Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 9 czerwca 2025 08:44
  • Data zakończenia: 9 czerwca 2025 09:11

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie urządzenie jest wykorzystywane do łączenia włókien w komunikacyjnym kablu światłowodowym?

A. który służy do lutowania
B. zaciśniacz
C. spawarka
D. zgrzewarka
Spawarka światłowodowa jest kluczowym narzędziem w procesie łączenia włókien optycznych, które są niezbędne w nowoczesnych systemach komunikacyjnych. Dzięki zastosowaniu technologii spawania, można precyzyjnie łączyć włókna, minimalizując straty sygnału i zapewniając wysoką jakość połączenia. Proces spawania polega na sklejaniu końcówek włókien w wysokotemperaturowym łuku elektrycznym, co umożliwia uzyskanie niemal idealnego połączenia, które jest odporne na wpływy zewnętrzne. W praktyce, spawarki umożliwiają szybkie i efektywne łączenie włókien, co jest szczególnie istotne w kontekście budowy sieci telekomunikacyjnych czy instalacji światłowodowych w budynkach. Warto również zwrócić uwagę na normy, jak np. IEC 61300-3-34, które definiują wymagania dotyczące metod łączenia włókien, potwierdzając znaczenie spawania jako najczęściej rekomendowanej metody w branży. Dodatkowo, umiejętność obsługi spawarki światłowodowej jest niezbędna w zawodach związanych z instalacją i konserwacją sieci optycznych.

Pytanie 2

Wkręty z łbem oznakowanym symbolem PH można odkręcać za pomocą wkrętaka

A. gwiazdkowym
B. czworokątnym
C. płaskim
D. krzyżowym
Wkręty z łbem oznaczonym symbolem PH, czyli Phillips, charakteryzują się krzyżowym rowkiem, który pozwala na lepsze dopasowanie wkrętaka. Użycie wkrętaka krzyżowego pozwala na przekazywanie większego momentu obrotowego, co ułatwia wkręcanie i odkręcanie. Dzięki specyficznej konstrukcji łba, wkrętak krzyżowy minimalizuje ryzyko poślizgu, co jest szczególnie ważne w zastosowaniach wymagających precyzyjnego dokręcenia. W praktyce, wkręty Phillips są powszechnie stosowane w konstrukcji mebli, elektroniki oraz w różnych projektach DIY. Warto również zaznaczyć, że wkrętaki krzyżowe są dostępne w różnych rozmiarach, co pozwala na ich użycie w szerokim zakresie zastosowań. W kontekście standardów przemysłowych, wkręty z łbem Phillips są jednymi z najczęściej stosowanych, co sprawia, że znajomość odpowiedniego narzędzia jest niezbędna w pracy każdego fachowca.

Pytanie 3

Przedstawione w tabeli parametry techniczne dotyczą

Pasmo częstotliwości pracy868,0 MHz ÷ 868,6 MHz
Zasięg komunikacji radiowej (w terenie otwartym)do 500 m
BateriaCR123A3V
Czas pracy na bateriido 3 lat
Pobór prądu w stanie gotowości50 μA
Maksymalny pobór prądu16 mA
Zakres temperatur pracy-10°C ÷ +55°C
Maksymalna wilgotność93±3%
Wymiary obudowy czujki26 x 112 x 29 mm
Wymiary obudowy magnesu do montażu powierzchniowego26 x 13 x 19 mm
Wymiary podkładki pod magnes do montażu powierzchniowego26 x 13 x 3,5 mm
Wymiary obudowy magnesu do montażu wpuszczanego28 x 10 x 10 mm
Masa56 g

A. bariery podczerwieni.
B. czujki zalania.
C. czujki dymu.
D. czujki kontaktronowej.
Poprawna odpowiedź to czujka kontaktronowa, ponieważ parametry techniczne przedstawione w tabeli idealnie odpowiadają charakterystyce tego typu urządzenia. Czujki kontaktronowe składają się z dwóch elementów: obudowy czujki oraz magnesu, co jest kluczowe dla ich działania. Ich głównym zastosowaniem jest monitorowanie otwarcia drzwi lub okien. W momencie, gdy ruchoma część (np. skrzydło drzwiowe) oddala się od części stałej (np. ramy drzwiowej), dochodzi do rozłączenia obwodu, co inicjuje alarm bezpieczeństwa. Przykłady praktycznego zastosowania czujek kontaktronowych to systemy alarmowe w domach i biurach, które zapewniają dodatkowy poziom zabezpieczeń. Warto również zaznaczyć, że czujki te są często stosowane w połączeniu z innymi systemami zabezpieczeń, co może zwiększyć ich efektywność. W branży bezpieczeństwa standardy dotyczące czujek są ściśle regulowane, a ich montaż i użycie powinny odbywać się zgodnie z normami ISO 9001 oraz zaleceniami producentów.

Pytanie 4

Jakiego koloru powinien być przewód ochronny PE w elektrycznej instalacji zasilającej urządzenia elektroniczne?

A. Czarny.
B. Żółto-zielony.
C. Jasnoniebieski.
D. Czerwony.
Przewód ochronny PE (Protection Earth) w instalacjach elektrycznych zasilających urządzenia elektroniczne powinien mieć kolor żółto-zielony. Taki kolor jest zgodny z międzynarodowymi standardami, w tym normą IEC 60446, która określa oznaczenia kolorów przewodów elektrycznych. Żółto-zielony przewód pełni kluczową rolę w zapewnieniu bezpieczeństwa, ponieważ jego zadaniem jest odprowadzenie prądu doziemnego w przypadku awarii, co minimalizuje ryzyko porażenia prądem elektrycznym. Przykładem zastosowania przewodu PE może być podłączanie urządzeń, takich jak komputery, drukarki czy serwery, gdzie zapewnienie odpowiedniego uziemienia chroni nie tylko użytkowników, ale również sam sprzęt przed uszkodzeniami. Nieprzestrzeganie tych norm może prowadzić do poważnych zagrożeń, takich jak zwarcia czy pożary, dlatego istotne jest stosowanie się do wytycznych branżowych w zakresie instalacji elektrycznych.

Pytanie 5

Jaki czujnik pozwala na pomiar naprężeń mechanicznych w konstrukcjach?

A. Czujnik magnetyczny
B. Czujnik tensometryczny
C. Czujnik hallotronowy
D. Czujnik pojemnościowy
Czujnik tensometryczny jest specjalistycznym urządzeniem, które umożliwia pomiar naprężeń mechanicznych w elementach konstrukcyjnych poprzez wykorzystanie zasady zmiany oporu elektrycznego pod wpływem odkształceń. Tensometry działają na bazie efektu tensometrycznego, gdzie cienkie przewody lub folia, umieszczone na powierzchni mierzonego elementu, zmieniają swoją rezystancję w zależności od odkształceń mechanicznych. Przykłady zastosowania czujników tensometrycznych obejmują monitorowanie naprężeń w mostach, budynkach oraz innych konstrukcjach inżynierskich, co pozwala na wczesne wykrywanie uszkodzeń i zapewnia bezpieczeństwo użytkowników. Stanowią one integralną część systemów monitorowania strukturalnego, które są zgodne z normami, takimi jak ISO 3340, dotyczące oceny stanu technicznego obiektów. Dzięki ich wysokiej dokładności i niezawodności, czujniki tensometryczne są kluczowym narzędziem w inżynierii, umożliwiającym projektowanie bezpieczniejszych i bardziej efektywnych konstrukcji.

Pytanie 6

Jaką jednostką określa się moc czynną?

A. VA
B. V
C. var
D. W
Jednostką mocy czynnej jest wat (W), który jest powszechnie stosowaną jednostką w elektrotechnice i energetyce. Moc czynna to ta część mocy, która jest rzeczywiście wykorzystana do wykonania pracy w obwodach elektrycznych, a jej wartość można obliczyć jako iloczyn napięcia, natężenia prądu oraz cosinusa kąta fazowego między nimi (P = U * I * cos(φ)). W praktyce oznacza to, że moc czynna odzwierciedla efektywność działania urządzeń elektrycznych, takich jak silniki, grzejniki czy oświetlenie. Wyższa moc czynna oznacza lepsze wykorzystanie energii elektrycznej. Przykładem jest silnik elektryczny, który może mieć moc podaną w watach – informuje to użytkownika o maksymalnej mocy, jaką może dostarczyć. Standardy takie jak IEC 60038 definiują wartości nominalne dla mocy w różnych zastosowaniach, co jest kluczowe w projektowaniu instalacji elektrycznych, zapewniając ich bezpieczeństwo i efektywność działania.

Pytanie 7

Jakie przepisy prawne dotyczą zarządzania odpadami niebezpiecznymi?

A. Ustawa o odpadach
B. Ustawa dotycząca budownictwa
C. Ustawa o energetyce
D. Ustawa o zamówieniach publicznych
Ustawa o odpadach jest kluczowym aktem prawnym regulującym gospodarkę odpadami niebezpiecznymi w Polsce. Ustawa ta również implementuje dyrektywy unijne dotyczące zarządzania odpadami, w szczególności odpady niebezpieczne, co pozwala na harmonizację przepisów krajowych z normami europejskimi. Główne zasady wynikające z tej ustawy obejmują klasyfikację odpadów, obowiązki producentów oraz sposoby ich zbierania, transportu, przechowywania i unieszkodliwiania. Przykładem zastosowania tych przepisów jest konieczność posiadania odpowiednich zezwoleń na transport i unieszkodliwianie odpadów niebezpiecznych, które muszą być zgodne z wymaganiami ustawy. Dobre praktyki w zakresie gospodarki odpadami niebezpiecznymi obejmują również prowadzenie ewidencji tych odpadów, co pozwala na lepsze zarządzanie i kontrolę nad nimi. W kontekście międzynarodowym, Polska jest zobowiązana do przestrzegania konwencji takich jak Konwencja Bazylejska, co podkreśla znaczenie Ustawy o odpadach w kontroli i minimalizacji negatywnego wpływu na środowisko.

Pytanie 8

Zawartość pamięci EPROM może zostać utracona w wyniku

A. braku napięcia zasilającego
B. obniżenia napięcia zasilającego poniżej 2,5 V
C. niesprawnego układu odświeżającego
D. bezpośredniego wpływu promieni słonecznych
Bezpośrednie działanie promieni słonecznych może prowadzić do uszkodzenia pamięci EPROM, ponieważ te układy są wrażliwe na promieniowanie UV. EPROM (Erasable Programmable Read-Only Memory) stosuje się w sytuacjach, w których potrzebne jest wielokrotne programowanie układu, a jego zawartość można usunąć poprzez naświetlanie promieniami UV. W praktyce oznacza to, że jeśli pamięć EPROM jest wystawiona na działanie intensywnego światła słonecznego, istnieje ryzyko, że dane zostaną przypadkowo usunięte. Z tego powodu w zastosowaniach przemysłowych i elektronicznych często stosuje się obudowy chroniące te pamięci przed bezpośrednim działaniem światła. Warto również zaznaczyć, że standardy dotyczące przechowywania urządzeń elektronicznych zalecają unikanie ekspozycji na silne źródła światła, aby zapewnić trwałość i wiarygodność przechowywanych danych. Zrozumienie tego zjawiska jest kluczowe dla inżynierów zajmujących się projektowaniem systemów elektronicznych, w których wykorzystuje się pamięci EPROM.

Pytanie 9

Jakie urządzenie służy do ochrony elektroniki przed skutkami wyładowań atmosferycznych?

A. wyłącznik nadprądowy
B. wyłącznik różnicowoprądowy
C. ochronnik termiczny
D. ochronnik przepięciowy
Odpowiedzi, które nie zostały wybrane, wskazują na brak zrozumienia funkcji i zastosowania poszczególnych urządzeń zabezpieczających. Wyłącznik nadprądowy, chociaż istotny w ochronie instalacji, działa głównie w przypadku przeciążeń i zwarć, zabezpieczając przed przepływem prądu większym od nominalnego, co nie jest związane z wyładowaniami atmosferycznymi. Z kolei wyłącznik różnicowoprądowy ma na celu ochronę przed porażeniem prądem elektrycznym poprzez wykrywanie różnicy prądów między przewodami roboczymi, co również nie odnosi się do ochrony przed przepięciami. Ochronnik termiczny, jak sama nazwa wskazuje, jest przeznaczony do zabezpieczania przed przegrzaniem i nie ma zastosowania w ochronie przed wyładowaniami atmosferycznymi. Typowym błędem myślowym jest mylenie różnych funkcji zabezpieczeń i ich zastosowań. Kluczowe jest zrozumienie, że każdy z tych elementów ma swoją specyfikę i nie należy ich stosować zamiennie. Aby skutecznie zabezpieczać instalacje i urządzenia przed wyładowaniami atmosferycznymi, niezbędne jest stosowanie odpowiednich rozwiązań, takich jak ochronniki przepięciowe, które są projektowane do tego celu. Wiedza o różnorodnych urządzeniach zabezpieczających jest istotna dla zapewnienia bezpieczeństwa zarówno w domach, jak i w obiektach przemysłowych.

Pytanie 10

Jakie będzie powiązanie prądu spoczynkowego z temperaturą w tranzystorowej końcówce mocy wzmacniacza m.cz., gdy układ kompensacji temperaturowej nie funkcjonuje?

A. Prąd spoczynkowy zmaleje w miarę wzrostu temperatury
B. Prąd spoczynkowy może wzrosnąć lub zmaleć w zależności od użytych tranzystorów
C. Prąd spoczynkowy wzrośnie w miarę zwiększania się temperatury
D. Brak powiązania prądu spoczynkowego z temperaturą
Wzrost prądu spoczynkowego w tranzystorowej końcówce mocy wzmacniacza m.cz. wraz ze wzrostem temperatury jest zjawiskiem typowym i wynika z charakterystyki pracy tranzystorów bipolarno-junction (BJT). W miarę wzrostu temperatury, energia termiczna zwiększa ruchliwość nośników ładunku, co prowadzi do zwiększenia prądu bazy, a tym samym prądu kolektora. W praktyce oznacza to, że bez układu kompensacji temperaturowej, prąd spoczynkowy może wzrosnąć do wartości, które mogą uszkodzić tranzystor, a w skrajnych przypadkach prowadzić do zjawiska termicznej awarii. W celu zapobiegania tym skutkom, projektanci wzmacniaczy często stosują układy kompensacji temperaturowej, które automatycznie dostosowują prąd spoczynkowy do zmieniających się warunków. Wiedza ta jest niezbędna przy projektowaniu i eksploatacji końcówek mocy, gdzie stabilność parametrów pracy wpływa na jakość sygnału oraz trwałość komponentów. Zrozumienie tej zależności jest kluczowe dla inżynierów zajmujących się elektroniką i audio.

Pytanie 11

Jakie urządzenie pozwala na łączenie się z Internetem poprzez sieć CATV?

A. modem
B. hub
C. wzmacniacz
D. switch
Modem jest urządzeniem, które konwertuje sygnały analogowe na cyfrowe i vice versa, umożliwiając tym samym komunikację komputerów z siecią Internet. W kontekście sieci CATV (Cable Television), modem kablowy jest niezbędnym elementem, który pozwala użytkownikom na dostęp do Internetu za pośrednictwem infrastruktury telewizyjnej. Dzięki zastosowaniu technologii DOCSIS (Data Over Cable Service Interface Specification), modemy kablowe zapewniają wysoką prędkość transferu danych oraz stabilne połączenie. Przykładem zastosowania modemu może być domowe połączenie z Internetem, gdzie użytkownik łączy modem z routerem, co umożliwia korzystanie z sieci na wielu urządzeniach jednocześnie. Warto również zaznaczyć, że dobór odpowiedniego modemu powinien być zgodny z wymaganiami dostawcy usług internetowych oraz z aktualnymi standardami branżowymi, co zapewnia optymalne parametry pracy i bezpieczeństwo połączenia.

Pytanie 12

Wzrost efektywnej pojemności torów przesyłowych dla kabla UTP wskazuje na

A. błędne podłączenie kabla
B. uszkodzenie izolacji
C. przerwanie jednej z żył
D. zbyt dużą rezystancję pętli
Zwiększenie pojemności skutecznej torów transmisyjnych w kablu UTP wskazuje na problemy z izolacją, co może prowadzić do zakłóceń w przesyłanym sygnale. Uszkodzenie izolacji pozwala na infiltrację wilgoci oraz innych zanieczyszczeń, co z kolei może prowadzić do zwiększonej pojemności w obwodach. W praktyce, taka sytuacja może skutkować pogorszeniem jakości sygnału, co jest szczególnie istotne w aplikacjach wymagających wysokiej wydajności, takich jak sieci Ethernet. Standardy takie jak IEEE 802.3, definiujące zasady działania sieci lokalnych, wymagają, aby kable UTP były w pełni sprawne, aby zapewnić odpowiednie prędkości transmisji. Dlatego w przypadku stwierdzenia wzrostu pojemności, kluczowe jest przeprowadzenie dokładnej analizy izolacji kabla oraz jego stanu technicznego, co może obejmować testy za pomocą specjalistycznych narzędzi, takich jak reflektometry. Regularne monitorowanie stanu kabli i ich izolacji jest zalecane zgodnie z normami branżowymi, aby zapobiegać awariom i zapewnić stabilność sieci.

Pytanie 13

Operatorzy kablowych sieci telewizyjnych sprawdzają jakość sygnału u poszczególnych subskrybentów, wykonując pomiary parametrów sygnału

A. w kanale zwrotnym
B. nadanego przez stację czołową
C. na wyjściach poszczególnych węzłów optycznych
D. w poszczególnych gniazdach abonenckich
Wybór odpowiedzi związanych z pomiarem sygnału nadawanego przez stację czołową, w poszczególnych gniazdach abonenckich czy na wyjściach węzłów optycznych nie odzwierciedla rzeczywistych praktyk monitorowania jakości sygnału w telewizji kablowej. Monitorowanie sygnału nadawanego przez stację czołową jest istotne, ale dotyczy ono głównie analizy jakości źródłowego sygnału, a nie jego odbioru przez abonentów. Istotnym elementem jest kanał zwrotny, który umożliwia spływ informacji z sieci abonenckiej do centralnej bazy danych operatora. Pomiar jakości sygnału bezpośrednio w gniazdach abonenckich nie jest praktyczny, ponieważ czynniki lokalne mogą wprowadzać zbyt wiele zmiennych, takich jak uszkodzenia kabli czy nieprawidłowe podłączenia, co znacznie utrudnia diagnozowanie ogólnych problemów w sieci. Podobnie, pomiar na wyjściu węzłów optycznych może dostarczać informacji na temat jakości sygnału, ale nie odzwierciedla to doświadczenia konkretnego abonenta, który może doświadczyć różnych problemów w zależności od lokalnych warunków. Dlatego kluczowe jest monitorowanie sygnału w kanale zwrotnym, co pozwala na zbieranie danych od wszystkich abonentów i wczesne wykrywanie problemów w sieci, a tym samym zapewnienie lepszej jakości usług. Niepoprawne podejścia mogą prowadzić do błędnych wniosków i opóźnień w diagnostyce problemów, co jest niepożądane w branży, gdzie jakość usług ma kluczowe znaczenie dla zadowolenia klientów.

Pytanie 14

Wyłącznik, który chroni instalację elektryczną przed skutkami przeciążenia, to

A. nadprądowy
B. różnicowoprądowy
C. czasowy
D. podnapięciowy
Różnicowoprądowy wyłącznik jest elementem ochrony przed porażeniem elektrycznym, a nie przeciążeniem. Jego głównym zadaniem jest wykrywanie różnic w prądzie płynącym w przewodach fazowym i neutralnym, co może wskazywać na upływ prądu do ziemi. Zastosowanie tego typu wyłącznika jest kluczowe w miejscach, gdzie istnieje ryzyko kontaktu z wodą lub w przypadku urządzeń przenośnych, ale nie chroni on przed skutkami przeciążenia w instalacji elektrycznej, co może prowadzić do uszkodzenia przewodów. Wyłącznik czasowy nie ma zastosowania w kontekście przeciążenia, ponieważ jego funkcja polega na automatycznym włączaniu lub wyłączaniu obwodów po określonym czasie, co nie wpływa na ochronę przed prądem, który przekracza określoną wartość. Podobnie, wyłącznik podnapięciowy jest używany do ochrony przed spadkami napięcia, a nie przed przeciążeniem. Typowym błędem jest mylenie tych różnych rodzajów wyłączników, co może prowadzić do niewłaściwego doboru zabezpieczeń w instalacjach elektrycznych. Ważne jest zrozumienie, że każdy z tych elementów pełni inną funkcję, a ich zastosowanie wymaga znajomości specyfiki, norm i wymagań dotyczących zabezpieczeń elektrycznych.

Pytanie 15

Aby zabezpieczyć naprawiane urządzenie elektroniczne przed działaniem ESD, należy

A. podłączyć urządzenie do źródła zasilania
B. przy demontażu obudowy wykazać szczególną ostrożność
C. zasilać urządzenie poprzez transformator separujący
D. otwierać urządzenie umieszczone na uziemionej macie
Otwarcie urządzenia umieszczonego na uziemionej macie jest kluczowym krokiem w zapobieganiu uszkodzeniom spowodowanym przez wyładowania elektrostatyczne (ESD). Uziemiona mata działa jak bariera ochronna, odprowadzając ładunki elektrostatyczne zgromadzone na powierzchni urządzenia lub na osobie wykonującej naprawy. Zgodnie z normą IEC 61340-5-1, takie praktyki są zalecane w środowiskach, gdzie wrażliwe komponenty elektroniczne są regularnie naprawiane. Używanie uziemionej maty minimalizuje ryzyko uszkodzenia delikatnych układów elektronicznych, które mogą być podatne na uszkodzenia spowodowane nawet niewielkimi wyładowaniami. Przykładem zastosowania takiej praktyki jest praca w laboratoriach serwisowych, gdzie technicy muszą często demontować i montować komponenty wrażliwe na ESD. Użycie uziemionej maty, w połączeniu z odpowiednim ubraniem antystatycznym, stanowi kompleksowe podejście do ochrony przed ESD.

Pytanie 16

Urządzenie służące do pomiaru bitowej stopy błędów (BER) stosuje się do analizy parametrów

A. systemu alarmowego
B. instalacji antenowej
C. telewizji dozorowej
D. sieci komputerowej
Instalacja antenowa to obszar, w którym miernik bitowej stopy błędów (BER) odgrywa kluczową rolę w ocenie jakości sygnałów transmisyjnych. BER jest wskaźnikiem określającym stosunek liczby błędnie odebranych bitów do całkowitej liczby bitów przesłanych w czasie określonym. W kontekście instalacji antenowych, szczególnie w systemach telekomunikacyjnych i satelitarnych, niska stopa błędów jest kluczowym parametrem gwarantującym niezawodność i jakość odbioru sygnału. Przykładowo, w przypadku telewizji satelitarnej, jeśli BER przekracza akceptowalny poziom, może to prowadzić do przerw w odbiorze sygnału. Właściciele instalacji antenowych mogą korzystać z mierników BER do szybkiej diagnozy problemów, takich jak niewłaściwe ustawienie anteny, zły jakościowo kabel czy interferencje z innymi źródłami sygnału. Dobre praktyki branżowe zalecają regularne monitorowanie BER, aby zapewnić ciągłość i jakość usług. Warto także nadmienić, że standardy takie jak DVB-S2 dla telewizji satelitarnej definiują konkretne wartości BER, które muszą być spełnione, aby system mógł działać poprawnie.

Pytanie 17

Aby przeprowadzić konserwację systemu alarmowego, należy

A. zmierzyć omomierzem jakość połączeń kabli, sprawdzić stan izolacji przewodów induktorem
B. zobaczyć reakcję czujników na ruch, sprawdzić datę wyświetlaną na manipulatorze, ocenić napięcie akumulatora
C. przywrócić centralę do ustawień fabrycznych, ponownie zainstalować oprogramowanie centrali alarmowej
D. wyczyścić wnętrze obudowy z centralą, ocenić jakość styku sabotażowego centrali, zabrać akumulator do ładowania
Zresetowanie centrali do ustawień fabrycznych oraz ponowne wgrywanie oprogramowania centrali alarmowej, mimo że może być skuteczne przy rozwiązaniu problemów z oprogramowaniem, nie jest podstawową czynnością konserwacyjną. Takie działania są bardziej odpowiednie w przypadku poważnych usterek systemu lub błędów oprogramowania, a nie w ramach regularnej konserwacji. Ponadto, zbyt częste resetowanie może prowadzić do utraty istotnych danych konfiguracyjnych, co w konsekwencji może wpłynąć na funkcjonalność systemu. Wyczyść wnętrze skrzynki z centralą oraz sprawdź jakość styku sabotażowego centrali to również działania, które powinny być wykonywane, ale w kontekście konserwacji nie są one wystarczające. Właściwe działania konserwacyjne powinny koncentrować się na bieżącej ocenie stanu elementów systemu, takich jak czujki, akumulatory i ogólna reakcja systemu. Sprawdzanie jakości połączeń przewodów oraz stanu izolacji przewodów induktorem również jest ważne, jednakże nie powinno to stanowić priority w ramach regularnej konserwacji, która powinna skupić się na funkcjonalności systemu i jego zabezpieczeniach. Wnioskując, skuteczna konserwacja systemu alarmowego wymaga konkretnego podejścia opartego na sprawdzaniu kluczowych elementów, które wpływają na bezpieczeństwo, zamiast na działaniach, które mogą prowadzić do niepotrzebnych komplikacji.

Pytanie 18

Aby zapobiec uszkodzeniom spowodowanym wyładowaniami elektrostatycznymi, układy CMOS powinny być transportowane oraz przechowywane

A. w torbach ekranujących ESD
B. w skrzynkach drewnianych
C. w torbach z PCV
D. umieszczone w styropianie
Transportowanie i przechowywanie układów CMOS w workach wykonanych z PCV, drewnianych skrzynkach lub osadzonych w styropianie nie zapewnia odpowiedniej ochrony przed wyładowaniami elektrostatycznymi. Worki z PCV, choć mogą być wykorzystywane do innych celów, nie mają właściwości ekranowania ESD, co oznacza, że nie eliminują ryzyka gromadzenia się ładunków elektrycznych. W przypadku drewnianych skrzynek, materiał naturalny nie tylko nie chroni przed ESD, ale może nawet przyczyniać się do powstawania ładunków elektrostatycznych ze względu na swoje właściwości dielektryczne. Styropian, mimo że jest izolantem, nie oferuje odpowiedniego ekranowania, które jest niezbędne do ochrony wrażliwych komponentów elektronicznych, a jego stosowanie może prowadzić do gromadzenia się ładunków, co stanowi zagrożenie dla układów CMOS. Zrozumienie zasad ESD jest kluczowe, ponieważ wiele osób myli pojęcia związane z izolacją i ekranowaniem. Wybór odpowiednich materiałów do transportu i przechowywania komponentów elektronicznych powinien być oparty na wiedzy o ich właściwościach elektrostatycznych oraz zrozumieniu, jak różne materiały wpływają na ryzyko uszkodzeń. Dlatego kluczowe jest stosowanie specjalistycznych rozwiązań, takich jak worki ekranowane ESD, które spełniają branżowe standardy i wymagania, zapewniając bezpieczeństwo i niezawodność komponentów elektronicznych.

Pytanie 19

Jednokanałowy oscyloskop analogowy pozwala na pomiar

A. współczynnika zniekształceń nieliniowych
B. czasów narastania i opadania impulsów
C. bitowej stopy błędów
D. przesunięcia fazy między dwoma sygnałami sinusoidalnymi
Analogowy oscyloskop jednokanałowy to naprawdę fajne narzędzie do zrozumienia, jak zachowują się sygnały elektryczne w czasie. Jednym z jego głównych zastosowań jest pomiar czasów narastania i opadania impulsów, co jest mega ważne, gdy analizujemy sygnały cyfrowe i analogowe. Te czasy mają duży wpływ na to, jak dobrze przesyłamy informacje i jakie są właściwości całych systemów elektronicznych. Moim zdaniem, ocenianie tych czasów pomaga zobaczyć, jak układy reagują na zmiany w sygnale, co jest szczególnie istotne, kiedy projektujemy systemy cyfrowe. W telekomunikacji na przykład, czas narastania jest kluczowy, bo jeśli jest za długi, to sygnał może się zniekształcić, a to może prowadzić do błędów w transmisji. Dodatkowo, normy jak IEC 61000-4-2 pokazują, jak ważne jest mierzenie tych czasów, gdy testujemy urządzenia na odporność na zakłócenia elektromagnetyczne. Dlatego warto znać i umieć te umiejętności w praktyce inżynierskiej.

Pytanie 20

Co oznacza funkcja ARW w radiowych odbiornikach?

A. wybieranie oraz wyszukiwanie rodzaju programu
B. automatyczną regulację wzmocnienia
C. odbiór tekstowych komunikatów
D. odbiór komunikatów drogowych
Funkcja automatycznej regulacji wzmocnienia (ARW) w odbiornikach radiowych jest kluczowym elementem zapewniającym stabilność sygnału audio. ARW automatycznie dostosowuje poziom wzmocnienia sygnału, co jest szczególnie przydatne w sytuacjach, gdy sygnał odbierany jest niestabilny lub zmienia się w czasie, na przykład podczas przejazdu przez obszary o różnej jakości sygnału. Dzięki ARW, użytkownicy mogą cieszyć się lepszą jakością dźwięku, ponieważ funkcja ta minimalizuje szumy i przerywania w audio. W praktyce, ARW znajduje zastosowanie w odbiornikach radiowych, systemach audio w samochodach oraz w urządzeniach przenośnych, gdzie utrzymanie stabilności sygnału ma kluczowe znaczenie. Zgodnie z dobrą praktyką branżową, implementacja ARW w urządzeniach radiowych jest standardem, co przyczynia się do poprawy doświadczeń użytkowników i zwiększa ich zadowolenie z korzystania z technologii radiowej. Przykładem zastosowania ARW może być radioodbiornik, który automatycznie dostosowuje wzmocnienie sygnału w trakcie zmiany położenia użytkownika, utrzymując jednocześnie jakość dźwięku na stałym poziomie.

Pytanie 21

Jakie czynności należy wykonać, aby udzielić pierwszej pomocy osobie, która została porażona prądem elektrycznym i jest nieprzytomna?

A. Przeniesienie jej na świeżym powietrzu i częściowe rozebranie
B. Położenie jej na brzuchu i odchylenie głowy w bok
C. Położenie jej na plecach i poluzowanie odzieży na szyi
D. Położenie jej w pozycji na boku przy równoczesnym poluzowaniu ubrania
Ułożenie osoby porażonej prądem elektrycznym w pozycji na boku jest kluczowe, ponieważ ta pozycja, znana jako pozycja bezpieczna, zapobiega aspiracji treści pokarmowych oraz umożliwia swobodne oddychanie. Rozluźnienie ubrania wokół szyi pomoże zminimalizować ewentualne duszenie lub ucisk na drogi oddechowe. Ważne jest, aby nie przemieszczać osoby, chyba że istnieje bezpośrednie zagrożenie dla jej życia, takie jak pożar czy dalsze porażenie prądem. W sytuacji takiej, priorytetem jest zapewnienie bezpieczeństwa osobie poszkodowanej oraz wezwanie służb ratunkowych. Postępowanie według tych zasad jest zgodne z wytycznymi organizacji zajmujących się pierwszą pomocą, takich jak Europejska Rada Resuscytacji. Dodatkowo, warto znać techniki resuscytacyjne, aby móc szybko zareagować, gdyby osoba straciła przytomność lub nie oddychała. Wyjątkowo istotne jest także monitorowanie stanu poszkodowanego do momentu przybycia służb medycznych.

Pytanie 22

Wymiana bezpiecznika 500 mA na bezpiecznik 2 A w urządzeniu elektronicznym może prowadzić do

A. wzrostu strat cieplnych
B. zwiększenia zużycia prądu
C. uszkodzenia urządzenia
D. zmniejszenia efektywności
Zastąpienie bezpiecznika 500 mA bezpiecznikiem 2 A w sprzęcie elektronicznym może prowadzić do uszkodzenia urządzenia z kilku kluczowych powodów. Przede wszystkim, bezpiecznik jest elementem zabezpieczającym, którego zadaniem jest przerwanie obwodu w przypadku nadmiernego prądu, co zapobiega przeciążeniu i potencjalnym uszkodzeniom komponentów. Wymiana na bezpiecznik o znacznie wyższej wartości nominalnej oznacza, że urządzenie będzie mogło pracować z prądem, który znacznie przekracza jego nominalne parametry. Na przykład, jeśli urządzenie zostało zaprojektowane do pracy z maksymalnym prądem 500 mA, przepływ prądu 2 A może prowadzić do przegrzania elementów, takich jak kondensatory czy tranzystory, co skutkuje ich uszkodzeniem. Takie działania są sprzeczne z zasadami ochrony urządzeń i mogą prowadzić do kosztownych napraw. W kontekście standardów branżowych, takich jak IEC 60950 dotyczący bezpieczeństwa sprzętu IT, dobór odpowiednich bezpieczników jest kluczowy dla zapewnienia bezpieczeństwa i niezawodności urządzeń. Warto również wspomnieć, że odpowiedni dobór bezpieczników w sprzęcie elektronicznym jest istotnym elementem inżynierii elektrycznej, który powinien być starannie przemyślany na etapie projektowania.

Pytanie 23

Analogowy woltomierz ma skalę od 0 do 100 działek. Jaka jest wartość napięcia, jeżeli pomiar był wykonany w zakresie 200 V, a wskaźnik wskazuje 80 działek?

A. 40 V
B. 120 V
C. 80 V
D. 160 V
Woltomierz analogowy działa na zasadzie wskazywania wartości napięcia na skali w oparciu o wychylenie wskazówki. W przypadku pomiaru w zakresie 200 V, skala analogowa jest wyskalowana na 100 działek, co oznacza, że każda działka odpowiada wartości napięcia równej 2 V (200 V / 100 działek = 2 V/działkę). Jeśli wskazówka wychyla się na 80 działek, to wartość napięcia wynosi 80 działek * 2 V/działkę = 160 V. Przykład ten pokazuje, jak istotne jest zrozumienie skali woltomierza oraz prawidłowe przeliczanie wartości napięcia na podstawie wychylenia. W praktyce, takie pomiary są niezbędne w elektryce i elektronice, gdzie precyzyjne wskazanie napięcia jest kluczowe dla bezpieczeństwa i efektywności systemów. Przestrzeganie odpowiednich standardów pomiarowych, takich jak ISO 9001, jest również ważne w kontekście zapewnienia jakości pomiarów i wiarygodności wyników.

Pytanie 24

Aby móc obejrzeć wybrany film z platformy IPLA, konieczne jest posiadanie telewizora z funkcją SMART?

A. włożyć nośnik USB.
B. połączyć go z Internetem.
C. spiąć z odtwarzaczem Blu-ray.
D. zestawić z tunerem satelitarnym.
Aby oglądać filmy z serwisu IPLA, konieczne jest posiadanie dostępu do Internetu, ponieważ IPLA jest usługą streamingową, która wymaga ciągłego połączenia z siecią, aby przesyłać dane w czasie rzeczywistym. Podłączenie telewizora z funkcją SMART do Internetu można zrealizować za pomocą Wi-Fi lub przewodowego połączenia Ethernet. Po nawiązaniu połączenia użytkownik może zainstalować aplikację IPLA na swoim telewizorze i cieszyć się dostępem do bogatej biblioteki filmów i programów. Przykładem może być korzystanie z telewizora, który automatycznie aktualizuje aplikacje po podłączeniu do sieci, co pozwala na łatwy dostęp do najnowszych treści. Dobrą praktyką jest również regularne sprawdzanie połączenia internetowego i prędkości, aby zapewnić optymalne warunki do odtwarzania, co jest kluczowe dla uniknięcia opóźnień i buforowania podczas oglądania.

Pytanie 25

Jakie są właściwe kroki do wykonania podczas wymiany uszkodzonej kamery monitoringu połączonej z rejestratorem wideo?

A. Odłączenie zasilania od rejestratora, odłączenie przewodu sygnałowego od kamery, zdemontowanie uszkodzonej kamery i zamontowanie nowej, podłączenie przewodu sygnałowego do kamery, podłączenie zasilania do rejestratora
B. Odłączenie przewodu sygnałowego od kamery, odłączenie zasilania od kamery, zdemontowanie uszkodzonej kamery i zamontowanie nowej, podłączenie zasilania do kamery, podłączenie przewodu sygnałowego do kamery
C. Odłączenie zasilania od kamery, demontaż kamery, odłączenie przewodu sygnałowego od uszkodzonej kamery i podłączenie do nowego urządzenia, zamontowanie kamery, podłączenie zasilania do kamery
D. Odłączenie zasilania od kamery, odłączenie przewodu sygnałowego od kamery, zdemontowanie uszkodzonej kamery i zamocowanie nowej, podłączenie przewodu sygnałowego do kamery, podłączenie zasilania do kamery
Wymiana kamery monitoringu wymaga precyzyjnego podejścia i znajomości właściwej kolejności działań. Nieprawidłowe podejście do tej procedury może prowadzić do poważnych problemów, takich jak uszkodzenie kamery, rejestratora czy nawet całego systemu monitoringu. Na przykład, odłączenie przewodu sygnałowego przed odłączeniem zasilania stwarza ryzyko uszkodzenia zarówno złącza sygnałowego, jak i wewnętrznych komponentów kamery, co może skutkować koniecznością wymiany całego urządzenia. Takie działanie jest sprzeczne z zasadami bezpieczeństwa i dobrymi praktykami branżowymi, które nakazują najpierw rozłączyć zasilanie. Dodatkowo, demontowanie kamery przed odłączeniem sygnału i zasilania narusza podstawowe zasady ochrony sprzętu. W przypadku podłączania nowej kamery, najpierw należy założyć przewód sygnałowy, a potem dostarczyć zasilanie, co jest istotne dla prawidłowego rozruchu i synchronizacji z systemem. W każdym przypadku kluczowe jest trzymanie się ustalonych procedur, aby uniknąć niepotrzebnych komplikacji i zapewnić funkcjonalność systemu monitoringu.

Pytanie 26

Montaż wtyku F na kablu koncentrycznym polega na

A. usunięciu odciętej zewnętrznej izolacji, usunięciu folii, usunięciu izolacji żyły, założeniu wtyku
B. nacięciu zewnętrznej powłoki, usunięciu folii, usunięciu izolacji żyły, nałożeniu wtyku
C. nacięciu zewnętrznej powłoki, usunięciu oplotu, usunięciu izolacji żyły, nałożeniu wtyku
D. usunięciu odciętej zewnętrznej izolacji, ułożeniu oplotu wzdłuż kabla, usunięciu izolacji żyły, nałożeniu wtyku
W analizowanych odpowiedziach pojawiają się różne błędne koncepcje dotyczące montażu wtyku F na przewodzie koncentrycznym. Nacięcie powłoki zewnętrznej, jak sugerują niektóre z odpowiedzi, nie jest odpowiednią metodą, ponieważ może prowadzić do uszkodzenia struktury przewodu i obniżenia jakości sygnału. Usunięcie folii, które jest wspomniane w odpowiedziach, powinno dotyczyć tylko izolacji, a nie materiału ochronnego, który jest istotny dla właściwego przewodzenia sygnału. Użycie terminu 'nacięcie' sugeruje również, że można usunąć warstwę izolacyjną w sposób, który nie jest zgodny z dobrymi praktykami. Oplot pełni kluczową funkcję w ochronie przed zakłóceniami i powinien być właściwie przygotowany do montażu. Z kolei pominięcie etapu ułożenia oplotu wzdłuż przewodu prowadzi do nieprawidłowego połączenia wtyku, co może skutkować złym jakościowo sygnałem. Przykłady błędów myślowych mogą wynikać z braku zrozumienia roli poszczególnych elementów kabla koncentrycznego oraz procesu montażu. Ważne jest, aby podczas pracy z instalacjami koncentrycznymi stosować właściwe narzędzia oraz przestrzegać standardów branżowych, co pozwoli na uzyskanie trwałych i niezawodnych połączeń.

Pytanie 27

Na zdjęciu przedstawiono

Ilustracja do pytania
A. tyrystory
B. termistory
C. tensometry
D. diody
Termistory to elementy elektroniczne, które zmieniają swoją rezystancję w odpowiedzi na zmiany temperatury. Wyróżniamy dwa główne typy termistorów: NTC (Negative Temperature Coefficient) i PTC (Positive Temperature Coefficient). W przypadku NTC, rezystancja maleje wraz ze wzrostem temperatury, co sprawia, że są one często wykorzystywane w aplikacjach pomiarowych, takich jak termometry elektroniczne, gdzie umożliwiają precyzyjne monitorowanie temperatury. Z kolei PTC zwiększa swoją rezystancję przy wzroście temperatury, co czyni je skutecznymi zabezpieczeniami przed przegrzaniem w urządzeniach elektrycznych. Przykłady zastosowań obejmują kontrolę temperatury w urządzeniach HVAC oraz w układach zasilania, gdzie termistory służą do ochrony komponentów przed uszkodzeniem. Zrozumienie działania termistorów i ich właściwości jest kluczowe w projektowaniu systemów elektronicznych, spełniającym wymagania dotyczące dokładności pomiarów temperatury oraz bezpieczeństwa urządzeń.

Pytanie 28

Które z poniższych urządzeń nie jest wykorzystywane w lokalnej sieci komputerowej?

A. Hub.
B. Multiswitch.
C. Switch.
D. Router.
Multiswitch to urządzenie, które jest zazwyczaj stosowane w systemach telewizyjnych, zwłaszcza w instalacjach satelitarnych, a nie w lokalnych sieciach komputerowych. Jego główną funkcją jest rozdzielanie sygnału z jednej anteny satelitarnej do wielu odbiorników. W przeciwieństwie do urządzeń takich jak router, switch czy hub, które są kluczowe w infrastrukturze sieciowej i służą do zarządzania przepływem danych pomiędzy różnymi urządzeniami w sieci, multiswitch nie ma zastosowania w transferze danych między komputerami. W lokalnej sieci komputerowej zwykle używa się routerów do łączenia różnych segmentów sieci oraz switchy i hubów do łączenia urządzeń w ramach tej samej sieci. Dzięki zrozumieniu różnicy w przeznaczeniu tych urządzeń, można lepiej dopasować odpowiednie technologie do swoich potrzeb, co jest kluczowe dla efektywnego zarządzania siecią. Istotne jest, aby pamiętać, że wybór właściwych urządzeń do budowy lokalnej sieci komputerowej powinien być oparty na zrozumieniu ich funkcji i zastosowania w kontekście infrastrukturze IT.

Pytanie 29

Aby zlokalizować uszkodzenie tranzystora bipolarnego bez jego wylutowywania z płyty głównej systemu alarmowego, powinno się zmierzyć

A. rezystancję złącz pomiędzy B, E, C przy włączonym systemie
B. napięcia pomiędzy końcówkami E, B, C przy włączonym systemie
C. natężenie prądu kolektora tranzystora
D. rezystancję złącz pomiędzy B, E, C przy wyłączonym systemie
Pomiar rezystancji złącz pomiędzy końcówkami tranzystora przy wyłączonej centrali alarmowej może prowadzić do błędnych wniosków. W takim stanie tranzystor nie jest w stanie zrealizować swojej funkcji, a wyniki pomiaru mogą być nieadekwatne do rzeczywistych warunków pracy. Złącze B-E, które w normalnym stanie pracy powinno mieć określoną wartość napięcia, w stanie wyłączonym może wykazywać rezystancję, która nie oddaje rzeczywistej sytuacji. Dodatkowo, pomiar rezystancji przy włączonej centrali jest niebezpieczny dla sprzętu, ponieważ może prowadzić do zwarć lub uszkodzeń. W przypadku pomiaru natężenia prądu kolektora tranzystora, bez znajomości jego wartości szczytowych i charakterystyki pracy, również można uzyskać niewłaściwe informacje, co do stanu komponentu. Praktyka ta nie jest zgodna z znormalizowanymi metodami diagnostycznymi, które zalecają ocenę napięć w aktywnej pracy urządzenia. Ostatecznie, pomiar napięć daje pełniejszy obraz stanu tranzystora, co jest kluczowe w procesie naprawy i diagnostyki.

Pytanie 30

Jakie rodzaje układów cyfrowych powinno się wykorzystać, aby zredukować liczbę linii przesyłu danych?

A. Koder i transkoder
B. Koder i demultiplekser
C. Multiplekser i demultiplekser
D. Multiplekser i dekoder
W przypadku odpowiedzi wskazujących na zastosowanie multipleksera i dekodera, ważne jest zrozumienie, że dekoder nie pełni funkcji redukcji linii przesyłowych. Dekodery są używane do konwersji binarnych sygnałów na sygnały wyjściowe, co może zwiększać liczbę linii wymaganych na wyjściu. Takie podejście prowadzi do nadmiarowości i nieefektywności, szczególnie w systemach o dużej liczbie sygnałów. W analogiczny sposób, wybór kodera i transkodera również nie jest odpowiedni w kontekście zmniejszenia linii przesyłowych. Kodery konwertują dane w celu ich efektywnego przesyłania lub przechowywania, natomiast transkodery zmieniają format tych danych. Oba te procesy mogą angażować dodatkowe zasoby, zamiast je minimalizować. Wreszcie, wybór kodera i demultipleksera jest równie mylący, gdyż koder nie jest dedykowany do redukcji linii, a demultiplekser, chociaż przydatny w rozdzielaniu sygnałów, nie niweluje potrzeby posiadania wielu linii na etapie kodowania. W analizie tych odpowiedzi często popełniane są błędy związane z niewłaściwym rozumieniem roli i funkcji poszczególnych układów cyfrowych oraz ich wpływu na architekturę systemów. Kluczowe jest, aby przy wyborze komponentów kierować się ich rzeczywistym zastosowaniem w kontekście redukcji zasobów, co powinno być podstawą wszelkich decyzji inżynieryjnych.

Pytanie 31

Podczas kontroli czujki czadu stwierdzono, że emituje ona co 30 sekund dwa krótkie sygnały dźwiękowe i czerwona dioda LED miga dwukrotnie. Oznacza to, że

FunkcjaCo to oznaczaJakie działanie należy podjąć
Zielona dioda LED miga co 30 sekundNormalne działanieBrak
Czujnik emituje krótki sygnał dźwiękowy co 60 sekund i miga czerwona dioda LEDNiski poziom bateriiNiezwłocznie wymienić baterie
Czujnik emituje dwa krótkie sygnały co 30 sekund i czerwona dioda LED miga dwukrotnieKoniec okresu eksploatacyjnego czujnikaWymienić czujnik
Czujnik emituje dwa krótkie sygnały co 30 sekund i czerwona dioda LED miga co 30 sekundNieprawidłowe działanieWymienić czujnik
Czerwona dioda LED świeci się i ciągły dźwięk alarmowyAwariaWymienić czujnik
Głośny, ciągły alarm i świecąca się czerwona dioda LEDWykryto niebezpieczne stężenie COPostępować zgodnie z procedurą awaryjną

A. baterie są rozładowane i należy je wymienić.
B. czujka działa poprawnie i jest w stanie czuwania.
C. okres użytkowania czujki przewidziany przez producenta dobiegł końca i należy ją wymienić.
D. czujka działa poprawnie i wykryła niebezpieczne stężenie tlenku węgla.
Odpowiedź jest prawidłowa, ponieważ sygnały emitowane przez czujkę czadu wskazują na koniec jej okresu funkcjonowania. W przypadku czujników tlenku węgla, producenci zazwyczaj przewidują określony czas eksploatacji, zazwyczaj od 5 do 10 lat, po którym czujnik powinien zostać wymieniony, nawet jeśli nie wykrywa on zagrożeń. Emitowanie co 30 sekund dwóch krótkich sygnałów dźwiękowych oraz migająca dioda LED to standardowy sygnał ostrzegawczy używany przez większość producentów, co potwierdzają normy branżowe, takie jak EN 50291. Dlatego w przypadku takiego sygnału należy jak najszybciej wymienić czujkę na nową, aby zapewnić bezpieczeństwo domowników. Przykładowo, po wymianie czujnika warto przeprowadzić regularne kontrole, aby upewnić się, że nowy czujnik działa prawidłowo i jest w stanie skutecznie identyfikować niebezpieczne stężenia czadu.

Pytanie 32

Generator funkcyjny został skonfigurowany na sygnał o częstotliwości 1 kHz oraz maksymalnej wartości szczytowej wynoszącej 1 V. Po podłączeniu woltomierza AC, jego wskazanie wyniosło 0,707 V. Jaki kształt ma badany sygnał?

A. trójkątny
B. prostokątny
C. sinusoidalny
D. impulsowy
Odpowiedź 'sinusoidalny' jest prawidłowa, ponieważ przebieg sinusoidalny charakteryzuje się tym, że jego wartość szczytowa wynosi 1 V, co jest zgodne z ustawieniami generatora. Woltomierz AC wskazał 0,707 V, co odpowiada wartości skutecznej (RMS) dla sygnału sinusoidalnego. Wartość skuteczna sygnału sinusoidalnego można obliczyć jako wartość szczytowa podzieloną przez pierwiastek z dwóch, co potwierdza, że dla 1 V wartości szczytowej wartość skuteczna wynosi 1 V / √2 ≈ 0,707 V. Przebiegi sinusoidalne są powszechnie stosowane w zastosowaniach audio oraz w systemach zasilania AC. W inżynierii elektronicznej, zrozumienie charakterystyki sygnałów sinusoidalnych jest kluczowe dla projektowania układów oraz analizy ich działania zgodnie z normami IEC. Ponadto, w zastosowaniach praktycznych, takich jak telekomunikacja, sygnały sinusoidalny są wykorzystywane do modulacji, co wpływa na jakość przesyłanych informacji.

Pytanie 33

W przypadku łączenia urządzeń audio na dużą odległość, jakie kable powinny być wykorzystane?

A. sygnalizacyjne YKSY
B. sygnalizacyjne YKSwXs
C. niesymetryczne (unbalanced)
D. symetryczne (balanced)
Kable symetryczne, znane również jako kable zbalansowane, są kluczowym elementem w połączeniach urządzeń akustycznych na większe odległości. Główna zaleta tych kabli polega na ich zdolności do redukcji zakłóceń elektromagnetycznych, co jest szczególnie ważne w kontekście długich tras sygnałowych. Dzięki zastosowaniu dwóch przewodów sygnałowych, które przesyłają sygnał w przeciwnych fazach, kable symetryczne eliminują wpływ zakłóceń zewnętrznych, co zapewnia czystość dźwięku i stabilność sygnału. Przykładem zastosowania mogą być instalacje nagłośnieniowe na koncertach, gdzie kable symetryczne są powszechnie używane do łączenia mikrofonów z mikserami audio, zwłaszcza w przypadku dużych odległości. W branży audio stosuje się standardy takie jak AES/EBU i XLR, które są typowymi złączami dla kabli symetrycznych. W praktyce, wybór kabli symetrycznych jest zgodny z najlepszymi praktykami, które zalecają ich stosowanie wszędzie tam, gdzie jakość sygnału i odporność na zakłócenia są kluczowe dla sukcesu technicznego występu lub nagrania.

Pytanie 34

TCP to protokół transmisyjny umożliwiający transfer pakietów danych

A. telewizyjnego
B. internetowego
C. radiowego
D. optycznego
Wybór protokołów optycznego, telewizyjnego lub radiowego jako alternatywnych odpowiedzi na pytanie o TCP świadczy o pewnym nieporozumieniu odnośnie do roli i funkcji różnych protokołów komunikacyjnych. Protokół optyczny, który nawiązuje do technologii przesyłania danych za pomocą światłowodów, nie jest bezpośrednio związany z TCP, który jest protokołem transportowym. W kontekście sieci komputerowych, protokoły optyczne mogą być wykorzystywane do fizycznego przesyłania sygnałów, jednak nie odpowiadają za zarządzanie transmisją danych, co jest kluczowym zadaniem TCP. Podobnie, protokoły telewizyjne koncentrują się na przesyłaniu sygnałów audio-wideo, co również nie jest w obszarze odpowiedzialności TCP. Z kolei protokoły radiowe, wykorzystywane głównie w komunikacji bezprzewodowej, różnią się znacznie od internetowych protokołów transportowych, takich jak TCP. Kluczowym aspektem TCP jest jego zdolność do zapewnienia integralności danych oraz ich uporządkowanej dostawy przez sieć, co jest nieosiągalne dla wyżej wymienionych technologii, które mają inne cele. Zrozumienie różnicy między tymi protokołami jest niezbędne dla prawidłowego projektowania systemów komunikacyjnych oraz rozwiązywania problemów związanych z przesyłaniem informacji w różnych kontekstach.

Pytanie 35

Jak powinna wyglądać prawidłowa sekwencja działań przy konserwacji systemu automatyki przemysłowej?

A. Kontrola przewodów ciśnieniowych, przeprowadzenie pomiarów elektrycznych instalacji, zapoznanie się z dokumentacją techniczną instalacji, dokręcenie styków zaciskowych
B. Dokręcenie styków zaciskowych, kontrola przewodów ciśnieniowych, przeprowadzenie pomiarów elektrycznych instalacji, zapoznanie się z dokumentacją techniczną instalacji
C. Zapoznanie się z dokumentacją techniczną instalacji, dokręcenie styków zaciskowych, przeprowadzenie pomiarów elektrycznych instalacji, kontrola przewodów ciśnieniowych
D. Przeprowadzenie pomiarów elektrycznych instalacji, kontrola przewodów ciśnieniowych, zapoznanie się z dokumentacją techniczną instalacji, dokręcenie styków zaciskowych
Prawidłowa kolejność czynności konserwacyjnych w instalacji automatyki przemysłowej rozpoczyna się od zapoznania się z dokumentacją techniczną. Jest to kluczowy krok, który umożliwia zrozumienie specyfiki instalacji, funkcji poszczególnych komponentów oraz zależności pomiędzy nimi. Następnie, dokręcenie styków zaciskowych jest niezwykle istotne, ponieważ luźne połączenia mogą prowadzić do awarii, przepięć czy strat energii. Po tych działaniach przeprowadza się pomiary elektryczne, które pozwalają na ocenę stanu technicznego instalacji oraz identyfikację potencjalnych problemów, takich jak zwarcia czy niskie napięcia. Na końcu sprawdzane są przewody ciśnieniowe, co jest niezbędne dla zapewnienia bezpieczeństwa i funkcjonalności systemu. Taka kolejność gwarantuje, że wszystkie działania są wykonywane w sposób przemyślany i efektywny, zgodnie z najlepszymi praktykami branżowymi, a także normami bezpieczeństwa, co przyczynia się do długotrwałej i bezawaryjnej pracy instalacji.

Pytanie 36

W instalacji antenowej, która ma być używana w warunkach podwyższonej wilgotności oraz zmiennych temperaturach, powinny być zastosowane kable

A. w płaszczu polietylenowym (PE)
B. z oplotem miedzianym
C. w płaszczu PCV
D. z linką nośną
Odpowiedź "w płaszczu polietylenowym (PE)" jest prawidłowa, ponieważ przewody tego typu charakteryzują się wysoką odpornością na działanie wilgoci oraz zmiennych temperatur. Polietylen jest materiałem, który nie tylko chroni przed wpływem wody, ale także wykazuje odporność na wiele chemikaliów, co czyni go idealnym rozwiązaniem w trudnych warunkach atmosferycznych. W instalacjach antenowych, gdzie przewody są narażone na bezpośredni kontakt z opadami deszczu, wilgocią oraz skrajnymi temperaturami, zastosowanie przewodów w płaszczu PE pozwala na zachowanie ich właściwości elektrycznych oraz mechanicznych przez długi czas. Przykładem zastosowania przewodów w płaszczu polietylenowym mogą być instalacje w obszarach przybrzeżnych, gdzie warunki atmosferyczne są szczególnie zmienne. Zgodnie z normami ochrony środowiska i najlepszymi praktykami branżowymi, wybór materiałów odpornych na czynniki zewnętrzne jest kluczowy dla trwałości i niezawodności systemów antenowych.

Pytanie 37

Aby zrealizować instalację telewizyjną podtynkową, należy

A. układać przewody wyłącznie po najkrótszej trasie
B. układać przewody w dowolny sposób, pamiętając, aby trasy przewodów się nie krzyżowały
C. układać przewody w pionie i poziomie, dociskając je do ściany
D. układać przewody tylko w kierunku pionowym i poziomym, uwzględniając kąt zgięcia kabla
Prawidłowa odpowiedź wskazuje, że podczas prowadzenia instalacji telewizyjnej podtynkowej należy prowadzić przewody tylko w pionie i poziomie, uwzględniając kąt zagięcia kabla. Taki sposób prowadzenia przewodów zapewnia nie tylko estetyczny wygląd, ale także odpowiednie parametry transmisji sygnału. Przewody telewizyjne, w szczególności te typu coaxial, powinny być prowadzone zgodnie z określonymi wytycznymi, które zalecają unikanie ostrych zagięć. Kąt zagięcia kabla powinien być dostosowany do specyfikacji producenta, aby uniknąć ewentualnych uszkodzeń. W praktyce oznacza to, że przy instalacji przewodów w ścianach, należy stosować korytka kablowe, które umożliwiają prowadzenie kabli w sposób zabezpieczający je przed mechanicznymi uszkodzeniami, a także eliminują problemy związane z zakłóceniami sygnału. Dodatkowo, warto zwrócić uwagę na rozmieszczenie gniazdek oraz inne elementy instalacji, aby maksymalnie uprościć trasy przewodów, co również przyczyni się do poprawy jakości sygnału oraz ułatwi przyszłe modyfikacje. Wiele norm dotyczących instalacji telewizyjnych, takich jak PN-EN 50174, podkreśla znaczenie odpowiedniego prowadzenia przewodów w celu zapewnienia ich wydajności i trwałości.

Pytanie 38

Aby zweryfikować ciągłość kabla sygnałowego w systemie kontroli dostępu, jakie urządzenie należy wykorzystać?

A. watomierza
B. omomierza
C. woltomierza
D. amperomierza
Omomierz jest narzędziem, które służy do pomiaru oporu elektrycznego, co czyni go idealnym do sprawdzania ciągłości połączeń elektrycznych, w tym kabli sygnałowych. W kontekście instalacji systemów kontroli dostępu, ciągłość kabla jest kluczowa, ponieważ wszelkie przerwy lub uszkodzenia mogą prowadzić do awarii systemu lub nieprawidłowego działania. Przykładowo, w przypadku zastosowania omomierza, możemy zmierzyć opór na końcach kabla. Jeśli opór wynosi zero lub bardzo blisko zera omów, oznacza to, że kabel jest ciągły i nie ma przerwań. W sytuacji, gdy pomiar wykazuje wysoką wartość oporu, może to wskazywać na uszkodzenie kabla, co wymaga jego wymiany lub naprawy. Normy branżowe, takie jak IEC 60364, zalecają regularne sprawdzanie ciągłości połączeń, co jest istotne dla zapewnienia niezawodności systemów zabezpieczeń. Dlatego omomierz jest podstawowym narzędziem w diagnostyce i konserwacji instalacji elektrycznych, w tym systemów kontroli dostępu.

Pytanie 39

Poprawnie funkcjonująca instalacja antenowa jest zbudowana w topologii

A. gwiazdy, w której wykorzystano wyłącznie gniazda TV końcowe
B. gwiazdy, w której wykorzystano wyłącznie gniazda TV przelotowe
C. liniowej, w której wykorzystano wyłącznie gniazda TV przelotowe
D. liniowej, w której wykorzystano wyłącznie gniazda TV końcowe
Topologia liniowa, w której zastosowano gniazda TV końcowe lub przelotowe, nie jest najlepszym rozwiązaniem dla instalacji antenowych. W przypadku gniazd końcowych w topologii liniowej, sygnał jest przesyłany przez każdą jednostkę po drodze, co prowadzi do znacznych strat sygnału i pogorszenia jakości obrazu. Gniazda przelotowe również wprowadzają dodatkowe problemy, ponieważ sygnał przechodzi przez wiele punktów, co zwiększa ryzyko zakłóceń. W praktyce, użytkownicy mogą doświadczać problemów z odbiorem, takich jak zniekształcenia obrazu czy zrywanie sygnału. Dodatkowo, instalacje liniowe są trudniejsze do rozbudowy, ponieważ każda zmiana wymaga przerywania istniejących połączeń. Takie podejście nie jest zgodne z zaleceniami branżowymi, które podkreślają znaczenie minimalizacji strat sygnału oraz łatwości w modyfikacji systemu. Dlatego, wybór topologii gwiazdy z gniazdami końcowymi jest nie tylko bardziej efektywny, ale również jest zgodny z najlepszymi praktykami w branży telekomunikacyjnej i instalacyjnej.

Pytanie 40

Jaką rolę odgrywa rejestrator w systemie telewizji dozorowej?

A. Kontroluje ruch kamery
B. Zmienia ogniskową obiektywu
C. Wzmacnia sygnał wizyjny
D. Zapisuje sygnał video
Rejestrator w systemie telewizji dozorowej odgrywa kluczową rolę w procesie monitorowania przez gromadzenie i przechowywanie sygnałów wideo. Jego podstawowym zadaniem jest zapis obrazu z kamer, co pozwala na późniejsze przeglądanie i analizowanie nagranych materiałów. Rejestratory mogą być różnego rodzaju, w tym cyfrowymi rejestratorami wideo (DVR) lub sieciowymi rejestratorami wideo (NVR), które różnią się metodą przechowywania danych. Zastosowanie rejestratorów w systemach CCTV umożliwia nie tylko archiwizację danych na wypadek incydentów, ale także dostarcza materiał dowodowy, który może być użyty w śledztwach lub postępowaniach prawnych. Dobrze skonfigurowany system rejestracji powinien spełniać standardy jakości obrazu, a także zapewniać odpowiednie zabezpieczenia danych, aby chronić prywatność i poufność nagrań. Przykładowo, w przypadku incydentu, operatorzy mogą szybko odtworzyć nagranie, co znacznie przyspiesza proces reakcji na zagrożenie i przyczynia się do poprawy bezpieczeństwa ogólnego obiektu.