne zasady konwersji oraz praktykować ćwiczenia z różnymi systemami liczbowymi.

Pytanie 8

Do czego służy nóż uderzeniowy?

A. Do instalacji skrętki w gniazdach sieciowych
B. Do przecinania przewodów miedzianych
C. Do montażu złącza F na kablu koncentrycznym
D. Do przecinania przewodów światłowodowych
Zastosowanie noża uderzeniowego w cięciu przewodów miedzianych, światłowodowych, czy montażu złącza F na kablu koncentrycznym jest nieodpowiednie i niezgodne z przeznaczeniem tego narzędzia. Nóż uderzeniowy, jak sama nazwa wskazuje, został zaprojektowany w celu precyzyjnego montażu kabli skrętkowych, a nie do obróbki innych typów przewodów. Cięcie przewodów miedzianych wymaga innego typu narzędzi, takich jak nożyce do kabli, które są dostosowane do grubości oraz materiału przewodów, co zapewnia czyste cięcie i minimalizuje ryzyko uszkodzenia żył. Z kolei przewody światłowodowe wymagają stosowania precyzyjnych narzędzi optycznych, które pozwalają na odpowiednie przygotowanie końcówek włókien, co jest kluczowe dla jakości transmisji światła. Montaż złącza F na kablu koncentrycznym również nie jest związany z użyciem noża uderzeniowego; do tego celu stosuje się inne narzędzia, takie jak zaciskarki czy narzędzia do ściągania izolacji. Wybór niewłaściwego narzędzia może prowadzić do problemów z jakością połączeń, co w dłuższym czasie przekłada się na awarie i straty sygnału, podkreślając znaczenie używania odpowiednich narzędzi do konkretnego zadania.

Pytanie 9

Włączenie systemu Windows w trybie diagnostycznym umożliwia

A. generowanie pliku dziennika LogWin.txt podczas uruchamiania systemu
B. usuwanie błędów w funkcjonowaniu systemu
C. uruchomienie systemu z ostatnią poprawną konfiguracją
D. zapobieganie automatycznemu ponownemu uruchomieniu systemu w razie wystąpienia błędu
Uruchomienie systemu Windows w trybie debugowania nie służy do uruchamiania systemu z ostatnią poprawną konfiguracją, co jest mylnym przekonaniem związanym z działaniem opcji 'Ostatnia znana dobra konfiguracja'. Ta funkcjonalność jest odrębną metodą przywracania systemu do stanu, w którym działał poprawnie, a nie narzędziem do analizy błędów. Również nie jest prawdą, że tryb debugowania automatycznie tworzy plik dziennika LogWin.txt podczas startu systemu. Takie pliki mogą być generowane w kontekście specyficznych aplikacji lub narzędzi diagnostycznych, ale nie stanowią one standardowego działania trybu debugowania. Ponadto, zapobieganie ponownemu automatycznemu uruchamianiu systemu w przypadku błędu to aspekt związany z mechanizmem odzyskiwania po awarii, a nie bezpośrednio z debugowaniem. Stosowanie trybu debugowania wymaga zrozumienia różnicy pomiędzy diagnostyką a standardowymi procedurami uruchamiania systemu. Często mylone są cele tych trybów, co prowadzi do nieprawidłowych wniosków oraz niewłaściwego stosowania narzędzi diagnostycznych w procesie rozwiązywania problemów. Zrozumienie tych różnic jest kluczowe dla efektywnego zarządzania systemami operacyjnymi.

Pytanie 10

Do jakiego portu należy podłączyć kabel sieciowy zewnętrzny, aby uzyskać pośredni dostęp do sieci Internet?

Ilustracja do pytania
A. WAN
B. LAN
C. USB
D. PWR
Port WAN (Wide Area Network) jest specjalnie zaprojektowany do podłączenia urządzenia sieciowego, takiego jak router, do internetu. To połączenie z siecią zewnętrzną, dostarczone przez dostawcę usług internetowych (ISP). Port WAN działa jako brama między siecią lokalną (LAN) a internetem. Umożliwia to przesyłanie danych między komputerami w sieci domowej a serwerami zewnętrznymi. Konsekwentne używanie portu WAN zgodnie z jego przeznaczeniem zwiększa bezpieczeństwo i stabilność połączenia sieciowego. Praktycznym przykładem jest podłączenie modemu kablowego lub światłowodowego do tego portu, co pozwala na udostępnianie internetu wszystkim urządzeniom w sieci. Zgodnie z dobrymi praktykami branżowymi, port WAN powinien być używany w konfiguracji zewnętrznej, aby zapewnić spójność i niezawodność połączenia z internetem. Dzięki temu można lepiej zarządzać ruchem sieciowym i zabezpieczać sieć przed nieautoryzowanym dostępem. Port WAN jest istotnym elementem architektury sieciowej, umożliwiającym efektywną transmisję danych między różnymi segmentami sieci.

Pytanie 11

Thunderbolt stanowi interfejs

A. równoległy, asynchroniczny, przewodowy
B. szeregowy, dwukanałowy, dwukierunkowy, przewodowy
C. równoległy, dwukanałowy, dwukierunkowy, bezprzewodowy
D. szeregowy, asynchroniczny, bezprzewodowy
Odpowiedzi sugerujące, że Thunderbolt mógłby być interfejsem równoległym, które klasyfikują go jako asynchroniczny lub bezprzewodowy, są nieprawidłowe. Równoległe interfejsy przesyłają wiele bitów jednocześnie, co w praktyce jest mniej efektywne w kontekście dzisiejszych wysokich prędkości transferu, ponieważ występują ograniczenia związane z crosstalkiem i synchronizacją sygnału. Podczas gdy niektóre starsze technologie, jak USB 2.0, mogły wykorzystywać architekturę równoległą, nowoczesne standardy dążą do uproszczenia i zwiększenia wydajności, co prowadzi do preferencji dla interfejsów szeregowych. Asynchroniczność natomiast sugeruje brak synchronizacji między urządzeniami, co w przypadku Thunderbolt jest sprzeczne z jego architekturą, gdzie każda transmisja jest ściśle synchronizowana, co zapewnia wysoki poziom integralności danych. Ponadto, bezprzewodowe przesyłanie danych, takie jak w przypadku Wi-Fi, nie oferuje tej samej przepustowości ani stabilności, co przewodowe połączenia, zwłaszcza w kontekście profesjonalnych zastosowań, gdzie opóźnienia i zakłócenia mogą mieć krytyczne znaczenie. W związku z tym, w przypadku zastosowań wymagających dużej przepustowości, takich jak edycja multimediów, preferowane są interfejsy przewodowe, takie jak Thunderbolt, które wyposażone są w technologie zapewniające zarówno wysoką szybkość, jak i niezawodność, co czyni je standardem branżowym w wielu zastosowaniach.

Pytanie 12

Brak zabezpieczeń przed utratą danych w wyniku fizycznej awarii jednego z dysków to właściwość

A. RAID 0
B. RAID 1
C. RAID 3
D. RAID 2
RAID 3, RAID 2 oraz RAID 1 różnią się od RAID 0 pod względem mechanizmu ochrony danych i sposobu przechowywania informacji. RAID 3 stosuje technikę stripingu z użyciem jednego dysku parzystości, co zapewnia pewien poziom ochrony przed utratą danych. W przypadku jego awarii, dane mogą być odtworzone z dysku parzystości, co czyni tę konfigurację znacznie bardziej odporną na utratę danych niż RAID 0. RAID 2, chociaż rzadko stosowany, wykorzystuje technologię bitowego stripingu, co oznacza, że dane są rozkładane na wiele dysków, ale z wieloma dyskami parzystości. W rezultacie, mimo że oferuje lepszą ochronę, jego złożoność i koszt sprawiają, że jest mało praktyczny w nowoczesnych zastosowaniach. RAID 1, z kolei, polega na lustrzanym kopiowaniu danych na dwóch lub więcej dyskach, co zapewnia pełną redundancję; w przypadku awarii jednego dysku, dane są wciąż dostępne na drugim. To podejście jest często zalecane w zastosowaniach, gdzie bezpieczeństwo danych jest kluczowe, na przykład w systemach bankowych czy serwerach plików. Błędem myślowym jest mylenie wydajności RAID 0 z bezpieczeństwem danych; użytkownicy często decydują się na RAID 0 w celu zwiększenia szybkości, nie zdając sobie sprawy z ryzyka utraty wszystkich danych przy awarii jednego z dysków.

Pytanie 13

Dezaktywacja automatycznych aktualizacji systemu Windows skutkuje

A. automatycznym sprawdzeniem dostępności aktualizacji i informowaniem o tym użytkownika
B. zablokowaniem samodzielnego ściągania uaktualnień przez system
C. automatycznym ściąganiem aktualizacji bez ich instalacji
D. zablokowaniem wszelkich metod pobierania aktualizacji systemu
Wyłączenie automatycznej aktualizacji systemu Windows rzeczywiście skutkuje zablokowaniem samodzielnego pobierania uaktualnień przez system. W praktyce oznacza to, że użytkownik musi ręcznie sprawdzać dostępność aktualizacji oraz decydować, kiedy i jakie aktualizacje zainstalować. Jest to szczególnie istotne w kontekście zarządzania systemem operacyjnym, gdzie niektóre aktualizacje mogą wprowadzać zmiany w funkcjonalności systemu lub wpływać na jego stabilność. W sytuacjach, gdy organizacje preferują mieć pełną kontrolę nad aktualizacjami, wyłączenie automatycznych aktualizacji może być uzasadnione. Przykładem może być środowisko produkcyjne, gdzie nagłe zmiany mogą prowadzić do nieprzewidzianych problemów. Zgodnie z najlepszymi praktykami w zakresie zarządzania IT, zaleca się regularne wykonywanie ręcznych aktualizacji, aby zapewnić, że system jest zabezpieczony przed najnowszymi zagrożeniami. Ponadto, administratorzy powinni monitorować dostępność aktualizacji, co może być realizowane za pomocą narzędzi zarządzania systemami, takich jak SCCM czy WSUS, co pozwala na efektywniejsze zarządzanie cyklem życia oprogramowania.

Pytanie 14

W zestawieniu przedstawiono istotne parametry techniczne dwóch typów interfejsów. Z powyższego wynika, że SATA w porównaniu do ATA charakteryzuje się

Table Comparison of parallel ATA and SATA
Parallel ATASATA 1.5 Gb/s
Bandwidth133 MB/s150 MB/s
Volts5V250 mV
Number of pins407
Cable length18 in. (45.7 cm)39 in. (1 m)

A. mniejszą przepustowością oraz większą liczbą pinów w złączu
B. większą przepustowością oraz mniejszą liczbą pinów w złączu
C. mniejszą przepustowością oraz mniejszą liczbą pinów w złączu
D. większą przepustowością oraz większą liczbą pinów w złączu
W kontekście porównania interfejsów ATA i SATA należy zrozumieć kilka kluczowych różnic technologicznych. ATA, znany także jako Parallel ATA, od lat 80. XX wieku był standardem do podłączania dysków twardych. Wprowadzenie SATA (Serial ATA) przyniosło znaczące usprawnienia w wydajności i funkcjonalności. Wybór błędnych opcji wynika z niewłaściwego zrozumienia tych różnic. Przede wszystkim, SATA oferuje większą przepustowość w porównaniu do ATA. Technologia szeregowa, używana w SATA, pozwala na bardziej efektywny przepływ danych w porównaniu do technologii równoległej stosowanej w ATA. Odpowiedzi sugerujące mniejszą przepustowość SATA są błędne, ponieważ SATA 1.5 Gb/s to około 150 MB/s, więcej niż 133 MB/s dla ATA. Ponadto, SATA wprowadza uproszczone złącza z mniejszą liczbą pinów - 7 w porównaniu do 40 w ATA, co błędnie interpretowane jako większa liczba pinów w SATA, jest również nieprawidłowe. Mniejsza liczba wyprowadzeń w SATA przekłada się na większą niezawodność i łatwość w obsłudze, co jest kluczowe w dynamicznie zmieniającym się środowisku IT. Zrozumienie tych różnic pomaga w lepszym zrozumieniu wyborów technologicznych i ich wpływu na efektywność pracy urządzeń elektronicznych w codziennych zastosowaniach. Ostatecznie, wybór SATA jako standardu wynika z jego przewagi w kontekście wydajności, niezawodności i oszczędności energii, co czyni go preferowanym rozwiązaniem w nowoczesnych komputerach.

Pytanie 15

Dane z twardego dysku HDD, którego sterownik silnika SM jest uszkodzony, można odzyskać

A. dzięki wymianie płytki z elektroniką dysku na inną z tego samego modelu
B. poprzez wymianę silnika SM
C. za pomocą polecenia fixmbr
D. przy użyciu programu do odzyskiwania danych, na przykład TestDisk
Odzyskiwanie danych z dysku twardego HDD z uszkodzonym sterownikiem silnika SM wymaga zastosowania metod, które uwzględniają specyfikę uszkodzeń. Wymiana silnika SM, mimo że wydaje się logiczna, w praktyce jest bardzo trudna i często niemożliwa bez specjalistycznego sprzętu. Silnik SM jest zsynchronizowany z firmwarem dysku i wymiana go na inny, nawet tego samego modelu, może prowadzić do dalszych uszkodzeń lub całkowitej utraty danych. Podobnie, użycie polecenia fixmbr jest nieodpowiednie w tym kontekście, gdyż to narzędzie jest przeznaczone do naprawy struktur partycji w systemie Windows, a nie do odzyskiwania danych na poziomie fizycznym dysku. Posiadając uszkodzenie na poziomie elektroniki, nawet przy użyciu tego polecenia użytkownik nie jest w stanie odczytać danych, które są niedostępne z powodu problemów sprzętowych. Z kolei zewnętrzne programy do odzyskiwania danych, takie jak TestDisk, są skuteczne jedynie wtedy, gdy struktura plików lub partycji jest uszkodzona, a nie w przypadku uszkodzeń hardware'owych. Często prowadzi to do mylnego przekonania, że oprogramowanie może zdziałać cuda w przypadkach, gdzie wymagana jest interwencja serwisowa. Właściwe zrozumienie, kiedy należy stosować konkretne metody odzyskiwania danych, jest kluczowe w pracy z uszkodzonymi dyskami twardymi.

Pytanie 16

W systemie Windows 7 narzędzie linii poleceń Cipher.exe jest wykorzystywane do

A. wyświetlania plików tekstowych
B. przełączania monitora w stan uśpienia
C. zarządzania uruchamianiem systemu
D. szyfrowania i odszyfrowywania plików i katalogów
Narzędzie Cipher.exe w systemie Windows 7 jest dedykowane do szyfrowania oraz odszyfrowywania plików i katalogów, co jest kluczowe dla zapewnienia bezpieczeństwa danych. Użytkownicy mogą wykorzystać to narzędzie do ochrony poufnych informacji, takich jak dokumenty finansowe lub dane osobowe, poprzez szyfrowanie ich w systemie plików NTFS. Przykładowo, używając polecenia 'cipher /e C:\folder', użytkownik może zaszyfrować wszystkie pliki w określonym folderze, co uniemożliwia dostęp do nich osobom nieuprawnionym. Cipher wspiera także zarządzanie kluczami szyfrowania i pozwala na łatwe odszyfrowanie plików za pomocą polecenia 'cipher /d C:\folder'. W kontekście dobrych praktyk branżowych, szyfrowanie danych to standard w ochronie informacji, spełniający wymagania regulacji dotyczących ochrony danych, takich jak RODO. Dodatkowo, znajomość narzędzi takich jak Cipher jest niezbędna dla administratorów systemów w celu zabezpieczenia infrastruktury IT.

Pytanie 17

Wykorzystane kasety od drukarek powinny być

A. wyrzucone do pojemnika na plastik
B. przekazane do wydziału ochrony środowiska
C. wyrzucone do pojemnika z odpadami komunalnymi
D. przekazane firmie zajmującej się utylizacją tego typu odpadów
Wyrzucanie zużytych kaset do pojemnika przeznaczonego na plastik jest nieodpowiednie, ponieważ te odpady nie są zwykłym plastikiem, a ich recykling wymaga specjalistycznych procesów. Kasety tonerowe zawierają nie tylko plastik, ale także chemikalia, które mogą zagrażać zdrowiu ludzi i środowisku, jeśli nie zostaną odpowiednio przetworzone. Ponadto, umieszczanie ich w pojemnikach na odpady komunalne prowadzi do zanieczyszczenia strumieni recyklingowych, co komplikuje procesy segregacji i może skutkować większymi kosztami dla systemów gospodarki odpadami. Przekazywanie tych odpadów do wydziału ochrony środowiska również nie jest właściwe, ponieważ te instytucje nie zajmują się bezpośrednią utylizacją, a ich rola polega raczej na regulacjach i monitorowaniu. W związku z tym, odpady te powinny być kierowane do wyspecjalizowanych firm utylizacyjnych, które dysponują odpowiednimi technologiami i wiedzą, aby zminimalizować negatywne skutki dla środowiska. Ignorowanie tych zasad prowadzi do typowych błędów myślowych, takich jak postrzeganie wszystkich tworzyw sztucznych jako jednorodnych i łatwych do przetworzenia, co jest mylące i potencjalnie niebezpieczne.

Pytanie 18

Jaką rolę pełni komponent wskazany strzałką na schemacie chipsetu płyty głównej?

Ilustracja do pytania
A. Pozwala na wykorzystanie standardowych pamięci DDR SDRAM
B. Pozwala na podłączenie i używanie pamięci DDR 400 w trybie DUAL Channel w celu zapewnienia kompatybilności z DUAL Channel DDR2 800
C. Umożliwia korzystanie z pamięci DDR3-800 oraz DDR2-800 w trybie DUAL Channel
D. Umożliwia wykorzystanie magistrali o szerokości 128 bitów do transferu danych między pamięcią RAM a kontrolerem pamięci
Nieprawidłowe odpowiedzi wynikają z różnych nieporozumień dotyczących specyfikacji i funkcji chipsetów płyty głównej. W pierwszej kolejności ważne jest zrozumienie roli dual channel w kontekście pamięci RAM. Technologia ta polega na jednoczesnym użyciu dwóch kanałów pamięci co pozwala na podwojenie szerokości magistrali z 64 do 128 bitów. Tym samym błędne jest przekonanie że pozwala ona na zgodność z innymi standardami jak DDR2 800 i DDR3 800 gdyż te standardy różnią się specyfikacją techniczną napięciem i architekturą. Kolejny błąd to przypuszczenie że chipset umożliwia korzystanie z pamięci DDR3 wraz z DDR2 co jest technicznie niemożliwe z powodu różnych wymagań tych pamięci w kontekście kontrolerów i gniazd na płycie głównej. Ostatecznie mylne jest twierdzenie że chipset pozwala na wykorzystanie typowych pamięci DDR SDRAM. Ten standard pamięci jest znacznie starszy i niekompatybilny z nowoczesnymi chipsetami które obsługują DDR2 i DDR3. Typowym błędem myślowym jest tu ogólne założenie że nowsze płyty główne są w stanie obsłużyć wszystkie starsze standardy co jest często fizycznie niemożliwe bez dedykowanych kontrolerów pamięci. Edukacja w zakresie specyfikacji technicznych i ich zgodności jest kluczowa dla zrozumienia funkcjonowania nowoczesnych systemów komputerowych.

Pytanie 19

Jaką maksymalną prędkość transferu danych pozwala osiągnąć interfejs USB 3.0?

A. 4 GB/s
B. 400 Mb/s
C. 5 Gb/s
D. 120 MB/s
Wybór prędkości transferu z poniższych opcji nie prowadzi do prawidłowego wniosku o możliwościach interfejsu USB 3.0. Przykładowo, 120 MB/s jest znacznie poniżej specyfikacji USB 3.0 i odpowiada wydajności interfejsów z wcześniejszych wersji, takich jak USB 2.0. Tego rodzaju błędne wyobrażenia mogą wynikać z niewłaściwego porównania prędkości transferu, gdzie nie uwzględnia się konwersji jednostek – prędkości wyrażone w megabajtach na sekundę (MB/s) różnią się od megabitów na sekundę (Mb/s). Dla przykładu, 400 Mb/s to tylko około 50 MB/s, co również nie osiąga specyfikacji USB 3.0. W przypadku 4 GB/s, choć wydaje się to atrakcyjne, przekracza to możliwości USB 3.0, które maksymalizuje swoje transfery do 5 Gb/s, co oznacza, że nie jest to opcja realistyczna. Zrozumienie różnicy między jednostkami oraz rzeczywistymi możliwościami technologii USB jest kluczowe dla prawidłowego wykonania zastosowań w praktyce. Użytkownicy często mylą maksymalne wartości przesyłania danych z rzeczywistymi prędkościami, które mogą być ograniczone przez inne czynniki, takie jak jakość kabli, zastosowane urządzenia czy też warunki środowiskowe. Dlatego ważne jest, aby przed podjęciem decyzji o zakupie lub użyciu danego sprzętu z interfejsem USB, dokładnie zrozumieć jego specyfikację oraz możliwości.

Pytanie 20

Który typ rekordu w bazie DNS (Domain Name System) umożliwia ustalenie aliasu dla rekordu A?

A. CNAME
B. AAAA
C. NS
D. PTR
Rekord PTR, czyli Pointer Record, działa w drugą stronę niż rekord A. On mapuje adresy IP na nazwy domen, a nie tworzy aliasów. Więc jakby nie można go użyć do tego, co chcesz zrobić. Rekord AAAA to z kolei coś jak rekord A, ale dla adresów IPv6. Oba, A i AAAA, służą do przypisywania nazw do adresów, ale nie do robienia aliasów. A rekord NS to już zupełnie inna bajka, bo on definiuje serwery nazw dla danej strefy DNS. Widać, że można się łatwo pogubić w tych rekordach, bo różne mają funkcje. Moim zdaniem ważne jest, aby zrozumieć, jak każdy z tych rekordów działa, zwłaszcza według dokumentów takich jak RFC 1035. Często błędy w odpowiednim wyborze wynikają z braku wiedzy o tym, do czego każdy rekord służy, więc warto to jeszcze raz przejrzeć.

Pytanie 21

Który z protokołów służy do weryfikacji poprawności połączenia pomiędzy dwoma hostami?

A. RARP (ReverseA ddress Resolution Protocol)
B. ICMP (Internet Control Message Protocol)
C. UDP (User DatagramProtocol)
D. RIP (Routing Information Protocol)
UDP (User Datagram Protocol) jest protokołem transportowym, który umożliwia przesyłanie danych w sposób niepołączeniowy. Chociaż pozwala na szybkie przesyłanie informacji, nie oferuje mechanizmów sprawdzania poprawności połączenia ani potwierdzania odbioru danych. Użytkownicy mogą zakładać, że UDP jest odpowiedni do diagnostyki sieci, jednak w rzeczywistości nie dostarcza on informacji o stanie połączenia ani o błędach w transmisji. Z drugiej strony, RIP (Routing Information Protocol) jest protokołem używanym do wymiany informacji o trasach w sieciach komputerowych, a jego głównym celem jest ustalenie najlepszej drogi do przesyłania danych. Nie jest on zaprojektowany do sprawdzania osiągalności hostów ani ich komunikacji. RARP (Reverse Address Resolution Protocol) z kolei służy do tłumaczenia adresów IP na adresy MAC, co jest całkowicie inną funkcją i nie ma związku z diagnozowaniem połączeń. Typowe błędy myślowe prowadzące do błędnych odpowiedzi często związane są z nieodróżnieniem funkcji protokołów transportowych i kontrolnych. Użytkownicy mogą mylić UDP z ICMP, nie dostrzegając, że ICMP jest odpowiedzialny za operacje kontrolne, a UDP za przesył danych. Właściwe zrozumienie ról poszczególnych protokołów jest kluczowe dla efektywnego zarządzania i diagnozowania problemów w sieciach komputerowych.

Pytanie 22

Niskopoziomowe formatowanie dysku IDE HDD polega na

A. przeprowadzaniu przez producenta dysku
B. tworzeniu partycji rozszerzonej
C. tworzeniu partycji podstawowej
D. umieszczaniu programu rozruchowego w MBR
Wybór odpowiedzi o partycjach rozszerzonych i podstawowych nie jest trafny, bo te sprawy są całkiem inne niż niskopoziomowe formatowanie. Partycje tworzy się na poziomie wysokopoziomowym, a to następuje dopiero po niskopoziomowym formatowaniu. I warto wiedzieć, że partycja rozszerzona ma na celu umożliwienie utworzenia większej liczby partycji logicznych na dysku, co jest ważne, jeśli system nie obsługuje więcej niż czterech podstawowych partycji. Więc tworzenie partycji nie dotyczy niskopoziomowego formatowania. To robi użytkownik albo administrator po tym, jak dysk został niskopoziomowo sformatowany, a on wtedy gotowy na dalsze zarządzanie. No i druga niepoprawna odpowiedź dotyczy umieszczania programu rozruchowego w MBR. MBR jest załatwiane podczas instalacji systemu operacyjnego, a nie w trakcie niskopoziomowego formatowania. Wysokopoziomowe formatowanie, które następuje po niskopoziomowym, jest tym, co przygotowuje system plików i zapisuje informacje o bootloaderze. Dlatego brak zrozumienia różnicy między tymi procesami może prowadzić do mylnych wniosków na temat niskopoziomowego formatowania w kontekście zarządzania dyskami.

Pytanie 23

Cechą charakterystyczną transmisji w interfejsie równoległym synchronicznym jest to, że

A. dane są przesyłane bitami w wyznaczonych momentach czasowych, które są określane sygnałem zegarowym CLK
B. początek oraz koniec przesyłanych bit po bicie danych jest sygnalizowany przez bity startu i stopu
C. dane są przesyłane równocześnie całą szerokością magistrali, a początek oraz koniec transmisji oznaczają bity startu i stopu
D. w ustalonych momentach czasowych, które są wyznaczane sygnałem zegarowym CLK, dane są jednocześnie przesyłane wieloma przewodami
W przypadku niepoprawnych odpowiedzi występuje szereg mylnych koncepcji dotyczących sposobu przesyłania danych. Równoległa transmisja synchroniczna różni się od transmisji szeregowej, w której dane są przesyłane bit po bicie. Odpowiedzi sugerujące, że dane są przesyłane bit po bicie, są niedokładne, gdyż w przypadku interfejsów równoległych kilka bitów jest przesyłanych jednocześnie, co znacząco przyspiesza proces komunikacji. Dodatkowo, niektóre odpowiedzi mogą mylić pojęcia związane z sygnałami startu i stopu, które są typowe dla transmisji szeregowej. W transmitującym interfejsie równoległym nie stosuje się bitów startu i stopu, ponieważ sygnał zegarowy CLK reguluje moment przesyłania danych, eliminując potrzebę takich bitów. Tego rodzaju nieporozumienia mogą pochodzić z nieznajomości różnic między różnymi metodami transmisji danych oraz ich zastosowaniami w praktyce. Kluczowe w nauce o przesyłaniu danych jest zrozumienie podstawowych mechanizmów, które rządzą tym procesem oraz znajomość koncepcji synchronizacji, co jest niezbędne w projektowaniu nowoczesnych systemów komputerowych.

Pytanie 24

Protokół ARP (Address Resolution Protocol) służy do konwersji adresu IP na

A. adres IPv6
B. nazwę komputera
C. adres sprzętowy
D. nazwę domenową
Protokół ARP, to mega ważny element w świecie sieci komputerowych. Umożliwia on przekształcenie adresów IP na adresy MAC, co jest kluczowe, gdy komputer chce coś wysłać do innego urządzenia w sieci. Wyobraź sobie, że gdy komputer A chce rozmawiać z komputerem B, najpierw musi znać adres MAC B. To dlatego, że w komunikacji na poziomie warstwy łącza danych (czyli warstwy 2 w modelu OSI) używamy adresów sprzętowych. ARP działa w taki sposób, że kompy mogą same zdobywać te adresy MAC, bez potrzeby ręcznej konfiguracji, co jest spoko. Na przykład, komputer A wysyła zapytanie ARP, które rozsyła do wszystkich w sieci, a wtedy komputer B odpowiada swoim MAC. Taki mechanizm jest kluczowy dla działania sieci Ethernet i sprawnej komunikacji w większych strukturach IT. Fajnie też wiedzieć, że ARP jest standardowym protokołem, co potwierdzają dokumenty RFC, więc jest to powszechnie akceptowane w branży.

Pytanie 25

Proces zapisywania kluczy rejestru do pliku określamy jako

A. edycją rejestru
B. kopiowaniem rejestru
C. eksportowaniem rejestru
D. modyfikacją rejestru
Edycja rejestru to proces, w którym użytkownicy zmieniają istniejące wartości kluczy i wartości w rejestrze systemowym. To działanie nie polega jednak na zapisywaniu tych wartości do pliku, co różni je od eksportowania. W praktyce edytowanie rejestru może prowadzić do modyfikacji ustawień systemowych, które mogą wpływać na działanie oprogramowania i samego systemu operacyjnego. Modyfikacja rejestru, z kolei, odnosi się do procesu zmiany jego struktury lub wartości, co również nie jest tożsame z eksportowaniem. Niezrozumienie tych różnic może prowadzić do poważnych problemów, takich jak usunięcie kluczowych wartości, co może skutkować niestabilnością systemu czy nawet jego awarią. Kopiowanie rejestru, jako termin, nie jest używane w kontekście operacji związanych z rejestrem w systemie Windows, co może wprowadzać w błąd. Użytkownicy często mylą kopiowanie z eksportowaniem, zapominając o tym, że proces eksportu tworzy plik, który można zaimportować w przyszłości. Typowym błędem myślowym jest także zakładanie, że modyfikacje i edycje rejestru są bezpieczne bez wcześniejszego wykonania kopii zapasowej, co jest fundamentalnym błędem w zarządzaniu systemem operacyjnym. Dlatego tak istotne jest, aby przed jakimikolwiek zmianami zawsze wykonywać eksport rejestru, co stanowi kluczową praktykę w administracji systemami operacyjnymi.

Pytanie 26

Wskaż urządzenie, które powinno być użyte do połączenia dwóch komputerów z siecią Internet poprzez lokalną sieć Ethernet, gdy dysponujemy jedynie jednym adresem IP

A. Splitter ADSL
B. Switch LAN
C. Modem ISDN
D. Router LAN
Wybór przełącznika LAN, modemu ISDN czy splitera ADSL jako środków do podłączenia dwóch komputerów do Internetu poprzez jeden adres IP jest nieodpowiedni z kilku powodów. Przełącznik LAN jest urządzeniem, które umożliwia komunikację pomiędzy urządzeniami w tej samej sieci lokalnej, ale nie ma funkcji routingu ani NAT, co oznacza, że nie potrafi zarządzać ruchem między lokalną siecią a Internetem. Taka konfiguracja prowadzi do sytuacji, w której urządzenia nie byłyby w stanie współdzielić jednego adresu IP, co jest kluczowe w tym przypadku. Z kolei modem ISDN jest przestarzałym standardem, który w dzisiejszych czasach rzadko znajduje zastosowanie, a jego wykorzystanie nie jest praktyczne w kontekście dostępu do szerokopasmowego Internetu. Spliter ADSL z kolei jest używany do rozdzielania sygnału telefonicznego i danych, ale nie dostarcza funkcji routingu i również nie umożliwia podłączenia wielu urządzeń korzystających z jednego adresu IP. Użytkownicy często mylą te urządzenia, nie zdając sobie sprawy, że każde z nich ma inną funkcję i zastosowanie. Kluczowym błędem jest zrozumienie roli każdego z tych urządzeń w architekturze sieciowej. W kontekście modernizacji sieci, wybór odpowiedniego urządzenia jest kluczowy dla zapewnienia efektywności i bezpieczeństwa komunikacji. Właściwa konfiguracja i znajomość funkcji routera LAN są niezbędne do utrzymania sprawnego działania sieci domowej czy biurowej.

Pytanie 27

Awaria drukarki igłowej może być spowodowana uszkodzeniem

A. elektrody ładującej.
B. dyszy.
C. termorezystora.
D. elektromagnesu.
Zaznaczenie elektromagnesu jako przyczyny problemów z drukarką igłową to strzał w dziesiątkę. Elektromagnesy są naprawdę istotne, bo to dzięki nim igły w drukarce mogą się poruszać w odpowiednich kierunkach. Wiesz, drukarki igłowe działają tak, że igły uderzają w taśmę, żeby przenieść obraz na papier. Jak elektromagnesy się psują, to mogą być kłopoty z nadrukiem, a nawet mogą nie drukować wcale. W praktyce, znajomość tych komponentów to klucz do szybkiej diagnozy problemów. Regularne serwisowanie i wymiana zużytych elementów to coś, co każdy powinien robić, żeby dbać o swoje urządzenie. Jeśli już coś się zepsuje, najlepiej zadzwonić do serwisu, bo oni wiedzą, jak to naprawić. Z mojego doświadczenia, zrozumienie tych mechanizmów bardzo ułatwia życie, a także minimalizuje przestoje w pracy.

Pytanie 28

Urządzenie ADSL wykorzystuje się do nawiązania połączenia

A. cyfrowego asymetrycznego
B. radiowego
C. satelitarnego
D. cyfrowego symetrycznego
Ważne jest, aby zrozumieć, że odpowiedzi dotyczące połączeń cyfrowych symetrycznych, radiowych i satelitarnych nie są poprawne w kontekście urządzenia ADSL. Połączenia cyfrowe symetryczne, jak na przykład technologie Ethernet, oferują równą prędkość zarówno dla pobierania, jak i wysyłania danych, co jest przeciwieństwem asymetrycznego charakteru ADSL. Użytkownicy, którzy wybierają symetryczne połączenia, często potrzebują wyższej prędkości wysyłania dla aplikacji takich jak przesyłanie dużych plików czy hosting serwisów internetowych. Z kolei technologie radiowe i satelitarne różnią się od ADSL pod względem sposobu transmisji danych. Połączenia radiowe wykorzystują fale radiowe do dostarczania sygnału, co może wprowadzać większe opóźnienia i problemy z jakością sygnału, zwłaszcza w warunkach atmosferycznych. Z kolei technologie satelitarne, mimo że oferują zasięg w odległych lokalizacjach, mają znaczne opóźnienia wynikające z odległości do satelitów na orbicie, co czyni je mniej praktycznymi dla codziennego użytku porównując do ADSL. Wybór nieodpowiedniej technologii może prowadzić do nieefektywnego korzystania z internetu, dlatego kluczowe jest, aby zrozumieć różnice między nimi oraz odpowiednio dostosować wybór technologii do swoich potrzeb. Zrozumienie tych różnic jest kluczowe w kontekście optymalizacji usług internetowych dla użytkowników końcowych.

Pytanie 29

Jakie urządzenie wskazujące działa w reakcji na zmiany pojemności elektrycznej?

A. trackpoint
B. wskaźnik optyczny
C. joystick
D. touchpad
Mysz, dżojstik i trackpoint to urządzenia wskazujące, które różnią się zasadą działania od touchpada. Mysz, na przykład, wykorzystuje technologię optyczną lub laserową do śledzenia ruchu na powierzchni, co polega na rejestrowaniu przemieszczenia się urządzenia w przestrzeni, a nie na zmianie pojemności elektrycznej. Dżojstik z kolei, często stosowany w grach komputerowych i symulatorach, reaguje na ruchy w kilku płaszczyznach, wykorzystując mechaniczne lub elektroniczne czujniki, ale nie działa na zasadzie pojemności elektrycznej. Trackpoint, czyli mały joystick umieszczony na klawiaturze, również nie opiera się na pojemności, lecz na mechanizmach, które rejestrują nacisk i kierunek ruchu. Błędne rozumienie zasad działania tych urządzeń często prowadzi do mylnego postrzegania ich funkcji. W praktyce oznacza to, że użytkownicy mogą nie docenić różnic w precyzji, komforcie użytkowania oraz w funkcjonalności, co jest kluczowe w wielu zastosowaniach, zwłaszcza w kontekście pracy biurowej czy gier komputerowych. Dlatego, aby w pełni wykorzystać możliwości urządzeń wejściowych, ważne jest zrozumienie ich różnorodności oraz specyfiki działania.

Pytanie 30

Aby zatuszować identyfikator sieci bezprzewodowej, należy zmodyfikować jego ustawienia w ruterze w polu oznaczonym numerem

Ilustracja do pytania
A. 3
B. 1
C. 2
D. 4
Podstawowym błędem przy konfigurowaniu sieci bezprzewodowej jest mylne postrzeganie funkcji poszczególnych ustawień routera. Częstym nieporozumieniem jest przekonanie że opcja zmieniająca pasmo kanału numer 3 lub metoda szyfrowania WEP numer 4 wpływa na widoczność SSID sieci. Kanały oraz pasma odnoszą się do zakresu częstotliwości na jakich operuje sieć i mają na celu optymalizację połączenia poprzez minimalizację zakłóceń co nie jest związane z ukrywaniem sieci. Szyfrowanie z kolei dotyczy ochrony danych przesyłanych przez sieć a nie samej widoczności identyfikatora sieci. Skupienie się na szyfrowaniu WEP może być błędne ponieważ jest ono uznawane za przestarzałe i mało bezpieczne. Współczesne standardy zalecają stosowanie WPA2 lub WPA3 dla lepszej ochrony. Popularnym błędem jest również założenie że zmiana nazwy SSID w polu oznaczonym numerem 1 prowadzi do jego ukrycia. W rzeczywistości nazwa SSID jest nadal widoczna chyba że w ustawieniach routera zaznaczymy opcję ukrycia SSID co jak pokazuje obraz jest dostępne w polu numer 2. W przypadku ukrycia SSID urządzenia nadal mogą się łączyć z siecią jednak jej nazwa nie będzie widoczna w standardowej liście dostępnych sieci co może stanowić dodatkową barierę dla nieuprawnionych użytkowników choć nie zastąpi solidnych zabezpieczeń sieciowych.

Pytanie 31

Jakie narzędzie wykorzystuje się do przytwierdzania kabla w module Keystone?

Ilustracja do pytania
A. D
B. C
C. B
D. A
Narzędzia oznaczone jako A B i C nie są odpowiednie do mocowania kabla w module Keystone. Narzędzie A jest typowym narzędziem do ściągania izolacji, które służy głównie do usuwania zewnętrznej izolacji kabli, co jest pierwszym krokiem w przygotowaniu kabla do połączenia, ale nie nadaje się do faktycznego mocowania w module Keystone. Narzędzie B to prosty stripper, który również usuwa izolację, ale jego użycie jest bardziej ograniczone do kabli o mniejszej średnicy i nie zapewnia funkcji mocowania przewodów. Narzędzie C przedstawia klasyczną zaciskarkę do wtyczek RJ-45, która jest używana do zaciskania tych wtyczek na końcach kabli sieciowych, co jest inny etapem w budowie infrastruktury sieciowej niż mocowanie w module Keystone. Typowym błędem jest mylenie funkcji tych narzędzi, co wynika z podobieństw w ich kształcie i zastosowaniu w procesach przygotowywania i łączenia kabli. Wybór odpowiedniego narzędzia jest kluczowy, aby zapewnić trwałe i zgodne ze standardami połączenie w profesjonalnych instalacjach sieciowych. Rozumienie różnic między nimi minimalizuje ryzyko błędów podczas instalacji i zwiększa efektywność pracy w środowisku IT.

Pytanie 32

Według normy JEDEC, napięcie zasilające dla modułów pamięci RAM DDR3L wynosi

A. 1,5 V
B. 1,9 V
C. 1,35 V
D. 1,85 V
Napięcia 1,5 V, 1,85 V oraz 1,9 V to wartości, które nie odpowiadają specyfikacji dla pamięci DDR3L. W przypadku 1,5 V, jest to typowe napięcie dla standardowych modułów DDR3, które są mniej energooszczędne w porównaniu do DDR3L. Użytkownicy mogą mylnie sądzić, że wyższe napięcie zapewnia lepszą wydajność, jednak w rzeczywistości prowadzi to do większego poboru energii i wyższych temperatur pracy, co jest niekorzystne dla długotrwałej eksploatacji urządzeń. Napięcia 1,85 V i 1,9 V są jeszcze wyższe i z pewnością nie są zgodne z żadnymi standardami dla DDR3L. Takie wartości są charakterystyczne dla niektórych specjalistycznych zastosowań, np. w pamięciach o wysokiej wydajności, jednak nie są one stosowane w standardowych rozwiązaniach konsumenckich. Typowym błędem jest zakładanie, że wyższe napięcie automatycznie poprawia wydajność, co jest mylące, gdyż w nowoczesnych systemach kluczowe znaczenie ma optymalizacja zużycia energii i efektywności cieplnej. Wybór niewłaściwego napięcia podczas zakupu pamięci RAM może prowadzić do problemów z kompatybilnością, niestabilności systemu oraz potencjalnego uszkodzenia komponentów.

Pytanie 33

W systemie Linux plik messages zawiera

A. kody błędów systemowych
B. informacje dotyczące uwierzytelnienia
C. komunikaty odnoszące się do uruchamiania systemu
D. ogólne informacje o zdarzeniach systemowych
Plik messages w systemie Linux jest kluczowym komponentem dla monitorowania i analizy zdarzeń systemowych. Przechowuje on wszelkie istotne komunikaty, które mogą być pomocne w diagnostyce i rozwiązywaniu problemów. W praktyce, administratorzy systemów korzystają z tego pliku do zbierania informacji o błędach, ostrzeżeniach oraz innych zdarzeniach, które miały miejsce na poziomie jądra oraz w różnych usługach systemowych. Na przykład, podczas wystąpienia awarii systemu, analiza pliku messages może dostarczyć istotnych wskazówek dotyczących przyczyn problemu. Dobrym nawykiem w administracji systemami Linux jest regularne przeglądanie i archiwizowanie tych logów, co pozwala na utrzymanie historii zmian oraz ułatwia audyt bezpieczeństwa. Stosowanie narzędzi takich jak `logrotate` do zarządzania plikiem messages jest również rekomendowane, aby zapewnić, że logi nie zajmują zbyt dużo miejsca na dysku, a jednocześnie pozostają dostępne do analizy w razie potrzeby.

Pytanie 34

Aby sygnały pochodzące z dwóch routerów w sieci WiFi pracującej w standardzie 802.11g nie wpływały na siebie nawzajem, należy skonfigurować kanały o numerach

A. 3 i 6
B. 1 i 5
C. 5 i 7
D. 2 i 7
Wybór kanałów 1 i 5, 3 i 6, czy 5 i 7, może prowadzić do niepożądanych zakłóceń w sieci WiFi, ponieważ kanały te nie są odpowiednio oddalone od siebie. Na przykład, wybierając kanały 1 i 5, użytkownik naraża się na interferencje, ponieważ kanał 5 leży w pobliżu kanału 1, co może prowadzić do nakładania się sygnałów. Podobnie, kombinacja kanałów 3 i 6 nie jest optymalna, ponieważ oba kanały są zbyt blisko siebie, co wprowadza niepotrzebny szum i zmniejsza efektywność transmisji. Użytkownicy często popełniają błąd polegający na przyjęciu, że im więcej kanałów używają, tym lepsza będzie jakość sieci, jednak kluczowe jest, aby wybrane kanały były rozdzielone, aby zminimalizować zakłócenia. W praktyce, wybieranie kanałów w bliskiej odległości od siebie prowadzi do obniżenia przepustowości sieci, wzrostu opóźnień oraz problemów z łącznością, co negatywnie wpływa na doświadczenia użytkowników i może skutkować koniecznością częstszego resetowania routerów. Dlatego ważne jest, aby przy konfiguracji sieci WiFi kierować się dobrymi praktykami, które zapewnią optymalne wykorzystanie dostępnych zasobów bezprzewodowych.

Pytanie 35

Aby poprawić bezpieczeństwo prywatnych danych sesji na stronie internetowej, zaleca się dezaktywację w ustawieniach przeglądarki

A. bloku wyskakujących okienek
B. powiadamiania o wygasłych certyfikatach
C. funkcji zapamiętywania haseł
D. bloku uruchamiania skryptów
Powiadamianie o wygasłych certyfikatach, blokada wyskakujących okienek oraz blokada uruchamiania skryptów, choć mogą wydawać się istotnymi funkcjami związanymi z bezpieczeństwem, nie są odpowiedziami, które bezpośrednio przyczyniają się do ochrony prywatnych danych sesji. Wygasłe certyfikaty są sygnałem, że strona internetowa może być niebezpieczna, jednak wyłączenie powiadomień o tym nie zmienia samego faktu, że certyfikat jest nieważny. Użytkownicy powinni być świadomi, że ignorowanie takich powiadomień może prowadzić do interakcji z oszukańczymi lub zainfekowanymi stronami. Blokada wyskakujących okienek jest pomocna w unikaniu niechcianych reklam, ale nie wpływa na bezpieczeństwo przechowywania danych. Co więcej, blokada uruchamiania skryptów, choć może ograniczać pewne działania na stronie, również nie jest rozwiązaniem dla ochrony sesji. Skrypty są integralną częścią funkcjonalności większości nowoczesnych stron internetowych, a ich blokada może prowadzić do niedostatecznego działania strony, co może wprowadzać w błąd użytkowników co do poziomu jej bezpieczeństwa. Użytkownicy często popełniają błąd, myśląc, że proste wyłączenie takich funkcji wystarczy do ochrony ich danych. W rzeczywistości, skuteczne zabezpieczenia wymagają bardziej złożonych rozwiązań, takich jak stosowanie silnych haseł, uwierzytelniania wieloskładnikowego oraz świadomego korzystania z menedżerów haseł, co pozwala na bezpieczne i efektywne zarządzanie danymi logowania.

Pytanie 36

Jakie polecenie w systemie Linux umożliwia wyświetlenie listy zawartości katalogu?

A. ls
B. cd
C. pwd
D. rpm
Polecenie 'ls' jest fundamentalnym narzędziem w systemach Linux i Unix, służącym do wyświetlania zawartości katalogów. Umożliwia użytkownikom szybkie sprawdzenie, jakie pliki i podkatalogi znajdują się w danym katalogu. Domyślnie, polecenie to wyświetla jedynie nazwy plików, ale można je rozszerzyć o różne opcje, takie jak '-l', co zapewnia bardziej szczegółowy widok z dodatkowymi informacjami, takimi jak uprawnienia, właściciel, grupa, rozmiar plików oraz daty modyfikacji. Użycie 'ls -a' pozwala ponadto na wyświetlenie ukrytych plików, które zaczynają się od kropki. Dobre praktyki w administrowaniu systemem Linux obejmują znajomość i stosowanie polecenia 'ls' w codziennej pracy, co umożliwia skuteczne zarządzanie plikami i katalogami. Przykładowe zastosowanie to: 'ls -lh' w celu uzyskania czytelnych rozmiarów plików oraz 'ls -R' do rekurencyjnego przeszukiwania podkatalogów.

Pytanie 37

Na diagramie działania skanera, element oznaczony numerem 1 odpowiada za

Ilustracja do pytania
A. zamiana sygnału analogowego na sygnał cyfrowy
B. zamiana sygnału optycznego na sygnał elektryczny
C. wzmacnianie sygnału elektrycznego
D. wzmacnianie sygnału optycznego
W skanerze różne elementy pełnią różnorodne funkcje, które razem umożliwiają skuteczne skanowanie dokumentów czy obrazów. Wzmacnianie sygnału optycznego nie jest typowym zadaniem w skanerach ponieważ sygnał optyczny jest zazwyczaj bezpośrednio przetwarzany na sygnał elektryczny za pomocą fotodetektorów takich jak fotodiody czy matryce CCD/CMOS. Sygnał optyczny nie jest wzmacniany w konwencjonalnym znaczeniu tego słowa lecz przekształcany w postać elektryczną która jest następnie przetwarzana. Wzmacnianie sygnału elektrycznego o którym mowa w jednej z odpowiedzi ma miejsce dopiero po zamianie sygnału optycznego na elektryczny. Wzmacniacze sygnału elektrycznego są używane aby upewnić się że sygnał jest wystarczająco silny do dalszego przetwarzania i aby minimalizować szumy. Zamiana sygnału analogowego na cyfrowy to kolejny etap, który następuje po przekształceniu sygnału optycznego na elektryczny. Odpowiedzialny za ten proces jest przetwornik analogowo-cyfrowy, który konwertuje analogowy sygnał elektryczny na cyfrowy zapis, umożliwiając komputerowi jego interpretację i dalsze przetwarzanie. Często błędne jest myślenie, że te procesy mogą być zamienne lub że mogą zachodzić w dowolnej kolejności. Każdy etap jest precyzyjnie zaplanowany i zgodny ze standardami branżowymi, co zapewnia poprawną i efektywną pracę skanera oraz wysoką jakość uzyskiwanych obrazów. Zrozumienie tych procesów pomaga w efektywnym rozwiązywaniu problemów związanych z działaniem skanerów oraz ich prawidłowym używaniem w praktyce zawodowej i codziennej.

Pytanie 38

Jaki rodzaj routingu jest najbardziej odpowiedni w dużych, szybko zmieniających się sieciach?

A. Lokalny
B. Dynamiczny
C. Zewnętrzny
D. Statyczny
Routing dynamiczny jest najbardziej odpowiedni dla rozbudowanych, szybko zmieniających się sieci ze względu na swoją zdolność do automatycznego dostosowywania się do zmian w topologii sieci. W przeciwieństwie do routingu statycznego, gdzie trasy są konfigurowane ręcznie, routing dynamiczny wykorzystuje protokoły takie jak OSPF, EIGRP czy BGP, które umożliwiają urządzeniom sieciowym wymianę informacji o osiągalnych trasach. Dzięki temu, w przypadku awarii jednego z węzłów, sieć natychmiast znajdzie alternatywną ścieżkę, co zwiększa jej niezawodność i dostępność. Przykładowo, w dużych środowiskach korporacyjnych, gdzie zmiany w infrastrukturze są na porządku dziennym, routing dynamiczny pozwala na efektywne zarządzanie zasobami oraz minimalizację przestojów. Ponadto, protokoły dynamiczne mają możliwość uczenia się i adaptacji do zmieniających się warunków w sieci, co jest kluczowe w przypadku aplikacji wymagających wysokiej dostępności i niskich opóźnień.

Pytanie 39

Wykonanie polecenia net use z:\\192.168.20.2\data /delete, spowoduje

A. odłączenie katalogu  data92 od dysku Z:
B. odłączenie zasobów hosta 192.168.20.2 od dysku Z:
C. przyłączenie katalogu data  do dysku Z:
D. przyłączenie zasobów hosta 192.168.20.2 do dysku Z:
Polecenie 'net use z:\\192.168.20.2\data /delete' ma na celu odłączenie wcześniej przypisanego zasobu sieciowego do litery dysku Z:. W tym kontekście, podanie konkretnego katalogu (data) oraz hosta (192.168.20.2) sugeruje, że operacja ta dotyczy usunięcia połączenia z tym zasobem. Praktyczne zastosowanie tej komendy występuje w sytuacjach, gdy użytkownik chce zwolnić literę dysku Z: dla innych operacji lub gdy zasób jest już niepotrzebny. Dobrą praktyką jest regularne zarządzanie połączeniami sieciowymi, aby uniknąć konfliktów i niepotrzebnych obciążeń w sieci. Użytkownicy administrujący systemami Windows często wykorzystują polecenie 'net use' do monitorowania i zarządzania zasobami sieciowymi, co jest zgodne ze standardami zarządzania siecią i bezpieczeństwem. Warto również pamiętać, że niewłaściwe zarządzanie połączeniami może prowadzić do problemów z dostępem do zasobów oraz obniżenia wydajności systemu."

Pytanie 40

Zwiększenie zarówno wydajności operacji (zapis/odczyt), jak i bezpieczeństwa przechowywania danych jest możliwe dzięki zastosowaniu macierzy dyskowej

A. RAID 1
B. RAID 3
C. RAID 50
D. RAID 0
Wybór RAID 3, RAID 1 lub RAID 0 jako odpowiedzi na pytanie jest błędny, ponieważ każda z tych konfiguracji ma swoje ograniczenia, jeżeli chodzi o jednoczesne zwiększenie szybkości operacji oraz bezpieczeństwa przechowywania danych. RAID 1, który polega na mirroringu danych, zapewnia doskonałą redundancję, ale nie zwiększa wydajności zapisu, a wręcz może ją obniżyć, ponieważ wymaga tego samego zapisu na dwóch dyskach. RAID 0 z kolei, mimo że oferuje wysoką wydajność dzięki stripingowi, nie zapewnia żadnej redundancji – w przypadku awarii któregoś z dysków, wszystkie dane są tracone. RAID 3, korzystający z parzystości, również nie jest optymalnym rozwiązaniem, gdyż wprowadza pojedynczy dysk parzystości, co może stać się wąskim gardłem w operacjach zapisu. Kluczowym błędem myślowym jest zatem brak zrozumienia, że aby osiągnąć wysoką wydajność i bezpieczeństwo, konieczne jest zastosowanie odpowiedniej kombinacji technologii RAID. W praktyce, podejście do wyboru macierzy dyskowej wymaga analizy specyficznych potrzeb operacyjnych i budżetowych, a także znajomości kompromisów, które wiążą się z różnymi konfiguracjami RAID, co przekłada się na efektywność w zarządzaniu danymi w każdej organizacji.