Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 12 kwietnia 2025 15:21
  • Data zakończenia: 12 kwietnia 2025 15:37

Egzamin niezdany

Wynik: 10/40 punktów (25,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Podczas użytkowania standardowej instalacji z żarowym źródłem światła zaobserwowano po kilku minutach działania częste wahania natężenia oświetlenia (migotanie światła). Najrzadziej występującą przyczyną usterki może być

A. wypalenie styków w łączniku
B. wilgotna izolacja przewodów zasilających
C. zwarcie między przewodem fazowym a neutralnym
D. zwarcie między przewodem ochronnym a neutralnym
Zwarcie pomiędzy przewodem ochronnym a neutralnym jest nieprawidłowym podejściem do analizy problemu z miganiem światła. Tego rodzaju zwarcie może prowadzić do niebezpiecznych sytuacji, ale nie jest bezpośrednią przyczyną oscylacji natężenia światła. W rzeczywistości, przewód ochronny jest zaprojektowany, aby przewodzić prąd tylko w sytuacjach awaryjnych, a jego uszkodzenie nie wpływa na normalne funkcjonowanie instalacji. Dodatkowo, zawilgocona izolacja przewodów zasilających może powodować problemy, takie jak zwarcia, ale objawy, jakie generuje, są zazwyczaj bardziej poważne, takie jak iskrzenie czy całkowity brak zasilania, a nie zmiany natężenia światła. Z kolei zwarcie między przewodem fazowym a neutralnym prowadziłoby do przeciążeń, co również skutkowałoby innymi objawami niż miganie. Typowe błędy w myśleniu o tych problemach to pomijanie specyfikacji technicznych i norm, które jasno określają, jak zachowują się różne komponenty w instalacji. Właściwe zrozumienie tego, jak działają poszczególne elementy instalacji elektrycznej, jest kluczowe dla skutecznej diagnozy i eliminacji problemów.

Pytanie 4

Jakie środki ochrony przeciwporażeniowej stosuje się w przypadku uszkodzenia obwodu pojedynczego odbiornika?

A. wyłącznie specjalne ogrodzenia
B. jedynie obudowy
C. separację elektryczną
D. umiejscowienie poza zasięgiem ręki
Separacja elektryczna to metoda ochrony przed porażeniem elektrycznym, która polega na oddzieleniu obwodów elektrycznych od żywych części, co znacząco minimalizuje ryzyko bezpośredniego kontaktu z prądem. W praktyce, separacja elektryczna może być realizowana poprzez zastosowanie transformatorów separacyjnych, które izolują odbiorniki od źródła zasilania, co pozwala na uniknięcie niebezpiecznych sytuacji w przypadku uszkodzenia izolacji. Dobre praktyki w zakresie ochrony elektrycznej zalecają używanie transformatorów o odpowiednich parametrach, które nie tylko spełniają normy bezpieczeństwa, ale także są zgodne z obowiązującymi standardami, takimi jak norma IEC 61140 dotycząca ochrony przeciwporażeniowej. W kontekście instalacji elektrycznych, separacja elektryczna jest szczególnie ważna w obszarach o wysokim ryzyku, jak np. w łazienkach czy na zewnątrz budynków, gdzie ryzyko kontaktu z wodą jest zwiększone. Ponadto, stosowanie separacji elektrycznej w obiektach przemysłowych, gdzie występuje duża liczba maszyn i urządzeń, również przyczynia się do poprawy bezpieczeństwa pracowników i minimalizacji ryzyka wypadków. W związku z tym, separacja elektryczna jest nie tylko skuteczną, ale i rekomendowaną metodą ochrony przed porażeniem elektrycznym.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Jak wpłynie na ilość wydzielanego ciepła w czasie, w grzejniku elektrycznym, gdy spiralę grzejną zmniejszy się o połowę, a napięcie pozostanie takie samo?

A. Zmniejszy się dwukrotnie
B. Zwiększy się czterokrotnie
C. Zwiększy się dwukrotnie
D. Zmniejszy się czterokrotnie
Wybór opcji wskazującej na czterokrotne zmniejszenie wydzielanego ciepła w jednostce czasu wynika z mylnego rozumienia relacji między długością spirali grzejnej a oporem elektrycznym. Koncepcja, że zmiana długości spirali prowadzi do ekstremalnego spadku wydajności, ignoruje podstawowe zasady elektrotechniki. W rzeczywistości, zmniejszenie długości spirali grzejnika elektrycznego o połowę prowadzi do zmniejszenia oporu R, co z kolei, przy zachowaniu napięcia, skutkuje zwiększeniem wydobywanej mocy. Błędne podejście opiera się na założeniu, że wydajność grzejnika spadnie w sposób proporcjonalny do długości spirali, co jest nieprawdziwe. Również stwierdzenia, że zmniejszenie długości spirali o połowę prowadzi do zmniejszenia wydzielania ciepła w sposób czterokrotny, nie uwzględniają charakterystyki elektronicznego przewodzenia energii w materiałach. Efekt Joule'a, który wyjaśnia generację ciepła w przewodnikach, mówi o kwadracie napięcia podzielonym przez opór, co wykazuje jednoznaczną zależność, która w tym przypadku wskazuje na wzrost mocy. Zrozumienie tych zasad jest kluczowe nie tylko w kontekście teorii, ale także w praktycznym projektowaniu systemów grzewczych, gdzie odpowiednia regulacja parametrów, takich jak długość spirali i napięcie, może znacząco wpłynąć na efektywność energetyczną i komfort użytkowania.

Pytanie 10

Jaką wartość powinno mieć napięcie testowe podczas pomiaru rezystancji izolacyjnej uzwojenia wtórnego transformatora ochronnego?

A. 2 000 V
B. 500 V
C. 250 V
D. 1 000 V
Wybór wartości napięcia probierczego spośród 1000 V, 500 V oraz 2000 V może być wynikiem niepełnego zrozumienia specyfiki pomiarów rezystancji izolacji uzwojeń wtórnych transformatorów bezpieczeństwa. Przy pomiarze rezystancji izolacji kluczowe jest zrozumienie, że transformator bezpieczeństwa jest przeznaczony do pracy w niskonapięciowych systemach elektrycznych, co wymaga zastosowania odpowiednich wartości napięcia probierczego. Napięcia na poziomie 1000 V i 2000 V są zbyt wysokie i mogą prowadzić do uszkodzenia izolacji oraz wrażliwych komponentów elektrycznych, co w konsekwencji zagraża bezpieczeństwu użytkowników. Napięcie 500 V, choć niższe od 1000 V, nadal jest zbyt wysokie dla niektórych zastosowań, szczególnie w kontekście transformatorów bezpieczeństwa, gdzie obowiązują normy ograniczające stosowane napięcia probiercze. Wybierając niewłaściwe napięcie, można również pominąć kluczowe testy, które powinny być przeprowadzane zgodnie z najlepszymi praktykami branżowymi. Dlatego istotne jest, aby podczas określania wartości napięcia probierczego kierować się zaleceniami takich norm jak IEC 61557, które wyraźnie wskazują na 250 V jako optymalną wartość dla takich pomiarów. Niezrozumienie tej kwestii może prowadzić do nieodpowiednich wniosków oraz potencjalnych zagrożeń, co podkreśla wagę znajomości i przestrzegania obowiązujących standardów w branży.

Pytanie 11

Jakie urządzenie powinno być użyte do zasilania obwodu SELV z sieci 230 V, 50 Hz?

A. Falownikiem
B. Autotransformatorem
C. Dzielnikiem napięcia
D. Transformatorem bezpieczeństwa
Dzielniki napięcia, falowniki i autotransformatory nie nadają się do obwodów SELV z kilku powodów. Dzielnik napięcia to prosta konstrukcja, ale nie daje izolacji od źródła zasilania, co może narazić użytkowników na niebezpieczeństwo. Falowniki przekształcają prąd stały na zmienny, ale do obwodów SELV się nie nadają, bo nie mają odpowiedniej izolacji. Autotransformatory, mimo możliwości obniżania napięcia, też nie zapewniają izolacji, co czyni je zupełnie niewłaściwymi. Generalnie, jeśli myślimy o zasilaniu obwodów SELV, musimy stawiać na sprzęt, który przede wszystkim gwarantuje bezpieczeństwo i spełnia normy. Niestety, w przypadku tych trzech urządzeń to nie działa.

Pytanie 12

W jaki sposób zmieni się spadek napięcia na przewodzie zasilającym przenośny odbiornik, jeśli zamienimy przewód OWY 5×4 mm2 o długości 5 m na przewód OWY 5×6 mm2 o długości 15 m?

A. Zwiększy się trzykrotnie
B. Zmniejszy się dwukrotnie
C. Zwiększy się dwukrotnie
D. Zmniejszy się trzykrotnie
Odpowiedź, że spadek napięcia na przewodzie zasilającym odbiornik przenośny zwiększy się dwukrotnie, jest poprawna z perspektywy prawa Ohma oraz zasad obliczania spadku napięcia. Spadek napięcia (U) na przewodniku oblicza się według wzoru U = I * R, gdzie I to prąd płynący przez przewód, a R to oporność przewodu. Oporność przewodu wyrażona jest wzorem R = ρ * (L/A), gdzie ρ to oporność właściwa materiału, L to długość przewodu, a A to jego pole przekroju. Zastępując przewód OWY 5×4 mm² o długości 5 m przewodem OWY 5×6 mm² o długości 15 m, zwiększamy długość przewodu trzykrotnie (15 m do 5 m) oraz zmniejszamy pole przekroju o 1,5 razy (4 mm² do 6 mm²). Mimo większego pola przekroju nowego przewodu, jego długość powoduje, że spadek napięcia wzrasta. W praktyce oznacza to, że dla zastosowań wymagających długich przewodów zasilających, dobór odpowiedniego przekroju przewodu jest kluczowy, aby zminimalizować straty energetyczne i zapewnić stabilność zasilania. Dostosowywanie długości i przekrojów przewodów jest zgodne z normą PN-IEC 60364, która zaleca obliczanie spadków napięcia dla zapewnienia bezpieczeństwa i efektywności instalacji elektrycznych.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Jakie prace są dozwolone w instalacjach elektrycznych, które nie są wyłączone spod napięcia w sieci TN?

A. Zamiana gniazdek.
B. Wymiana wkładek bezpiecznikowych.
C. Dokręcanie przewodów w złączach.
D. Wykonywanie pomiaru rezystancji izolacji instalacji.
Wymiana gniazd wtyczkowych oraz dokręcanie przewodów w zaciskach są czynnościami, które w przypadku instalacji niewyłączonych spod napięcia stanowią poważne ryzyko. Gniazda wtyczkowe są częścią obwodu, który jest pod napięciem, a ich wymiana może prowadzić do niekontrolowanego dostępu do elementów pod napięciem, co z kolei zwiększa ryzyko porażenia prądem. Normy PN-IEC 60364 jasno określają, że wszelkie prace wymagające dostępu do takich elementów powinny być przeprowadzane po wyłączeniu zasilania, aby zapewnić bezpieczeństwo pracowników. Dokręcanie przewodów w zaciskach, zwłaszcza w układzie TN, również stwarza potencjalne zagrożenie, gdyż może prowadzić do niezamierzonego zwarcia lub uszkodzenia izolacji przewodów, co w efekcie może spowodować pożar lub inne poważne incydenty elektryczne. Pomiar rezystancji izolacji instalacji to kolejna czynność, która nie powinna być przeprowadzana w warunkach, gdy instalacja jest pod napięciem, ponieważ nie tylko zagraża to bezpieczeństwu osoby wykonującej pomiar, ale także może prowadzić do uszkodzenia sprzętu pomiarowego. Wszelkie prace elektryczne powinny być prowadzone zgodnie z zasadami bezpieczeństwa i normami branżowymi, co wymaga dezaktywacji zasilania przed przystąpieniem do jakiejkolwiek interwencji w instalacji elektrycznej.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Której z poniższych czynności nie obejmuje zakres kontrolny badań instalacji elektrycznej?

A. Badania zabezpieczeń przed dotykiem pośrednim
B. Pomiarów oraz weryfikacji spadków napięć
C. Pomiarów rezystancji izolacji przewodów
D. Oględzin związanych z ochroną przeciwpożarową
Badania okresowe instalacji elektrycznej są niezbędnym elementem zapewnienia bezpieczeństwa użytkowników oraz prawidłowego funkcjonowania systemów elektroenergetycznych. Pomiar rezystancji izolacji przewodów to kluczowy element tych badań, który pozwala na ocenę integralności izolacji. Niska rezystancja może wskazywać na uszkodzenia izolacji, co stwarza ryzyko porażenia prądem lub awarii systemu. Sprawdzanie ochrony przed dotykiem pośrednim, które ma na celu zminimalizowanie ryzyka kontaktu z elementami na potencjale uziemienia, również jest istotne w kontekście analiz okresowych. Oględziny dotyczące ochrony przeciwpożarowej, które obejmują ocenę układów elektrycznych pod kątem możliwości zapłonu lub zwarcia, są zgodne z normami bezpieczeństwa. Z kolei pomiar i sprawdzanie spadków napięć, chociaż ważne w kontekście analizy wydajności i jakości energii elektrycznej, nie jest częścią standardowego zakresu badań okresowych. Użytkownicy mogą mylnie uznać, że każde badanie związane z instalacją elektryczną powinno być uwzględnione w okresowych przeglądach, jednak różnica w celach tych badań jest kluczowa dla ich odpowiedniego przeprowadzenia. Właściwe podejście do badań określa, które pomiary są kluczowe dla dbałości o bezpieczeństwo oraz funkcjonalność instalacji.

Pytanie 20

Inspekcje instalacji u odbiorców energii elektrycznej powinny być realizowane nie rzadziej niż co

A. miesiąc
B. 5 lat
C. 3 lata
D. rok
Wybierając odpowiedź, która sugeruje krótszy okres przeglądów, można popaść w pułapkę niepełnego zrozumienia przepisów oraz zasad bezpieczeństwa. Odpowiedzi takie jak "rok" czy "miesiąc" mogą wydawać się sensowne, ponieważ zakładają częstsze kontrole, jednak w rzeczywistości mogą prowadzić do nieefektywności i nieuzasadnionych kosztów. Częste przeglądy, takie jak co miesiąc, mogą nie tylko obciążać organizację, ale także zmniejszać skuteczność procesu. Przeglądy powinny być przeprowadzane z odpowiednią starannością i w odpowiednich odstępach czasu, aby umożliwić dokładną ocenę stanu instalacji. Innym błędem jest wybór odpowiedzi wskazującej na trzy lata, co choć jest bliższe rzeczywistości, wciąż nie spełnia minimalnych standardów. W rzeczywistości, przestrzeganie pięcioletniego okresu to nie tylko wymóg prawny, ale także strategia inwestycyjna, która pozwala na planowanie działań konserwacyjnych oraz maksymalizację efektywności utrzymania instalacji. Przeglądy wykonane zgodnie z przepisami pozwalają na wczesne wykrywanie problemów, a ich zaniechanie może prowadzić do poważnych konsekwencji, w tym niebezpiecznych awarii, które mogą zagrażać zdrowiu i życiu użytkowników. Dlatego zrozumienie i stosowanie się do ustalonych norm i przepisów jest kluczowe w zarządzaniu instalacjami elektrycznymi.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Który z podanych wyłączników nadprądowych powinien być użyty w obwodzie zasilającym tylko rezystancyjny grzejnik elektryczny z trzema grzałkami o mocy 3 kW każda, połączonymi w trójkąt i zasilanym z sieci 3/N/PE ~ 400/230 V 50 Hz?

A. CLS6-B16/3
B. CLS6-B16/3N
C. CLS6-B16/4
D. CLS6-C16/1N
Pozostałe odpowiedzi nie spełniają wymagań dotyczących ochrony obwodu zasilającego grzejnik elektryczny. Odpowiedź CLS6-C16/1N nie jest właściwa, ponieważ jest to wyłącznik jednofazowy, a obwód, w którym zainstalowany jest grzejnik, jest trójfazowy. Zastosowanie wyłącznika jednofazowego w obwodzie trójfazowym prowadziłoby do nieprawidłowej ochrony, a w przypadku awarii mogłoby to skutkować poważnymi uszkodzeniami instalacji. Odpowiedź CLS6-B16/4 jest także błędna ze względu na to, że wyłącznik ten ma cztery bieguny, co nie ma zastosowania w obwodach trójfazowych z przewodem neutralnym. W instalacjach trójfazowych wykorzystuje się zazwyczaj wyłączniki trójbiegowe, co czyni tę opcję niewłaściwą. Z kolei wyłącznik CLS6-B16/3N, mimo że teoretycznie mógłby być odpowiedni z uwagi na obecność przewodu neutralnego, nie jest optymalnym wyborem dla obwodu głównie rezystancyjnego, jakim jest grzejnik elektryczny. Obciążenia rezystancyjne charakteryzują się stabilnym prądem, co oznacza, że wyłączniki B są bardziej odpowiednie niż N, które są zaprojektowane do ochrony obwodów z obciążeniami nieliniowymi. Dlatego ważne jest, aby dobór wyłącznika nadprądowego był zgodny z charakterem obciążenia oraz wymaganiami normatywnymi, co zapewnia bezpieczeństwo oraz odpowiednią funkcjonalność instalacji elektrycznej.

Pytanie 26

Korzystając z tabeli oceń, który wynik badania pozwala wyciągnąć pozytywny wniosek o stanie izolacji jednofazowej instalacji elektrycznej 230 V, 50 Hz.

Napięcie nominalne obwoduNapięcie pomiarowe prądu stałego d.c.Wymagana rezystancja izolacji
V
SELV i PELV250≥ 0,5
do 500 V włącznie, w tym FELV500≥ 1,0
powyżej 500 V1000≥ 1,0

Wynik badaniaNapięcie pomiarowe prądu stałego, kVRezystancja izolacji, kΩ
A.2301050
B.250500
C.4001100
D.5001000

A. C.
B. D.
C. B.
D. A.
Odpowiedź D jest prawidłowa, ponieważ zgodnie z obowiązującymi normami, szczególnie normą PN-EN 60204-1, rezystancja izolacji dla instalacji jednofazowych o napięciu nominalnym do 500 V powinna wynosić co najmniej 1,0 MΩ. W przypadku badania przedstawionego w odpowiedzi D, rezystancja izolacji wynosi 1000 kΩ, co jest równoważne 1 MΩ, a więc spełnia wymagania normatywne. W praktyce oznacza to, że instalacja elektryczna jest w dobrym stanie, a ryzyko wystąpienia awarii izolacji lub porażenia prądem jest zminimalizowane. Istotne jest, aby regularnie przeprowadzać pomiary rezystancji izolacji, aby zapewnić bezpieczeństwo użytkowników oraz prawidłowe funkcjonowanie urządzeń elektrycznych. Normy te mają na celu nie tylko ochronę przed porażeniem prądem, ale także zapobieganie uszkodzeniom sprzętu w wyniku niewłaściwej izolacji. Utrzymywanie odpowiedniej izolacji w instalacjach elektrycznych jest kluczowym elementem zarządzania bezpieczeństwem w każdym obiekcie.

Pytanie 27

Która z poniższych okoliczności wymaga przeprowadzenia pomiarów kontrolnych w instalacji elektrycznej niskiego napięcia?

A. Zmiana rodzaju źródeł światła w oprawach oświetleniowych
B. Rozbudowanie instalacji
C. Zadziałanie wyłącznika różnicowoprądowego
D. Zadziałanie zabezpieczenia przedlicznikowego
Zadziałanie zabezpieczenia przedlicznikowego, zadziałanie wyłącznika różnicowoprądowego oraz zmiana rodzaju źródeł światła w oprawach oświetleniowych to sytuacje, które mogą budzić obawy, jednak nie obligują one do przeprowadzenia pomiarów kontrolnych instalacji elektrycznej niskiego napięcia. Zabezpieczenia przedlicznikowe mają na celu ochronę przed przeciążeniem oraz zwarciem, a ich zadziałanie sugeruje, że istnieje problem w obciążeniu instalacji. W takim przypadku właściwe byłoby zidentyfikowanie przyczyny, ale niekoniecznie wykonanie pomiarów kontrolnych, które są bardziej związane z weryfikacją stanu technicznego instalacji po zmianach. Zadziałanie wyłącznika różnicowoprądowego wskazuje na różnicę prądów, co może sugerować upływność lub zwarcie doziemne, jednak w takiej sytuacji priorytetem jest naprawa, a nie rutynowe pomiary. Zmiana źródeł światła, na przykład przesiadka z żarówek tradycyjnych na LED, również nie wymaga przeprowadzania pomiarów kontrolnych, chyba że wiąże się to z modyfikacją instalacji elektrycznej. Typowym błędem myślowym jest mylenie zadań kontrolnych z sytuacjami awaryjnymi. Pomiary kontrolne są przewidziane w kontekście rozbudowy lub modyfikacji instalacji, a nie jedynie w odpowiedzi na zaistniałe problemy z jej działaniem.

Pytanie 28

Podaj, jaką wartość nie może przewyższać spodziewane napięcie dotykowe na dostępnej części przewodzącej urządzenia działającego w normalnych warunkach środowiskowych, podczas samoczynnego wyłączenia wynoszącego 5 s, przy prawidłowo dobranych przewodach oraz zabezpieczeniach w elektrycznej instalacji do 1 kV.

A. 220 V
B. 110 V
C. 70 V
D. 50 V
Wartości takie jak 70 V, 220 V oraz 110 V są nieprawidłowe w kontekście maksymalnego dopuszczalnego napięcia dotykowego. W pierwszym przypadku, przepisy określają, że napięcie dotykowe na częściach dostępnych przewodzących nie może przekraczać 50 V, co ma na celu ochronę przed porażeniem prądem elektrycznym. Odpowiedź 70 V może wynikać z błędnego rozumienia klasyfikacji napięć w instalacjach elektrycznych, gdzie wiele osób myli różne poziomy napięcia roboczego z dopuszczalnymi wartościami napięcia dotykowego. Z drugiej strony, wartości 110 V i 220 V są dalekie od norm, ponieważ przekraczają ustaloną granicę bezpieczeństwa. Wartości te odpowiadają typowym napięciom zasilającym w gniazdkach elektrycznych w wielu krajach, jednak w kontekście napięcia dotykowego nie mają zastosowania. Przekroczenie 50 V w przypadku urządzeń elektrycznych może prowadzić do niebezpiecznych sytuacji, szczególnie w przypadku długotrwałego kontaktu z elementami przewodzącymi. Ważne jest zrozumienie, że projektowanie instalacji elektrycznych powinno opierać się na standardach bezpieczeństwa, które minimalizują ryzyko uszkodzenia ciała w wyniku porażenia prądem. Podstawowym błędem myślowym może być niedocenienie ryzyka, jakie niesie ze sobą nieodpowiednie zabezpieczenie urządzeń elektrycznych, co może prowadzić do tragicznych skutków w przypadku awarii lub uszkodzenia systemu. Stąd kluczowe jest przestrzeganie norm oraz wdrażanie odpowiednich procedur zabezpieczających w każdej instalacji elektrycznej.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

W instalacji trójfazowej prąd obciążenia w przewodach fazowych IB wynosi 21 A, natomiast obciążalność długotrwała tych przewodów Idd to 30 A. Który z wymienionych wyłączników nadprądowych powinien być użyty do zabezpieczenia tej instalacji?

A. B25
B. B10
C. B16
D. B20
Wyłącznik nadprądowy B25 jest odpowiedni do zabezpieczenia instalacji trójfazowej, gdzie prąd obciążenia przewodów fazowych wynosi 21 A, a obciążalność długotrwała tych przewodów to 30 A. Zgodnie z normami, wyłącznik nadprądowy powinien mieć wartość znamionową, która pozwala na przepuszczenie prądu obciążenia, ale jednocześnie dostateczną, aby skutecznie zareagować w przypadku przeciążenia. W tym przypadku, z wyłączników B20, B16 i B10, żaden z nich nie spełnia wymogu, gdyż ich nominalne wartości są zbyt niskie w odniesieniu do obciążenia 21 A. Wybór B25 oznacza, że wyłącznik nadprądowy nie włączy się w normalnych warunkach pracy, ale zadziała w przypadku wyższych wartości prądu. W praktyce, zastosowanie wyłączników o zbyt niskich wartościach nominalnych prowadzi do ich częstego wyzwalania, co może być uciążliwe i powodować przerwy w dostawie energii. Zgodnie z dobrą praktyką, zawsze należy wybierać wyłączniki, które mają większą wartość niż maksymalne przewidziane obciążenie, ale nie więcej niż ich długotrwała obciążalność.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

W skład badań eksploatacyjnych silnika klatkowego wchodzi pomiar

A. rezystancji uzwojeń stojana
B. natężenia pola magnetycznego rozproszenia
C. stratności magnetycznej blach stojana
D. rezystancji uzwojeń wirnika
Pomiar rezystancji uzwojeń stojana jest kluczowym elementem badań eksploatacyjnych silnika klatkowego, ponieważ pozwala na ocenę stanu technicznego silnika oraz jego efektywności. Wysoka rezystancja może wskazywać na uszkodzenia uzwojeń, które mogą prowadzić do przegrzewania i obniżenia sprawności energetycznej silnika. Przykładem zastosowania tej wiedzy jest regularna konserwacja silników w przemyśle, gdzie monitorowanie rezystancji uzwojeń pozwala na wczesne wykrycie potencjalnych awarii. Zgodnie z normą IEC 60034, regularne pomiary rezystancji oraz analiza ich trendów mogą być wykorzystane do planowania działań prewencyjnych, co znacząco wydłuża żywotność maszyny i zwiększa bezpieczeństwo pracy. Dodatkowo, wiedza na temat rezystancji uzwojeń stoi w związku z szerszym zagadnieniem strat w silnikach elektrycznych, co jest kluczowe dla optymalizacji zużycia energii w zakładach przemysłowych.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Aby zidentyfikować miejsce o zwiększonej temperaturze obudów silników w wersji przeciwwybuchowej, przeprowadza się pomiary temperatury ich obudowy. W którym miejscu pomiar temperatury nie powinien być wykonywany?

A. Na końcu obudowy od strony napędowej
B. W okolicy pokrywy wentylatora
C. Na tarczy łożyskowej, od strony napędowej blisko pokrywy łożyskowej
D. W centrum obudowy w rejonie skrzynki zaciskowej
Pomiary temperatury silników przeciwwybuchowych są istotne dla zapobiegania ryzyku wybuchów, co czyni to zadanie kluczowym w kontekście bezpieczeństwa. Wybór niewłaściwego miejsca do pomiaru może prowadzić do błędnych odczytów, co z kolei może zagrażać bezpieczeństwu. Miejsca takie jak końce obudowy od strony napędowej, tarcza łożyskowa czy pośrodku obudowy w pobliżu skrzynki zaciskowej mogą wydawać się odpowiednie, jednak nie biorą pod uwagę czynników, które mogą wpływać na temperaturę. Pomiar na końcu obudowy od strony napędowej naraża na wpływ ciepła generowanego przez silnik oraz przekładnię, co może prowadzić do zawyżonych wyników. Z kolei pomiar na tarczy łożyskowej jest obarczony ryzykiem wpływu na wynik sił tarcia, co również może fałszować dane. Miejsce w pobliżu skrzynki zaciskowej, z drugiej strony, może być zdominowane przez ciepło pochodzące z połączeń elektrycznych, które również mogą wykazywać wyższe temperatury niż reszta obudowy. Praktyka wskazuje, że pomiar w miejscach, gdzie ciepło jest bardziej stabilne i niezakłócone, jest zgodna z najlepszymi praktykami w branży, co można znaleźć w dokumentach normatywnych, takich jak IEC 60079. Dlatego kluczowe jest, aby do pomiaru wybierać miejsca, które są mniej narażone na zmiany temperatury spowodowane czynnikami zewnętrznymi, co zwiększa dokładność i niezawodność odczytów.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.