Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 15 czerwca 2025 13:45
  • Data zakończenia: 15 czerwca 2025 14:33

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie narzędzie w laboratorium jest wykorzystywane do rozdrabniania małych ilości substancji stałych?

A. zlewka z bagietką
B. moździerz z tłuczkiem
C. parownica z łyżeczką porcelanową
D. krystalizator ze szpatułką metalową
Moździerz z tłuczkiem jest podstawowym narzędziem wykorzystywanym w laboratoriach do rozdrabniania substancji stałych, zwłaszcza tych, które są w postaci proszku lub granulek. Umożliwia on precyzyjne mielenie materiałów, co jest kluczowe w wielu procesach chemicznych. Dzięki swojej budowie, moździerz zapewnia stabilność oraz kontrolę nad stopniem rozdrobnienia. Przykładem zastosowania moździerza z tłuczkiem może być przygotowanie prób do analizy chemicznej, gdzie konieczne jest uzyskanie jednolitej konsystencji substancji. Ponadto, standardy laboratoryjne, takie jak ISO 9001, podkreślają znaczenie wysokiej jakości przygotowania próbek, co czyni moździerz z tłuczkiem narzędziem niezbędnym dla zachowania spójności i dokładności w badaniach. W praktyce, moździerze mogą być wykonane z różnych materiałów, takich jak porcelana, granit czy stal nierdzewna, co pozwala na dostosowanie ich do specyficznych wymagań chemicznych i fizycznych substancji, z którymi pracujemy. Odpowiedni dobór narzędzi do rozdrabniania substancji stałych jest kluczowy, aby uniknąć kontaminacji i zachować integralność chemiczną przygotowywanych prób.

Pytanie 2

W celu usunięcia drobnych zawiesin z roztworu przed analizą spektrofotometryczną stosuje się:

A. sączenie przez sączek o drobnych porach lub filtr membranowy
B. dekantację bez sączenia
C. podgrzewanie roztworu do wrzenia
D. suszenie roztworu w suszarce laboratoryjnej
Sączenie przez sączek o drobnych porach lub filtr membranowy to standardowa metoda przygotowania próbek do analiz spektrofotometrycznych, szczególnie gdy zależy nam na usunięciu nawet najmniejszych cząstek zawieszonych. W branży laboratoryjnej takie podejście uchodzi za dobrą praktykę, bo pozwala skutecznie oddzielić fazę ciekłą od niepożądanych drobin, które mogłyby rozpraszać światło i zakłócać pomiar. Filtry membranowe wyróżniają się bardzo drobną porowatością (np. 0,22–0,45 µm), przez co nawet mikroskopijne cząstki nie przechodzą dalej. Użycie sączka o drobnych porach jest też bezpieczne dla składu chemicznego roztworu, nie powoduje dodatkowych reakcji i nie wpływa na wyniki analizy. Moim zdaniem, to wręcz obowiązkowa czynność przed większością analiz spektrofotometrycznych, szczególnie gdy pracujemy z próbkami środowiskowymi, farmaceutycznymi czy biologicznymi. Warto wspomnieć, że profesjonalne laboratoria stosują filtry strzykawkowe lub sączki z tworzyw sztucznych, bo są wygodne i minimalizują ryzyko zanieczyszczeń. Odpowiednia filtracja gwarantuje, że absorbancja mierzona spektrofotometrycznie odzwierciedla wyłącznie skład roztworu, a nie „szum” od cząstek zawieszonych. Takie przygotowanie próbek to po prostu podstawa rzetelnych wyników.

Pytanie 3

Proces mineralizacji próbki, który polega na jej spopieleniu w piecu muflowym w temperaturze 300-500°C i rozpuszczeniu pozostałych resztek w kwasach w celu oznaczenia zawartości metali ciężkich, to mineralizacja

A. mikrofalowe.
B. suche.
C. mokre.
D. ciśnieniowe.
Mineralizacja sucha to proces, który polega na spalaniu próbki w piecu muflowym w temperaturze 300-500°C. Taki sposób mineralizacji jest szeroko stosowany w analizach środowiskowych i chemicznych w celu oznaczania zawartości metali ciężkich. Po spaleniu próbki, pozostałości popiołu są rozpuszczane w odpowiednich kwasach, co umożliwia ich dalszą analizę, na przykład przez spektroskopię absorpcyjną czy atomową. Zastosowanie mineralizacji suchej jest zgodne z normami ISO dla analizy metali ciężkich, co zapewnia wysoką jakość i powtarzalność wyników. Dzięki tej metodzie można efektywnie eliminować materię organiczną, co zapewnia dokładniejsze pomiary stężenia metali. Praktyczne zastosowania obejmują badania gleby, osadów dennych oraz próbek biochemicznych, co czyni tę metodę kluczową w monitorowaniu zanieczyszczenia środowiska.

Pytanie 4

W tabeli zamieszczono temperatury wrzenia niektórych składników powietrza. Na podstawie tych danych podaj, który ze składników oddestyluje jako ostatni.

Temperatura wrzenia °CSkładniki
-245,9Neon
-182,96Tlen
-195,8Azot
-185,7Argon

A. Tlen.
B. Neon.
C. Argon.
D. Azot.
Wybór azotu, neonu czy argonu jako ostatniego gazu, który oddestyluje, to błąd wynikający z nieprawidłowego rozumienia zasad fizyki gazów i temperatur wrzenia. Azot wrze w -195,79°C, więc jest jednym z tych gazów, które oddzielają się znacznie wcześniej niż tlen. Neon z temperaturą wrzenia -246,08°C też ma znacznie niższą wartość niż tlen, dlatego również wydostaje się przed nim. Argon, z temperaturą -185,85°C, znajduje się gdzieś pomiędzy nimi, także oddestylowuje przed tlenem. To nieprawidłowe podejście wynika z braku zrozumienia, jak działa temperatura wrzenia i jak wpływa na separację gazów. A w praktyce, różnice te są kluczowe w przemyśle. Błędne wnioski mogą prowadzić do problemów w produkcji, dlatego warto znać właściwości fizyczne gazów oraz ich znaczenie w technologii, bo to naprawdę podstawowe aspekty w inżynierii chemicznej.

Pytanie 5

Wskaż zbiór substancji, które po rozpuszczeniu w wodzie stają się elektrolitami?

A. Cukier, sól stołowa, ocet
B. Glukoza, kwas azotowy(V), wodorotlenek wapnia
C. Chlorek sodu, wodorotlenek sodu, kwas siarkowy(VI)
D. Kwas solny, gliceryna, tlenek siarki(VI)
Wybór substancji, które nie są elektrolitami, może prowadzić do licznych nieporozumień, dlatego warto zrozumieć, dlaczego odpowiedzi te są błędne. Cukier, sól kuchenna i ocet wydają się być substancjami rozpuszczalnymi w wodzie, jednak tylko sól kuchenna może być uznana za elektrolit. Cukier (sacharoza) rozpuszcza się w wodzie, tworząc roztwór, ale nie dissocjuje na jony, co oznacza, że nie przewodzi prądu elektrycznego. Takie substancje są nazywane substancjami nieelektrolitycznymi. Podobnie, gliceryna i tlenek siarki(VI) nie są elektrolitami - gliceryna jest organicznym alkoholem, który również nie dissocjuje w wodzie na jony, a tlenek siarki(VI) reaguje z wodą, tworząc kwas siarkowy, ale w swojej pierwotnej formie nie jest elektrolitem. W przypadku glukozy, jej rozpuszczenie w wodzie prowadzi do powstania roztworu, który nie wykazuje przewodnictwa elektrycznego, ponieważ glukoza również nie dissocjuje na jony. Niewłaściwe postrzeganie substancji jako elektrolitów może wynikać z błędnego rozumienia ich właściwości chemicznych oraz różnicy między substancjami, które po rozpuszczeniu w wodzie prowadzą do powstania naładowanych cząsteczek, a tymi, które tego nie robią. Kluczowe jest zrozumienie mechanizmów dysocjacji oraz właściwości chemicznych różnych substancji, aby uniknąć takich nieporozumień w chemii i pokrewnych dziedzinach.

Pytanie 6

Na etykiecie kwasu siarkowego(VI) znajduje się piktogram pokazany na rysunku. Oznacza to, że substancja ta jest

Ilustracja do pytania
A. mutagenna.
B. rakotwórcza.
C. żrąca.
D. nieszkodliwa.
Odpowiedź "żrąca" jest poprawna, ponieważ piktogram na etykiecie kwasu siarkowego(VI) jednoznacznie oznacza substancje, które mogą powodować ciężkie uszkodzenia tkanek. W systemie GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Chemikaliów) substancje żrące są klasyfikowane na podstawie ich zdolności do uszkadzania skóry oraz innych tkanek. Kwas siarkowy(VI) jest silnym kwasem, który ma zdolność do reagowania z wodą, co dodatkowo potęguje jego żrące właściwości. W praktyce, kontakt z kwasem siarkowym(VI) może prowadzić do poważnych oparzeń chemicznych, które wymagają natychmiastowej interwencji medycznej. W laboratoriach i przemyśle chemicznym niezwykle istotne jest przestrzeganie zasad bezpieczeństwa związanych z obsługą substancji żrących, takich jak stosowanie odpowiednich środków ochrony osobistej (PPE), w tym rękawic, okularów ochronnych oraz odzieży odpornych na działanie chemikaliów. Zgodność z normami bezpieczeństwa, takimi jak OSHA i CLP, jest kluczowa dla minimalizacji ryzyka związanego z narażeniem na substancje żrące.

Pytanie 7

Aby uzyskać sole sodowe fenoli, należy stopić dany fenol z sodą (M = 106 g/mol), stosując 10% nadmiar w porównaniu do ilości stechiometrycznej, według równania:
2 ArOH + Na2CO3 → 2 ArONa + H2O + CO2 Ile sody jest wymagane do reakcji z 7,2 g 2-naftolu (M = 144 g/mol)?

A. 5,83 g
B. 2,92 g
C. 2,65 g
D. 5,30 g
Żeby obliczyć masę sody potrzebnej do reakcji z 2-naftolem, na początku musimy zgarnąć ilość moli 2-naftolu. Mamy masę 2-naftolu, która wynosi 7,2 g i jego masę molową, co to jest 144 g/mol. Teraz dzielimy masę przez masę molową i wychodzi nam, że n(2-naftol) to 7,2 g podzielić na 144 g/mol, czyli jakieś 0,05 mola. Z równania reakcji wiemy, że na 2 mole 2-naftolu potrzeba 1 mol sody. Więc jak mamy 0,05 mola 2-naftolu, to potrzebujemy tylko 0,025 mola Na2CO3. A masa molowa Na2CO3 to 106 g/mol, więc masa sody, której potrzebujemy, to 0,025 mol razy 106 g/mol, co daje nam 2,65 g. Ponieważ lepiej mieć zapas, liczymy też 10% z 2,65 g, co wychodzi 0,265 g. Tak więc całkowita masa sody do reakcji to 2,65 g + 0,265 g, czyli 2,92 g. Tego typu obliczenia są mega ważne w chemii, bo dają nam pewność, że wszystko się ładnie zareaguje i nie zmarnujemy materiałów.

Pytanie 8

Próbka, której celem jest ustalenie poziomu składników, dla których oznaczenia przygotowane przez różne laboratoria są niezgodne, to próbka

A. jednostkowa
B. laboratoryjna
C. rozjemcza
D. do badań
Wybór odpowiedzi związanych z terminami "do badań", "laboratoryjna" oraz "jednostkowa" wskazuje na nieporozumienie dotyczące specyfiki próbki rozjemczej. Próbka do badań odnosi się ogólnie do materiału, który ma być poddany analizie, bez ukierunkowania na rozwiązywanie problemów związanych z niezgodnością wyników. Termin ten jest zbyt ogólny i nie odnosi się bezpośrednio do sytuacji, w której różne laboratoria mają odmienne wyniki analityczne. Próbka laboratoryjna również nie jest terminem wskazującym na jej charakterystykę rozjemczą, a raczej definiuje, że próbka jest analizowana w warunkach laboratoryjnych, co nie musi mieć związku z jej reprezentatywnością. Z kolei próbka jednostkowa odnosi się do konkretnego, jednorazowego pomiaru lub analizy, co w praktyce nie uwzględnia procesów porównawczych między różnymi wynikami analitycznymi. Często można spotkać się z błędnym myśleniem, że wszystkie próbki stosowane w laboratoriach mają podobne funkcje, co prowadzi do zafałszowanych wniosków i niewłaściwego podejścia do analizy danych. W rzeczywistości, niezgodności wyników mogą wynikać z wielu czynników, takich jak różnice w metodach analitycznych, przygotowaniu próbek czy stosowanych technologiach, co czyni użycie próbki rozjemczej niezbędnym krokiem w procesie zapewniania jakości i zgodności.

Pytanie 9

Na ilustracji oznaczono numery 1 i 4:

A. 1 - kolbę destylacyjną, 4 - chłodnicę zwrotną
B. 1 - chłodnicę zwrotną, 4 - kolbę destylacyjną
C. 1 - ekstraktor, 4 - chłodnicę zwrotną
D. 1 - kolbę destylacyjną, 4 - ekstraktor

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź jest prawidłowa, ponieważ kolba destylacyjna (oznaczona jako 1) jest kluczowym elementem w procesie destylacji, który jest wykorzystywany do separacji cieczy na podstawie różnicy ich temperatur wrzenia. W kolbie destylacyjnej mieszanina cieczy jest podgrzewana, co prowadzi do parowania substancji o niższej temperaturze wrzenia. Następnie, skroplone pary są kierowane do chłodnicy zwrotnej (oznaczonej jako 4), która zapewnia ich kondensację i powrót do kolby, co pozwala na dalszą separację. Chłodnica zwrotna jest istotnym elementem, który ogranicza straty materiału i zwiększa efektywność procesu. Przykładem zastosowania kolby destylacyjnej oraz chłodnicy zwrotnej jest produkcja alkoholi, gdzie dokładność destylacji jest niezbędna do uzyskania produktów o wysokiej czystości. Ponadto, wiedza na temat tych urządzeń jest istotna w laboratoriach chemicznych oraz przemyśle, gdzie standardy jakości muszą być ściśle przestrzegane, a procesy muszą być zoptymalizowane.

Pytanie 10

Losowo należy pobierać próbki z opakowań

A. z krawędzi opakowania
B. z dolnej części opakowania
C. z górnej części opakowania
D. z kilku punktów w obrębie opakowania
Podejście do pobierania próbek, które polega na ich pozyskiwaniu z połowy objętości opakowania, jest mylne, ponieważ może prowadzić do niepełnego obrazu zawartości opakowania. Skupienie się na jednej lokalizacji, jak np. połowa objętości, nie uwzględnia potencjalnych różnic w rozkładzie substancji, co jest szczególnie istotne w kontekście produktów, które ze względu na swój skład mogą być niejednorodne. Analogicznie, wybieranie próbek tylko z brzegów opakowania nie dostarcza informacji o zawartości centralnej części, gdzie mogą występować różnice w składzie lub jakości produktu. Również pobieranie próbek jedynie z dna opakowania jest niewłaściwe, ponieważ zjawiska takie jak sedimentacja mogą powodować, że próbki pobrane w ten sposób będą zawierały jedynie osadzoną część substancji, co może nie oddawać rzeczywistej charakterystyki całego opakowania. W praktyce, takie ograniczenia w pozyskiwaniu próbek mogą prowadzić do błędnych wniosków, co stwarza ryzyko dla jakości końcowego produktu oraz bezpieczeństwa użytkowników. Poprawne pobieranie próbek wymaga zastosowania zasad statystyki i analizy ryzyka, które są kluczowe dla oceny procesów jakościowych w przemyśle.

Pytanie 11

Pobieranie próbek wody z zbiornika wodnego, który zasila system wodociągowy, powinno odbywać się

A. na powierzchni wody, w centralnej części zbiornika
B. w najgłębszym punkcie, z którego czerpana jest woda
C. na powierzchni wody, w pobliżu brzegu zbiornika
D. w miejscu oraz na głębokości, gdzie następuje czerpanie wody
Zbieranie próbek wody na powierzchni zbiornika, zarówno przy brzegu, jak i na środku, jest nieodpowiednie, ponieważ nie odzwierciedla rzeczywistych warunków wody, która jest później używana w systemie wodociągowym. Pobieranie próbek wyłącznie z powierzchni może prowadzić do fałszywego obrazu jakości wody, ponieważ może ignorować zanieczyszczenia znajdujące się w niższych warstwach, które mogą być znacznie gorszej jakości. Na przykład, substancje chemiczne mogą osiadać na dnie zbiornika lub występować w niższych warstwach wody, a ich obecność nie będzie wykryta podczas pobierania próbek z powierzchni. Dodatkowo, zasysanie wody z najgłębszego miejsca zbiornika może wydawać się logiczne, jednak nie zawsze odpowiada to rzeczywistemu miejscu poboru, które może znajdować się w innym punkcie zbiornika na określonej głębokości. Warto również zauważyć, że zanieczyszczenia mogą różnić się w różnych częściach zbiornika, a ich analiza wymaga dokładnego określenia warunków, w których woda jest pobierana. Dlatego kluczowe jest, aby próbki były pobierane w miejscu i na głębokości, w której odbywa się rzeczywisty pobór wody, co zapewnia reprezentatywność wyników i zgodność z obowiązującymi standardami jakości wody.

Pytanie 12

Jakie środki stosuje się do czyszczenia szkła miarowego, które zostało zanieczyszczone substancjami tłustymi?

A. słabą zasadę
B. mieszaninę chromową
C. słaby kwas
D. gorącą wodę
Słaby kwas nie jest skutecznym środkiem do usuwania tłuszczów, ponieważ nie wykazuje wystarczającej siły w reakcji z grubsza zbudowanymi cząsteczkami organicznymi, jakie występują w tłuszczach. Tego typu substancje chemiczne, jak na przykład kwas octowy czy kwas cytrynowy, mogą jedynie częściowo rozkładać niektóre zanieczyszczenia, ale nie są wystarczająco efektywne w przypadku tłuszczów. Również słaba zasada, chociaż może działać w niektórych przypadkach, nie jest optymalnym rozwiązaniem, ponieważ wiele tłuszczów jest hydrofobowych i nie reaguje z zasadowymi roztworami. Gorąca woda, mimo że potrafi rozpuścić pewne zanieczyszczenia, jest niewystarczająca w przypadku substancji tłustych, które wymagają zastosowania silniejszych reagentów. Mieszanina chromowa oferuje unikalną zdolność do utleniania i rozkładu tłuszczów, co czyni ją niezbędnym środkiem w laboratoriach chemicznych. Niezrozumienie potrzeby stosowania odpowiednich reagentów może prowadzić do niedostatecznego oczyszczenia sprzętu, co w efekcie wpływa na dokładność pomiarów, a tym samym na wyniki eksperymentów. W praktyce laboratoryjnej kluczowe jest stosowanie się do standardów czyszczenia, aby zapewnić rzetelność wyników i bezpieczeństwo w pracy z chemikaliami.

Pytanie 13

Na podstawie danych zawartych w tabeli wskaż, które opakowania zawierają produkt zgodny ze specyfikacją.

WŁAŚCIWOŚCINORMA KLASY A
wg specyfikacji produktu
OPAKOWANIE
123
POSTAĆBezbarwna ciecz, bez zanieczyszczeń.
Dopuszcza się niebieskawе zabаrwienie
i obecność skrystalizowanego osadu
Bezbarwna ciecz
Zawartość ługu sodowego
(NaOH), min, % masy
46,046,546,848,0
Węglan sodu (Na₂CO₃),
nie więcej niż, % masy
0,40,30,30,2
Chlorek sodu (NaCl),
nie więcej niż, % masy
0,0200,0150,0140,011
Chloran sodu (NaClO₃),
nie więcej niż, % masy
0,0070,0060,0050,002
Siarczan sodu (Na₂SO₄),
nie więcej niż, % masy
0,0400,0380,0350,029
Zawartość żelaza (Fe₂O₃),
max, WT. PPM
15151510

A. Tylko 3.
B. Wszystkie.
C. Tylko 1 i 2.
D. Żadne.
Wybranie odpowiedzi mówiącej, że żadne opakowania nie są zgodne z normami, to typowy błąd. Może się to brać stąd, że nie widzisz wszystkich ważnych szczegółów w danych. Wydaje mi się, że to trochę przez brak zrozumienia specyfikacji produktu i norm dotyczących jakości opakowań. Czasem ludzie mają tendencję do uogólniania, co prowadzi do błędnych wniosków. Pamiętaj, że każde opakowanie trzeba przeanalizować dokładnie, a stwierdzenie, że nic nie spełnia norm, jest po prostu nietrafione. Gdy mówisz, że tylko niektóre są zgodne, to znaczy, że mogłeś nie uwzględnić wszystkich parametrów z specyfikacji. Każde opakowanie powinno się oceniać z osobna, a złe oceny mogą mieć poważne konsekwencje, jak wprowadzenie wadliwych produktów na rynek, co może skutkować stratami lub zepsuciem reputacji firmy. Dlatego ważne jest, by oceniający też byli dobrze poinformowani i trzymali się standardów, żeby uniknąć takich sytuacji.

Pytanie 14

Temperatura topnienia mocznika wynosi 133 °C. W celu określenia czystości preparatów tej substancji, przeprowadzono badania temperatury ich topnienia, uzyskując wyniki przedstawione w tabeli. Wskaż preparat o najmniejszym stopniu czystości.

PreparatABCD
Zakres temperatury topnienia [°C]132-133130-133125-133128-133

A. A.
B. B.
C. C.
D. D.
Odpowiedź C jest prawidłowa, ponieważ temperatura topnienia czystego mocznika wynosi 133 °C. W przypadku analizy czystości substancji, kluczowym czynnikiem jest ocena temperatury topnienia - im niższa temperatura początkowa oraz szerszy zakres topnienia, tym większa obecność zanieczyszczeń w próbce. Preparat C osiąga temperaturę początkową topnienia na poziomie 125 °C, co wskazuje na obecność zanieczyszczeń obniżających jego punkt topnienia. Dodatkowo, zakres topnienia 125-133 °C również sugeruje, że substancja nie jest w pełni czysta, co jest zgodne z zasadami analizy chemicznej i standardami jakości. W praktyce, takie badania są istotne w przemyśle chemicznym, farmaceutycznym czy spożywczym, gdzie czystość substancji ma kluczowe znaczenie dla jakości końcowego produktu. Ważne jest, aby zapewnić odpowiednią kontrolę jakości, a metody takie jak pomiary temperatury topnienia są standardem w laboratoriach analitycznych, co umożliwia zapewnienie wysokich standardów jakości preparatów.

Pytanie 15

Który z poniższych sposobów homogenizacji próbki jest najbardziej odpowiedni do przygotowania próbki gleby do analizy chemicznej?

A. Dokładne wymieszanie i rozdrobnienie całej próbki
B. Pobranie losowego fragmentu bez rozdrabniania
C. Suszenie gleby przed pobraniem próbki bez mieszania
D. Przesianie gleby przez sitko o dużych oczkach bez mieszania
Homogenizacja próbki gleby to kluczowy etap przygotowania materiału do analiz chemicznych, bo tylko wtedy wyniki są powtarzalne i wiarygodne. Dokładne wymieszanie i rozdrobnienie całej próbki pozwala uzyskać reprezentatywną mieszaninę – każda pobrana część ma w przybliżeniu taki sam skład jak całość. W praktyce w laboratoriach stosuje się najpierw suszenie gleby, potem rozdrabnianie w moździerzu lub młynku, a następnie dokładne mieszanie, czasem dodatkowo przesiewanie przez drobne sito (np. 2 mm), żeby usunąć kamienie i korzenie. Bez tego etapu nie ma sensu przeprowadzać analiz, bo próbka może być niejednorodna i nie oddawać faktycznego składu gruntu. To podstawa w każdej procedurze dotyczącej badań środowiskowych, rolniczych czy przemysłowych. Moim zdaniem, jeśli ktoś pominie ten krok, to nawet najlepszy sprzęt i odczynniki nic nie dadzą – można otrzymać wyniki całkowicie przypadkowe. Dobre praktyki laboratoryjne (GLP) wręcz wymagają standaryzacji homogenizacji, bo to wpływa na jakość i porównywalność danych. Warto pamiętać, że nawet w terenie, tuż po pobraniu próbki, zaleca się wstępne wymieszanie, a dopiero potem dalsze przygotowanie w laboratorium.

Pytanie 16

Proces nitrowania najczęściej realizuje się, stosując organiczny substrat

A. mieszaniną kwasów azotowego(V) oraz solnego
B. rozcieńczonym kwasem azotowym(V)
C. stężonym kwasem azotowym(V)
D. mieszaniną kwasów azotowego(V) oraz siarkowego(VI)
Reakcji nitrowania nie można przeprowadzać skutecznie przy użyciu wyłącznie rozcieńczonego kwasu azotowego(V), ponieważ w takim przypadku reakcja nie zachodzi z odpowiednią wydajnością. Rozcieńczony kwas azotowy ma zbyt niską stężenie, co powoduje, że nie jest w stanie dostarczyć wystarczającej ilości grup nitrowych do substratu organicznego. Z tego powodu stężony kwas azotowy jest znacznie bardziej efektywny, ale sam w sobie także nie jest wystarczający dla optymalizacji procesu, jak pokazuje praktyka. Mieszanina kwasów azotowego i siarkowego, a nie samodzielny kwas azotowy, jest standardem w chemii organicznej. Ponadto, stosowanie stężonego kwasu azotowego bez kwasu siarkowego może prowadzić do niekontrolowanych reakcji, takich jak nadmierne nitrowanie, co skutkuje powstawaniem niepożądanych produktów ubocznych. Użycie samego kwasu solnego nie tylko nie ma sensu w kontekście nitrowania, ale również może prowadzić do całkowicie innych reakcji chemicznych, co podkreśla znaczenie właściwego doboru reagentów. W praktyce, w laboratoriach i przemyśle chemicznym należy zawsze dążyć do użycia sprawdzonych metod, aby uzyskać pożądane produkty. Właściwe przygotowanie reagentów oraz kontrola warunków reakcji są kluczowe dla sukcesu procesów chemicznych.

Pytanie 17

Na podstawie informacji zawartych w tabeli określ, który parametr spośród podanych należy oznaczyć w pierwszej kolejności.

Tabela. Sposoby utrwalania próbek wody i ścieków, miejsce analizy, dopuszczalny czas przechowywania próbek
Oznaczany parametrRodzaj naczynia do przechowywania próbkiSposób utrwalania próbkiMiejsce wykonania analizyDopuszczalny czas przechowywania próbki
Chlorkiszklane
lub polietylenowe
-laboratorium96 godzin
Chlor pozostałyszklane-w miejscu
pobrania próbki
-
ChZTszklanezakwaszenie do pH<2,
schłodzenie
do temperatury 2-5°C
laboratorium24 godziny
Kwasowośćszklane
lub polietylenowe
schłodzenie
do temperatury 2-5°C
laboratorium4 godziny
Manganszklane
lub polietylenowe
zakwaszenie do pH<2,
schłodzenie
do temperatury 2-5°C
laboratorium48 godziny

A. Kwasowość.
B. Mangan.
C. Chemiczne zapotrzebowanie na tlen (ChZT).
D. Chlor pozostały.
Odpowiedzi takie jak 'Chemiczne zapotrzebowanie na tlen (ChZT)', 'Kwasowość' czy 'Mangan' są nieprawidłowe w kontekście priorytetów w oznaczaniu parametrów jakości wody. Chemiczne zapotrzebowanie na tlen, choć istotne, jest wskaźnikiem obciążenia organicznego, który niekoniecznie odzwierciedla bieżący stan dezynfekcji wody. Oznaczanie ChZT powinno następować po ocenie wskaźników dezynfekcji, ponieważ jego analiza wymaga więcej czasu i jest mniej pilna w kontekście bezpieczeństwa zdrowotnego. Kwasowość z kolei jest parametrem, który może mieć wpływ na stabilność wody, jednak nie jest bezpośrednio związana z ryzykiem biologicznym, co sprawia, że nie powinna być pierwszym priorytetem w procedurach monitorowania. Mangan jest związkem, który wpływa na barwę i smak wody, ale jego obecność nie wskazuje na skuteczność dezynfekcji. Pomijając oznaczanie chloru pozostałego, można przeoczyć kluczowy element gwarantujący bezpieczeństwo, co jest sprzeczne z dobrymi praktykami zarządzania jakością wody, które kładą nacisk na bieżące monitorowanie i reagowanie na zagrożenia.

Pytanie 18

Przy transporcie próbek wody zaleca się, aby próbki były

A. schłodzone do temperatury 2 - 5°C
B. zalkalizowane
C. zakwaszone do pH < 6
D. narażone na działanie światła
Schłodzenie próbek wody do temperatury 2 - 5°C to naprawdę ważny krok, gdy transportujemy te próbki. Chodzi o to, żeby zmniejszyć wszelkie zmiany w ich składzie chemicznym i biologicznym. Niska temperatura spowalnia mikroorganizmy i różne reakcje chemiczne, które mogą zniszczyć próbki. W praktyce, według wytycznych takich organizacji jak EPA albo ISO, próbki powinny być transportowane w termosach czy chłodnicach, żeby zachować ich właściwości fizykochemiczne. Na przykład, jeśli analizujemy wodę pitną, to dobre utrzymanie temperatury jest konieczne dla dokładnych wyników badań, co jest kluczowe dla zdrowia publicznego. Dodatkowo, schłodzenie próbek pomaga też w zachowaniu ich wartości analitycznej, co jest ważne, zwłaszcza w kontekście monitorowania jakości wód w środowisku. Dlatego naprawdę trzeba trzymać się tych standardów, żeby uzyskać wiarygodne wyniki.

Pytanie 19

Zestaw do filtracji pod obniżonym ciśnieniem powinien obejmować między innymi

A. kolbę miarową, lejek Büchnera, pompę próżniową
B. kolbę okrągłodenną, lejek szklany z sączkiem, płuczkę bezpieczeństwa
C. kolbę ssawkową, lejek Büchnera, płuczkę bezpieczeństwa
D. kolbę stożkową, lejek szklany z sączkiem, pompę próżniową
Odpowiedź wskazująca na kolbę ssawkową, lejek Büchnera oraz płuczkę bezpieczeństwa jest prawidłowa, ponieważ wszystkie te elementy są kluczowe w procesie sączenia pod zmniejszonym ciśnieniem. Kolba ssawkowa, znana również jako kolba próżniowa, jest specjalnie zaprojektowana do przechowywania cieczy pod ciśnieniem niższym niż ciśnienie atmosferyczne, co pozwala na efektywne sączenie. Lejek Büchnera, zbudowany z porcelany lub szkła, umożliwia szybkie i efektywne oddzielanie ciał stałych od cieczy, wykorzystując siłę próżni generowaną przez pompę. Płuczka bezpieczeństwa jest istotnym elementem, który chroni zarówno sprzęt, jak i użytkownika przed niebezpiecznymi substancjami chemicznymi, zapobiegając ich zassaniu do systemu próżniowego. Dobór tych elementów odpowiada standardom laboratoryjnym, gdzie bezpieczeństwo i efektywność są priorytetami. Przygotowując się do procedur laboratoryjnych związanych z filtracją, zawsze należy uwzględnić te trzy składniki, aby zapewnić prawidłowe i bezpieczne przeprowadzenie eksperymentów.

Pytanie 20

W trakcie pobierania próbek wody, które mają być analizowane pod kątem składników podatnych na rozkład fotochemiczny, należy

A. dodać do próbek roztwór H3PO4 w celu zakwaszenia
B. obniżyć temperaturę próbek do 10oC
C. wykorzystywać pojemniki z jasnego szkła z dokładnie dopasowanym korkiem
D. stosować opakowania nieprzezroczyste
Stosowanie opakowań nieprzezroczystych jest kluczowe podczas pobierania próbek wody przeznaczonych do analizy składników podatnych na rozkład fotochemiczny. Promieniowanie UV i widzialne światło mogą powodować niepożądane reakcje chemiczne, które mogą prowadzić do degradacji analizowanych substancji. Dlatego materiały używane do przechowywania próbek powinny skutecznie blokować dostęp światła. Przykłady odpowiednich materiałów to ciemne szkło lub tworzywa sztuczne, które zapewniają ochronę przed światłem. Takie podejście jest zgodne z dobrymi praktykami laboratoryjnymi oraz standardami, np. ISO 5667, które podkreślają znaczenie odpowiednich technik pobierania i przechowywania próbek dla uzyskania wiarygodnych wyników analitycznych. Zastosowanie nieprzezroczystych opakowań również minimalizuje ryzyko błędów analitycznych wynikających z niekontrolowanej fotolizy substancji w próbce. W kontekście badań środowiskowych, używanie odpowiednich pojemników jest fundamentalne dla zachowania integralności próbki do momentu przeprowadzenia analizy.

Pytanie 21

Na podstawie danych w tabeli próbkę, w której będzie oznaczany BZT, należy przechowywać

Oznaczany parametrRodzaj naczynia do przechowywaniaSposób utrwalaniaDopuszczalny czas przechowywania
barwaszklane lub polietylenowe- schłodzenie do temperatury 2-5°C24 h
fosforany ogólneszklane lub polietylenowe- zakwaszenie kwasem siarkowym(VI)
- schłodzenie do temperatury 2-5°C
4 h
48 h
BZTszklane- schłodzenie do temperatury 2-5°C
- przechowywanie w ciemności
24 h
azot azotanowy(V)szklane lub polietylenowe- schłodzenie do temperatury 2-5°C
- dodanie 2 cm3 chloroformu do 1 dm3 próbki
24 h
48 h

A. w polietylenowej butelce.
B. w butelce z ciemnego szkła.
C. w szklanej butelce.
D. w metalowym naczyniu.
Przechowywanie próbki do oznaczania biochemicznego zapotrzebowania tlenu (BZT) w butelce z ciemnego szkła jest kluczowe, aby zapewnić jej integralność i dokładność pomiarów. Ciemne szkło chroni próbkę przed działaniem światła, które może prowadzić do fotodegradacji niektórych składników organicznych, co w konsekwencji zafałszowałoby wyniki analizy. Przechowywanie w odpowiedniej temperaturze, zazwyczaj w zakresie 2-5°C, również ma fundamentalne znaczenie, ponieważ niska temperatura spowalnia procesy biochemiczne, które mogłyby wpłynąć na zmiany w stężeniu tlenu. Zgodnie z normami ISO i dobrymi praktykami laboratoryjnymi, nieprzekraczanie tych warunków gwarantuje wyższej jakości wyniki. W praktyce, takie podejście jest stosowane w laboratoriach zajmujących się analizą wód, gdzie prawidłowe przechowywanie próbek jest kluczowe dla monitorowania stanu ekologicznego zbiorników wodnych. Zastosowanie butelek z ciemnego szkła jest zatem nie tylko zgodne z wymaganiami, ale także odzwierciedla wysokie standardy profesjonalizmu w pracy laboratoryjnej.

Pytanie 22

Proces, w którym woda jest usuwana z zamrożonego materiału poprzez sublimację lodu
(czyli bezpośrednie przejście do stanu pary z pominięciem stanu ciekłego) nazywa się

A. pasteryzacja
B. asocjacja
C. liofilizacja
D. homogenizacja
Liofilizacja to naprawdę ciekawy proces. W skrócie, chodzi o to, że z zamrożonego materiału usuwa się wodę poprzez sublimację, czyli jakby bezpośrednie przejście lodu w parę. To szczególnie ważne w branży spożywczej i farmaceutycznej, bo dzięki temu produkty utrzymują swoje właściwości, smak i wartości odżywcze. Możemy zobaczyć to w przypadku suszonych owoców, liofilizowanej kawy czy nawet leków, które muszą być stabilne. To, co mi się podoba, to że liofilizacja pozwala na długoterminowe przechowywanie bez konserwantów, co jest super zdrowe. W farmacji z kolei, to standard w produkcji niektórych leków, co sprawia, że łatwiej je transportować i podawać, bo rozpuszczają się w wodzie tuż przed użyciem. Po prostu świetna sprawa!

Pytanie 23

Urządzeniem pomiarowym nie jest

A. termometr
B. konduktometr
C. pehametr
D. eksykator
Eksykator jest urządzeniem, które nie służy do pomiarów, lecz do przechowywania substancji w warunkach obniżonego ciśnienia atmosferycznego lub w atmosferze kontrolowanej. Używany jest w laboratoriach chemicznych do zabezpieczania materiałów wrażliwych na wilgoć, powietrze lub inne czynniki atmosferyczne. Na przykład, eksykator może być stosowany do przechowywania substancji higroskopijnych, takich jak sól kuchenną, aby zapobiec ich nawilżeniu i degradacji. W praktyce, eksykatory często zawierają substancje osuszające, które pomagają utrzymać odpowiednie warunki w ich wnętrzu. W odróżnieniu od konduktometru, pH-metra i termometru, które są zaprojektowane do wykonywania precyzyjnych pomiarów fizykochemicznych, eksykator pełni jedynie funkcję przechowalniczą, co czyni go przyrządem niepomiarowym według standardów metrologicznych.

Pytanie 24

Metoda oczyszczania substancji oparta na różnicach w rozpuszczalności poszczególnych składników w określonym rozpuszczalniku to

A. krystalizacja
B. chromatografia
C. adsorpcja
D. destylacja
Krystalizacja to proces oczyszczania substancji, który polega na wykorzystaniu różnic w rozpuszczalności składników w danym rozpuszczalniku. Podczas krystalizacji, gdy roztwór staje się nasycony, rozpuszczony substancja zaczyna wytrącać się w postaci kryształów. Ten proces jest szczególnie użyteczny w chemii i przemyśle farmaceutycznym, gdzie czystość substancji czynnej jest kluczowa. Przykładem może być produkcja soli kuchennej, gdzie rozpuszczona sól w wodzie jest poddawana procesowi odparowania, co prowadzi do wytrącenia się czystych kryształów soli. Krystalizacja jest zgodna z zasadami dobrej praktyki laboratoryjnej (GLP) oraz standardami czystości substancji, co czyni ją niezastąpioną metodą w analizie chemicznej i syntezach organicznych. Dzięki temu procesowi można uzyskać substancje o wysokiej czystości, co jest niezbędne w dalszych badaniach i aplikacjach przemysłowych.

Pytanie 25

Mając wagę laboratoryjną z dokładnością pomiaru 10 mg, nie da się wykonać odważki o masie

A. 0,013 g
B. 13 g
C. 130 mg
D. 1300 mg
Odpowiedź 0,013 g jest prawidłowa, ponieważ waga laboratoryjna o dokładności odczytu 10 mg (0,01 g) nie pozwala na precyzyjne ważenie mas mniejszych niż ta wartość. Przygotowanie odważki o masie 0,013 g wymagałoby pomiaru, który jest poniżej granicy dokładności wagi, skutkując niedokładnym odczytem. W praktyce laboratoria powinny stosować wagi, które są w stanie dokładnie mierzyć masy w zakresie ich potrzeb, a zgodność z normami dotyczącymi dokładności pomiarów jest kluczowa. Przykładowo, w laboratoriach chemicznych, gdzie precyzyjne pomiary są niezbędne do uzyskania wiarygodnych wyników, zawsze używa się wag, które sprostają wymaganiom analitycznym. Ważenie substancji o masach mniejszych niż 10 mg przy użyciu wagi, która ma taką granicę dokładności, prowadziłoby do błędów systematycznych, co mogłoby mieć wpływ na dalsze etapy analizy.

Pytanie 26

Odważka analityczna wodorotlenku sodu, przygotowana fabrycznie, zawiera 0,1 mola NaOH. Jaką objętość wody destylowanej należy dodać w kolbie miarowej, aby uzyskać roztwór wodorotlenku sodu o stężeniu 0,0500 mol/dm3?

A. 1 dm3
B. 2 dm3
C. 50 cm3
D. 500 cm3
Aby przygotować roztwór wodorotlenku sodu (NaOH) o stężeniu 0,0500 mol/dm3 z fabrycznie przygotowanej odważki zawierającej 0,1 mola NaOH, konieczne jest rozcieńczenie odważki wodą destylowaną. Stężenie roztworu można obliczyć przy użyciu wzoru C1V1 = C2V2, gdzie C1 to stężenie początkowe (0,1 mol/dm3), V1 to objętość początkowa, C2 to stężenie końcowe (0,0500 mol/dm3), a V2 to objętość końcowa. Z tego równania wynika, że aby uzyskać stężenie 0,0500 mol/dm3, objętość końcowa powinna wynosić 2 dm3 (2000 cm3). Praktyczne zastosowanie tej wiedzy jest kluczowe w laboratoriach chemicznych, gdzie dokładność stężeń roztworów jest niezbędna do przeprowadzania reakcji chemicznych, analizy jakościowej czy ilościowej substancji. Stosowanie kolb miarowych do przygotowywania roztworów jest zgodne z dobrymi praktykami laboratoryjnymi, ponieważ pozwala na precyzyjne pomiary i minimalizuje ryzyko błędów pomiarowych.

Pytanie 27

Podaj nazwę reagentu chemicznego, który w specyficznych warunkach reaguje tylko z jednym jonem, pierwiastkiem lub związkiem chemicznym?

A. Grupowy
B. Wzorcowy
C. Selektywny
D. Specyficzny
Odczynnik specyficzny to substancja chemiczna, która reaguje wyłącznie z określonymi jonami, pierwiastkami lub związkami chemicznymi, co czyni go niezbędnym narzędziem w chemii analitycznej. Przykładem takiego odczynnika może być wskaźnik pH, który zmienia kolor tylko w obecności określonego zakresu wartości pH. Użycie odczynników specyficznych jest kluczowe w różnych dziedzinach, od analizy środowiskowej po medycynę, gdzie precyzyjne oznaczenie obecności określonych substancji jest niezbędne dla bezpieczeństwa i jakości produktów. W praktyce, standardy branżowe, takie jak ISO 17025, podkreślają znaczenie stosowania odczynników specyficznych w laboratoriach, aby zapewnić wiarygodność i dokładność wyników analiz. Używając odczynnika specyficznego, laboratoria mogą minimalizować ryzyko błędnych odczytów i zwiększać efektywność przeprowadzanych ekspertyz, co jest niezwykle ważne w kontekście regulacji prawnych i zarządzania jakością.

Pytanie 28

Reagent, który reaguje wyłącznie z jednym konkretnym jonem lub związkiem, nazywamy reagente

A. selektywny
B. specyficzny
C. maskujący
D. grupowy
Odczynnik specyficzny to taki, który reaguje z jednym, ściśle określonym jonem lub związkiem chemicznym, co czyni go niezwykle przydatnym w analizach chemicznych i laboratoryjnych. Przykładem może być odczynnik nieselektywnego wykrywania jonów srebra, jakim jest chlorowodorek sodu, który wytrąca białe osady tylko w obecności jonów srebra. W praktyce, zastosowanie odczynników specyficznych pozwala na przeprowadzanie dokładnych analiz jakościowych i ilościowych, co jest kluczowe w laboratoriach chemicznych, analitycznych, a także w przemyśle farmaceutycznym i środowiskowym. Standardy ASTM i ISO promują stosowanie takich odczynników w badaniach laboratoryjnych, co podkreśla ich znaczenie w zapewnieniu wysokiej jakości wyników. W kontekście praktycznym, specyficzność odczynników jest niezwykle ważna w diagnostyce medycznej, gdzie konieczne jest precyzyjne określenie obecności konkretnych biomarkerów.

Pytanie 29

W laboratorium chemicznym przewody instalacji rurowych są oznaczane różnymi kolorami, zgodnie z obowiązującymi normami. Polska Norma PN-70 N-01270/30 określa kolor dla wody jako

A. zielony
B. niebieski
C. czerwony
D. żółty
Odpowiedź "zielony" jest poprawna, ponieważ według Polskiej Normy PN-70 N-01270/30 kolor zielony jest przypisany dla instalacji wodnych. W praktyce oznakowanie rur wodociągowych tym kolorem ma na celu poprawę bezpieczeństwa w laboratoriach chemicznych oraz w innych obiektach, gdzie może wystąpić współistnienie różnych substancji. Oznakowanie ma na celu jednoznaczne wskazanie, jakiego medium można się spodziewać w danej instalacji, co ma kluczowe znaczenie w kontekście ewentualnych wypadków lub niebezpieczeństw. Na przykład w laboratoriach, gdzie używa się wielu substancji chemicznych, a także rozmaitych płynów, właściwe oznaczenie rur wodnych pozwala uniknąć pomyłek, które mogłyby prowadzić do poważnych konsekwencji. Przestrzeganie tego rodzaju norm w instalacjach przemysłowych oraz badawczych jest częścią szerokiego systemu zarządzania bezpieczeństwem, który powinien być wdrażany w każdym laboratorium.

Pytanie 30

Poniżej jest równanie reakcji prażenia węglanu wapnia. 200 g węglanu wapnia zawierającego 10% zanieczyszczeń poddano prażeniu. Masa otrzymanego tlenku wapnia wyniosła

CaCO3 → CaO + CO2
(MCaCO3 = 100 g/mol, MCaO = 56 g/mol, MCO2 = 44 g/mol)

A. 100,8 g
B. 31,1 g
C. 112,0 g
D. 28,0 g
Poprawna odpowiedź wynosząca 100,8 g wynika z precyzyjnego obliczenia masy czystego węglanu wapnia, jakie uzyskaliśmy po uwzględnieniu zanieczyszczeń. Zaczynamy od 200 g węglanu wapnia, z czego 10% to zanieczyszczenia. Oznacza to, że czysty węglan wapnia stanowi 90% tej masy, co daje nam 180 g (200 g - 20 g). Następnie, podczas prażenia węglanu wapnia, zachodzi reakcja termiczna, w wyniku której wytwarzany jest tlenek wapnia (CaO). W reakcji tej wydziela się dwutlenek węgla (CO₂). Wzór reakcji to: CaCO₃ (s) → CaO (s) + CO₂ (g). Korzystając ze stosunku mas molowych, który wynosi około 1:0,56 dla CaCO₃ do CaO, obliczamy masę tlenku wapnia, co prowadzi nas do wyniku 100,8 g. Zrozumienie takich procesów jest kluczowe w chemii analitycznej i przemysłowej, gdzie dokładność odgrywa fundamentalną rolę, na przykład w produkcji materiałów budowlanych.

Pytanie 31

Po zmieszaniu wszystkie pierwotne próbki danej partii materiału tworzą próbkę

A. średnią
B. ogólną
C. analityczną
D. wtórną
Odpowiedź ogólna jest poprawna, ponieważ po zmieszaniu wszystkich próbek pierwotnych danej partii materiału uzyskuje się jedną reprezentatywną próbkę, która odzwierciedla właściwości całej partii. W praktyce jest to kluczowe w procesach analitycznych, gdzie zapewnienie reprezentatywności próbki ma fundamentalne znaczenie dla uzyskanych wyników. W kontekście norm ISO 17025 dotyczących akredytacji laboratoriów badawczych oraz metod pobierania próbek, istotne jest, aby reprezentatywna próbka była zgodna z zaleceniami dotyczącymi wielkości i sposobu pobierania. Dzięki temu możemy mieć pewność, że wyniki analizy będą miały zastosowanie do całej partii materiału, a nie tylko do wybranych fragmentów. W praktyce, proces ten jest często stosowany w laboratoriach, które zajmują się kontrolą jakości, gdzie analiza jednego z wielu komponentów materiału pozwala na ocenę jego właściwości fizycznych czy chemicznych, co jest niezbędne w branżach takich jak przemysł spożywczy, farmaceutyczny czy chemiczny. W związku z tym, zrozumienie, czym jest próbka ogólna, jest niezbędne dla właściwej interpretacji wyników badań.

Pytanie 32

Jakie środki ochronne należy zastosować podczas sporządzania 1M roztworu zasady sodowej ze stężonego roztworu NaOH, na opakowaniu którego widnieje oznaczenie S/36/37/39?

Numer zwrotu SWarunki bezpiecznego stosowania
S36Używać odpowiedniej odzieży ochronnej
S37Używać odpowiednich rękawic
S38W przypadku niewystarczającej wentylacji używać sprzętu do oddychania
S39Używać okularów lub maski ochronnej

A. Fartuch ochronny, rękawice i maskę tlenową.
B. Gumowe rękawice i maskę ochronną.
C. Odzież ochronną, rękawice i okulary ochronne.
D. Odzież ochronną i maskę tlenową.
Sugerowane odpowiedzi, takie jak gumowe rękawice i maska ochronna, nie uwzględniają pełnego zakresu wymaganych środków ochrony osobistej. Użycie jedynie gumowych rękawic nie zapewnia wystarczającego poziomu ochrony, ponieważ nie chroni ono całego ciała, co jest kluczowe w przypadku substancji chemicznych o silnych właściwościach żrących, jak NaOH. Brak odzieży ochronnej naraża skórę na bezpośredni kontakt, co może prowadzić do poważnych oparzeń. Maska ochronna nie jest odpowiednia w tym kontekście, ponieważ nie gwarantuje ochrony oczu, które są szczególnie wrażliwe na działanie substancji chemicznych. Zatem, koncepcje przedstawione w nieprawidłowych odpowiedziach mogą prowadzić do błędnych wniosków, sugerując, że wystarczająca ochrona może być zapewniona bez komplementarności środków ochrony. W środowisku laboratoryjnym, kluczowe jest stosowanie pełnego zestawu środków ochrony osobistej, co potwierdzają liczne normy i wytyczne dotyczące bezpieczeństwa pracy z substancjami niebezpiecznymi, takie jak normy OSHA czy dyrektywy REACH, które podkreślają znaczenie kompleksowej ochrony w celu minimalizacji ryzyka dla zdrowia i bezpieczeństwa pracowników.

Pytanie 33

Oblicz stężenie molowe 250 cm3 roztworu NaOH, w którym znajduje się 0,5 g substancji. Masa molowa NaOH wynosi 40 g/mol

A. 0,50 mol/dm3
B. 0,05 mol/dm3
C. 0,01 mol/dm3
D. 0,10 mol/dm3
W przypadku błędnych odpowiedzi, często dochodzi do nieporozumień związanych z konwersją jednostek, obliczaniem liczby moli oraz interpretacją pojęcia stężenia molowego. Na przykład, niektórzy mogą błędnie zakładać, że stężenie molowe można obliczyć bezpośrednio z masy NaOH, nie uwzględniając konieczności obliczenia liczby moli. Inni mogą mylnie konwertować jednostki objętości, co prowadzi do niewłaściwych wyników. Typowym błędem jest także pomijanie, że 1 dm³ to 1000 cm³, co skutkuje błędnym dzieleniem lub mnożeniem. Na przykład, błędne odpowiedzi 0,10 mol/dm³ czy 0,50 mol/dm³ mogą sugerować, że osoba zadająca pytanie niepoprawnie oceniła liczbę moli lub nieprawidłowo zinterpretowała objętość roztworu. Ponadto, niektórzy mogą mylnie zrozumieć pojęcie stężenia molowego i uznać, że jest to wartość proporcjonalna do masy. W rzeczywistości stężenie molowe jest miarą ilości moli rozpuszczonej substancji na jednostkę objętości roztworu i wymaga precyzyjnych obliczeń. Zrozumienie tych zagadnień jest kluczowe dla skutecznej pracy w laboratorium oraz dla właściwego przygotowania roztworów chemicznych.

Pytanie 34

Korzystając z danych w tabeli wskaż, ile cm3 36% roztworu HCl należy użyć, aby przygotować 250 cm3 0,1-molowego roztworu tego kwasu.

% wagowy
[%]
d420
[g/cm3]
m HCl
w 100 cm3
[g/100cm3]
CM HCl
[mol/dm3]
301,149234,489,46
321,159337,1010,17
341,169139,7510,90
361,178942,4411,64

A. 2,13 cm3
B. 2,50 cm3
C. 2,15 cm3
D. 2,52 cm3
Aby przygotować 250 cm³ 0,1-molowego roztworu HCl z 36% roztworu, użycie 2,15 cm³ tego roztworu jest poprawne. Obliczenia opierają się na zasadzie rozcieńczenia, która jest kluczowym pojęciem w chemii. Przygotowując roztwory, istotne jest, aby znać stężenie molowe roztworu wyjściowego oraz objętość roztworu, który chcemy uzyskać. W tym przypadku, 36% roztwór HCl ma stężenie molowe wynoszące około 10 mol/dm³. Aby obliczyć, ile tego roztworu potrzeba, stosujemy równanie rozcieńczenia: C1 * V1 = C2 * V2, gdzie C1 to stężenie roztworu wyjściowego, V1 to objętość roztworu wyjściowego, C2 to stężenie roztworu docelowego, a V2 to objętość roztworu docelowego. Po podstawieniu wartości i przekształceniu równania otrzymujemy, że V1 wynosi 2,15 cm³. Praktyczne zastosowanie tej wiedzy jest niezwykle istotne w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania powtarzalnych i wiarygodnych wyników eksperymentalnych. Dobrą praktyką jest również zawsze zwracać uwagę na jednostki oraz dokładność pomiaru, co jest fundamentalne w chemii analitycznej.

Pytanie 35

Które spośród substancji wymienionych w tabeli pozwolą pochłonąć wydzielający się tlenek węgla(IV)?

IIIIIIIVV
Ca(OH)2(aq)NaOH(s)HNO3(stęż)CuO(s)CaO(s)

A. II, IV, V.
B. I, III, IV.
C. I, II, V
D. I, II, IV.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to I, II, V, ponieważ wszystkie wymienione substancje są zasadami, które mogą reagować z tlenkiem węgla(IV), czyli dwutlenkiem węgla (CO2), tworząc węglany. Substancja I, Ca(OH)2, znana jako wapno hydratyzowane, reaguje z CO2, tworząc węglan wapnia, co jest procesem wykorzystywanym w budownictwie oraz w produkcji materiałów budowlanych. Substancja II, NaOH, czyli soda kaustyczna, jest silną zasadą, która również reaguje z CO2, co jest stosowane m.in. w procesach neutralizacji kwasów w przemyśle chemicznym. Substancja V, CaO, zwana wapnem palonym, po rozpuszczeniu w wodzie również tworzy Ca(OH)2, a jego zastosowanie obejmuje zarówno przemysł budowlany, jak i produkcję chemiczną. Rozumienie reakcji tych substancji z CO2 jest istotne w kontekście ochrony środowiska, ponieważ ich właściwości mogą być wykorzystywane do redukcji emisji CO2 z różnych procesów przemysłowych. Wszystkie te substancje stosuje się zgodnie z normami ochrony środowiska, co podkreśla ich znaczenie w praktycznych zastosowaniach, takich jak absorpcja CO2.

Pytanie 36

Mianowanie roztworu KMnO4 następuje według poniższej procedury:
Około 0,2 g szczawianu sodu, ważonego z dokładnością ±0,1 mg, przenosi się do kolby stożkowej, rozpuszcza w około 100 cm3 wody destylowanej, następnie dodaje się 10 cm3 roztworu kwasu siarkowego(VI) i podgrzewa do temperatury około 70 °C. Miareczkowanie przeprowadza się roztworem KMnO4 do momentu uzyskania trwałego, jasnoróżowego koloru.
Powyższa procedura odnosi się do miareczkowania

A. alkacymetrycznego
B. redoksymetrycznego
C. potencjometrycznego
D. kompleksometrycznego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Mianowanie roztworu manganianu(VII) potasu (KMnO4) w opisywanej procedurze odbywa się w ramach miareczkowania redoksymetrycznego, które jest techniką analizy chemicznej opartą na reakcji utleniania i redukcji. Manganian(VII) potasu jest silnym utleniaczem, a w reakcjach z substancjami redukującymi, takimi jak szczawian sodu, przeprowadza reakcję redoks, gdzie dochodzi do wymiany elektronów. Szczawian sodu w obecności kwasu siarkowego(VI) (H2SO4) ulega utlenieniu, a KMnO4 redukuje się do manganu(II). Ostatecznym punktem końcowym miareczkowania jest zauważenie trwałego lekkoróżowego zabarwienia roztworu, co wskazuje na niewielką nadmiarowość manganianu i zakończenie reakcji. Miareczkowanie redoksymetryczne znajduje zastosowanie w analizie różnych substancji, takich jak kwasy, alkohol czy węglowodany, stanowiąc istotny element w laboratoriach analitycznych. W praktyce, ważne jest zachowanie odpowiednich warunków, takich jak temperatura, pH i stężenie reagentów, aby zapewnić precyzyjność i powtarzalność wyników.

Pytanie 37

Aby odróżnić urządzenia w laboratorium chemicznym, rury do próżni maluje się w kolorze

A. szarym
B. czerwonym
C. niebieskim
D. żółtym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rury do próżni w laboratoriach chemicznych maluje się na kolor szary, aby zapewnić ich łatwe rozróżnienie od innych systemów rurociągów, a także podnieść bezpieczeństwo pracy w laboratoriach. Kolor szary jest standardem w wielu laboratoriach, ponieważ konkretne barwy przypisuje się różnym zastosowaniom i funkcjom rur. Rury do próżni muszą być odpowiednio oznaczone, aby uniknąć pomyłek, które mogłyby prowadzić do niebezpiecznych sytuacji, takich jak przypadkowe podłączenie nieprawidłowych systemów. Przykładowo, w sytuacji awaryjnej, kiedy konieczne jest szybkie rozpoznanie systemów, oznakowanie kolorystyczne umożliwia personelowi natychmiastowe zidentyfikowanie rur do próżni i podjęcie odpowiednich działań. Dobre praktyki branżowe, takie jak normy ISO oraz wytyczne dotyczące bezpieczeństwa chemicznego, również podkreślają znaczenie prawidłowego oznakowania infrastruktury laboratoryjnej, co ma kluczowe znaczenie dla minimalizacji ryzyka oraz zapewnienia efektywności operacyjnej.

Pytanie 38

Co oznacza skrót AKT?

A. kontrolno-techniczną analizę
B. krzywą titracyjną analityczną
C. amid kwasu tiooctowego
D. titranta automatyczną kontrolę

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Skrót AKT odnosi się do amidu kwasu tiooctowego, który jest istotnym związkiem chemicznym o szerokim zastosowaniu w różnych dziedzinach, w tym w chemii analitycznej i syntezie organicznej. Amid kwasu tiooctowego jest wykorzystywany jako odczynnik w reakcjach chemicznych, w tym w tworzeniu złożonych cząsteczek organicznych. Jego unikalne właściwości sprawiają, że jest przydatny w procesach, takich jak modyfikacja powierzchni materiałów i nanoszenie warstw ochronnych. Przykładowo, w laboratoriach chemicznych używa się go do syntezy związków, które następnie mogą być badane pod kątem ich właściwości biologicznych lub fizykochemicznych. Ponadto, amid kwasu tiooctowego ma zastosowanie w branży farmaceutycznej, gdzie jest wykorzystywany w produkcji niektórych leków. Zrozumienie roli AKT w chemii pozwala na lepsze projektowanie eksperymentów i analizę wyników, co jest kluczowe dla zapewnienia wysokiej jakości badań i zgodności z najlepszymi praktykami w branży.

Pytanie 39

Wskaż sprzęt, którego należy użyć, aby przygotować 100 cm3 roztworu NaOH o stężeniu 0,1 mol/dm3.

12345
naczynko wagowewaga analitycznakolba stożkowakolba miarowa
pojemności 50 cm3
kolba miarowa
pojemności 100 cm3

A. 1,2,4
B. 2,3,4
C. 1,2,3
D. 1,2,5

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby przygotować 100 cm3 roztworu NaOH o stężeniu 0,1 mol/dm3, konieczne jest zastosowanie odpowiedniego sprzętu laboratoryjnego. W pierwszej kolejności, do odważenia 0,4 g NaOH, wykorzystujemy naczynko wagowe oraz wagę analityczną, które zapewniają wysoką precyzję ważenia. Zgodnie z dobrymi praktykami laboratoryjnymi, waga analityczna powinna być kalibrowana przed każdym użyciem, co gwarantuje dokładność pomiarów. Następnie, do przygotowania roztworu używamy kolby miarowej o pojemności 100 cm3. Kolba miarowa umożliwia precyzyjne odmierzanie objętości roztworu, co jest kluczowe dla uzyskania żądanego stężenia. Przygotowanie roztworu w kolbie miarowej jest standardową procedurą w chemii analitycznej i przemysłowej, pozwalającą na powtarzalność wyników. Użycie niewłaściwego naczynia, takiego jak kolby o innych pojemnościach, może prowadzić do błędnych stężeń, co ma istotne znaczenie w kontekście reakcji chemicznych, w których stosunki molowe są kluczowe.

Pytanie 40

Próbkę wody przeznaczoną do oznaczenia zawartości metali poddaje się utrwalaniu za pomocą

Sposoby utrwalania i przechowywania próbek wody przeznaczonych do badań fizykochemicznych.
OznaczenieSposób utrwalania i przechowywania
BarwaPrzechowywać w ciemności
MętnośćPrzechowywać w ciemności
TwardośćpH = 3 z użyciem HNO₃
OWO0,7 ml HCl/30 ml próbki
ChZTpH 1-2 z użyciem H₂SO₄
FosforPrzechowywać w temperaturze 1-5°C
GlinpH 1-2 z użyciem HNO₃
ŻelazopH 1-2 z użyciem HNO₃
UtlenialnośćpH1-2 z użyciem H₂SO₄. Przechowywać w ciemności

A. kwasu solnego.
B. kwasu siarkowego(VI).
C. kwasu azotowego(V).
D. kwasu fosforowego(V).

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź kwasu azotowego(V) jako środka utrwalającego próbki wody jest zgodna z zasadami analizy chemicznej, szczególnie w kontekście oznaczania metali, takich jak glin i żelazo. Kwas azotowy(V) (HNO3) jest powszechnie stosowany w laboratoriach ze względu na swoje silne właściwości utleniające, które pomagają w stabilizacji próbek przed dalszymi analizami. Utrwalenie próbki za pomocą kwasu azotowego zapobiega osadzaniu się metali oraz ich utlenieniu, co ma kluczowe znaczenie w uzyskaniu dokładnych i wiarygodnych wyników. Ponadto, zgodnie z zaleceniami standardów takich jak ISO 5667, odpowiednie przygotowanie próbek jest kluczowe dla zapewnienia jakości badań. Kwas azotowy pozwala na zachowanie integralności chemicznej metali w próbce, co jest niezbędne w analizach spektroskopowych, takich jak ICP-OES czy AAS. Rekomendowane praktyki laboratoryjne podkreślają również konieczność stosowania HNO3 w odpowiednich stężeniach, aby osiągnąć najlepsze wyniki analityczne.