Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 30 maja 2025 17:48
  • Data zakończenia: 30 maja 2025 18:03

Egzamin zdany!

Wynik: 36/40 punktów (90,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W trakcie diagnozowania systemu zawieszenia przy użyciu urządzenia typu "szarpak diagnostyczny", zauważono nadmierny luz koła w kierunku pionowym. Który z elementów nie ma na to wpływu?

A. Sworzeń wahacza
B. Końcówka drążka kierowniczego
C. Łożyska piasty koła przedniego
D. Tuleja wahacza
Nadmierny luz koła w płaszczyźnie pionowej jest zjawiskiem, które może wynikać z uszkodzenia lub zużycia różnych komponentów układu zawieszenia, a błędne odpowiedzi na to pytanie można zrozumieć poprzez analizę wpływu poszczególnych elementów. Sworzeń wahacza jest kluczowym elementem, który łączy wahacz z nadwoziem pojazdu. Jeśli sworzeń jest uszkodzony lub ma zbyt dużą luz, może to prowadzić do nieprawidłowego ustawienia koła, co skutkuje jego nadmiernym luźnym ruchem w płaszczyźnie pionowej. Podobnie, łożyska piasty koła przedniego są odpowiedzialne za prawidłowe obracanie się koła; zużycie lub uszkodzenie tych łożysk skutkuje luzem, który odczuwany jest na kole. Tuleja wahacza z kolei ma istotny wpływ na stabilność zawieszenia i redukcję luzów. Uszkodzona tuleja może powodować, że koło nie jest poprawnie utrzymywane w swojej pozycji, co przekłada się na nadmierny luz. Problemem, który często prowadzi do błędnych wniosków, jest mylenie funkcji różnych elementów układu zawieszenia; końcówka drążka kierowniczego, mimo że odgrywa istotną rolę w sterowaniu, nie ma wpływu na pionowe ruchy koła. Zrozumienie specyfiki poszczególnych komponentów oraz ich wpływu na zachowanie pojazdu jest kluczowe dla właściwej diagnostyki i naprawy układów zawieszenia.

Pytanie 2

Diagnostyka systemu hamulcowego na stanowisku rolkowym nie umożliwia

A. oceny stopnia zużycia elementów ciernych
B. wykrycia owalizacji bębnów hamulcowych
C. wykrycia deformacji oraz bicia tarcz hamulcowych
D. ustalenia różnic sił hamowania na wszystkich kołach pojazdu
Wybór odpowiedzi dotyczącej oceny stopnia zużycia elementów ciernych jako poprawnej jest uzasadniony z punktu widzenia diagnostyki układu hamulcowego. Stanowisko rolkowe, używane do testowania hamulców, pozwala na analizę siły hamowania w warunkach dynamicznych, jednakże nie dostarcza informacji o stopniu zużycia klocków czy szczęk hamulcowych. Zużycie tych elementów jest oceniane na podstawie grubości materiału ciernego, a nie na podstawie testów na rolkach. W praktyce, monitoring zużycia elementów ciernych powinien odbywać się podczas regularnych przeglądów technicznych, gdzie możliwa jest wizualna inspekcja oraz pomiar grubości klocków. Standardy takie jak ECE R90 w Europie wymagają, by części zamienne były identyczne pod względem jakości i wydajności z oryginalnymi elementami. Dlatego wiedza o zużyciu elementów ciernych jest kluczowa dla zapewnienia bezpieczeństwa pojazdu oraz efektywności układu hamulcowego.

Pytanie 3

Na szczelność przestrzeni roboczej cylindrów nie oddziałuje

A. szczelność przylegania zaworów
B. szczelność układu wylotowego
C. szczelność połączenia bloku cylindra z głowicą
D. luz tłok-pierścienie-cylinder
Szczelność układu wylotowego rzeczywiście nie ma wpływu na szczelność przestrzeni roboczej cylindrów. Układ wylotowy odpowiada za odprowadzanie spalin z silnika, a jego szczelność dotyczy jedynie utrzymania ciśnienia i kontroli emisji. Z punktu widzenia pracy silnika, szczelność cylindrów jest bezpośrednio związana z zjawiskami zachodzącymi wewnątrz samego cylindra, takimi jak luz tłok-pierścienie-cylinder czy szczelność zaworów. Dobre praktyki w zakresie konserwacji silnika wymagają regularnego sprawdzania stanu pierścieni tłokowych, co pozwala na utrzymanie odpowiedniego ciśnienia sprężania. Przykładem zastosowania tej wiedzy jest wymiana uszkodzonych pierścieni tłokowych w silniku, co znacznie poprawia jego osiągi i efektywność paliwową. W sytuacji, gdy układ wylotowy jest nieszczelny, może to prowadzić do zwiększenia emisji spalin, ale nie wpłynie to bezpośrednio na ciśnienie robocze w cylindrze.

Pytanie 4

Aby wyciągnąć i zainstalować tłoki w silniku ZI o czterech cylindrach w układzie rzędowym bez demontażu całego silnika, należy zdemontować

A. głowicę, pokrywy korbowodów oraz wał korbowy
B. głowicę i pokrywy korbowodów
C. pokrywy korbowodów
D. pokrywy korbowodów oraz wał korbowy
Aby wymontować i zamontować tłoki w czterocylindrowym rzędowym silniku ZI, konieczne jest zdemontowanie zarówno głowicy, jak i pokryw korbowodów. Głowica silnika jest kluczowym elementem, który zapewnia szczelność komory spalania oraz umożliwia montaż zaworów. Zdemontowanie głowicy daje dostęp do cylindrów, co jest niezbędne do dostępu do tłoków. Pokrywy korbowodów natomiast ukrywają układ korbowy, który łączy tłoki z wałem korbowym. Usunięcie tych elementów pozwala na swobodny dostęp do tłoków oraz ich demontaż bez całkowitego rozbierania silnika. Tego typu procedury są zgodne z zasadami dobrego serwisowania silników, co jest kluczowe dla ich długowieczności oraz prawidłowego funkcjonowania. Przykładem zastosowania tej wiedzy może być naprawa silnika w warsztacie motoryzacyjnym, gdzie zachowanie odpowiednich standardów montażu i demontażu jest niezbędne dla zachowania bezpieczeństwa i efektywności pracy.

Pytanie 5

Która z poniższych czynności musi być wykonana przy wymianie klocków hamulcowych?

A. Kalibracja systemu ESP
B. Ustawienie geometrii kół
C. Sprawdzenie grubości tarcz hamulcowych
D. Zmiana płynu chłodzącego
Sprawdzenie grubości tarcz hamulcowych to kluczowy krok przy wymianie klocków hamulcowych. Tarcze hamulcowe mają określoną minimalną grubość, poniżej której nie powinny być używane, ponieważ ich efektywność hamowania i zdolność do rozpraszania ciepła są znacznie ograniczone. Jeśli tarcze są zbyt cienkie, mogą się przegrzewać, co prowadzi do wydłużenia drogi hamowania i zwiększonego ryzyka awarii układu hamulcowego. Standardową praktyką jest porównanie grubości tarcz z wartościami podanymi przez producenta pojazdu. Często podczas wymiany klocków zaleca się również wymianę tarcz, zwłaszcza jeśli są one bliskie minimalnej grubości. Przy okazji warto sprawdzić powierzchnię tarcz pod kątem nierówności czy pęknięć. Takie działania są zgodne z dobrymi praktykami serwisowymi, które mają na celu zapewnienie bezpieczeństwa i długowieczności układu hamulcowego. Przy odpowiedniej grubości tarcz nowe klocki będą działać efektywnie, co przekłada się na lepsze bezpieczeństwo na drodze.

Pytanie 6

CNG to symbol paliwa wykorzystywanego w silnikach tłokowych na paliwa kopalne, co oznacza

A. sprężony gaz ziemny
B. sprężony propan-butan
C. biopaliwo
D. mieszaninę benzyny i metanolu
CNG, czyli sprężony gaz ziemny, to fajne paliwo, które coraz częściej używa się w silnikach spalinowych, a zwłaszcza w tych autach, które starają się mniej szkodzić środowisku. Głównie to metan, co sprawia, że jest bardziej ekologiczne niż tradycyjna benzyna czy olej napędowy. Dzięki właściwościom CNG, emisja dwutlenku węgla i innych szkodliwych substancji jest znacznie mniejsza. W dzisiejszych czasach, to w sumie trend - chronić naszą planetę i szukać zrównoważonych rozwiązań. Widzisz, że CNG zdobywa popularność szczególnie w transporcie publicznym i flotach samochodowych? To dlatego, że można na tym sporo zaoszczędzić. W różnych krajach, jak na przykład we Włoszech czy USA, zbudowano sporo stacji, gdzie można zatankować CNG, co bardzo ułatwia sprawę. A przy tym wszystko to jest zgodne z normami Euro związanymi z emisją spalin, co też jest ważne.

Pytanie 7

Termin "mokra tuleja cylindrowa" odnosi się do

A. otworu stworzonego w jednoczęściowych odlewach kadłuba silnika lub bloku cylindrowego
B. tulei cylindrowej silnika chłodzonego cieczą kontaktującej się zewnętrzną powierzchnią z płynem chłodzącym
C. tulei cylindrowej silnika chłodzonego cieczą, oddzielonej cienką ścianką kadłuba od płynu chłodzącego
D. tulei cylindrowej silnika chłodzonego powietrzem
Mokra tuleja cylindrowa to naprawdę ważny element w silnikach spalinowych. Działa to tak, że jest otoczona cieczą chłodzącą, co pomaga w lepszym odprowadzaniu ciepła. W przeciwieństwie do silników chłodzonych powietrzem, w których tuleje nie mają kontaktu z cieczą, tutaj mamy dużo lepszą efektywność w utrzymywaniu właściwej temperatury silnika. Przykładowo, w autach osobowych czy ciężarowych często spotyka się tę konstrukcję. Moim zdaniem, dzięki mokrej tulei silniki są bardziej trwałe i efektywne energetycznie. Warto zwrócić uwagę, że takie rozwiązania są zgodne z tym, co inżynierowie uznają za najlepsze praktyki w branży. Krótko mówiąc, mokra tuleja cylindrowa to coś, co naprawdę robi różnicę w działaniu silnika.

Pytanie 8

Ciśnienie paliwa w silniku o zapłonie samoczynnym, w którym zastosowano system zasilania Common Rail trzeciej generacji, powinno wynosić w przybliżeniu

A. 1,8 MPa
B. 1800 MPa
C. 180 MPa
D. 18 MPa
Odpowiedź 180 MPa to jest strzał w dziesiątkę! W silnikach diesla z układem Common Rail trzeciej generacji ciśnienie paliwa powinno być właśnie na tym poziomie. Te układy są zaprojektowane tak, żeby działały z wysokim ciśnieniem, co sprawia, że paliwo jest wtryskiwane z większą precyzją, a to z kolei poprawia jego atomizację. Dzięki temu mamy efektywniejsze spalanie i mniej spalin w porównaniu do starszych rozwiązań. Warto pamiętać, że regularne sprawdzanie ciśnienia paliwa to dobry zwyczaj dla mechaników, bo jeśli ciśnienie jest za niskie lub za wysokie, to silnik może mieć problemy, co odbije się na wydajności i może nawet uszkodzić wtryski. Przykładem może być regularne serwisowanie, gdzie fachowcy kontrolują to ciśnienie, żeby silnik mógł działać jak należy. To istotne dla osiągów samochodu i jego żywotności.

Pytanie 9

Przy regulacji geometrii przednich kół pojazdu, w którym można dostosować wszystkie kąty, kolejność przeprowadzania tych ustawień wygląda następująco:

A. Wyprzedzenie sworznia zwrotnicy, kąt pochylenia każdego koła, a później regulacja zbieżności kół
B. Najpierw regulacja zbieżności kół, następnie kąt pochylenia każdego koła, a na końcu wyprzedzenie sworznia zwrotnicy każdego koła
C. Wyprzedzenie sworznia zwrotnicy każdego koła, regulacja zbieżności kół, a potem kąt pochylenia każdego koła
D. Kąt pochylenia każdego koła, wyprzedzenie sworznia zwrotnicy każdego koła, a na końcu regulacja zbieżności kół
Dobra, więc poprawna odpowiedź to tak, zaczynamy od wyprzedzenia sworznia zwrotnicy, potem pochylenie kół, a na końcu zbieżność. To jest naprawdę ważne, żeby to wszystko ustawić we właściwej kolejności. Wyprzedzenie sworznia zwrotnicy wpływa na stabilność kierowania, więc to musi być pierwsze. Jak to dobrze ustawić, to kolejne kroki idą łatwiej. Potem zajmujemy się pochyleniem kół – to sprawia, że opony lepiej trzymają się drogi. Na koniec, ta zbieżność, też mega istotna, bo jak to nie jest dobrze ustawione, to opony się szybciej zużywają. Generalnie, jak to robimy w tej kolejności, to wszystko działa lepiej i jeździmy bezpieczniej. W moim doświadczeniu, dobrze jest trzymać się tych zasad, bo niezrozumienie tego wszystkiego może potem kosztować więcej, niż byśmy chcieli.

Pytanie 10

Aby rozmontować końcówkę drążka kierowniczego z ramienia zwrotnicy, jaki sprzęt powinno się zastosować?

A. prasy hydraulicznej
B. szczypiec uniwersalnych
C. młotka bezwładnościowego
D. ściągacza do przegubów kulowych
Ściągacz do przegubów kulowych to naprawdę przydatne narzędzie, które stworzone jest z myślą o demontażu połączeń kulowych, jak końcówki drążków kierowniczych. Dzięki niemu siła rozkłada się równomiernie, co zmniejsza ryzyko uszkodzenia elementów w układzie kierowniczym oraz samego przegubu. Użycie ściągacza może naprawdę zwiększyć bezpieczeństwo pracy i zaoszczędzić czas, bo pozwala na szybkie rozłączenie części. Z mojego doświadczenia, kiedy pojawia się problem z korozją lub użytkowaniem, to ściągacz jest często jedynym sensownym rozwiązaniem, które pozwala na skuteczne zdjęcie końcówki bez uszkodzenia. Pamiętaj, że przestrzeganie norm BHP jest mega ważne - korzystając ze ściągacza, masz większą kontrolę nad procesem i mniejsze ryzyko kontuzji, w porównaniu do innych metod, jak młotek.

Pytanie 11

Mechanik, który wymienia wahacze przedniej osi, ma możliwość dokręcenia

A. śruby/nakrętki sworznia dopiero po dokonaniu ustawienia zbieżności kół
B. śrub znajdujących się w poziomej płaszczyźnie wyłącznie w normalnej pozycji pracy zawieszenia
C. wszystkich śrub w dowolnym ustawieniu zawieszenia
D. śrub usytuowanych w pionowej płaszczyźnie tylko w normalnej pozycji pracy zawieszenia
Wymiana wahaczy osi przedniej jest kluczowym elementem w utrzymaniu prawidłowego funkcjonowania układu zawieszenia pojazdu. Odpowiedź wskazująca, że śruby umieszczone w płaszczyźnie poziomej mogą być dokręcane tylko w położeniu normalnej pracy zawieszenia jest poprawna, ponieważ zapewnia optymalne warunki do osiągnięcia właściwego momentu dokręcania. W położeniu roboczym zawieszenia, wszystkie elementy są w swojej naturalnej pozycji, co pozwala na precyzyjne i bezpieczne dokręcenie śrub. Niezastosowanie się do tej zasady może prowadzić do niewłaściwego naprężenia śrub, co w konsekwencji może powodować uszkodzenia wahaczy, a także negatywnie wpłynąć na stabilność i bezpieczeństwo jazdy. W praktyce, mechanicy powinni korzystać z odpowiednich narzędzi momentowych, aby zapewnić, że śruby są dokręcane zgodnie z wartościami podanymi przez producenta. Przykładem standardu branżowego jest przestrzeganie zaleceń producenta dotyczących momentów dokręcania, co jest kluczowe dla zachowania integralności układu zawieszenia i bezpieczeństwa pojazdu.

Pytanie 12

Jakiego rodzaju parametr opisuje zapis 100A (Amper)?

A. Napięcia prądu
B. Temperatury cieczy
C. Natężenia prądu
D. Lepkości cieczy
Odpowiedź 'Natężenia prądu' jest poprawna, ponieważ zapis 100A odnosi się bezpośrednio do wartości natężenia prądu elektrycznego, które mierzone jest w amperach (A). Natężenie prądu definiuje ilość ładunku elektrycznego przepływającego przez punkt w obwodzie w jednostce czasu. W praktyce, zrozumienie natężenia prądu jest kluczowe w wielu zastosowaniach inżynieryjnych i elektronicznych, np. przy projektowaniu obwodów elektrycznych, w których należy zapewnić, aby przekroje przewodów były odpowiednie do przewodzenia określonego natężenia prądu bez ryzyka przegrzania. Standardy takie jak IEC 60228 dotyczące przewodów elektrycznych zawierają szczegółowe wytyczne dotyczące doboru przekrojów przewodów w zależności od natężenia prądu. Warto również zauważyć, że w systemach zasilania, takich jak instalacje domowe czy przemysłowe, natężenie prądu ma kluczowe znaczenie dla obliczania mocy elektrycznej, co jest niezbędne do prawidłowego doboru urządzeń oraz zabezpieczeń elektrycznych.

Pytanie 13

Jakie elementy są częścią układu chłodzenia silnika spalinowego?

A. Gaźnik, filtr powietrza, kolektor dolotowy
B. Wał korbowy, tłoki, panewki
C. Pompa wody, chłodnica, termostat
D. Alternator, rozrusznik, akumulator
Układ chłodzenia silnika spalinowego jest kluczowym elementem, który zapewnia właściwą temperaturę pracy silnika, co wpływa na jego wydajność i trwałość. W skład tego układu wchodzą elementy takie jak pompa wody, chłodnica i termostat. Pompa wody jest odpowiedzialna za cyrkulację płynu chłodzącego przez cały układ, co pomaga w odbieraniu nadmiaru ciepła z silnika. Chłodnica odgrywa rolę w oddawaniu tego ciepła do atmosfery, czyniąc to poprzez przepływ powietrza przez jej żebra. Termostat natomiast reguluje obieg płynu chłodzącego w zależności od temperatury silnika, co pozwala na szybsze osiągnięcie optymalnej temperatury roboczej. Dobrze działający układ chłodzenia zapobiega przegrzewaniu się silnika oraz minimalizuje ryzyko uszkodzenia jego części, co jest zgodne z dobrymi praktykami w branży motoryzacyjnej. Ważne jest, aby regularnie kontrolować stan płynu chłodzącego i sprawność poszczególnych komponentów układu chłodzenia, co zapewnia długą i bezawaryjną pracę silnika.

Pytanie 14

Podczas jazdy samochód osiągnął temperaturę 110 °C (czerwone pole na wskaźniku temperatury) w obiegu płynu chłodzącego. Jakie mogą być tego przyczyny?

A. usterka klimatyzacji
B. zatarcie silnika
C. usterka systemu chłodzenia
D. przeciążenie alternatora
Odpowiedź 'awaria układu chłodzenia' jest poprawna, ponieważ wysoka temperatura płynu chłodzącego, mierząca 110 °C, wskazuje na problemy z efektywnością systemu chłodzenia silnika. Układ chłodzenia ma za zadanie odprowadzać ciepło generowane przez silnik, aby utrzymać jego optymalną temperaturę pracy. Awaria może wystąpić na skutek różnych przyczyn, takich jak uszkodzenie pompy wodnej, zapchanie chłodnicy, wyciek płynu chłodzącego lub uszkodzenie termostatu. W praktyce, problemy te mogą prowadzić do przegrzania silnika, co z kolei może skutkować poważnymi uszkodzeniami, jak zatarcie silnika czy pęknięcie głowicy cylindrów. Dlatego ważne jest regularne serwisowanie układu chłodzenia, w tym wymiana płynu chłodzącego zgodnie z zaleceniami producenta oraz kontrola stanu chłodnicy i innych komponentów układu. Dobre praktyki obejmują także monitorowanie wskaźników temperatury podczas jazdy oraz szybkie reagowanie na wszelkie nieprawidłowości, aby uniknąć kosztownych napraw.

Pytanie 15

Przygotowując pojazd do dłuższego przechowywania, należy

A. spuścić płyn hamulcowy
B. wymienić olej silnikowy oraz filtr oleju
C. podnieść ciśnienie w oponach do maksymalnej wartości określonej przez producenta
D. spuścić zużyty olej z silnika i napełnić zbiornik paliwem
Wymiana oleju silnikowego oraz filtra oleju przed długotrwałym przechowywaniem pojazdu jest kluczowym krokiem w zapewnieniu jego długowieczności i niezawodności. Stary olej zawiera zanieczyszczenia oraz kwasy, które mogą prowadzić do korozji i uszkodzeń silnika w trakcie długiego postoju. Nowy olej, zwłaszcza taki, który spełnia normy jakości API (American Petroleum Institute) lub ILSAC (International Lubricant Standardization and Approval Committee), zapewnia lepsze smarowanie oraz ochronę przed zużyciem. Dodatkowo, wymiana filtra oleju jest niezbędna, aby usunąć wszelkie zanieczyszczenia zgromadzone w systemie smarowania. Przykładowo, w przypadku samochodów, które będą stały przez kilka miesięcy, zaleca się zastosowanie oleju o niskiej lepkości, co ułatwi uruchomienie silnika po dłuższym okresie nieużywania. Należy również pamiętać, że regularna konserwacja i wymiana oleju zgodnie z zaleceniami producenta są kluczowe dla utrzymania pojazdu w dobrym stanie, co jest zgodne z praktykami motoryzacyjnymi oraz standardami branżowymi.

Pytanie 16

Część przegubu Cardana należy do

A. wału napędowego
B. skrzyni biegów
C. koła dwumasowego
D. sprzęgła ciernego
Przegub Cardana jest kluczowym elementem wału napędowego, który jest używany w systemach przeniesienia napędu w pojazdach. Jego głównym zadaniem jest przenoszenie momentu obrotowego z jednego elementu na inny, przy jednoczesnym pozwoleniu na pewne ruchy kątowe, co jest szczególnie istotne w pojazdach z niezależnym zawieszeniem. Przegub Cardana umożliwia współpracę między elementami, które są w różnych płaszczyznach, co jest niezbędne w przypadku skręcania kół. Na przykład, w samochodach osobowych, przegub Cardana znajduje zastosowanie w systemach napędowych, gdzie łączy wał napędowy z dyferencjałem, co pozwala na przekazywanie mocy z silnika na koła. Warto również zaznaczyć, że przeguby Cardana są projektowane zgodnie z normami bezpieczeństwa oraz niezawodności, co czyni je nieodłącznym elementem nowoczesnych układów napędowych. Ich regularne serwisowanie oraz kontrola stanu technicznego są kluczowe dla zapewnienia długotrwałej i bezawaryjnej pracy pojazdu.

Pytanie 17

Jaki łączny koszt poniesiemy na wymianę świec zapłonowych w pojeździe z silnikiem sześciocylindrowym, jeśli cena jednej świecy wynosi 20,00 zł, a wymiana powinna zająć 45 minut, przy stawce jednego roboczogodziny równiej 120,00 zł?

A. 170,00 zł
B. 120,00 zł
C. 210,00 zł
D. 240,00 zł
Całkowity koszt wymiany świec zapłonowych w samochodzie z silnikiem sześciocylindrowym wynosi 210,00 zł, co jest wynikiem dokładnego obliczenia zarówno kosztu materiałów, jak i robocizny. Koszt jednej świecy zapłonowej wynosi 20,00 zł, a w silniku sześciocylindrowym potrzeba sześciu świec, co daje 20,00 zł x 6 = 120,00 zł za same świece. Dodatkowo, czas wymiany świec szacowany na 45 minut obliczamy w kontekście stawki robocizny. Ponieważ 45 minut to 0,75 godziny, koszt robocizny wynosi 120,00 zł (stawka za godzinę) x 0,75 = 90,00 zł. Zatem całkowity koszt wymiany świec zapłonowych to 120,00 zł (świece) + 90,00 zł (robocizna) = 210,00 zł. W kontekście praktycznym, regularna wymiana świec zapłonowych jest kluczowa dla utrzymania efektywności silnika, co wpływa na jego wydajność i zużycie paliwa. Zgodnie z zaleceniami producentów, wymianę świec należy przeprowadzać co określoną liczbę kilometrów lub co pewien czas, co przyczynia się do dłuższej żywotności silnika.

Pytanie 18

Końcową obróbkę kół zębatych w przekładni głównej tylnego mostu realizuje się poprzez metodę

A. honowania
B. szlifowania
C. ugniatania
D. toczenia
Szlifowanie jest kluczową metodą obróbki końcowej kół zębatych w przekładniach głównych, ponieważ pozwala na uzyskanie wysokiej precyzji wymiarowej oraz odpowiedniej chropowatości powierzchni. W procesie szlifowania wykorzystuje się narzędzia ścierne, które usuwają niewielkie ilości materiału, co umożliwia osiągnięcie dokładnych tolerancji. Metoda ta jest szczególnie istotna w przypadku kół zębatych, gdzie precyzyjne dopasowanie jest niezbędne do minimalizacji luzów oraz hałasu podczas pracy przekładni. W praktyce, szlifowanie zębów kół zębatych jest realizowane na szlifierkach z zastosowaniem narzędzi o różnej ziarnistości, co pozwala na dostosowanie procesu do specyficznych wymagań projektowych. Standardy takie jak ISO 1328 definiują klasy dokładności zębów kół zębatych, co dodatkowo podkreśla znaczenie szlifowania w inżynierii mechanicznej.

Pytanie 19

Lepki, czerwony płyn eksploatacyjny to

A. płyn klimatyzacji R 134a
B. płyn hamulcowy DOT 4
C. olej silnikowy
D. olej ATT
Odpowiedź na to pytanie jest prawidłowa, ponieważ olej ATT (Automatic Transmission Fluid) jest lepki i często występuje w kolorze czerwonym. Jest to specjalny płyn stosowany w automatycznych skrzyniach biegów, który zapewnia nie tylko smarowanie, ale także chłodzenie oraz przenoszenie mocy. Dzięki odpowiednim właściwościom lepkościowym, olej ATT umożliwia skuteczną pracę przekładni, a jego barwa czerwona jest standardowa w wielu producentach, aby ułatwić identyfikację. Przykładowo, w przypadku awarii skrzyni biegów, mechanicy często sprawdzają poziom i stan oleju ATT, co pozwala na szybką diagnozę problemów. W branży motoryzacyjnej istnieją również normy, takie jak DEXRON lub MERCON, które określają wymagania dotyczące właściwości olejów przekładniowych, co jest kluczowe dla bezpieczeństwa i efektywności działania pojazdów. Właściwy dobór oleju ATT jest fundamentalny, aby zapewnić długowieczność skrzyni biegów oraz zachować optymalną wydajność pojazdu.

Pytanie 20

Czujniki magnetoindukcyjne wykorzystywane w systemach zapłonowych silników ZI zlikwidowały

A. cewkę zapłonową
B. czujnik położenia wału korbowego silnika
C. przerywacz
D. rozdzielacz zapłonu
Czujniki magnetoindukcyjne, stosowane w układach zapłonowych silników z zapłonem iskrowym (ZI), pełnią kluczową rolę w precyzyjnym określaniu momentu zapłonu mieszanki paliwowo-powietrznej. Dzięki zastosowaniu tych czujników, możliwe stało się wyeliminowanie przerywacza, który dawniej był elementem odpowiedzialnym za przerywanie obwodu w celu generowania impulsu zapłonowego. Przerywacz, jako mechaniczny element, był podatny na zużycie oraz wymagał regularnej konserwacji, co wpływało na niezawodność całego układu zapłonowego. Współczesne czujniki magnetoindukcyjne, działające na zasadzie indukcji elektromagnetycznej, umożliwiają bezpośrednie generowanie sygnałów elektrycznych w odpowiednich momentach, co zwiększa efektywność i dokładność zapłonu. Zastosowanie tych czujników nie tylko upraszcza konstrukcję układu zapłonowego, ale także przyczynia się do zmniejszenia emisji spalin oraz poprawy osiągów silnika. W branży motoryzacyjnej dąży się do minimalizacji liczby elementów mechanicznych, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 21

W jakim układzie lub systemie może być użyty czujnik Halla?

A. zasilania
B. komfortu jazdy
C. zapłonowym
D. cofania
Czujnik Halla jest kluczowym elementem w układzie zapłonowym silników spalinowych, ponieważ pozwala na precyzyjne monitorowanie położenia wału korbowego. Dzięki temu czujnik Halla może dostarczać istotne informacje do systemu sterującego, co jest niezbędne do synchronizacji momentu zapłonu. Działa on na zasadzie wykrywania zmian pola magnetycznego, co oznacza, że jego zastosowanie w tym kontekście zapewnia wysoką dokładność i niezawodność. W praktyce, czujnik Halla jest często stosowany w rozdzielaczach zapłonu, a także w systemach z zapłonem elektronicznym, które stały się standardem w nowoczesnych pojazdach. Innym przykładem jest wykorzystanie czujników Halla w systemach wtryskowych, gdzie precyzyjne pomiary są niezbędne do optymalizacji procesu spalania. Rozumienie roli czujnika Halla w zapłonie jest kluczowe dla diagnostyki i naprawy nowoczesnych silników, co czyni tę wiedzę niezbędną dla każdego technika samochodowego.

Pytanie 22

Frekfencja migania świateł kierunkowskazów powinna wynosić

A. 100 do 30 błysków na minutę
B. 60 do 30 błysków na minutę
C. 120 do 30 błysków na minutę
D. 90 do 30 błysków na minutę
Odpowiedzi wskazujące na częstotliwości 60, 100 lub 120 błysków na minutę zawierają różne niedociągnięcia, które mogą prowadzić do nieprawidłowych postrzegań i działań w ruchu drogowym. Częstotliwość 60 błysków na minutę jest zbyt niska, co może sprawić, że kierunkowskazy będą mniej widoczne dla innych użytkowników drogi. Zbyt wolne błyski mogą być interpretowane jako sygnał o braku działania, co w sytuacjach krytycznych może prowadzić do nieporozumień i potencjalnych kolizji. Natomiast częstotliwość 100 błysków na minutę może być postrzegana jako zbyt szybka, co może utrudnić innym kierowcom zauważenie sygnału. Takie podejście prowadzi do dezorientacji i może skutkować błędnymi decyzjami w ruchu drogowym. W skrajnych przypadkach, jeśli kierunkowskazy będą błyskały zbyt szybko, mogą być pomyłkowo zinterpretowane jako awaryjne sygnały świetlne, co dodatkowo zaogni sytuację na drodze. Z kolei odpowiedź sugerująca 120 błysków na minutę jest skrajnością, która nie tylko nie spełnia wymogów regulacyjnych, ale również stwarza realne zagrożenie. Zbyt szybkie miganie może prowadzić do sytuacji, w których kierowcy nie są w stanie właściwie zareagować na zmieniające się warunki, co jest niezgodne z zasadami bezpiecznej jazdy. Wszystkie te błędne koncepcje opierają się na podstawowym założeniu, że liczba błysków powinna być postrzegana jako wyłącznie techniczny aspekt, a nie jako element skomplikowanej interakcji między kierowcami, co jest kluczowe dla efektywnego funkcjonowania systemu ruchu drogowego.

Pytanie 23

Wał napędowy stanowi komponent

A. różnicujący prędkości obrotowe kół jezdnych w zakrętach oraz na nierównych nawierzchniach
B. wyrównujący prędkości pomiędzy poszczególnymi kołami
C. przenoszący moment obrotowy ze skrzyni biegów na przekładnię główną
D. przenoszący moment obrotowy bezpośrednio z przekładni głównej na koła napędowe
Pojęcie wału napędowego jest często mylone z innymi elementami układu przeniesienia napędu, co prowadzi do nieporozumień. Odpowiedzi sugerujące, że wał napędowy różnicuje prędkości obrotowe kół jezdnych lub wyrównuje prędkości pomiędzy poszczególnymi kołami, dotyczą raczej funkcji przekładni różnicowej, która jest odpowiedzialna za umożliwienie różnym kołom obracanie się z różnymi prędkościami, co jest szczególnie istotne podczas pokonywania zakrętów. Kolejna nieprawidłowa koncepcja sugeruje, że wał napędowy przenosi moment obrotowy bezpośrednio z przekładni głównej na koła napędowe, co jest błędne, ponieważ wał napędowy łączy skrzynię biegów z przekładnią główną, a nie z kołami. Moment obrotowy jest przenoszony na koła przez inne komponenty, takie jak wałek napędowy i przekładnia różnicowa. Często myślenie o wałach napędowych w kontekście ich funkcji jako elementów sterujących prędkościami prowadzi do dezorientacji w zakresie rozumienia złożonej struktury układu napędowego. Wał napędowy jest jedynie elementem przenoszącym moc, a nie regulującym prędkości obrotowe, co należy mieć na uwadze przy nauce o systemach napędowych.

Pytanie 24

Zapewnienie różnicowania prędkości obrotowej kół napędowych w trakcie pokonywania zakrętu przez pojazd realizowane jest dzięki

A. mechanizmowi różnicowemu
B. przekładni głównej
C. odpowiedniemu kątowi nachylenia kół
D. odpowiedniemu kątowi nachylenia sworznia zwrotnicy
Mechanizm różnicowy jest kluczowym elementem w układzie napędowym pojazdów, którego główną funkcją jest umożliwienie różnicowania prędkości obrotowej kół napędzanych podczas pokonywania zakrętów. W sytuacji, gdy pojazd skręca, koło znajdujące się po zewnętrznej stronie zakrętu przebywa dłuższą drogę niż koło wewnętrzne, co wymaga od nich różnej prędkości obrotowej. Mechanizm różnicowy rozwiązuje ten problem, pozwalając na swobodny ruch kół w osi poziomej, co zapobiega poślizgom i zapewnia lepszą przyczepność do drogi. W praktyce, zastosowanie mechanizmów różnicowych jest standardem w większości nowoczesnych pojazdów osobowych oraz ciężarowych. Przyczyniają się one nie tylko do poprawy komfortu jazdy, ale również do bezpieczeństwa i efektywności paliwowej. Dodatkowo, mechanizmy różnicowe mogą występować w różnych konfiguracjach, takich jak otwarte, zamknięte czy z ograniczonym poślizgiem, co pozwala na dostosowanie pojazdu do różnych warunków drogowych i stylów jazdy.

Pytanie 25

Jakim przyrządem wykonujemy pomiar ciśnienia powietrza w oponach?

A. manometrem
B. areometrem
C. wakuometrem
D. pasametrem
Prawidłowa odpowiedź to manometr, który jest urządzeniem pomiarowym przeznaczonym do pomiaru ciśnienia. W kontekście ogumienia pojazdów, manometr pozwala na dokładne określenie ciśnienia powietrza w oponach, co jest kluczowe dla bezpieczeństwa jazdy oraz efektywności paliwowej. Odpowiednie ciśnienie w oponach zapewnia lepszą przyczepność, zmniejsza zużycie paliwa oraz obniża ryzyko uszkodzenia opon. Standardy dotyczące ciśnienia w oponach są określone przez producentów pojazdów i mogą różnić się w zależności od modelu oraz obciążenia. Regularne sprawdzanie ciśnienia za pomocą manometru to dobra praktyka, która powinna być wykonywana co najmniej raz w miesiącu oraz przed dłuższymi podróżami. Warto także pamiętać, że ciśnienie w oponach należy sprawdzać na zimno, czyli przed rozpoczęciem jazdy, aby uzyskać najbardziej dokładny wynik pomiaru.

Pytanie 26

Pojawiające się w zbiorniczku wyrównawczym systemu chłodzenia pęcherzyki powietrza mogą być efektem uszkodzenia

A. pompy wody
B. termostatu
C. głowicy silnika
D. nagrzewnicy
Wybór odpowiedzi dotyczącej głowicy silnika jako źródła pęcherzyków powietrza w układzie chłodzenia jest prawidłowy, ponieważ uszkodzenie uszczelek głowicy lub pęknięcia w samej głowicy mogą prowadzić do przedostawania się spalin lub powietrza do układu chłodzenia. Taki stan rzeczy powoduje wytwarzanie pęcherzyków powietrza w zbiorniczku wyrównawczym, co może prowadzić do przegrzewania silnika. W praktyce, w przypadku stwierdzenia nadmiernego ciśnienia w układzie chłodzenia lub nieprawidłowego działania termostatu, zaleca się przeprowadzenie diagnostyki głowicy silnika oraz układu uszczelek, aby wyeliminować potencjalne nieszczelności. W kontekście standardów branżowych, regularne kontrole stanu uszczelek i głowicy silnika są zalecane w celu zapobiegania poważnym awariom i kosztownym naprawom. Odpowiednia konserwacja i nadzór nad układem chłodzenia mogą znacznie zwiększyć trwałość silnika oraz bezpieczeństwo użytkowania pojazdu.

Pytanie 27

Cykliczne zapalanie się oraz wygaszanie kontrolki systemu hamulcowego w trakcie jazdy może być spowodowane

A. niedostateczną ilością płynu hamulcowego
B. zbyt dużym zużyciem klocków hamulcowych
C. przegrzewaniem się tarcz hamulcowych
D. włączonym hamulcem ręcznym
Kiedy kontrolka od hamulców świeci się okresowo, to zazwyczaj znaczy, że coś nie gra z płynem hamulcowym. To jest mega ważny element w systemie hamulcowym. Jak poziom płynu jest za niski, to może być problem z ciśnieniem, a to sprawia, że hamulce nie działają jak powinny. Wtedy kontrolka się zapala, żeby dać kierowcy znać, że coś jest nie tak. Z moich doświadczeń wynika, że jak poziom płynu spadnie poniżej normy, to powietrze może się zassanie do układu, a to jeszcze bardziej komplikuje sprawę. Dlatego ważne jest, żeby regularnie sprawdzać poziom płynu hamulcowego, to powinno być częścią przeglądów. Jak zauważysz niski poziom, to najlepiej od razu dolać odpowiedni płyn hamulcowy, a przy okazji zdiagnozować, czemu go ubywa, bo mogą być wycieki z przewodów albo zużyte uszczelki. Regularne kontrole hamulców to klucz do bezpieczeństwa na drodze.

Pytanie 28

Energia mechaniczna w silnikach cieplnych funkcjonujących prawidłowo nie powstaje w wyniku procesu spalania

A. oleju silnikowego
B. oleju napędowego
C. benzyny
D. gazu ziemnego
Olej silnikowy jest substancją, która nie jest bezpośrednio używana do wytwarzania energii mechanicznej w silnikach cieplnych. Jego podstawowym zadaniem jest smarowanie ruchomych części silnika, co zapobiega ich zużyciu oraz przegrzewaniu. W silnikach cieplnych, takich jak silniki spalinowe, energia mechaniczna jest uzyskiwana zazwyczaj w wyniku spalania paliw, takich jak benzyna, olej napędowy czy gaz ziemny. Proces ten polega na przekształceniu energii chemicznej zawartej w paliwie na energię cieplną, która następnie wywołuje ruch tłoków. Olej silnikowy, choć niezwykle ważny dla prawidłowego funkcjonowania silnika, nie ma roli w tym procesie konwersji energii. Zrozumienie roli oleju silnikowego w systemie smarowania podkreśla znaczenie jego regularnej wymiany oraz stosowania olejów o odpowiednich parametrach, co jest zgodne z zaleceniami producentów pojazdów. Dbałość o układ smarowania przyczynia się do wydłużenia trwałości silnika oraz optymalizacji jego pracy.

Pytanie 29

Który z objawów sugeruje potrzebę wymiany amortyzatora na nowy?

A. Widoczne skrócenie drogi hamowania
B. Pulsowanie pedału hamulca w trakcie hamowania
C. Ślady wycieków na obudowie
D. Wibracje kierownicy podczas rozpoczynania jazdy
Jak widać, ślady wycieków na obudowie amortyzatora to poważna sprawa. To znak, że czas wymienić ten element. Amortyzatory są mega ważne, bo zapewniają komfort jazdy i stabilność samochodu. Ich głównym zadaniem jest tłumienie drgań, które pojawiają się, gdy jedziemy po nierównościach. Jeżeli zauważysz, że coś przecieka, to znaczy, że uszczelnienia są już do wymiany, a to prowadzi do utraty oleju w środku. A to nie jest dobre, bo jak oleju brakuje, to amortyzacja działa słabiej. To może wpłynąć na prowadzenie samochodu, zwłaszcza w zakrętach, gdzie nagle zauważysz, że coś jest nie tak. Dlatego, gdy zauważysz wycieki, lepiej wymienić amortyzator jak najszybciej. W końcu bezpieczeństwo jest najważniejsze. Branżowe standardy, jak te od SAE, mówią o tym, jak ważne są regularne przeglądy, żeby wychwycić problemy zanim staną się poważne.

Pytanie 30

Podczas przeprowadzania głównego remontu, po całkowitym zdemontowaniu silnika, jako pierwsze

A. elementy należy poddać ocenie.
B. elementy należy poddać regeneracji.
C. można przystąpić do montażu nowych elementów.
D. części należy umyć.
W trakcie naprawy głównej silnika, umycie wszystkich części jest kluczowym krokiem, który należy podjąć po demontażu. Celem mycia jest usunięcie wszelkich zanieczyszczeń, takich jak olej, smar, pył oraz inne osady, które mogłyby zagrażać dalszej pracy silnika. W procesie mycia wykorzystuje się różne metody, takie jak mycie ultradźwiękowe, chemiczne czy za pomocą wysokociśnieniowych myjek, które są zgodne z branżowymi standardami. Na przykład, czyszczenie za pomocą myjki ciśnieniowej może skutecznie usunąć zanieczyszczenia z trudno dostępnych miejsc. Warto również zwrócić uwagę na dobór odpowiednich środków czyszczących, które nie będą miały negatywnego wpływu na materiały, z których wykonane są części. Po dokładnym umyciu, części powinny być dokładnie osuszone, aby uniknąć korozji. Taki proces mycia przed weryfikacją i regeneracją zapewnia, że inspekcja i ewentualne naprawy są przeprowadzane na czystych elementach, co zwiększa ich żywotność i efektywność całego silnika.

Pytanie 31

Podczas obsługi okresowej pojazdu wymieniono materiały eksploatacyjne w ilościach podanych w tabeli. Koszt jednej roboczogodziny to 100 zł, a czas pracy mechanika wyniósł 1,5 godziny. Całkowity koszt usługi to

Części i materiałyCena jednostkowa brutto w złIlość
1. Filtr paliwa401 szt.
2. Filtr powietrza301 szt.
3. Filtr oleju201 szt.
4. Olej silnikowy254 l

A. 265 zł
B. 215 zł
C. 340 zł
D. 290 zł
Aby zrozumieć, dlaczego odpowiedź 340 zł jest prawidłowa, musimy przyjrzeć się szczegółom obliczeń związanych z całkowitym kosztem usługi. Koszt części eksploatacyjnych wynosi 190 zł. Następnie należy uwzględnić koszt robocizny, który obliczamy jako iloczyn stawki za roboczogodzinę oraz czasu pracy mechanika. Przy stawce 100 zł za godzinę oraz 1,5 godziny pracy, otrzymujemy 100 zł x 1,5 = 150 zł. Po zsumowaniu obu kosztów (190 zł za części i 150 zł za robociznę) uzyskujemy 340 zł. To podejście jest zgodne z praktykami rachunkowości stosowanymi w branży motoryzacyjnej, gdzie dokładne ustalanie kosztów usług jest kluczowe dla zapewnienia transparentności oraz efektywności operacyjnej. Przykładowo, takie obliczenia są niezbędne przy planowaniu budżetu na serwis pojazdów, co pozwala na lepsze zarządzanie kosztami i zapobieganie nieprzewidzianym wydatkom.

Pytanie 32

Oblicz pojemność skokową silnika trzycylindrowego, mając na uwadze, że pojemność skokowa jednego cylindra wynosi 173,4 cm3?

A. 346,8 cm3
B. 173,4 cm3
C. 520,2 cm3
D. 693,6 cm3
Pojemność skokowa silnika to całkowita objętość, jaką zajmują wszystkie cylindry podczas jednego cyklu pracy. Dla trzycylindrowego silnika, gdzie pojemność jednego cylindra wynosi 173,4 cm3, objętość skokowa oblicza się, mnożąc tę wartość przez liczbę cylindrów. Wzór na obliczenie pojemności skokowej silnika to: V = V_cylindrów * n, gdzie V_cylindrów to pojemność jednego cylindra, a n to liczba cylindrów. W tym przypadku mamy: V = 173,4 cm3 * 3 = 520,2 cm3. Zrozumienie pojemności skokowej jest kluczowe w projektowaniu silników, ponieważ wpływa na moc, moment obrotowy oraz efektywność paliwową. Wyższa pojemność skokowa zazwyczaj oznacza większą moc, ale również może wpłynąć na zużycie paliwa. Projektanci silników często dążą do optymalizacji pojemności skokowej w celu osiągnięcia najlepszej równowagi między wydajnością a emisjami. Przykładowo, w silnikach sportowych często stosuje się cylindry o większej pojemności, aby zwiększyć moc przy zachowaniu odpowiednich standardów emisji spalin.

Pytanie 33

Refraktometr nie jest przeznaczony do diagnozowania

A. płynu do spryskiwaczy
B. płynu chłodzącego
C. czynnika chłodzącego do napełnienia klimatyzacji
D. elektrolitu używanego w akumulatorach samochodowych
Czynnik chłodzący do napełnienia klimatyzacji rzeczywiście nie jest diagnozowany za pomocą refraktometru. Refraktometr jest narzędziem stosowanym do pomiaru współczynnika załamania światła substancji, co pozwala ocenić stężenie rozpuszczeń. W przypadku płynów chłodzących, elektrolitów do baterii czy płynów do spryskiwaczy, refraktometr może być użyty do określenia ich właściwości fizykochemicznych, takich jak stężenie czy jakość. Na przykład, w samochodach używa się refraktometrów do pomiaru stężenia glikolu w płynie chłodzącym, co jest istotne dla zapewnienia odpowiednich właściwości ochronnych w zmiennych warunkach temperatury. Z kolei w przypadku elektrolitów do baterii, pomiar gęstości roztworu pozwala ocenić stan naładowania akumulatora. Jednakże, refraktometry nie są przeznaczone do analizy czynników chłodzących stosowanych w systemach klimatyzacyjnych, które wymagają innych metod diagnostycznych, takich jak pomiar ciśnienia czy analizy chemiczne, aby określić ich jakość i ilość.

Pytanie 34

Stopień sprężania w silnikach spalinowych definiujemy jako stosunek objętości

A. skokowej do objętości całkowitej cylindra
B. całkowitej cylindra do objętości komory spalania
C. komory spalania do objętości całkowitej cylindra
D. całkowitej cylindra do objętości skokowej
Stopień sprężania w silnikach spalinowych definiuje się jako stosunek objętości całkowitej cylindra do objętości komory spalania. Prawidłowe zrozumienie tego pojęcia jest kluczowe dla oceny wydajności silnika oraz jego pracy. W praktyce, wyższy stopień sprężania pozwala na lepsze wykorzystanie mieszanki paliwowo-powietrznej, co skutkuje zwiększoną mocą oraz efektywnością energetyczną. Przykładowo, w silnikach wysokoprężnych, które zazwyczaj charakteryzują się dużo wyższymi wartościami stopnia sprężania niż silniki benzynowe, proces sprężania powietrza w cylindrze prowadzi do jego nagrzania, co umożliwia zapłon paliwa bez użycia świecy zapłonowej. W branży motoryzacyjnej standardy dotyczące stopnia sprężania są ściśle regulowane, a inżynierowie projektujący silniki często dążą do optymalizacji tego parametru, aby osiągnąć jak najlepsze parametry pracy silnika oraz spełnić normy emisji spalin.

Pytanie 35

Jakie są metody weryfikacji efektywności działania hamulca roboczego po dokonaniu naprawy?

A. na stanowisku do badania podwozi
B. na płycie testowej
C. przeprowadzając symulację
D. podczas próby na drodze
Odpowiedź 'podczas testu drogowego' jest poprawna, ponieważ testy drogowe są kluczowym elementem weryfikacji skuteczności hamulców roboczych po ich naprawie. W trakcie takiego testu można ocenić rzeczywiste zachowanie pojazdu w warunkach rzeczywistych, co pozwala na uwzględnienie zmiennych takich jak obciążenie, przyczepność nawierzchni czy interakcje z innymi systemami pojazdu. Test drogowy pozwala na monitorowanie czasu reakcji hamulców, ich efektywności w różnych prędkościach oraz na różnorodnych nawierzchniach. W praktyce, mechanicy oraz technicy często przeprowadzają takie testy na zamkniętych torach lub w warunkach kontrolowanych, aby zapewnić bezpieczeństwo. Dobrą praktyką jest również stosowanie procedur opisanych w normach technicznych, takich jak ISO 17215, które dotyczą testowania systemów hamulcowych. Tylko poprzez kompleksowe testy drogowe można w pełni ocenić efektywność i bezpieczeństwo działania hamulców po ich naprawie.

Pytanie 36

Po przeprowadzeniu próby olejowej wynik pomiaru ciśnienia sprężania uległ znacznemu zwiększeniu, co może świadczyć

A. o zużyciu gniazd zaworowych
B. o zużyciu pierścieni tłokowych
C. o niewłaściwej regulacji zaworów
D. o uszkodzeniu uszczelki pod głowicą
Wybór nieprawidłowej odpowiedzi może wynikać z nieporozumienia dotyczącego funkcji gniazd zaworowych, pierścieni tłokowych, regulacji zaworów oraz uszczelki pod głowicą. Zużycie gniazd zaworowych nie jest bezpośrednio związane z pomiarem ciśnienia sprężania podczas próby olejowej. Gniazda zaworowe odpowiadają za prawidłowe osadzenie zaworów, a ich zużycie prowadziłoby raczej do problemów z ich zamykaniem, co niekoniecznie objawia się wzrostem ciśnienia, ale raczej jego spadkiem. Z kolei zużycie pierścieni tłokowych, o którym mowa w poprawnej odpowiedzi, jest kluczowe dla utrzymania odpowiedniego ciśnienia sprężania. Niewłaściwa regulacja zaworów również nie prowadzi do wzrostu ciśnienia sprężania; może to skutkować wydechem spalin w niewłaściwym momencie, co w dłuższym okresie prowadzi do utraty mocy silnika, a nie do zwiększenia ciśnienia. Uszkodzenie uszczelki pod głowicą z kolei zazwyczaj powoduje spadek ciśnienia sprężania, ponieważ dochodzi do przecieków między cylindrami a układem chłodzenia lub smarowania. Dlatego ważne jest, aby zrozumieć, że różne mechanizmy usterkowe mają różne objawy diagnostyczne, co może prowadzić do błędnych wniosków. Kluczowe w praktyce diagnostycznej jest umiejętne interpretowanie wyników testów oraz znajomość zasad funkcjonowania poszczególnych elementów silnika.

Pytanie 37

W przypadku gdy u pracownika pojawią się pierwsze symptomy zatrucia tlenkiem węgla (ból głowy, uczucie zmęczenia, duszności oraz nudności), co należy zrobić w pierwszej kolejności?

A. wywołać u poszkodowanego wymioty
B. wyprowadzić poszkodowanego na świeże powietrze
C. podać poszkodowanemu leki przeciwbólowe
D. umieścić poszkodowanego w bezpiecznej pozycji do momentu przybycia lekarza
Wyprowadzenie poszkodowanego na świeże powietrze jest kluczowym działaniem w przypadku zatrucia tlenkiem węgla, ponieważ substancja ta jest bezbarwna i bezwonna, co utrudnia wczesne wykrycie zagrożenia. Objawy, takie jak ból głowy, duszności i nudności, są symptomami niedotlenienia organizmu, które mogą prowadzić do poważnych konsekwencji zdrowotnych, a nawet śmierci. Przeniesienie osoby poszkodowanej do dobrze wentylowanego pomieszczenia lub na zewnątrz zmniejsza stężenie tlenku węgla w organizmie, co może zminimalizować ryzyko poważnych uszkodzeń. Ważne jest, aby niezwłocznie wezwać pomoc medyczną, aby uzyskać profesjonalną opiekę. Zgodnie z wytycznymi organizacji zajmujących się zdrowiem i bezpieczeństwem, w takich sytuacjach należy zawsze priorytetowo traktować usunięcie osoby z miejsca zagrożenia. W praktyce, jeśli zauważysz objawy zatrucia tlenkiem węgla, natychmiast przystąp do ewakuacji poszkodowanego i zapewnij mu dostęp do świeżego powietrza, co jest kluczowym działaniem w ratowaniu zdrowia i życia.

Pytanie 38

Gdzie stosowany jest odśrodkowy regulator prędkości obrotowej?

A. w przeponowej pompie paliwowej silnika z zapłonem iskrowym
B. w rzędowej pompie wtryskowej
C. w pompie tłoczkowej o niskim ciśnieniu
D. w paliwowej pompie wysokiego ciśnienia w systemie Common Rail
Rzędowa pompa wtryskowa jest kluczowym elementem systemu zasilania silników diesla, a zastosowanie odśrodkowego regulatora prędkości obrotowej w tej konstrukcji ma na celu zapewnienie optymalnej wydajności i precyzyjnego dawkowania paliwa. Odśrodkowy regulator działa na zasadzie wykorzystania siły odśrodkowej, co przekłada się na automatyczne dostosowanie dawki paliwa w zależności od prędkości obrotowej silnika. Dzięki temu, pompa wtryskowa może dostarczać odpowiednią ilość paliwa w zależności od aktualnych warunków pracy, co wpływa na oszczędność paliwa, redukcję emisji spalin oraz poprawę osiągów silnika. W praktyce, takie rozwiązania są zgodne z najlepszymi praktykami branżowymi, które zalecają zastosowanie regulacji w systemach wtryskowych w celu zwiększenia efektywności energetycznej i zmniejszenia wpływu na środowisko. Przykładem może być nowoczesna technologia Common Rail, w której dokładne dawkowanie paliwa jest kluczowe dla osiągnięcia wysokiej sprawności silnika.

Pytanie 39

Hybrydowy napęd to wykorzystanie w pojeździe jednostki napędowej

A. z zapłonem iskrowym
B. spalinowej z elektryczną
C. wysokoprężnej
D. elektrycznej
Napęd hybrydowy w pojazdach oznacza zastosowanie zarówno silnika spalinowego, jak i elektrycznego w celu optymalizacji efektywności energetycznej oraz zmniejszenia emisji spalin. W praktyce oznacza to, że pojazdy hybrydowe mogą korzystać z mocy silnika spalinowego podczas jazdy na autostradzie, gdzie wymagana jest większa moc, natomiast w warunkach miejskich, gdzie prędkości są niższe, silnik elektryczny może działać samodzielnie. Taki system przyczynia się do znacznego obniżenia zużycia paliwa i redukcji emisji CO2, co jest zgodne z globalnymi standardami w zakresie ochrony środowiska. Przykłady zastosowania obejmują popularne modele samochodów takie jak Toyota Prius czy Honda Insight, które udowodniły, że hybrydowe napędy są nie tylko technologicznie zaawansowane, ale również ekonomicznie opłacalne dla użytkowników. Standardy dotyczące emisji spalin, takie jak Euro 6, kładą nacisk na rozwój technologii hybrydowych, co potwierdza ich rosnące znaczenie w branży motoryzacyjnej.

Pytanie 40

Podczas inspekcji układu zawieszenia zauważono odkształcenie wahacza koła. W tej sytuacji mechanik powinien

A. wygięty wahacz naprawić na zimno
B. wygięty wahacz naprawić na gorąco
C. uszkodzony wahacz wymienić na nowy
D. wykonać kompleksową regulację geometrii zawieszenia
W przypadku stwierdzenia skrzywienia wahacza koła, najlepszym rozwiązaniem jest jego wymiana na nowy. Wahacz jest kluczowym elementem układu zawieszenia, który odpowiada za stabilność pojazdu, a także zapewnia odpowiednią geometrię kół. Skrzywienie wahacza może prowadzić do nieprawidłowego ustawienia kół, co z kolei wpływa na bezpieczeństwo jazdy, zużycie opon oraz komfort podróżowania. Wymiana wahacza jest zgodna z zasadami dobrych praktyk w branży motoryzacyjnej, które zalecają stosowanie nowych, oryginalnych lub wysokiej jakości zamienników, aby zapewnić pełną funkcjonalność i bezpieczeństwo. W sytuacjach, gdy wahacz uległ uszkodzeniu, jego regeneracja poprzez prostowanie może wprowadzić dodatkowe ryzyko, gdyż nie gwarantuje to przywrócenia pierwotnych właściwości mechanicznych materiału. Przykładem może być sytuacja, w której po prostowaniu wahacza następuje jego dalsza deformacja podczas eksploatacji pojazdu. Dlatego zaleca się wymianę uszkodzonego wahacza na nowy, co zapewnia długoterminowe bezpieczeństwo oraz niezawodność układu zawieszenia.