Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 8 czerwca 2025 18:53
  • Data zakończenia: 8 czerwca 2025 19:04

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Nieprawidłowa impedancja falowa kabla koncentrycznego wskazuje na uszkodzenie

A. ekranu.
B. żyły.
C. izolacji wewnętrznej.
D. izolacji zewnętrznej.
Wybór odpowiedzi dotyczącej ekranu kabla koncentrycznego jako źródła problemów z impedancją falową może wynikać z błędnego zrozumienia funkcji poszczególnych elementów konstrukcyjnych kabla. Ekran pełni rolę ochronną, zabezpieczając przed zakłóceniami elektromagnetycznymi, jednak jego uszkodzenie rzadziej skutkuje bezpośrednią zmianą impedancji falowej. Przypadek uszkodzenia ekranu mógłby prowadzić do problemów z ekranowaniem, co w konsekwencji może wpłynąć na jakość sygnału, ale nie ma to bezpośredniego wpływu na impedancję falową. Wybór odpowiedzi dotyczącej uszkodzenia izolacji zewnętrznej również jest mylny, ponieważ ta warstwa ma głównie na celu ochronę kabla przed uszkodzeniami mechanicznymi i warunkami atmosferycznymi, a nie bezpośrednio wpływa na parametry elektryczne. Z kolei uszkodzenie żyły kabla, czyli przewodnika, również nie jest bezpośrednim powodem zmian w impedancji, chociaż mogłoby spowodować przerwy w sygnale. W związku z tym, wybierając te odpowiedzi, można popaść w pułapkę myślową, koncentrując się na zewnętrznych aspektach konstrukcji kabla, zamiast na kluczowej roli izolacji wewnętrznej, która jest odpowiedzialna za stabilność parametrów elektrycznych i jakości sygnału. W praktyce, prawidłowa ocena stanu kabla koncentrycznego wymaga znajomości ogólnych zasad jego działania, a także umiejętności diagnozowania specyficznych uszkodzeń i ich wpływu na funkcjonalność systemów komunikacyjnych.

Pytanie 2

Jak zwiększenie rezystancji obciążenia w układach wzmacniaczy rezystancyjnych wpłynie na

A. podwyższenie napięcia zasilającego
B. zmniejszenie pasma przenoszenia
C. wzrost mocy wyjściowej
D. spadek mocy wyjściowej
Zrozumienie wpływu rezystancji obciążenia na wzmacniacze rezystancyjne jest kluczowe w projektowaniu i użytkowaniu systemów elektronicznych. Wybór odpowiedzi sugerujących, że zwiększenie rezystancji obciążenia prowadzi do zwiększenia napięcia zasilania lub wzrostu mocy wyjściowej, opiera się na nieprawidłowym rozumieniu podstawowych zasad działania wzmacniaczy. W rzeczywistości, napięcie zasilania jest na stałym poziomie, które jest dostosowane do wymagań układu. Zwiększenie rezystancji obciążenia nie wpływa na to napięcie; zamiast tego, zmiana ta wpływa na ilość prądu, który może przepływać przez obciążenie. Wzrost rezystancji oznacza spadek prądu, co w konsekwencji prowadzi do zmniejszenia mocy wyjściowej, a nie jej wzrostu. Odpowiedzi sugerujące zmniejszenie pasma przenoszenia także są mylące. Pasmo przenoszenia wzmacniacza zależy głównie od jego topologii oraz użytych komponentów, a nie tylko od rezystancji obciążenia. W praktyce, niewłaściwe połączenie lub zła wartość rezystancji obciążenia mogą prowadzić do nieoptymalnego działania urządzenia, co jest często wynikiem braku zrozumienia związku pomiędzy rezystancją a parametrami wyjściowymi wzmacniacza. Takie błędne myślenie może prowadzić do nieefektywnego projektowania systemów audio czy pomiarowych, co podkreśla znaczenie znajomości teorii w praktyce inżynieryjnej.

Pytanie 3

Który z poniższych przyrządów jest używany do pomiaru oporności izolacji przewodów?

A. Mostek Wiena
B. Mostek Thomsona
C. IMI-341
D. UM-112B
IMI-341 to nowoczesny miernik izolacji, który jest powszechnie stosowany do pomiaru rezystancji izolacji kabli. Jego kluczową funkcją jest ocena stanu izolacji, co ma istotne znaczenie w kontekście bezpieczeństwa instalacji elektrycznych. Miernik ten może przeprowadzać pomiary przy różnych napięciach, co pozwala na dokładną diagnozę jakości izolacji. Przykładem jego zastosowania jest okresowe badanie instalacji elektrycznych w budynkach przemysłowych, gdzie nieodpowiedni stan izolacji może prowadzić do poważnych awarii i zagrożeń. IMI-341 jest zgodny z normami IEC 61010 oraz IEC 61557, co zapewnia jego niezawodność i bezpieczeństwo podczas eksploatacji. Dbanie o rezystancję izolacyjną jest kluczowe w zapobieganiu porażeniom elektrycznym oraz w redukcji ryzyka pożarów, co jest zgodne z najlepszymi praktykami w dziedzinie bezpieczeństwa elektrycznego.

Pytanie 4

Aby zlokalizować uszkodzenie tranzystora bipolarnego bez jego wylutowywania z płyty głównej systemu alarmowego, powinno się zmierzyć

A. rezystancję złącz pomiędzy B, E, C przy wyłączonym systemie
B. napięcia pomiędzy końcówkami E, B, C przy włączonym systemie
C. natężenie prądu kolektora tranzystora
D. rezystancję złącz pomiędzy B, E, C przy włączonym systemie
Pomiar rezystancji złącz pomiędzy końcówkami tranzystora przy wyłączonej centrali alarmowej może prowadzić do błędnych wniosków. W takim stanie tranzystor nie jest w stanie zrealizować swojej funkcji, a wyniki pomiaru mogą być nieadekwatne do rzeczywistych warunków pracy. Złącze B-E, które w normalnym stanie pracy powinno mieć określoną wartość napięcia, w stanie wyłączonym może wykazywać rezystancję, która nie oddaje rzeczywistej sytuacji. Dodatkowo, pomiar rezystancji przy włączonej centrali jest niebezpieczny dla sprzętu, ponieważ może prowadzić do zwarć lub uszkodzeń. W przypadku pomiaru natężenia prądu kolektora tranzystora, bez znajomości jego wartości szczytowych i charakterystyki pracy, również można uzyskać niewłaściwe informacje, co do stanu komponentu. Praktyka ta nie jest zgodna z znormalizowanymi metodami diagnostycznymi, które zalecają ocenę napięć w aktywnej pracy urządzenia. Ostatecznie, pomiar napięć daje pełniejszy obraz stanu tranzystora, co jest kluczowe w procesie naprawy i diagnostyki.

Pytanie 5

Czym jest watchdog?

A. system bezpośredniego dostępu do pamięci mikroprocesora
B. rodzaj timera kontrolującego działanie mikroprocesora
C. typ licznika rejestrującego impulsy zewnętrzne
D. system bezpośredniego dostępu do portów I/O mikroprocesora
W odpowiedziach, które nie są poprawne, występują różne koncepcje techniczne, które nie są zgodne z definicją i funkcją watchdogów. Na przykład, układ bezpośredniego dostępu do portów I/O mikroprocesora oznacza sprzętowy komponent, który umożliwia komunikację z urządzeniami zewnętrznymi, ale nie ma bezpośredniego związku z monitorowaniem pracy mikroprocesora. Tego rodzaju układy służą do współpracy z otoczeniem, a nie do nadzorowania i kontrolowania stanu mikroprocesora. Podobnie, rodzaj licznika zliczającego impulsy zewnętrzne również nie odnosi się do funkcji watchdogów. Liczniki te mają zastosowanie w pomiarach czasowych i zliczaniu zdarzeń, co nie jest ich funkcją. Również układ bezpośredniego dostępu do pamięci mikroprocesora, który umożliwia szybki transfer danych, nie pełni roli nadzoru nad jego pracą. Te błędne odpowiedzi mogą wynikać z nieporozumienia dotyczącego funkcji i zastosowania różnych komponentów systemu mikroprocesorowego. Kluczowe jest zrozumienie, że watchdog jest specjalizowanym narzędziem, które pełni unikalną rolę w zapewnieniu stabilności i niezawodności systemów, a nie jest jedynie wewnętrznym komponentem, który zajmuje się pamięcią czy portami I/O.

Pytanie 6

W przedsiębiorstwie zajmującym się produkcją układów elektronicznych złożono zamówienie na 20 sztuk pilotów telewizyjnych. Cena komponentów potrzebnych do zrealizowania jednego pilota wynosi 30 zł. Koszt pracy pracownika przy wytworzeniu jednego pilota to 10 zł. Jak będzie wyglądać całkowity koszt zamówienia po uwzględnieniu 5% zniżki?

A. 840 zł
B. 720 zł
C. 760 zł
D. 800 zł
Obliczenie całkowitego kosztu zamówienia 20 sztuk pilotów TV wymaga uwzględnienia kosztów elementów oraz kosztów robocizny. Koszt elementów dla jednego pilota wynosi 30 zł, co daje łącznie 600 zł za 20 sztuk (20 x 30 zł). Dodatkowo, koszt wykonania jednego pilota przez pracownika wynosi 10 zł, co przekłada się na 200 zł za 20 pilotów (20 x 10 zł). Zatem łączny koszt produkcji wynosi 800 zł (600 zł + 200 zł). Po zastosowaniu 5% rabatu, który wynosi 40 zł (5% z 800 zł), całkowity koszt zamówienia obniża się do 760 zł (800 zł - 40 zł). Tego rodzaju kalkulacja jest standardową praktyką w branży produkcyjnej, gdzie rabaty są często stosowane przy większych zamówieniach, co może znacznie wpłynąć na ostateczny koszt. Zrozumienie tych obliczeń jest kluczowe dla zarządzania kosztami oraz efektywności finansowej w firmach produkcyjnych.

Pytanie 7

W systemach zabezpieczeń najbardziej podatna na przeciągi w strzeżonym pomieszczeniu jest

A. czujka magnetyczna
B. akustyczna czujka stłuczenia szyby
C. czujka wibracyjna
D. pasywna czujka podczerwieni
Pasywna czujka podczerwieni (PIR) jest zaprojektowana do wykrywania zmian w promieniowaniu podczerwonym, które emitują obiekty w ruchu, takie jak ludzie. Jej wrażliwość na przeciągi wynika z faktu, że czujka ta działa na zasadzie różnicy temperatur między obiektami a otoczeniem. W przypadku przeciągu, zmiany temperatury mogą wpływać na skuteczność wykrywania, co czyni ją bardziej podatną na zakłócenia. W praktyce, w pomieszczeniach, gdzie występuje wzmożony ruch powietrza, zaleca się umieszczanie czujek PIR w taki sposób, aby zminimalizować ich kontakt z bezpośrednim ruchem powietrza, co jest zgodne z dobrymi praktykami instalacji systemów alarmowych. Warto również stosować czujki o różnej technologii w zależności od charakterystyki chronionego obszaru, aby zwiększyć efektywność systemu. Standardy branżowe, takie jak EN 50131, wskazują na konieczność przeprowadzania analizy ryzyka dla każdego rodzaju instalacji, co podkreśla znaczenie odpowiedniego doboru typów czujek w zależności od warunków w pomieszczeniu.

Pytanie 8

Jakiego środka używa się do oczyszczania płytek drukowanych po zamontowaniu elementów elektronicznych?

A. Benzyny
B. Wody
C. Alkoholu
D. Kwasu
Izopropanol to naprawdę świetny wybór do czyszczenia płytek drukowanych po lutowaniu. Działa jak rozpuszczalnik i szybko odparowuje, co jest mega przydatne, bo dzięki temu zmniejszamy ryzyko uszkodzenia elementów. W branży to już standard – zawsze warto umyć płytki, żeby pozbyć się resztek topnika, olejów i innych brudów, które mogą wpłynąć na to, jak wszystko będzie działać. Jak używasz 99% alkoholu izopropylowego, to skutecznie usuwasz pozostałości po lutowaniu. To z kolei zapobiega takim problemom jak korozja czy zwarcia. No i czyszczenie alkoholem jest zgodne z normami IPC-A-610 i IPC-J-STD-001, więc wiadomo, że to sprawdzone metody. W sumie, to szybkie i efektywne, dlatego wielu w warsztatach wybiera właśnie alkohol do czyszczenia płytek.

Pytanie 9

W jakim urządzeniu stosuje się zjawisko defleksji elektronów w polu elektromagnetycznym?

A. Dysku twardym
B. Monitorze CRT
C. Ekranie LCD
D. Nośniku optycznym
Monitor CRT (katodowy) wykorzystuje zjawisko odchylania elektronów w polu elektromagnetycznym do wyświetlania obrazu. W jego wnętrzu znajduje się lampa elektronowa, która emituje strumień elektronów. Te elektrony są przyciągane do ekranu, na którym pokrycie fosforowe emitują światło w momencie, gdy są bombardowane przez te cząstki. Odchylanie elektronów odbywa się za pomocą pól elektromagnetycznych generowanych przez cewki odchylające, które zmieniają trajektorię elektronów, kierując je na odpowiednie miejsce na ekranie. Ta technologia była powszechnie stosowana w monitorach komputerowych i telewizorach przez wiele lat, zanim została w dużej mierze zastąpiona przez nowocześniejsze technologie, takie jak LCD i OLED. Monitor CRT ilustruje zasadę działania elektromagnetyzmu, co jest kluczowe w naukach fizycznych oraz inżynieryjnych, a jego konstruowanie wymagało znajomości zjawisk fizycznych oraz umiejętności projektowania układów elektronicznych.

Pytanie 10

Jakie działania powinny być podjęte jako pierwsze, gdy przystępuje się do naprawy telewizyjnego odbiornika?

A. Wyłączenie odbiornika pilotem, a następnie zdemontowanie tylnej obudowy
B. Odłączenie kabla antenowego od odbiornika, a następnie wyłączenie zasilania odbiornika
C. Wyłączenie napięcia w budynku, a następnie odłączenie kabla antenowego od odbiornika
D. Wyłączenie odbiornika, a następnie odłączenie go od zasilania przez wyjęcie wtyczki z gniazda sieci elektrycznej
Podczas analizowania błędnych odpowiedzi, zauważamy, że wiele z nich opiera się na zrozumieniu procedur bezpieczeństwa, które są kluczowe w pracy z urządzeniami elektrycznymi. Wyłączenie napięcia w budynku oraz odłączenie kabla antenowego przed wyłączeniem odbiornika telewizyjnego jest podejściem, które może prowadzić do niebezpiecznych sytuacji. Wyłączenie napięcia w całym budynku jest skrajnie niepraktyczne i może wywołać niepotrzebne zakłócenia w działaniu innych urządzeń w tym samym czasie, a także nie rozwiązuje problemu związanych z ewentualnym porażeniem prądem podczas pracy z telewizorem. Kolejnym niedobrym pomysłem jest wyłączenie odbiornika pilotem, co nie zapewnia pełnego bezpieczeństwa. Pilot zdalnego sterowania może nie odłączyć urządzenia od zasilania, co pozostawia je w stanie gotowości, co jest potencjalnie niebezpieczne przy dalszych pracach naprawczych. Dodatkowo, demontowanie tylnej ściany obudowy bez wyłączenia zasilania jest odpowiedzialne za zwiększone ryzyko uszkodzenia komponentów wewnętrznych oraz porażenia prądem. Odłączenie kabla antenowego przed wyłączeniem odbiornika również nie jest prawidłowym podejściem, ponieważ nie eliminuje ryzyka powstania napięcia w urządzeniu podczas jego naprawy. Należy zawsze pamiętać, że bezpieczeństwo jest na pierwszym miejscu, dlatego każde działanie związane z naprawą musi zaczynać się od wyłączenia odbiornika z sieci.

Pytanie 11

Zakres regularnego kontrolowania oraz testowania zasilających instalacji urządzeń elektronicznych nie obejmuje

A. badania ciągłości przewodów ochronnych
B. pomiaru poboru mocy przez zasilane odbiorniki
C. pomiaru rezystancji przewodów
D. próby działania urządzeń różnicowoprądowych
Prawidłowa odpowiedź wskazuje, że zakres okresowego sprawdzania i prób instalacji zasilającej urządzenie elektroniczne nie obejmuje pomiaru poboru mocy przez zasilane odbiorniki. W praktyce, to badanie koncentruje się na zapewnieniu bezpieczeństwa i niezawodności instalacji elektrycznej, a nie na analizie wydajności energetycznej odbiorników. Zgodnie z normą PN-EN 60204-1 oraz innymi wytycznymi, istotne jest, aby sprawdzano aspekty takie jak ciągłość przewodów ochronnych, rezystancję przewodów oraz działanie urządzeń różnicowoprądowych, aby upewnić się, że instalacja elektryczna nie stanowi zagrożenia dla użytkowników. Przykładem może być badanie ciągłości przewodów ochronnych, które jest kluczowe dla ochrony przed porażeniem prądem. Pomiar poboru mocy, choć ważny dla oceny efektywności energetycznej, nie jest częścią podstawowych kontrolnych procedur związanych z bezpieczeństwem instalacji.

Pytanie 12

Aby przymocować przewód PE typu LY 1×2,5 mm2 do zacisku śrubowego, jakie rozwiązanie należy wybrać?

A. koszulka termokurczliwa
B. spoiwo do metali
C. zacisk oczkowy
D. narzędzie lutownicze
Zastosowanie zacisku oczkowego do przytwierdzenia przewodu PE typu LY 1×2,5 mm² do zacisku śrubowego jest najlepszym rozwiązaniem ze względu na jego właściwości mechaniczne oraz zapewnienie dobrej łączności elektrycznej. Zaciski oczkowe są projektowane tak, aby zapewnić mocne i niezawodne połączenie, co jest szczególnie ważne w przypadku przewodów ochronnych. Takie połączenie minimalizuje ryzyko luzów, które mogłyby prowadzić do zwiększonego oporu elektrycznego oraz potencjalnych awarii w instalacji. W praktyce, po przykręceniu zacisku do śruby, można być pewnym, że połączenie jest solidne i odporne na drgania i zmiany temperatury. W wielu branżach, takich jak budownictwo czy przemysł, stosowanie zacisków oczkowych jest standardem, co potwierdzają normy takie jak PN-EN 60439. Dobrą praktyką jest również regularne sprawdzanie stanu połączeń w instalacjach elektrycznych, aby zapewnić ich bezpieczeństwo i funkcjonalność przez długi czas.

Pytanie 13

Przy regulacji głośności w urządzeniach akustycznych charakterystyczne trzaski mogą świadczyć o uszkodzeniu

A. wzmacniacza mocy
B. zasilacza
C. potencjometru
D. głośnika
Zasilacz, wzmacniacz mocy i głośnik to kluczowe komponenty systemu audio, ale ich uszkodzenia nie są bezpośrednio związane z charakterystycznymi trzaskami podczas regulacji głośności. Zasilacz, odpowiedzialny za dostarczenie energii do całego systemu, może powodować problemy z zasilaniem, takie jak szumy lub brak mocy, jednak trzaski nie są typowym objawem jego uszkodzenia. Z kolei wzmacniacz mocy, który zwiększa sygnał audio, może generować różne problemy dźwiękowe, ale zwykle są one spowodowane przesterowaniem lub innymi problemami z sygnałem wejściowym, a nie bezpośrednio z regulacją głośności. Głośnik natomiast jest ostatnim elementem w łańcuchu sygnałowym, który przekształca sygnał elektryczny na fale dźwiękowe. Uszkodzenie głośnika skutkuje typowo zniekształceniami dźwięku, a nie trzaskami w trakcie regulacji. Odpowiedzi wskazujące na te komponenty mogą wynikać z mylnego zrozumienia funkcji każdego z tych elementów oraz ich wzajemnych interakcji w systemie audio. Kluczowe jest zrozumienie, że trzaski podczas regulacji głośności są specyficznym objawem problemów z mechanizmem regulacji, a nie z innymi, bardziej złożonymi elementami systemu akustycznego. W praktyce, aby uniknąć takich błędów, warto poszerzać wiedzę na temat działania i diagnostyki sprzętu audio, co pozwoli na właściwą identyfikację problemów i ich skuteczne rozwiązanie.

Pytanie 14

Czynniki wpływające na zniekształcenie sygnału przesyłanego w światłowodzie jednomodowym to

A. pole elektromagnetyczne
B. dyspersja chromatyczna
C. pole elektrostatyczne
D. dyspersja międzymodowa
Dyspersja międzymodowa jest zjawiskiem, które występuje głównie w światłowodach wielomodowych, gdzie różne tryby propagacji światła mogą podróżować różnymi ścieżkami. W kontekście światłowodów jednomodowych, dyspersja międzymodowa nie ma zastosowania, ponieważ te światłowody są zaprojektowane tak, aby prowadzić tylko jeden tryb światła, co minimalizuje ryzyko zniekształceń związanych z tym zjawiskiem. Pole elektromagnetyczne oraz pole elektrostatyczne również nie mają bezpośredniego wpływu na zniekształcenia sygnału w światłowodach. Pole elektromagnetyczne może wpływać na sygnały w różnych technologiach komunikacyjnych, ale w kontekście przesyłu światłowodowego nie jest to istotne, ponieważ światłowody działają na zasadzie propagacji światła, a nie fal elektromagnetycznych w tradycyjnym sensie. Pole elektrostatyczne, z drugiej strony, dotyczy interakcji ładunków elektrycznych, które również nie wpływają na sygnał w światłowodach. Typowe błędy myślowe mogą prowadzić do mylenia tych pojęć z dyspersją chromatyczną, której skutki są bardziej zauważalne w kontekście transmisji danych. Zrozumienie tych różnic jest kluczowe dla projektowania i optymalizacji systemów światłowodowych oraz dla efektywnego rozwiązywania problemów związanych z zniekształceniami sygnału.

Pytanie 15

Aby zrealizować instalację telewizyjną podtynkową, należy

A. układać przewody w pionie i poziomie, dociskając je do ściany
B. układać przewody w dowolny sposób, pamiętając, aby trasy przewodów się nie krzyżowały
C. układać przewody tylko w kierunku pionowym i poziomym, uwzględniając kąt zgięcia kabla
D. układać przewody wyłącznie po najkrótszej trasie
Prawidłowa odpowiedź wskazuje, że podczas prowadzenia instalacji telewizyjnej podtynkowej należy prowadzić przewody tylko w pionie i poziomie, uwzględniając kąt zagięcia kabla. Taki sposób prowadzenia przewodów zapewnia nie tylko estetyczny wygląd, ale także odpowiednie parametry transmisji sygnału. Przewody telewizyjne, w szczególności te typu coaxial, powinny być prowadzone zgodnie z określonymi wytycznymi, które zalecają unikanie ostrych zagięć. Kąt zagięcia kabla powinien być dostosowany do specyfikacji producenta, aby uniknąć ewentualnych uszkodzeń. W praktyce oznacza to, że przy instalacji przewodów w ścianach, należy stosować korytka kablowe, które umożliwiają prowadzenie kabli w sposób zabezpieczający je przed mechanicznymi uszkodzeniami, a także eliminują problemy związane z zakłóceniami sygnału. Dodatkowo, warto zwrócić uwagę na rozmieszczenie gniazdek oraz inne elementy instalacji, aby maksymalnie uprościć trasy przewodów, co również przyczyni się do poprawy jakości sygnału oraz ułatwi przyszłe modyfikacje. Wiele norm dotyczących instalacji telewizyjnych, takich jak PN-EN 50174, podkreśla znaczenie odpowiedniego prowadzenia przewodów w celu zapewnienia ich wydajności i trwałości.

Pytanie 16

Termin "adres MAC" odnosi się do adresu

A. karty sieciowej przypisanego przez producenta urządzenia.
B. komputera przydzielonego przez serwer DHCP.
C. bramy domowej.
D. serwera DHCP.
Adres MAC (Media Access Control) to unikalny identyfikator przypisany do interfejsu sieciowego urządzenia, takiego jak karta sieciowa, przez producenta. Składa się z 48-bitowej liczby, zazwyczaj zapisywanej w postaci sześciu grup po dwa znaki szesnastkowe. Adresy MAC są używane w warstwie łącza danych modelu OSI do identyfikacji urządzeń w sieci lokalnej. Dzięki unikalności adresu MAC, urządzenia mogą komunikować się bez konfliktów. Przykładowo, router w sieci lokalnej używa adresów MAC do kierowania pakietów do właściwych odbiorców. Warto zauważyć, że adresy MAC są kluczowe w protokołach takich jak Ethernet i Wi-Fi, gdzie identyfikacja urządzeń jest niezbędna do prawidłowego funkcjonowania sieci. Standard IEEE 802.3 dla Ethernetu oraz IEEE 802.11 dla Wi-Fi jasno określają, jak adresy MAC są tworzone i używane. W praktyce, znajomość adresów MAC jest niezbędna przy konfigurowaniu zabezpieczeń w sieci, takich jak filtrowanie MAC, które pozwala administratorom na ograniczenie dostępu do sieci tylko do autoryzowanych urządzeń.

Pytanie 17

Czy światło słoneczne może doprowadzić do utraty danych w pamięci rodzaju

A. EPROM
B. DRAM
C. EEPROM
D. SDRAM
EPROM (Erasable Programmable Read-Only Memory) to rodzaj pamięci, która może być programowana oraz kasowana za pomocą światła ultrafioletowego. W przeciwieństwie do pamięci EEPROM czy DRAM, EPROM jest pamięcią nieulotną, co oznacza, że zachowuje swoje dane nawet po odłączeniu zasilania. Jednakże, jej zawartość można usunąć poprzez wystawienie na działanie promieniowania UV. To sprawia, że EPROM jest stosunkowo łatwa do kasowania i programowania, co jest przydatne w aplikacjach, gdzie dane muszą być często aktualizowane, ale również wymagają długoterminowego przechowywania. Przykład zastosowania EPROM to w systemach wbudowanych, gdzie może być używana do przechowywania oprogramowania, które wymaga aktualizacji. W branży elektronicznej, standardy zalecają stosowanie pamięci EPROM w urządzeniach, które nie wymagają częstej wymiany danych, ale potrzebują elastyczności w programowaniu. Cały proces programowania i kasowania jest zgodny z dobrymi praktykami inżynierskimi, zapewniając długowieczność i niezawodność sprzętu.

Pytanie 18

Jakie cechy posiada wzmacniacz kanałowy w złożonych systemach antenowych?

A. Wzmacnia sygnał wszystkich kanałów o takiej samej wartości
B. Wzmacnia sygnał kanałów wizyjnych o wyższych częstotliwościach
C. Wzmacnia selektywnie sygnały jednego lub kilku kanałów telewizyjnych
D. Zwiększa sygnał kanałów wizyjnych o niższych częstotliwościach
Wzmacniacz kanałowy jest kluczowym elementem rozbudowanych instalacji antenowych, który pełni istotną rolę w poprawie jakości sygnału telewizyjnego. Jego fundamentalną właściwością jest selektywne wzmacnianie sygnałów jednego lub kilku określonych kanałów telewizyjnych, co pozwala na eliminację zakłóceń i poprawę odbioru. W praktyce, zastosowanie wzmacniacza kanałowego pozwala na osiągnięcie lepszej jakości obrazu i dźwięku, zwłaszcza w warunkach, gdzie sygnał jest osłabiony przez czynniki zewnętrzne, takie jak odległość od nadajnika czy przeszkody terenowe. Wzmacniacze te są projektowane zgodnie z określonymi standardami, aby zapewnić optymalną wydajność i minimalizację strat sygnału. Na przykład w instalacjach kablowych lub w systemach zbiorowego odbioru telewizyjnego, wzmacniacze kanałowe są często wykorzystywane do selektywnego wzmacniania sygnałów z różnych źródeł, co umożliwia odbiór szerokiego zakresu kanałów bez zakłóceń. Dzięki temu użytkownicy mogą cieszyć się lepszym doświadczeniem telewizyjnym, a instalacje mają większą niezawodność i efektywność.

Pytanie 19

Reflektometr optyczny to urządzenie wykorzystywane do identyfikacji uszkodzeń w

A. ogniwach fotowoltaicznych
B. światłowodach
C. matrycach LED RGB
D. matrycach LCD
Nieprawidłowe odpowiedzi wskazują na nieporozumienia związane z zastosowaniem reflektometrów optycznych. W przypadku ogniw fotowoltaicznych, technologia ta nie jest stosowana w diagnostyce, ponieważ ogniwa te opierają się na zjawisku fotoelektrycznym, a ich sprawność ocenia się przy użyciu mierników prądu i napięcia. Matryce LCD i LED RGB to technologie wyświetlania, które nie korzystają z systemu światłowodowego, a ich naprawa i diagnostyka wymagają zupełnie innych narzędzi, takich jak multimetry, testery luminancji czy analizy obrazu. Ponadto, błędne podejście do reflektometrii optycznej może wynikać z mylnego przekonania, że technologia ta jest uniwersalna dla wszelkich typów urządzeń elektronicznych. Reflektometria optyczna jest ściśle związana z systemami światłowodowymi, a jej zastosowanie w innych dziedzinach jest ograniczone. Dlatego istotne jest zrozumienie, że różne technologie wymagają odpowiednich narzędzi diagnostycznych, a zamienianie ich miejscami prowadzi do nieefektywności i wydłużenia czasu napraw.

Pytanie 20

Skrętka bez ekranowania folią jest oznaczana jako

A. U/UTP
B. F/UTP
C. U/FTP
D. F/FTP
Skrętka, która nie ma folii, czyli U/UTP, to standardowy kabel sieciowy, który nie jest dodatkowo osłonięty. Nazwa U/UTP pochodzi od angielskiego "Unshielded Twisted Pair". Tego typu kable są często wykorzystywane w lokalnych sieciach komputerowych, zwłaszcza tam, gdzie ryzyko zakłóceń elektromagnetycznych jest umiarkowane. Jak dla mnie, idealnie nadają się do biur, gdzie łączą komputery z przełącznikami sieciowymi. Fajnie, że te nieekranowane kable są zgodne z normami, takimi jak TIA/EIA 568, co mówi o ich szerokim zastosowaniu. Generalnie, U/UTP jest popularny w instalacjach Ethernet, zarówno w 10Base-T, 100Base-TX, jak i 1000Base-T, więc naprawdę warto je znać, jeśli interesujesz się sieciami.

Pytanie 21

Jakiego środka ochrony osobistej powinien użyć pracownik podczas kontroli naprawianego odtwarzacza DVD, gdy źródło lasera nie jest zabezpieczone?

A. Okulary z ciemnymi soczewkami oraz filtrem UV
B. Okulary z soczewkami, które nie przepuszczają fal o określonej długości
C. Obuwie ochronne
D. Rękawice ochronne
Wybór niewłaściwych środków ochrony osobistej może prowadzić do poważnych problemów zdrowotnych. Widzisz, okulary z ciemnymi soczewkami i filtrem UV mogą nie dawać odpowiedniej ochrony przed promieniowaniem laserowym. To trochę mylące, bo chociaż chronią przed UV, nie zabezpieczają nas przed długościami fal emitowanymi przez lasery, które często są w widzialnym zakresie. Rękawice ochronne są ważne, ale niestety nie pomogą nam w ochronie oczu, a obuwie ochronne, chociaż przydatne w wielu sytuacjach, też nie rozwiązuje problemu z laserami. Często ludzie koncentrują się na ogólnych środkach ochrony, a zapominają o tych specyficznych dla danego zagrożenia, co może prowadzić do tego, że nie są wystarczająco zabezpieczeni w sytuacjach z zagrożeniem laserowym. Dlatego w ocenie ryzyka warto zawsze brać pod uwagę, jakie zagrożenia występują i wybierać ochronę zgodnie z normami i zasadami BHP.

Pytanie 22

Kamera, działająca w systemie monitoringu wizyjnego, która jest umieszczona na zewnątrz i rejestruje obraz w każdych warunkach, powinna być wyposażona w

A. obiektyw szerokokątny
B. oświetlacz IR
C. obudowę z plastiku
D. obudowę metalową
No więc tak, obudowa z tworzywa może dawać jakąś ochronę przed deszczem albo śniegiem, ale nie ze wszystkim sobie radzi. Jak mamy kamery na zewnątrz, to istotne jest, żeby były całkowicie odporne na zmienne warunki pogodowe. Obudowy metalowe są lepsze pod względem wytrzymałości, ale czasem mają problem z izolacją termiczną, co może wywołać kondensację pary wewnątrz kamery, a to prowadzi do różnych usterek. Co do obiektywu szerokokątnego, to jest przydatny, ale nie jest najważniejszy w monitorowaniu w nocy. Tu liczy się bardziej oświetlacz IR, żeby kamera mogła działać w ciemności. Ludzie często mylą się, skupiając się na estetyce obudowy, a zapominają, że to jak kamera radzi sobie w trudnych warunkach oświetleniowych jest kluczowe. A to zapewnia odpowiednia technologia, taka jak oświetlacze podczerwone.

Pytanie 23

Na którym zakresie pomiarowym należy wykonywać precyzyjny pomiar napięcia po stronie wtórnej transformatora, którego parametry podano w tabeli?

Napięcie pierwotne230 V
Napięcie wtórne12 V
Prąd uzwojenia wtórnego2 A
Moc25 VA

A. 200 V DC
B. 20 V DC
C. 20 V AC
D. 200 V AC
Odpowiedź 20 V AC jest prawidłowa, ponieważ odpowiada charakterystyce napięcia wtórnego transformatora, które wynosi 12 V. W kontekście pomiarów elektrycznych, ważne jest, aby stosować przyrządy pomiarowe w odpowiednim zakresie, co zapewnia dokładność oraz bezpieczeństwo pomiarów. Dla napięcia zmiennego (AC) o wartości 12 V, najbliższy standardowy zakres pomiarowy, który nie przekracza wartości nominalnej, to 20 V AC. Praktyczne zastosowanie tego pomiaru odnosi się do wielu sytuacji w inżynierii elektrycznej, w których musimy monitorować napięcia w obwodach zasilających urządzenia elektroniczne. Stosowanie odpowiedniej skali pomiarowej nie tylko minimalizuje ryzyko uszkodzenia sprzętu, ale także pozwala na uzyskanie precyzyjnych wyników, które są kluczowe dla diagnostyki oraz serwisu urządzeń. Zgodnie z normami IEC oraz krajowymi przepisami, pomiar napięć powinien odbywać się w bezpiecznych i przewidywalnych warunkach. W związku z tym, dobór odpowiedniego zakresu pomiarowego jest fundamentalnym krokiem w zapewnieniu wysokiej jakości pracy z urządzeniami elektrycznymi.

Pytanie 24

Aby przygotować przewód YLY do zamontowania w kostce zaciskowej, należy

A. na odsłonięty z izolacji koniec przewodu założyć końcówkę tulejkową i włożyć do kostki
B. odsłonięty z izolacji koniec posmarować pastą izolacyjną i umieścić w kostce
C. przewód włożyć do kostki bez usuwania izolacji oraz smarowania go pastą izolacyjną
D. odsłonięty z izolacji koniec przewodu umieścić bezpośrednio w kostce
Odpowiedź dotycząca zaciskania końcówki tulejkowej na obranym z izolacji końcu przewodu YLY jest prawidłowa, ponieważ zapewnia to solidne i bezpieczne połączenie elektryczne. Tulejki zaciskowe poprawiają kontakt elektryczny i chronią przewód przed uszkodzeniem mechanicznym oraz korozją, co może wystąpić w przypadku gołych końców przewodów. W praktyce, przed założeniem tulejki, końcówka przewodu powinna być odpowiednio przygotowana, co obejmuje usunięcie izolacji na właściwą długość, aby tulejka mogła być prawidłowo założona. Tego rodzaju połączenia są zgodne z międzynarodowymi standardami elektrycznymi, które promują bezpieczeństwo i niezawodność instalacji. Zastosowanie tulejek jest szczególnie istotne w instalacjach, gdzie przewody są narażone na wibracje lub ruch, ponieważ minimalizuje to ryzyko luźnych połączeń, co mogłoby prowadzić do awarii lub pożaru. Dlatego prawidłowe przygotowanie przewodu z zastosowaniem tulejek jest kluczowym aspektem w pracy z instalacjami elektrycznymi.

Pytanie 25

Multiswitche umożliwiają

A. sterowanie wszystkimi torami satelitarnymi.
B. zmianę kąta azymutu anteny.
C. stworzenie systemu antenowego z dowolną ilością gniazd do odbioru.
D. wybór programów telewizyjnych do odbioru.
Multiswitche to urządzenia stosowane w systemach telewizji satelitarnej, które umożliwiają rozdzielenie sygnału satelitarnego na wiele gniazd odbiorczych. Dzięki nim można zbudować instalację antenową o dowolnej liczbie odbiorników, co jest szczególnie przydatne w dużych obiektach, takich jak bloki mieszkalne czy hotele. Multiswitch pozwala na podłączenie wielu dekoderów do jednego talerza satelitarnego. W praktyce oznacza to, że mieszkańcy mogą korzystać z różnych programów telewizyjnych bez potrzeby instalacji osobnych anten. Warto podkreślić, że dobrze zaprojektowana instalacja z użyciem multiswitchy powinna uwzględniać odpowiednie normy, takie jak EN 50083-2, które dotyczą parametrów technicznych systemów rozdzielających sygnały. Właściwe dobranie multiswitcha oraz jego konfiguracja mogą zadecydować o jakości odbioru i stabilności sygnału w różnych warunkach użytkowania.

Pytanie 26

Jakiego sprzętu należy użyć podczas wymiany uszkodzonej diody w elektrozaczepie drzwi wejściowych?

A. Stacji na gorące powietrze
B. Stacji lutowniczej
C. Lutownicy oporowej
D. Lutownicy transformatorowej
Kiedy wybierasz inne narzędzia lutownicze, jak lutownica oporowa czy stacja lutownicza, mogą się zdarzyć problemy przy wymianie diod w elektrozaczepach. Lutownica oporowa, wiadomo, też się używa w elektronice, ale nie daje takiej samej kontroli nad temperaturą jak transformatorowa, co jest istotne, bo diody są wrażliwe na ciepło. Stacje lutownicze są lepsze jakościowo, ale też bardziej skomplikowane w obsłudze, co może być problemem dla początkujących. A stacje na gorące powietrze, choć przydatne, nie nadają się do precyzyjnego lutowania małych elementów, bo mogą rozgrzać otoczenie i uszkodzić inne komponenty. Niektórzy mylą sytuacje niskiej i wysokiej temperatury użytkowania, co może prowadzić do złych decyzji przy wyborze narzędzi. W sumie, ważne jest, żeby w odpowiednich sytuacjach sięgać po narzędzia, które są zgodne z branżowymi zaleceniami.

Pytanie 27

Jakie urządzenie służy do mierzenia ciśnienia?

A. manometr
B. tachometr
C. luksomierz
D. pirometr
Manometr jest urządzeniem służącym do pomiaru ciśnienia gazów lub cieczy. Pomiar ciśnienia jest kluczowy w wielu dziedzinach, takich jak inżynieria, przemysł chemiczny, hydraulika oraz w systemach HVAC. Manometry mogą być mechaniczne, wykorzystujące zasadę sprężystości lub cieczy, lub elektroniczne, które oferują większą dokładność oraz możliwość zdalnego odczytu. Przykładem zastosowania manometrów jest monitorowanie ciśnienia w instalacjach wodociągowych, gdzie nadmierne ciśnienie może prowadzić do uszkodzeń. W przemyśle chemicznym manometry są niezbędne do kontrolowania procesów reakcyjnych, które są wrażliwe na ciśnienie. W standardach branżowych, takich jak ASME B40.100, określone są wymagania dotyczące kalibracji i konserwacji manometrów, co zapewnia ich niezawodność i dokładność. Zrozumienie i poprawne stosowanie manometrów jest kluczowe w kontekście bezpieczeństwa i efektywności operacyjnej.

Pytanie 28

Odbiornik satelitarny, który pozwala na nagrywanie innego programu niż ten aktualnie oglądany, to model

A. TWIN
B. COMBO
C. DUO
D. FTA
Odpowiedzi DUO, FTA i COMBO są błędne z różnych powodów. Tuner DUO, mimo że często mylony z modelem TWIN, zazwyczaj odnosi się do odbiorników, które mogą obsługiwać dwa źródła sygnału, ale niekoniecznie pozwalają na równoczesne nagrywanie i odbieranie dwóch różnych programów. FTA (Free To Air) odnosi się do odbiorników telewizyjnych, które mogą odbierać darmowe sygnały satelitarne, ale nie mają wbudowanej funkcji nagrywania. Takie urządzenia są ograniczone w możliwościach, ponieważ nie mogą zapisywać programów na dysku twardym. Z kolei COMBO to urządzenie, które łączy funkcje tunera satelitarnego i telewizyjnego, jednak niekoniecznie oferuje podwójne nagrywanie. Wybór takiego tunera może prowadzić do frustracji w użytkowaniu, ponieważ ogranicza możliwość jednoczesnego odbioru i nagrywania, co jest kluczowe dla wielu użytkowników. Zrozumienie tych różnic jest istotne, aby uniknąć zakupów, które nie spełniają oczekiwań, oraz by dobrze dostosować urządzenie do indywidualnych potrzeb użytkownika. Warto zwrócić uwagę na specyfikacje techniczne i funkcjonalności, które są dostosowane do współczesnych standardów telewizyjnych oraz potrzeb użytkowników.

Pytanie 29

Jakie urządzenie pomiarowe powinno być użyte do analizy sygnału o wysokiej częstotliwości?

A. Multimetr
B. Mostek RLC
C. Oscyloskop
D. Waromierz
Oscyloskop jest idealnym przyrządem do pomiaru sygnałów o wysokich częstotliwościach, ponieważ umożliwia wizualizację przebiegów elektrycznych w czasie rzeczywistym. Wysoka częstotliwość sygnałów, zwykle powyżej kilku megaherców, wymaga urządzenia, które jest w stanie zarejestrować zmiany napięcia w krótkich odstępach czasu i precyzyjnie odwzorować je na ekranie. Oscyloskopy cyfrowe, dzięki dużej przepustowości i możliwości zapisu danych, pozwalają na analizę sygnałów, identyfikację ich kształtu oraz określenie istotnych parametrów, takich jak amplituda, częstość oraz czas trwania sygnału. Przykładowo, w inżynierii elektronicznej oscyloskopy są powszechnie stosowane do testowania i analizy układów komunikacyjnych, gdzie sygnały o wysokiej częstotliwości są kluczowe dla funkcjonowania systemów. Użycie oscyloskopu w praktyce pozwala inżynierom na diagnozowanie problemów z sygnałem, takich jak zniekształcenia, które mogą wpływać na jakość transmisji danych.

Pytanie 30

Aby zidentyfikować przerwę w obwodzie systemu alarmowego, należy użyć

A. multimetru
B. bramki
C. generatora
D. manometru
Wybór manometru, generatora lub bramki w celu lokalizacji przerwy w obwodzie instalacji alarmowej jest nieadekwatny, ponieważ te urządzenia służą do zupełnie innych zastosowań. Manometr jest narzędziem do pomiaru ciśnienia gazów lub cieczy, więc jego użycie w kontekście obwodów elektrycznych nie ma sensu. Generator, który wytwarza sygnały elektryczne, może być użyty do testowania obwodów, ale nie pozwala na bezpośrednią lokalizację przerwy, a jego zastosowanie w tym kontekście jest bardziej skomplikowane i wymaga dodatkowych umiejętności. Z kolei bramka, jako element logiczny stosowany w systemach cyfrowych, ma zastosowanie w obwodach cyfrowych i nie ma zdolności do diagnozowania problemów w obwodach alarmowych. Użycie niewłaściwych narzędzi często wynika z nieporozumień dotyczących funkcji poszczególnych urządzeń oraz ich zastosowań w praktyce. Kluczowe jest zrozumienie, że każde narzędzie ma swoje specyficzne przeznaczenie, a ich niewłaściwe użycie może prowadzić do błędnych diagnoz i wydłużenia czasu potrzebnego na naprawę, co jest szczególnie istotne w kontekście systemów alarmowych, gdzie czas reakcji ma kluczowe znaczenie dla bezpieczeństwa.

Pytanie 31

W dokumentach związanych z legalizacją urządzeń pomiarowych skrót GUM oznacza

A. Główny Urząd Miar
B. Główny Układ Mikroprocesorowy
C. technologię realizacji układów scalonych
D. metodę wykonania układów cyfrowych
Główny Urząd Miar (GUM) jest centralnym organem administracji państwowej w Polsce, odpowiedzialnym za metrologię, czyli naukę o pomiarach. Jego zadania obejmują nie tylko legalizację przyrządów pomiarowych, ale również wydawanie wzorców miar oraz certyfikowanie laboratoriów pomiarowych. Dzięki GUM zapewniona jest zgodność pomiarów z obowiązującymi normami i standardami, co jest kluczowe w wielu dziedzinach, takich jak przemysł, medycyna, a także handel. Przykładowo, przed rozpoczęciem działalności gospodarczej w branży spożywczej, przedsiębiorcy muszą upewnić się, że ich urządzenia ważące są legalizowane przez GUM, aby zapewnić rzetelność transakcji. Działania GUM mają na celu nie tylko ochronę interesów konsumentów, ale także wspieranie rozwoju technologii pomiarowej, co przyczynia się do poprawy jakości produktów i usług na rynku. W kontekście międzynarodowym, GUM współpracuje z organizacjami takimi jak Międzynarodowa Organizacja Miar (OIML), co dodatkowo wzmacnia znaczenie metrologii w Polsce.

Pytanie 32

Całkowity koszt wykonania instalacji alarmowej, przy wartości materiałów wynoszącej 2 000 zł netto oraz kosztach robocizny w wysokości 1 000 zł netto, wyniesie ile, jeżeli materiały są objęte 23% a usługa 8% podatkiem VAT?

A. 3 540 zł
B. 3 460 zł
C. 3 080 zł
D. 3 240 zł
Obliczanie kosztów instalacji alarmowej może prowadzić do różnych błędnych wniosków, jeśli nie uwzględnimy wszystkich składników oraz odpowiednich stawek VAT. W przypadku podanych opcji, wiele osób może popełnić błąd, zapominając o konieczności osobnego doliczenia VAT dla materiałów oraz robocizny. Często myślą, że wystarczy zsumować netto i doliczyć jeden wspólny procent VAT, co prowadzi do nieprawidłowych wyników. Na przykład, jeśli ktoś zastosuje stawkę VAT 23% do całkowitej kwoty 3 000 zł (2 000 zł materiałów + 1 000 zł robocizny), otrzyma błędny wynik 3 690 zł, co jest całkowicie mylne, ponieważ nie uwzględnia różnych stawek VAT dla różnych usług. Ponadto, niektórzy mogą omyłkowo pomyśleć, że koszt robocizny powinien być wyższy lub pominięty w obliczeniach, co również prowadzi do zafałszowanych kalkulacji. Ważne jest, aby w takich obliczeniach zawsze rozdzielać poszczególne składniki kosztów, stosując odpowiednie stawki VAT, zgodnie z praktykami branżowymi i przepisami prawa. Poprawne podejście nie tylko zapewnia zgodność z obowiązującymi normami, ale także poprawia przejrzystość finansową projektu.

Pytanie 33

Którego rodzaju kabel dotyczy termin STP?

A. Koncentrycznego
B. Skrętki nieekranowanej
C. Skrętki ekranowanej
D. Światłowodowego
Wybierając odpowiedź, która nie odnosi się do skrętki ekranowanej, można łatwo popełnić błąd w zrozumieniu terminologii związanej z kablami sieciowymi. Skrętka nieekranowana, mimo że również jest powszechnie używana, nie posiada dodatkowej warstwy ekranu, co czyni ją bardziej podatną na zakłócenia. Kable światłowodowe, chociaż są niezwykle szybkie i odporne na zakłócenia, działają na zupełnie innej zasadzie optycznej i nie są klasyfikowane jako skrętki, co czyni tę odpowiedź mylną. Kable koncentryczne, choć kiedyś popularne w telekomunikacji i telewizji kablowej, różnią się znacznie od skrętek i nie stosuje się ich w nowoczesnych sieciach komputerowych, gdzie dominuje technologia Ethernet. Typowe błędy myślowe prowadzące do niepoprawnych odpowiedzi mogą wynikać z nieznajomości różnic między różnymi typami kabli oraz ich zastosowaniami. Warto znać właściwości każdego z tych typów, aby móc efektywnie dobierać rozwiązania sieciowe, które będą najlepsze dla konkretnej aplikacji. Uwzględniając standardy branżowe oraz praktyki, można zrozumieć, dlaczego znajomość właściwych terminów i ich zastosowania jest kluczowa w projektowaniu i implementacji infrastruktury sieciowej.

Pytanie 34

Jaka wartość w systemie szesnastkowym odpowiada binarnej liczbie 01101101?

A. 7B
B. BC
C. C6
D. 6D
Odpowiedzi 1, 3 i 4 są błędne, ponieważ nie odzwierciedlają one poprawnej konwersji liczby binarnej 01101101 do systemu szesnastkowego. Odpowiedź BC (pierwsza z błędnych) wynika z nieprawidłowego przeliczenia grup bitów. W systemie szesnastkowym każda cyfra reprezentuje cztery bity. Gdybyśmy spróbowali zinterpretować 01101101 jako dwa osobne bajty, moglibyśmy pomylić się, przyjmując, że 0110 odpowiada 4, a 1101 to D, co prowadzi do zrozumienia 4D, a nie 6D. Podobnie, w przypadku odpowiedzi 7B, typowym błędem myślowym jest niezrozumienie, iż liczba 01101101 nie może być podzielona na 0111 i 1011, gdyż to prowadzi do błędnych wartości. Odpowiedź C6 również jest wynikiem niewłaściwego podziału na bity. Kluczowym aspektem jest zrozumienie, że zarówno systemy binarne, jak i szesnastkowe są systemami pozycyjnymi, które wymagają precyzyjnego podejścia do konwersji. W praktyce, podczas programowania, stosowanie narzędzi do konwersji oraz znajomość algorytmów konwersji między systemami liczbowymi są nieocenione, aby uniknąć takich pomyłek w obliczeniach.

Pytanie 35

Aby przeprowadzić konserwację systemu alarmowego, należy

A. wyczyścić wnętrze obudowy z centralą, ocenić jakość styku sabotażowego centrali, zabrać akumulator do ładowania
B. zobaczyć reakcję czujników na ruch, sprawdzić datę wyświetlaną na manipulatorze, ocenić napięcie akumulatora
C. zmierzyć omomierzem jakość połączeń kabli, sprawdzić stan izolacji przewodów induktorem
D. przywrócić centralę do ustawień fabrycznych, ponownie zainstalować oprogramowanie centrali alarmowej
Dokładne sprawdzenie reakcji czujek na ruch, daty wyświetlanej na manipulatorze oraz napięcia akumulatora jest kluczowe w procesie konserwacji systemu alarmowego. Czujki ruchu są podstawowym elementem zabezpieczeń, a ich regularne testowanie pozwala upewnić się, że działają zgodnie z normami i są w pełni funkcjonalne. Przykładowo, w przypadku, gdy czujki nie reagują na ruch, może to prowadzić do fałszywego poczucia bezpieczeństwa oraz zwiększonego ryzyka włamania. Sprawdzanie daty na manipulatorze jest istotne, gdyż wiele systemów alarmowych ma przypisane terminy do aktualizacji oprogramowania czy wymiany baterii, co pomaga w utrzymaniu ich efektywności. Napięcie akumulatora również jest czynnikiem krytycznym, ponieważ niewłaściwy poziom napięcia może skutkować awarią systemu w sytuacji braku zasilania. Standardy branżowe, takie jak EN 50131, podkreślają znaczenie regularnych przeglądów i konserwacji, co jest kluczowe dla zapewnienia bezpieczeństwa obiektów. Wiedza na temat tych procedur pozwala nie tylko na poprawne funkcjonowanie systemu, ale także na zwiększenie jego żywotności oraz niezawodności.

Pytanie 36

Metalowe urządzenie elektroniczne dysponuje 3 stykami oznaczonymi jako L, N, PE. W jaki sposób należy podłączyć elektryczny kabel zasilający, który składa się z 3 żył (czarny, niebieski, żółto-zielony)?

A. L - żółto-zielony, N - niebieski, PE - czarny
B. L - czarny, N - niebieski, PE - żółto-zielony
C. L - niebieski, N - żółto-zielony, PE - czarny
D. L - żółto-zielony, N - czarny, PE - niebieski
Podłączenie elektrycznego kabla zasilającego do metalowego urządzenia elektronicznego zgodnie z oznaczeniami styków L, N i PE jest kluczowe dla zapewnienia bezpieczeństwa i prawidłowego działania urządzenia. W tej sytuacji czarny przewód powinien być podłączony do styku L (faza), niebieski do styku N (neutralny), a żółto-zielony do styku PE (uziemienie). Przewód fazowy (czarny) przenosi prąd do urządzenia, przewód neutralny (niebieski) zamyka obwód, a przewód uziemiający (żółto-zielony) zapewnia ochronę przed porażeniem elektrycznym, odprowadzając nadmiar prądu do ziemi w przypadku awarii. Stosowanie właściwych kolorów przewodów jest zgodne z normą IEC 60446 oraz polskimi standardami, co zapewnia spójność i bezpieczeństwo w instalacjach elektrycznych. Przykładowo, w instalacjach przemysłowych oraz domowych korzystanie z tych standardów minimalizuje ryzyko błędnego podłączenia, co w konsekwencji może prowadzić do uszkodzenia sprzętu lub zagrożenia dla użytkowników.

Pytanie 37

Jakie będzie całkowity koszt naprawy odbiornika telewizyjnego, jeżeli czas pracy wynosił 2 godziny, koszt materiałów to 100 zł, a stawka za godzinę pracy technika wynosi 80 zł?

A. 212 zł
B. 196 zł
C. 212 zł
D. 260 zł
Aby obliczyć całkowity koszt naprawy odbiornika telewizyjnego, należy zsumować koszt pracy serwisanta oraz koszt materiałów. W tym przypadku czas naprawy wynosił 2 godziny, a stawka godzinowa serwisanta to 80 zł. Zatem koszt pracy wynosi: 2 godziny * 80 zł/godz. = 160 zł. Koszt materiałów wynosi 100 zł. Całkowity koszt naprawy to: 160 zł (koszt pracy) + 100 zł (koszt materiałów) = 260 zł. Takie podejście jest zgodne z najlepszymi praktykami branżowymi, które zalecają szczegółowe rozliczenie kosztów robocizny oraz materiałów, aby klient miał pełną transparentność wydatków. W przypadku napraw sprzętu elektronicznego, istotne jest także uwzględnienie dodatkowych kosztów, takich jak dojazd serwisanta, jeśli jest to wymagane. Praktyka ta pomaga utrzymać zaufanie klientów oraz zapewnia rzetelność w rozliczeniach.

Pytanie 38

Czas potrzebny na naprawę magnetowidu to 0,5 godziny. Koszt materiałów wynosi 80 zł, a stawka godzinowa technika to 40 zł. Jaki będzie całkowity koszt naprawy, uwzględniając 22% podatek VAT?

A. 146,40 zł
B. 122,00 zł
C. 100,00 zł
D. 117,60 zł
Jak się liczy koszt naprawy magnetowidu? To całkiem proste. Musisz dodać do siebie koszty materiałów oraz opłatę dla serwisanta, a potem jeszcze doliczyć VAT. Mamy tu 80 zł na materiały i 40 zł za godzinę pracy serwisanta. Naprawa trwa pół godziny, więc serwisant dostanie 20 zł (40 zł za godzinę razy 0,5 godziny). Jak to zsumujemy, to mamy 80 zł plus 20 zł, co daje nam 100 zł przed podatkiem. Następnie bierzemy 22% z tej kwoty na VAT, co wychodzi 22 zł. Więc rzeczywisty koszt naprawy, po doliczeniu VAT-u, wyniesie 122 zł. Dobrze jest pamiętać, żeby zawsze uwzględniać wszystkie koszty, w tym podatki. To bardzo ważne, żeby mieć jasny obraz tego, ile to wszystko kosztuje w serwisie.

Pytanie 39

Badanie złącza p-n w tranzystorze bipolarnym można przeprowadzić przy użyciu

A. watomierza
B. woltomierza
C. amperomierza
D. omomierza
Odpowiedź dotycząca omomierza jest jak najbardziej trafna. To narzędzie służy do pomiaru oporu elektrycznego, co jest mega ważne przy badaniu złącza p-n w tranzystorze bipolarnym. Złącze p-n działa jak dioda, która w zasadzie jest przewodnikiem, gdy prąd płynie w jedną stronę, a w drugą - staje się opornikiem. Kiedy używamy omomierza, możemy sprawdzić, czy to złącze działa tak jak powinno, bo mierzymy opór w obu stanach. Jak tranzystor się uszkodzi, omomierz pokaże niską oporność nawet w stanie zaporowym, co oznacza, że coś jest nie tak. W elektronice omomierz to kluczowe narzędzie, zwłaszcza przy diagnozowaniu problemów w obwodach i produkcji komponentów elektronicznych. Każdy tranzystor musi być testowany, żeby był zgodny z normami jakości. To pokazuje, jak ważny jest omomierz przy weryfikacji złączy p-n.

Pytanie 40

Aby odpowiednio dopasować impedancję w systemie antenowym, konieczne jest zastosowanie

A. zwrotnicy antenowej.
B. wzmacniacza antenowego.
C. rozdzielacza.
D. symetryzatora.
Rozgałęźnik, zwrotnica antenowa oraz wzmacniacz antenowy są urządzeniami, które pełnią różne funkcje w systemach antenowych, ale żadne z nich nie jest przeznaczone do dopasowania impedancji. Rozgałęźnik służy do dzielenia sygnału na kilka odbiorników, co może wprowadzać dodatkowe straty sygnału i nie rozwiązuje problemu dopasowania impedancji. Użycie rozgałęźnika w instalacji antenowej bez odpowiedniego dopasowania impedancji może prowadzić do znacznego pogorszenia jakości odbioru sygnału. Zwrotnica antenowa jest stosowana do kierunkowego podziału sygnału, na przykład do oddzielania kanałów telewizyjnych z różnych częstotliwości, ale podobnie jak rozgałęźnik, nie zajmuje się dopasowaniem impedancji. Wzmacniacz antenowy z kolei ma na celu zwiększenie poziomu sygnału, ale jeśli impedancja nie jest odpowiednio dopasowana, to wzmacniacz może jedynie wzmocnić zakłócenia i inne niepożądane sygnały. Często popełnianym błędem jest mylenie tych urządzeń z symetryzatorem, co prowadzi do nieefektywnego projektowania instalacji antenowych. Właściwe zrozumienie funkcji każdego z tych elementów jest kluczowe dla osiągnięcia optymalnej jakości sygnału w systemach antenowych, co jest zgodne z najlepszymi praktykami w branży telekomunikacyjnej.