Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 13 kwietnia 2025 17:44
  • Data zakończenia: 13 kwietnia 2025 18:30

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W jakich sytuacjach stosuje się spawanie jako metodę naprawy?

A. Przy naprawie uszkodzonych gwintów w kadłubie silnika
B. Podczas eliminacji odkształceń na powierzchni uszczelniającej głowicy
C. Przy usuwaniu pęknięć w bloku silnika
D. W trakcie naprawy gładzi cylindra
Usuwanie odkształceń powierzchni uszczelniającej głowicy, naprawa gładzi cylindrowych oraz usuwanie uszkodzonych otworów gwintowanych w kadłubie silnika są operacjami, które nie wymagają spawania jako głównej metody naprawczej. Usuwanie odkształceń w powierzchni uszczelniającej głowicy silnika zazwyczaj polega na szlifowaniu lub frezowaniu tej powierzchni, aby zapewnić szczelność po regeneracji. Metody te są bardziej odpowiednie, gdyż wymagają precyzyjnego dostosowania geometrii, co jest kluczowe dla prawidłowego uszczelnienia. Naprawa gładzi cylindrowych może obejmować honowanie lub wzmocnienie powierzchni cylindra, co również nie wiąże się ze spawaniem, a raczej z użyciem narzędzi skrawających. Z kolei usuwanie uszkodzonych otworów gwintowanych w kadłubie silnika jest zazwyczaj realizowane poprzez wtapianie wkładek gwintowych, co jest metodą mechaniczną, a nie spawalniczą. Kluczowym błędem w rozumowaniu jest założenie, że każda naprawa metalowych komponentów silnika może być wykonana za pomocą spawania, podczas gdy różne uszkodzenia wymagają odmiennego podejścia w zależności od rodzaju materiału, lokalizacji defektu oraz wymagań technologicznych. W praktyce należy zatem zwracać szczególną uwagę na dobór odpowiedniej metody naprawy, co jest zgodne z zasadami inżynierii materiałowej i mechaniki.

Pytanie 2

Zanim mechanik umieści pojazd na podnośniku kolumnowym, powinien zweryfikować, czy podnośnik dysponuje ważnym zaświadczeniem o przeprowadzonym badaniu technicznym, które zostało zrealizowane przez

A. Państwową Inspekcję Sanitarną
B. Państwową Inspekcję Pracy
C. Urząd Dozoru Technicznego
D. Urząd Nadzoru Budowlanego
Urząd Dozoru Technicznego (UDT) jest odpowiedzialny za kontrolę oraz nadzór nad urządzeniami technicznymi, w tym podnośnikami kolumnowymi. Posiadanie aktualnego zaświadczenia o przeprowadzonym badaniu technicznym jest kluczowe dla zapewnienia bezpieczeństwa pracy w warsztatach i serwisach samochodowych. Badania te obejmują ocenę stanu technicznego urządzenia, weryfikację jego parametrów oraz bezpieczeństwa użytkowania. Przykładowo, przed wprowadzeniem pojazdu na podnośnik, mechanik powinien upewnić się, że podnośnik nie tylko funkcjonuje poprawnie, ale również spełnia normy bezpieczeństwa określone przez regulacje UDT. Kontrola ta jest częścią systemu zarządzania jakością i bezpieczeństwem w miejscu pracy, co jest zgodne z dobrymi praktykami branżowymi. Umożliwia to nie tylko zabezpieczenie zdrowia pracowników, ale również minimalizację ryzyka uszkodzenia pojazdów. Dlatego regularne przeglądy i badania techniczne są niezbędne w każdym serwisie, gdzie używane są podnośniki.

Pytanie 3

Do kontroli kadłuba oraz głowicy silnika wykorzystywane są liniał krawędziowy i szczelinomierz, aby zmierzyć

A. płaskość
B. prostopadłość
C. szczelność
D. równoległość
Płaskość kadłuba i głowicy silnika jest kluczowym parametrem, który wpływa na ich funkcjonowanie oraz trwałość. Liniał krawędziowy oraz szczelinomierz to narzędzia pomiarowe, które pozwalają na precyzyjne mierzenie i weryfikację płaskości powierzchni. W praktyce, jeśli powierzchnie te nie są płaskie, może to prowadzić do nieprawidłowego montażu komponentów, co z kolei wpływa na osiągi silnika oraz jego żywotność. Na przykład, nieprawidłowa płaskość głowicy silnika może prowadzić do problemów z uszczelnieniem, co skutkuje wyciekami płynów eksploatacyjnych. Zgodnie z normami branżowymi, takimi jak ISO 1101 dotyczące geometrii wyrobów, weryfikacja płaskości jest standardową procedurą w procesach produkcji oraz konserwacji silników. Dlatego regularne kontrole płaskości za pomocą tych narzędzi są niezbędne dla zapewnienia jakości i niezawodności silników.

Pytanie 4

Podczas przeglądu technicznego samochodu stwierdzono potrzebę wymiany oleju silnikowego oraz klocków hamulcowych w kwocie 120,00 zł za komplet. Koszt 4 l oleju z filtrem olejowym wyniósł 160,00 zł, a wartość robocizny to 320,00 zł. Całkowity koszt usługi po uwzględnieniu 10% rabatu wyniósł

A. 600,00 zł
B. 480,00 zł
C. 560,00 zł
D. 540,00 zł
Aby obliczyć łączny koszt usługi po uwzględnieniu zniżki, należy zsumować wszystkie koszty związane z wymianą oleju oraz klocków hamulcowych. Koszt wymiany klocków hamulcowych wynosi 120,00 zł, a koszt oleju silnikowego i filtra to 160,00 zł. Koszt robocizny wynosi 320,00 zł. Łączny koszt usługi przed zniżką wynosi 120,00 zł + 160,00 zł + 320,00 zł = 600,00 zł. Następnie należy obliczyć 10% zniżkę, co daje 60,00 zł. Po odjęciu zniżki od pierwotnego kosztu, otrzymujemy 600,00 zł - 60,00 zł = 540,00 zł. Przykład ten ilustruje ważność znajomości procedur przeglądów okresowych oraz umiejętności kalkulacji kosztów, co jest kluczowe w profesjonalnym zarządzaniu pojazdami. W praktyce, wiele warsztatów stosuje podobne podejście do kalkulacji kosztów usług, aby zapewnić transparentność i zrozumiałość dla klienta, co jest zgodne z dobrymi praktykami w branży motoryzacyjnej.

Pytanie 5

Jednym z komponentów przekładni głównej w systemie przenoszenia napędu jest koło

A. koronowe
B. talerzowe
C. zamachowe
D. obiegowe
Wybór odpowiedzi koło koronowe, obiegowe czy zamachowe nie jest właściwy, ponieważ te elementy pełnią zupełnie inne funkcje w układzie przeniesienia napędu. Koło koronowe, często stosowane w mechanizmach zębatych, działa na zasadzie przekazywania momentu obrotowego poprzez zęby, co jest typowe dla skrzyń biegów, ale nie odgrywa centralnej roli w przekładni głównej. Użytkownicy mogą mylić koronkowe elementy z talerzowymi, myśląc, że oba mają podobne zastosowania, podczas gdy różnią się zasadniczo w konstrukcji i charakterystyce pracy. Koło obiegowe, często stosowane w systemach hydraulicznych, działa w zupełnie innym kontekście i nie jest związane z przenoszeniem napędu w sensie mechanicznym. Z kolei koło zamachowe, które ma na celu stabilizację momentu obrotowego i redukcję drgań, jest również nieodpowiednie w kontekście przekładni głównej, ponieważ nie wykonuje funkcji przekazywania mocy w klasycznym rozumieniu. Błędne odpowiedzi mogą wynikać z nieporozumień co do funkcji poszczególnych elementów mechanicznych – kluczowe jest zrozumienie, że każdy z tych komponentów ma swoje specyficzne zastosowanie, co może prowadzić do mylnych interpretacji w kontekście układów przeniesienia napędu. Właściwe dobieranie elementów do systemu jest istotne dla jego efektywności oraz trwałości, a znajomość ich funkcji jest podstawą prawidłowego projektowania mechanizmów.

Pytanie 6

Po wymianie końcówki drążka kierowniczego niezbędne jest sprawdzenie i ewentualna regulacja

A. zbieżności kół przednich.
B. kątów pochylenia kół.
C. kąta wyprzedzenia zwrotnicy.
D. równoległości osi.
Zbieżność kół przednich jest kluczowym parametrem wpływającym na stabilność i kierowalność pojazdu. Po wymianie końcówki drążka kierowniczego, konieczne jest sprawdzenie i ewentualna regulacja zbieżności, ponieważ nieprawidłowe ustawienie może prowadzić do nierównomiernego zużycia opon oraz problemów z prowadzeniem. Zbieżność polega na kącie, pod jakim opony przednie są ustawione względem linii centralnej pojazdu, co wpływa na ich kontakt z nawierzchnią. Przykładowo, zbyt duża zbieżność może powodować, że pojazd będzie ściągał w jedną stronę, co jest niebezpieczne na drodze. W praktyce, regulacja zbieżności kół jest procesem, który powinien być przeprowadzany w wyspecjalizowanych warsztatach, wykorzystujących odpowiednie urządzenia pomiarowe. Zgodnie z normami producentów, nieprawidłowe ustawienia zbieżności mogą prowadzić do trwalszych uszkodzeń układu zawieszenia, co zwiększa koszty eksploatacji pojazdu. Dlatego regularne kontrole i dostosowywanie zbieżności kół są niezbędne dla zapewnienia bezpieczeństwa oraz komfortu jazdy.

Pytanie 7

Charakterystycznym elementem bezstopniowej mechanicznej skrzyni biegów CVT jest

A. wałek atakujący.
B. pas napędowy.
C. satelita.
D. synchronizator.
Zdecydowanie nie powinniśmy wybierać innych części, jak wałek atakujący czy synchronizator, bo to nie ma sensu w kontekście skrzyni CVT. Wałek atakujący jest ważny w tradycyjnych skrzyniach biegów, gdzie przenosi moc z silnika do mechanizmu różnicowego. W CVT tę rolę spełnia pas napędowy, więc to jakby nie ten temat. Synchronizatory też są stosowane do synchronizacji obrotów w tradycyjnych skrzyniach podczas zmiany biegów, a w CVT nie ma biegów do zmieniania, tylko płynnie wszystko działa. Satelity z kolei są w automatycznych skrzyniach, a w CVT to się nie odnosi. Jeśli mylimy te elementy, to możemy nie zrozumieć, jak działa nowoczesna motoryzacja i jak różne są te systemy przeniesienia napędu.

Pytanie 8

Częścią systemu chłodzenia <u><strong>nie jest</strong></u>

A. czujnik temperatury
B. przekładnia ślimakowa
C. termostat
D. pompa wody
Przekładnia ślimakowa nie jest elementem układu chłodzenia silnika, ponieważ pełni zupełnie inną funkcję, związana głównie z przenoszeniem napędu i momentu obrotowego w mechanizmach. Układ chłodzenia silnika składa się z takich elementów jak pompa wody, czujnik temperatury oraz termostat, które współpracują w celu utrzymania optymalnej temperatury pracy silnika. Pompa wody jest odpowiedzialna za cyrkulację płynu chłodzącego w obiegu, co jest kluczowe dla efektywnego odprowadzania ciepła. Czujnik temperatury monitoruje temperaturę płynu chłodzącego, co pozwala na bieżąco kontrolować działanie układu. Termostat natomiast reguluje przepływ płynu chłodzącego, otwierając lub zamykając obieg, co zapobiega przegrzaniu silnika. W związku z tym, zrozumienie roli każdego z tych elementów oraz ich współpracy jest kluczowe dla prawidłowego funkcjonowania silnika i jego układu chłodzenia.

Pytanie 9

Termostat otwiera przelot cieczy chłodzącej do dużego obiegu

A. gdy temperatura cieczy chłodzącej jest wysoka.
B. zaraz po rozruchu silnika.
C. gdy temperatura cieczy chłodzącej jest niska.
D. po włączeniu ogrzewania nadwozia.
Termostat pełni kluczową rolę w zarządzaniu obiegiem cieczy chłodzącej w silniku. Otwiera przelot cieczy chłodzącej do dużego obiegu, gdy temperatura cieczy osiąga odpowiedni, wysoki poziom. Wysoka temperatura jest wskaźnikiem, że silnik osiągnął optymalną temperaturę pracy, co zapobiega jego przegrzewaniu. Dzięki temu, gdy temperatura cieczy chłodzącej wzrasta, termostat pozwala na cyrkulację cieczy przez chłodnicę, co skutkuje efektywnym odprowadzaniem ciepła. Przykładem zastosowania tego mechanizmu jest samochód osobowy, w którym termostat otwiera się przy około 90-95°C, co jest zgodne z normami branżowymi dla większości silników spalinowych. Umożliwia to utrzymanie temperatury roboczej silnika na stałym poziomie, co jest istotne dla jego wydajności i żywotności. Zrozumienie tego procesu jest kluczowe dla każdego, kto zajmuje się diagnostyką i naprawą systemów chłodzenia w pojazdach.

Pytanie 10

Jaką metodą wykonuje się wały korbowe stosowane w silnikach spalinowych samochodów sportowych?

A. obróbki skrawaniem
B. łączenia
C. kucia
D. odlewu
Wały korbowe w silnikach spalinowych samochodów sportowych są najczęściej wytwarzane metodą kucia ze względu na wysokie wymagania dotyczące wytrzymałości oraz odporności na zmęczenie materiału. Proces kucia pozwala uzyskać jednorodną strukturę materiału, co znacząco zwiększa jego właściwości mechaniczne. Kucie na gorąco, stosowane w produkcji wałów korbowych, umożliwia formowanie skomplikowanych kształtów, które są konieczne do prawidłowego działania silnika. Ponadto, dzięki kuciu, możliwe jest osiągnięcie wysokiej precyzji wymiarowej, co jest kluczowe w zastosowaniach wyścigowych, gdzie nawet najmniejsza różnica w tolerancjach może wpłynąć na osiągi pojazdu. W praktyce, producenci stosują materiały stalowe o dużej wytrzymałości, co jest zgodne z najlepszymi praktykami w branży motoryzacyjnej, zapewniając jednocześnie długą żywotność i niezawodność komponentów. Dodatkowo, kute wały korbowe są często poddawane obróbce cieplnej w celu dalszej poprawy ich właściwości mechanicznych, co jest standardem w produkcji elementów silników wyczynowych.

Pytanie 11

Po przeprowadzeniu analizy amortyzatorów tylnych pojazdu ustalono, że poziom tłumienia prawego wynosi 35%, a lewego 56%. Wyniki te sugerują, że

A. prawy amortyzator powinien zostać wymieniony
B. należy zregenerować prawy amortyzator
C. amortyzatory są całkowicie sprawne
D. konieczna jest wymiana obu amortyzatorów
Musisz wymienić oba amortyzatory, bo ich zdolność tłumienia jest za niska. Standardowo powinno być przynajmniej 50%, a prawy ma tylko 35%. To znacznie obniża jego efektywność, co później może wpłynąć na komfort jazdy i stabilność całego auta. Lewy amortyzator też nie jest idealny, bo choć ma 56%, to wciąż nie spełnia wymagań. W praktyce lepiej jest wymienić oba naraz, bo jak jeden działa słabo, to może to negatywnie wpływać na jazdę i sporadycznie przyspieszać zużycie innych części zawieszenia. Pamiętaj, amortyzatory są mega ważne dla bezpieczeństwa, więc lepiej je mieć w dobrym stanie, żeby nie narażać siebie i innych na drodze. Regularne sprawdzanie i wymiana amortyzatorów to klucz do zachowania dobrego stanu zawieszenia.

Pytanie 12

Element systemu zawieszenia pojazdu, który tłumi wstrząsy nadwozia, to

A. resor
B. drążek skętny
C. amortyzator
D. stabilizator
Amortyzator jest kluczowym elementem układu zawieszenia pojazdu, którego głównym zadaniem jest tłumienie drgań nadwozia, co zapewnia komfort jazdy i stabilność pojazdu. Działa na zasadzie przekształcania energii kinetycznej drgań zawieszenia w ciepło, co ogranicza ich amplitudę. Dzięki amortyzatorom, samochód lepiej radzi sobie z nierównościami drogi, co jest szczególnie odczuwalne podczas jazdy po drogach o słabej nawierzchni. W praktyce, użycie odpowiednich amortyzatorów może znacznie poprawić właściwości jezdne pojazdu, zmniejszając ryzyko utraty kontroli nad samochodem w trudnych warunkach, takich jak nagłe hamowanie czy pokonywanie zakrętów. Amortyzatory są również projektowane w zgodzie z normami SAE (Society of Automotive Engineers), co zapewnia ich wysoką jakość i efektywność. Warto pamiętać, że ich regularna kontrola oraz ewentualna wymiana są istotne dla zapewnienia bezpieczeństwa i komfortu jazdy.

Pytanie 13

Opony, które nie są wyposażone w wskaźnik informujący o granicznym zużyciu, powinny mieć głębokość bieżnika nie mniejszą niż

A. 0,6mm
B. 2,4mm
C. 2,0 mm
D. 1,6mm
Odpowiedzi 0,6 mm, 2,4 mm i 2,0 mm są niepoprawne z różnych powodów. Pierwsza z tych odpowiedzi, 0,6 mm, jest zdecydowanie zbyt niska i nie spełnia wymogów bezpieczeństwa. Opony, które mają bieżnik o głębokości mniejszej niż 1,6 mm, mogą nie zapewniać wystarczającej przyczepności na mokrej nawierzchni, co znacznie zwiększa ryzyko wypadków. Nowsze badania wykazały, że opony z bieżnikiem o głębokości poniżej 3 mm mają znacząco gorsze właściwości jezdne w trudnych warunkach, co czyni tę odpowiedź niebezpieczną. Z kolei odpowiedzi 2,4 mm i 2,0 mm, choć są bliższe właściwym normom, również są błędne, ponieważ nie są uważane za minimalne wartości dopuszczalne. W kontekście bezpieczeństwa drogowego, każdy kierowca powinien dążyć do utrzymania bieżnika opon na poziomie co najmniej 1,6 mm, aby nie tylko spełniać wymogi prawne, ale także zapewnić sobie i innym użytkownikom dróg maksymalne bezpieczeństwo. Warto również zaznaczyć, że w przypadku opon zimowych, minimalna głębokość bieżnika powinna wynosić 4 mm, co jest kluczowe dla uzyskania odpowiedniej przyczepności na śniegu i lodzie. Takie normy są zgodne z przepisami drogowymi i zaleceniami producentów opon, które powinny być przestrzegane dla bezpieczeństwa na drodze.

Pytanie 14

W oznaczeniu 245/40 R17 91Y znajdującym się na oponie, liczba

A. 40 oznacza wysokość profilu opony wyrażoną w % szerokości bieżnika.
B. 40 oznacza wysokość profilu opony wyrażoną w mm
C. 91 jest indeksem prędkości.
D. 17 oznacza średnicę zewnętrzną obręczy koła.
Często ludzie mylą oznaczenia opon i to prowadzi do błędnych wniosków. Na przykład, liczba 91 w oznaczeniu to nie indeks prędkości, lecz indeks nośności. Oznacza to, ile maksymalnie ciężaru opona może unieść. To jest naprawdę kluczowe dla bezpieczeństwa i działania auta, zwłaszcza w różnych warunkach na drodze. Liczba 17 mówi nam o średnicy felgi, ale nie ma związku z wysokością profilu, która była opisana w pytaniu. To też jest ważne, bo trzeba wiedzieć, jakie felgi pasują do danej opony. Warto zaznaczyć, że wysokość profilu w mm, jak mówiono w jednej z odpowiedzi, to nie jest właściwe podejście, bo nie ma standardu mówiącego o tym w kontekście szerokości bieżnika. Takie zamieszanie może skutkować złym wyborem opon, co wpłynie na bezpieczeństwo i osiągi auta. Dlatego warto zrozumieć, jak prawidłowo odczytywać oznaczenia na oponach i jak je zastosować w codziennej jeździe.

Pytanie 15

Przyczyną "przekrzywienia" koła kierownicy w lewą stronę, po uprzednim najechaniu prawym przednim kołem w dużą wyrwę nawierzchni jezdni, może być

A. zmiana wyrównoważenia koła.
B. skrzywienie rantu obręczy koła.
C. uszkodzenie kordu opony.
D. skrzywienie drążka kierowniczego.
Uszkodzenie kordu opony, zmiana wyrównoważenia koła oraz skrzywienie rantu obręczy koła to elementy, które mogą wpływać na prowadzenie pojazdu, jednak nie są one bezpośrednio związane z „przekrzywieniem” koła kierownicy w wyniku najechania na wyrwę. Uszkodzenie kordu opony, choć może skutkować problemami z traktywnością, nie bezpośrednio wpływa na skrzywienie drążka kierowniczego. Zmiana wyrównoważenia koła może prowadzić do drgań lub wibracji, ale nie spowoduje przekrzywienia samego koła kierownicy. Ponadto, skrzywienie rantu obręczy koła, choć może wpływać na stabilność i prowadzenie pojazdu, również nie jest bezpośrednią przyczyną odchylenia koła kierownicy po najechaniu na nierówność. Kluczowym błędem jest mylenie objawów z przyczynami. Często osoby zajmujące się diagnostyką pojazdów nie dostrzegają, że problemy z układem kierowniczym mogą wynikać z uszkodzeń mechanicznych, takich jak skrzywienie drążków, a nie jedynie z uszkodzeń opon czy obręczy. Właściwe podejście do diagnostyki pojazdu powinno uwzględniać złożoność układów mechanicznych oraz ich wzajemne oddziaływanie, aby skutecznie identyfikować przyczyny problemów i zapewniać bezpieczeństwo jazdy.

Pytanie 16

Podczas obsługi urządzenia do piaskowania elementów należy bezwzględnie zakładać

A. rękawice lateksowe
B. okulary ochronne
C. czapkę z daszkiem
D. obuwie ochronne
Użycie okularów ochronnych podczas obsługi urządzenia do piaskowania części jest kluczowe dla zapewnienia bezpieczeństwa operatora. Piaskowanie generuje cząsteczki pyłu oraz drobne cząstki materiału, które mogą łatwo trafić do oczu, powodując poważne urazy. Okulary ochronne, zgodne z normami ochrony osobistej, powinny być wykonane z materiałów odpornych na uderzenia, aby skutecznie chronić oczy przed potencjalnymi projektami. Przykładowo, stosowanie okularów z powłoką antyrefleksyjną i odpornych na zarysowania jest zalecane, aby zwiększyć komfort pracy oraz bezpieczeństwo. Ponadto, w kontekście przestrzegania przepisów BHP, wiele organizacji wymaga stosowania okularów ochronnych jako standardowego wyposażenia podczas wszelkich operacji związanych z obróbką materiałów. Prawidłowe zabezpieczenie oczu jest również elementem kultury bezpieczeństwa w miejscu pracy, co przyczynia się do obniżenia ryzyka wypadków.

Pytanie 17

Aby zlikwidować wyciek płynu hamulcowego z cylindra zacisku hamulcowego, należy wykonać

A. wymianę pierścienia uszczelniającego
B. naciśnięcie tłoczka głębiej do cylindra
C. użycie smaru do uszczelnienia
D. dodanie dodatkowej uszczelki
Wymiana pierścienia uszczelniającego jest kluczowym krokiem w usuwaniu wycieków płynu hamulcowego z cylindra zacisku hamulcowego. Pierścienie uszczelniające pełnią istotną funkcję w zapewnieniu szczelności układu hamulcowego, a ich uszkodzenie może prowadzić do niepożądanych wycieków, co z kolei może wpływać na skuteczność hamowania. Gdy pierścień uszczelniający jest zużyty lub uszkodzony, jego wymiana jest jedynym sposobem na przywrócenie prawidłowej funkcji zacisku. W praktyce, aby wymienić pierścień uszczelniający, należy zdjąć zacisk hamulcowy, co może wymagać demontażu kół i zasięgnięcia do odpowiednich narzędzi, takich jak klucze i szczypce. Ważne jest, aby przed rozpoczęciem wymiany upewnić się, że nowy pierścień uszczelniający jest zgodny z zaleceniami producenta. Wymiana pierścienia uszczelniającego jest zgodna z dobrymi praktykami branżowymi, które zalecają regularne przeglądy i konserwację układu hamulcowego w celu zapewnienia bezpieczeństwa pojazdu. W sytuacjach, gdy mamy do czynienia z nieszczelnościami, natychmiastowa reakcja i zastosowanie odpowiednich metod naprawczych mogą zapobiec poważniejszym uszkodzeniom układu hamulcowego oraz zagrożeniu podczas jazdy.

Pytanie 18

Urządzenie do wyważania kół samochodowych jest wyposażeniem stanowiska do

A. badania układu hamulcowego samochodu.
B. demontażu i montażu ogumienia.
C. sprawdzania zawieszenia samochodu.
D. badania ustawienia kół i osi samochodu.
Wyważanie kół w samochodach to naprawdę ważna sprawa, zwłaszcza przy demontażu i montażu opon. Dobrze wyważone koła pomagają w utrzymaniu stabilności auta na drodze. A jak wiadomo, stabilność to klucz do bezpieczeństwa! Jeśli koła są niewyważone, to mogą się szybciej zużywać opony, co też odbija się na komforcie jazdy. Mechanicy, używając wyważarek, potrafią zidentyfikować nierówności, które mogą prowadzić do drgań czy innych problemów podczas jazdy. Nie można też zapominać o standardach, jak te od FIA, które przypominają, jak ważne jest to precyzyjne wyważanie. Tak więc, warto robić to regularnie, najlepiej po każdym demontażu i montażu, żeby nie narażać się na jakieś nieprzyjemności na drodze. W warsztatach często łączy się to z geometrią zawieszenia, co sprawia, że cała obsługa pojazdu jest bardziej kompleksowa.

Pytanie 19

Z rejonu mostu napędowego dochodzi do uciążliwego hałasu, który wzrasta podczas pokonywania zakrętów. Który z poniższych elementów może być jego przyczyną?

A. Łożysko piasty koła
B. Mechanizm różnicowy
C. Półoś napędowa
D. Przekładnia główna
Mechanizm różnicowy jest kluczowym elementem układu napędowego, którego główną funkcją jest umożliwienie różnicy prędkości obrotowej kół na osi podczas pokonywania zakrętów. Podczas jazdy w zakrętach, zewnętrzne koło pokonuje dłuższą drogę, co powoduje, że jego prędkość jest wyższa niż prędkość koła wewnętrznego. Jeśli mechanizm różnicowy nie funkcjonuje prawidłowo, może dochodzić do nadmiernego hałasu, który jest wynikiem niewłaściwego luzu lub uszkodzenia wewnętrznych zębatek. W praktyce, regularne sprawdzanie i konserwacja mechanizmu różnicowego, zgodnie z zaleceniami producenta, a także reagowanie na wszelkie niepokojące dźwięki, mogą zapobiec poważniejszym uszkodzeniom oraz zwiększyć bezpieczeństwo jazdy. Dobrą praktyką jest również wykonywanie przeglądów stanu oleju w mechanizmie różnicowym, aby zapewnić odpowiednie smarowanie i uniknąć nadmiernego zużycia elementów.

Pytanie 20

Jaki jest całkowity koszt wymiany oleju silnikowego, jeżeli jego ilość w silniku wynosi 3,5 litra, cena za jeden litr jest równa 21 zł, a koszt filtra oleju to 65 zł? Wymiana trwa 30 minut przy stawce za roboczogodzinę 120 zł.

A. 258,50 zł.
B. 146,00 zł.
C. 138,50 zł.
D. 198,50 zł.
Całkowity koszt wymiany oleju silnikowego wynosi 198,50 zł. Można to obliczyć na podstawie kilku rzeczy. Po pierwsze, w silniku jest 3,5 litra oleju, a litr kosztuje 21 zł, więc za olej wychodzi 73,50 zł. Potem mamy filtr oleju, który kosztuje 65 zł. Jak to wszystko zsumujemy, to 73,50 zł plus 65 zł daje w sumie 138,50 zł. Następnie musimy doliczyć koszt robocizny. Jeśli wymiana trwa pół godziny, a stawka za godzinę wynosi 120 zł, to robocizna kosztuje 60 zł. Czyli 138,50 zł plus 60 zł to razem 198,50 zł. Te obliczenia są zgodne z tym, co się praktykuje w serwisach, bo liczy się zarówno materiały, jak i praca przy samochodach.

Pytanie 21

Mechanik wymieniający wahacze osi przedniej może dokręcić

A. śruby umieszczone w płaszczyźnie pionowej tylko w położeniu normalnej pracy zawieszenia.
B. wszystkie śruby w dowolnym ułożeniu zawieszenia.
C. śruby umieszczone w płaszczyźnie poziomej tylko w położeniu normalnej pracy zawieszenia.
D. śrubę/nakrętkę sworznia dopiero po ustawieniu zbieżności kół.
Istnieje kilka koncepcji związanych z dokręcaniem śrub, które mogą wprowadzać w błąd. Zaczynając od pierwszej, idea, że śrubę lub nakrętkę sworznia można dokręcić tylko po ustawieniu zbieżności kół, jest niepoprawna. Zbieżność kół jest istotnym aspektem regulacji układu zawieszenia, ale nie ma bezpośredniego związku z momentem dokręcania wahaczy. Właściwe dokręcenie śrub powinno odbywać się w odpowiednim położeniu zawieszenia, aby zapobiec nieprawidłowym naprężeniom, które mogą wynikać z ich wcześniejszego luzowania. Kolejna koncepcja dotycząca dokręcania śrub w płaszczyźnie pionowej w położeniu normalnej pracy zawieszenia jest również myląca. W rzeczywistości, dokręcanie śrub w tej płaszczyźnie wymaga szczególnej uwagi i powinno odbywać się z zachowaniem zasad bezpieczeństwa oraz odpowiednich standardów. Ostatnia opcja, sugerująca, że wszystkie śruby można dokręcać w dowolnym ułożeniu zawieszenia, jest nie tylko niebezpieczna, ale także sprzeczna z najlepszymi praktykami w branży. Praca w niewłaściwym położeniu zawieszenia może prowadzić do nieprawidłowego dokręcania, a w konsekwencji do awarii układu zawieszenia, co stwarza poważne zagrożenie dla bezpieczeństwa jazdy. W związku z powyższym, kluczowe jest zrozumienie zasad dotyczących dokręcania śrub w odpowiednich położeniach oraz stosowanie się do wytycznych producenta, co zapewnia nie tylko bezpieczeństwo, ale i długowieczność elementów zawieszenia.

Pytanie 22

W trakcie corocznego przeglądu serwisowego pojazdu należy zawsze przeprowadzić

A. wymianę oleju silnikowego i filtra oleju
B. wymianę płynu hamulcowego
C. wymianę piór wycieraczek
D. wymianę płynu chłodzącego
Wymiana oleju silnikowego i filtra oleju jest jednym z kluczowych elementów corocznego przeglądu serwisowego pojazdu, ponieważ zapewnia optymalne działanie silnika oraz przedłuża jego żywotność. Olej silnikowy odgrywa fundamentalną rolę w smarowaniu ruchomych części silnika, co zapobiega nadmiernemu zużyciu i uszkodzeniom mechanicznym. W miarę eksploatacji pojazdu, olej ulega degradacji z powodu wysokich temperatur oraz powstawania zanieczyszczeń, co wpływa na jego właściwości smarne. Dlatego regularna wymiana oleju oraz filtra oleju, który zatrzymuje zanieczyszczenia, jest niezbędna dla prawidłowego funkcjonowania jednostki napędowej. Przykładowo, zalecenia producentów dotyczące wymiany oleju często określają interwały czasowe lub przebieg, po którym należy wykonać tę czynność, co jest zgodne z najlepszymi praktykami w branży motoryzacyjnej. Ignorowanie tej procedury może prowadzić do poważnych awarii i kosztownych napraw silnika, dlatego kluczowe jest przestrzeganie harmonogramu konserwacji pojazdu, aby zapewnić jego długotrwałe i niezawodne działanie.

Pytanie 23

Przy użyciu urządzenia BHE-5 możliwe jest zdiagnozowanie systemu

A. napędowego
B. zapłonowego
C. hamulcowego
D. kierowniczego
Urządzenie BHE-5 jest specjalistycznym narzędziem służącym do diagnozowania systemów hamulcowych w pojazdach. Jego główną funkcją jest ocena skuteczności działania układu hamulcowego poprzez analizę różnych parametrów, takich jak ciśnienie w układzie, czas reakcji oraz efektywność samych hamulców. Używając BHE-5, mechanicy są w stanie dokładnie zlokalizować wszelkie nieprawidłowości, co przekłada się na zwiększenie bezpieczeństwa na drodze. Standardy branżowe, takie jak ISO 9001, kładą duży nacisk na jakość diagnostyki, co czyni używanie tego typu urządzeń niezbędnym w warsztatach samochodowych. Przykładem zastosowania BHE-5 może być sytuacja, w której klient zgłasza problemy z wydolnością hamulców. Mechanicy, korzystając z tego urządzenia, mogą szybko zidentyfikować przyczyny problemu i zaproponować odpowiednie rozwiązania, co pozwoli uniknąć poważniejszych awarii i zwiększy komfort jazdy.

Pytanie 24

W celu sporządzenia kosztorysu naprawy powypadkowej, zakłady serwisowe korzystają z dedykowanego programu, który nosi nazwę

A. Moto-Profil
B. Audatex
C. Auto VIN
D. AutoData
AutoData, Auto VIN i Moto-Profil to inne programy, które mogą być używane w branży motoryzacyjnej, jednak ich funkcjonalność i przeznaczenie różnią się od Audatex. AutoData skupia się na dostarczaniu danych technicznych, takich jak specyfikacja pojazdów, co jest pomocne w diagnozowaniu usterek, ale nie jest dedykowane do tworzenia kosztorysów napraw. Używanie AutoData do tego celu może prowadzić do nieprecyzyjnych oszacowań, ponieważ program nie jest zoptymalizowany do analizy kosztów naprawy. Z kolei Auto VIN jest narzędziem, które umożliwia identyfikację pojazdów na podstawie numeru VIN, co jest ważne, ale nie związane bezpośrednio z wyceną napraw. Wykorzystanie tego programu w kontekście kosztorysu naprawy mogłoby prowadzić do błędów w oszacowaniu kosztów, ponieważ nie dostarcza on informacji o uszkodzonych elementach czy cenach części zamiennych. Moto-Profil natomiast jest narzędziem, które może służyć do zarządzania warsztatem, ale jego funkcjonalności w zakresie kosztorysowania są ograniczone. Korzystanie z mniej wyspecjalizowanych programów do wyceny napraw może prowadzić do błędnych kalkulacji i w konsekwencji do sporów z ubezpieczycielami lub klientami, dlatego kluczowe jest wybieranie narzędzi sprawdzonych i zgodnych z dobrymi praktykami branżowymi.

Pytanie 25

W celu naprawienia otworu, który podczas użytkowania stracił swój nominalny wymiar, powinno się wykorzystać

A. nitowanie
B. kucie
C. tulejowanie
D. spawanie
Nitowanie to technika, która polega na łączeniu metalowych elementów przez nity. Niestety, to nie pasuje do naprawy otworów, które straciły swoje nominalne wymiary. Ta metoda sprawdza się głównie w konstrukcjach stalowych, a do precyzyjnego przywracania wymiarów otworów się nie nadaje. Kucie to proces formowania metalu przez deformację na skutek sił mechanicznych, ale to też nie jest rozwiązanie dla otworów, które trzeba po prostu wyregulować. Spawanie, czyli łączenie metali przez ich stopienie, również nie połączy uszkodzonych otworów, tylko stworzy nowe połączenia. Żeby dobrze naprawiać otwory, trzeba znać ich specyfikę oraz dlaczego straciły wymiary. Ludzie często popełniają błędy, myśląc, że każda technika łączenia czy formowania może być używana interchangeably. W praktyce każdy z tych procesów ma swoje konkretne zastosowania, które powinien każdy znać, żeby uniknąć błędów i nieefektywności w naprawie.

Pytanie 26

Pierwszym krokiem przy demontażu silnika z pojazdu jest

A. odkręcenie skrzyni biegów
B. usunięcie oleju
C. odłączenie wiązki silnikowej
D. odłączenie akumulatora
Odłączenie akumulatora przed przystąpieniem do demontażu silnika jest kluczowym krokiem w procesie, który ma na celu zapewnienie bezpieczeństwa oraz ochronę komponentów pojazdu. Akumulator magazynuje energię elektryczną, a jego odłączenie eliminuje ryzyko zwarcia elektrycznego, co mogłoby prowadzić do uszkodzenia elektroniki pojazdu lub w skrajnych przypadkach do pożaru. Przykładem dobrych praktyk jest stosowanie odpowiednich narzędzi, takich jak klucze nasadowe, aby unikać uszkodzeń śrub oraz złączek. Dodatkowo, odłączenie akumulatora przed demontażem silnika jest zgodne z wytycznymi zawartymi w instrukcjach producentów pojazdów, co jest istotne dla zachowania gwarancji i integralności systemów elektronicznych. W praktyce należy również zabezpieczyć końcówki kabli poprzez ich owinięcie, aby uniknąć przypadkowego kontaktu z masą, co jest kolejnym elementem zwiększającym bezpieczeństwo pracy. Zastosowanie się do tych zaleceń jest niezbędne w każdym warsztacie zajmującym się naprawą samochodów.

Pytanie 27

Największa dopuszczalna różnica w sile hamowania pomiędzy kołami tej samej osi wynosi

A. 40%
B. 30%
C. 20%
D. 10%
Wybór innej wartości jako maksymalnej dopuszczalnej różnicy sił hamowania między kołami tej samej osi może wynikać z nieporozumień dotyczących znaczenia równoważenia sił hamowania oraz ich wpływu na stabilność pojazdu. Odpowiedzi sugerujące wyższe limity, takie jak 40% czy 20%, mogą wydawać się odpowiednie z perspektywy ogólnego zrozumienia działania układu hamulcowego, ale w rzeczywistości mogą prowadzić do poważnych problemów z bezpieczeństwem. Osiąganie zbyt dużych różnic w sile hamowania może skutkować nierównomiernym zużyciem opon oraz zwiększonym ryzykiem poślizgu, zwłaszcza w sytuacjach awaryjnych. W praktyce, nieprawidłowe wartości mogą wpłynąć na dynamikę pojazdu, powodując trudności w prowadzeniu oraz wydłużenie drogi hamowania. Ponadto, taki stan rzeczy może być źródłem niezgodności z przepisami prawnymi dotyczącymi stanu technicznego pojazdów. Kluczowe jest, aby mechanicy i właściciele pojazdów byli świadomi znaczenia tego parametru w kontekście ogólnego bezpieczeństwa na drodze oraz regularnie kontrolowali układ hamulcowy, aby zapewnić jego prawidłowe funkcjonowanie i pełną sprawność. Dbanie o równowagę sił hamowania jest fundamentalne dla zapewnienia bezpieczeństwa jazdy i komfortu użytkowania pojazdu.

Pytanie 28

Jaką podstawę ma identyfikacja pojazdu?

A. numer dowodu rejestracyjnego pojazdu
B. numer karty pojazdu
C. numer VIN nadwozia
D. numer silnika
Numer VIN (Vehicle Identification Number) to unikalny identyfikator pojazdu, który zawiera istotne informacje dotyczące jego konstrukcji, producenta oraz daty produkcji. Jest to 17-znakowy kod składający się z liter i cyfr, który pozwala na jednoznaczną identyfikację konkretnego pojazdu w rejestrach, a także w systemach monitorowania kradzieży czy w historii serwisowej. Przykładowo, podczas zakupu używanego samochodu, sprawdzenie numeru VIN umożliwia weryfikację jego historii, co jest niezbędne dla dokonania świadomego wyboru. W praktyce, numer VIN jest także stosowany przez organy ścigania oraz ubezpieczycieli w celu identyfikacji pojazdów, co czyni go kluczowym elementem w procesach związanych z rejestracją i ubezpieczeniem. W związku z tym, właściwe posługiwanie się numerem VIN jest nie tylko standardem branżowym, ale także najlepszą praktyką w zarządzaniu flotą pojazdów oraz w handlu motoryzacyjnym.

Pytanie 29

Podsterowności pojazdu określa się jako skłonność do

A. ślizgu kół osi kierowanej
B. powiększania promienia skrętu
C. ślizgu kół osi napędzanej
D. pomniejszania promienia skrętu
Zrozumienie podsterowności pojazdu wymaga znajomości podstawowych zasad dynamiki jazdy. Na przykład, zmniejszanie promienia skrętu, co sugeruje jedna z odpowiedzi, w rzeczywistości odnosi się do zjawiska nadsterowności, w którym pojazd traci przyczepność tylnej osi, przez co przód pojazdu skręca bardziej, niż zamierzono. Ta sytuacja często prowadzi do obrotów pojazdu, co jest całkowicie przeciwieństwem podsterowności. Kolejna odpowiedź sugerująca poślizg kół osi kierowanej myli dwa różne zjawiska - podsterowność dotyczy głównie przedniego zestawu kół, które tracą przyczepność, a nie samego poślizgu. W przypadku podsterowności, przednie koła nie mogą utrzymać właściwego kierunku, co skutkuje koniecznością zwiększenia promienia skrętu. Z kolei poślizg kół osi napędzanej jest zjawiskiem, które występuje, gdy tylne koła nie mogą przenieść wystarczającej mocy napędowej na nawierzchnię, co jest zjawiskiem bardziej typowym dla nadsterowności. Błędne zrozumienie tych zjawisk może prowadzić do niewłaściwych reakcji kierowcy w sytuacjach awaryjnych, co z kolei zwiększa ryzyko wypadków. Kluczowe jest więc, aby kierowcy znali różnice między tymi zjawiskami, aby mogli skutecznie reagować i unikać sytuacji niebezpiecznych na drodze.

Pytanie 30

Za utrzymanie trakcji w pojeździe poruszającym się odpowiada system

A. OBD
B. ESP
C. ENI
D. EPS
ESP, czyli Electronic Stability Program, to zaawansowany system elektroniczny, który ma na celu poprawę stabilności i kontroli trakcji pojazdu w trakcie jazdy. Działa poprzez monitorowanie prędkości kół, kątów skrętu oraz przyspieszenia, a w przypadku wykrycia utraty trakcji, automatycznie dostosowuje siłę hamowania oraz moc silnika, aby zapobiec poślizgowi. Przykładowo, podczas jazdy na śliskiej nawierzchni, system ESP może interweniować, zmniejszając moc silnika lub hamując konkretne koła, co pomaga zachować kontrolę nad pojazdem. Zgodnie z normami bezpieczeństwa motoryzacyjnego, takie systemy są obowiązkowe w nowych samochodach w wielu krajach, co podkreśla ich kluczowe znaczenie w zapobieganiu wypadkom. Dobre praktyki w dziedzinie inżynierii motoryzacyjnej nakładają na producentów obowiązek testowania i optymalizacji systemów ESP, aby zapewnić ich niezawodność w różnych warunkach drogowych.

Pytanie 31

Glikol etylenowy stanowi kluczowy element

A. płynu do spryskiwaczy
B. oleju silnikowego
C. płynu chłodzącego
D. płynu do wspomagania
Glikol etylenowy jest kluczowym składnikiem płynu chłodzącego, który odgrywa fundamentalną rolę w utrzymaniu optymalnej temperatury silnika w pojazdach. Jego główną funkcją jest zapobieganie zamarzaniu płynu w niskich temperaturach oraz ochrona przed przegrzaniem w wysokich temperaturach. Ponadto, glikol etylenowy wykazuje właściwości antykorozyjne, co jest istotne w kontekście długotrwałego użytkowania systemu chłodzenia. Dzięki tym właściwościom, płyn chłodzący z glikolem etylenowym jest zgodny z normami SAE (Society of Automotive Engineers), co zapewnia jego wysoką jakość oraz bezpieczeństwo stosowania w różnych warunkach eksploatacyjnych. W praktyce, stosowanie płynów chłodzących zawierających glikol etylenowy zmniejsza ryzyko uszkodzeń silnika przez zamarzanie lub przegrzewanie, co w efekcie przyczynia się do wydłużenia żywotności pojazdu i poprawy jego wydajności.

Pytanie 32

Zmianę zabarwienia płynu używanego do wykrywania nieszczelności uszczelki pod głowicą powoduje zawarty w spalinach gaz

A. CO
B. O2
C. NOx
D. CO2
Odpowiedź CO2 jest prawidłowa, ponieważ dwutlenek węgla jest jednym z głównych produktów spalania paliw w silnikach spalinowych. W przypadku nieszczelności uszczelki pod głowicą, spaliny mogą przedostawać się do układu chłodzenia, co prowadzi do zmiany zabarwienia płynu chłodniczego. Wykrywanie nieszczelności jest kluczowe dla zapewnienia prawidłowego funkcjonowania silników, a stosowanie wskaźników zabarwienia płynu opartych na obecności CO2 jest szeroko przyjętą praktyką. Standardy branżowe, takie jak SAE J1349, podkreślają konieczność monitorowania emisji spalin i ich składników, co jest istotne dla ochrony środowiska. Przykładem zastosowania jest test szczelności, w którym płyn zmienia kolor na żółty lub zielony w obecności CO2, co ułatwia diagnostykę i zapobiega dalszym uszkodzeniom silnika.

Pytanie 33

Podczas zmiany opony na urządzeniu przeznaczonym do demontażu, mechanikowi mogą zagrażać

A. poparzenie dłoni
B. poparzenie oczu
C. uszkodzenie ciała energią sprężonego powietrza
D. uszkodzenie słuchu
Odpowiedź dotycząca uszkodzenia ciała energią sprężonego powietrza jest prawidłowa, ponieważ podczas wymiany opony, szczególnie w warsztatach mechanicznych, używa się narzędzi pneumatycznych, które mogą generować znaczną siłę. Sprężone powietrze, jeśli nie jest stosowane prawidłowo, może powodować niebezpieczne sytuacje, takie jak wystrzał opony czy niekontrolowane uwolnienie energii. Przykładowo, jeśli mechanik nieprawidłowo obsługuje klucze pneumatyczne lub nie stosuje odpowiednich technik zabezpieczających, może dojść do poważnych obrażeń ciała. Dlatego ważne jest stosowanie się do procedur bezpieczeństwa, takich jak używanie odpowiedniego sprzętu ochronnego oraz regularne szkolenie personelu. W branży motoryzacyjnej, normy BHP oraz wytyczne dotyczące korzystania z narzędzi pneumatycznych powinny być przestrzegane, co pozwala minimalizować ryzyko kontuzji związanych z energią sprężonego powietrza.

Pytanie 34

Zanim przeprowadzisz pomiar ciśnienia sprężania w silniku wysokoprężnym czterocylindrowym, należy najpierw usunąć

A. wszystkie świece zapłonowe
B. świecę zapłonową z analizowanego cylindra
C. wszystkie świec żarowych
D. wtryskiwacz z analizowanego cylindra
Wymontowanie wtryskiwacza z badanego cylindra przed badaniem ciśnienia sprężania jest nieprawidłowe, ponieważ wtryskiwacze nie mają wpływu na ten pomiar. Ich główną funkcją jest wtrysk paliwa do cylindra, co nie ma związku z procesem sprężania powietrza. Z kolei demontaż świec zapłonowych w silniku wysokoprężnym jest niewłaściwy, gdyż silniki te nie są wyposażone w świece zapłonowe, a zamiast tego korzystają ze świec żarowych. Zrozumienie różnicy pomiędzy tymi elementami jest kluczowe dla właściwej diagnostyki silników wysokoprężnych. Zgubienie lub pominięcie detali, takich jak rodzaj stosowanej świecy, może prowadzić do błędnych założeń i mylnych diagnoz. Ponadto, demontowanie świecy zapłonowej z badanego cylindra w silniku wysokoprężnym jest zbędne, ponieważ te silniki nie mają takiego rodzaju zapłonu. Właściwe przygotowanie do testu ciśnienia sprężania wymaga zrozumienia konstrukcji silnika oraz jego komponentów. Zaniedbanie tych elementów może skutkować nieprecyzyjnymi pomiarami, co ma poważne konsekwencje dla dalszej diagnostyki i ewentualnych napraw silnika. Dlatego tak ważne jest, aby przed przystąpieniem do badania ciśnienia sprężania zrozumieć zasady działania silnika i jego poszczególnych części.

Pytanie 35

Termostat nie ma wpływu na

A. zużycie płynu chłodzącego
B. utrzymywanie temperatury silnika
C. zużycie paliwa
D. szybkie nagrzewanie silnika
Można się pogubić w temacie termostatu i jego wpływu na silnik, bo wiele osób nie do końca rozumie, jak to działa. Wiesz, termostat pomaga w szybkim rozgrzaniu silnika, bo reguluje przepływ płynu chłodzącego, co pozwala szybciej osiągnąć tę optymalną temperaturę. Jak się nie wie, co to oznacza, to można nie doceniać, jak ważny jest termostat, zwłaszcza w kontekście oszczędności paliwa i zmniejszenia emisji szkodliwych substancji. Prawda jest taka, że odpowiednia temperatura silnika, którą reguluje termostat, to podstawa. Jak jest za ciepło lub za zimno, to może być nieefektywne spalanie paliwa, co w efekcie podnosi koszty. Poza tym, awarie w układzie chłodzenia mogą prowadzić do przegrzewania silnika, co też zwiększa zużycie paliwa i ryzyko uszkodzeń. Dlatego warto, żeby kierowcy i mechanicy mieli świadomość, jak istotny jest ten element w szerszym kontekście wydajności silnika.

Pytanie 36

Ilość energii elektrycznej, jaką można zgromadzić w akumulatorze, określa

A. napięcie odniesienia akumulatora
B. pojemność nominalna akumulatora
C. zdolność do rozruchu akumulatora
D. gęstość elektrolitu
Pojemność znamionowa akumulatora jest kluczowym parametrem określającym maksymalną ilość energii elektrycznej, którą akumulator jest w stanie zgromadzić i oddać w trakcie cyklu ładowania oraz rozładowania. Wyraża się ją w amperogodzinach (Ah) i jest bezpośrednio związana z ilością zgromadzonego ładunku elektrycznego. Na przykład, akumulator o pojemności 100 Ah jest w stanie dostarczyć 1 amper przez 100 godzin lub 100 amperów przez 1 godzinę, co podkreśla jego wszechstronność w różnych zastosowaniach, zarówno w pojazdach, jak i w systemach zasilania awaryjnego. Prawidłowe dobranie pojemności akumulatora do konkretnego zastosowania jest kluczowe dla zapewnienia efektywności i trwałości systemu. W praktyce, dobrym standardem jest dobieranie akumulatorów o pojemności przewyższającej wymagania energetyczne urządzeń, co pozwala na wydłużenie cyklu życia akumulatora. Dodatkowo, podczas użytkowania akumulatorów istotne jest przestrzeganie zasad ładowania i rozładowania, aby zminimalizować ryzyko uszkodzenia i zapewnić optymalne działanie.

Pytanie 37

Jakiego oleju o symbolu wymaga przekładnia główna?

A. DOT3
B. GL-5 85W90
C. API5W30
D. G12PLUS
Wybór oleju DOT3 niestety nie był najlepszy. To specyfikacja dla płynów hamulcowych, a nie do olejów w przekładniach. DOT3 jest standardem dla płynów, które mają działać w układach hamulcowych i nie nadają się do smarowania przekładni. Jakbyś użył płynu hamulcowego tam, gdzie powinien być olej, to mógłbyś doprowadzić do naprawdę poważnych uszkodzeń. API5W30 to z kolei klasyfikacja olejów silnikowych, które nie mają nic wspólnego z przekładniami. Oleje silnikowe mają inne właściwości smarne i lepkościowe, które nie są przystosowane do warunków, w jakich pracują przekładnie, a tam jest przecież znacznie większe obciążenie. Użycie oleju silnikowego w przekładni głównej może naprawdę szybko zrujnować jej elementy. A G12PLUS to też nie to, co nam potrzeba, bo to specyfikacja dla płynów chłodzących, a nie dla olejów przekładniowych. Płyny chłodzące mają zupełnie inną funkcję i nie są do smarowania. Użycie niewłaściwego oleju, takiego jak wymienione wcześniej, może prowadzić do wielu kłopotów, w tym do uszkodzeń mechanicznych. Dlatego trzeba zwracać uwagę na oleje zgodne z wymaganiami producentów pojazdów.

Pytanie 38

Urządzenia do pomiaru grubości powłok lakierniczych, które funkcjonują na zasadzie indukcji magnetycznej, stosuje się do weryfikacji powłok na elementach

A. z aluminium
B. z drewna
C. ze stali
D. z ceramiki
Pomiar grubości powłok lakierniczych za pomocą indukcji magnetycznej jest techniką stosowaną głównie w przypadku materiałów ferromagnetycznych, takich jak stal. Zasada działania tego przyrządu opiera się na zmianie pola magnetycznego wytwarzanego przez magnes umieszczony w przyrządzie, co prowadzi do powstania sygnału, który jest proporcjonalny do grubości powłoki lakierniczej. Przykładowo, w przemyśle motoryzacyjnym, gdzie stalowe elementy karoserii są pokrywane warstwami lakieru, operatorzy używają takich mierników do monitorowania jakości lakierowania. Właściwa grubość powłoki jest kluczowa dla zapewnienia trwałości i estetyki, dlatego regularne pomiary pomagają w utrzymaniu standardów jakości. Istnieją normy, takie jak ISO 2808, które określają metody pomiaru grubości powłok, co potwierdza znaczenie stosowania technologii indukcyjnej w procesach kontroli jakości w branżach, gdzie stal jest dominującym materiałem.

Pytanie 39

Podczas pomiaru ciśnienia oleju w silniku, mechanik zauważył zbyt wysokie ciśnienie przy zwiększonych obrotach silnika. Możliwą przyczyną podwyższenia ciśnienia może być

A. uszkodzony zawór przelewowy pompy olejowej
B. zużycie łożysk głównych wału korbowego
C. zbyt wysoki poziom oleju
D. zbyt wysoka temperatura pracy silnika
Zużycie łożysk głównych wału korbowego oraz zbyt wysoki poziom oleju mogą być mylnie postrzegane jako przyczyny wzrostu ciśnienia oleju, jednak analiza ich wpływu na ciśnienie w układzie smarowania skazuje te czynniki na błędne przypisanie. Zużycie łożysk powoduje luz, co w rzeczywistości prowadzi do zmniejszenia ciśnienia oleju, gdyż olej ma tendencję do uciekania przez nieszczelności, a nie do kumulacji ciśnienia. Wysokie ciśnienie związane z tymi uszkodzeniami może pojawić się tylko w skrajnych przypadkach, gdy nastąpi całkowite zatarcie, co jest już skutkiem zaawansowanego uszkodzenia. Wzrost ciśnienia nie jest zatem bezpośrednio związany z tym zjawiskiem. Zbyt wysoki poziom oleju może rzeczywiście prowadzić do problemów, takich jak napowietrzanie oleju, ale samo w sobie nie jest przyczyną permanentnego wzrostu ciśnienia, a raczej może wywoływać chwilowe skoki ciśnienia w momencie uruchamiania silnika lub w trakcie intensywnego eksploatowania silnika. Zbyt wysoka temperatura pracy silnika również nie powoduje wzrostu ciśnienia, a raczej może obniżać lepkość oleju, co przyczynia się do redukcji ciśnienia. Z tego powodu, kluczowe jest zrozumienie działania i roli zaworu przelewowego oraz precyzyjne diagnozowanie problemów w układzie smarowania, aby unikać mylnych wniosków i nieefektywnych napraw.

Pytanie 40

Po wymianie dolnego przedniego wahacza zawieszenia w samochodzie osobowym konieczne jest sprawdzenie

A. sił tłumienia
B. geometrii kół
C. sił hamowania
D. oporów toczenia
Odpowiedź dotycząca geometrii kół jest prawidłowa, ponieważ po wymianie przedniego dolnego wahacza niezbędne jest przeprowadzenie kontroli geometrii zawieszenia. Wahacz jest kluczowym elementem, który wpływa na ustawienie kół względem siebie oraz względem podłoża. W przypadku jego wymiany, zmiany w położeniu kół mogą prowadzić do nieprawidłowego ustawienia zbieżności i kątów nachylenia kół, co wpływa na stabilność pojazdu, jego prowadzenie oraz zużycie opon. Zgodnie z zaleceniami producentów oraz standardami branżowymi, po każdej takiej naprawie zaleca się wykonanie pomiarów geometrii kół, aby zapewnić optymalne zachowanie się pojazdu na drodze. Nieprawidłowe ustawienia mogą prowadzić do przyspieszonego zużycia opon, a także wpływać na komfort jazdy oraz bezpieczeństwo. Dlatego zaleca się korzystanie z profesjonalnych usług serwisowych, które dysponują odpowiednim sprzętem do pomiaru i regulacji geometrii kół.