Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 7 kwietnia 2025 09:04
  • Data zakończenia: 7 kwietnia 2025 09:17

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie jest połączenie używane do wymiany informacji pomiędzy urządzeniami mobilnymi, które stosuje cyfrową transmisję optyczną w trybie bezprzewodowym do przesyłania danych na stosunkowo krótką odległość?

A. IEEE 1394a
B. Bluetooth
C. IEEE 1394c
D. IrDA
Wybór IEEE 1394a i IEEE 1394c jako odpowiedzi na to pytanie jest błędny, ponieważ te standardy dotyczą interfejsu FireWire, który zazwyczaj jest używany w kontekście łączności przewodowej pomiędzy urządzeniami, takimi jak kamery cyfrowe, dyski twarde i urządzenia audio-wideo. FireWire umożliwia transfer danych na dużą odległość, zazwyczaj do 4.5 metra, co jest znacznie więcej niż typowy zasięg technologii IrDA. Dodatkowo, FireWire obsługuje wiele urządzeń podłączonych w szereg, co czyni go odpowiednim dla zastosowań multimedialnych, jednak nie jest to technologia bezprzewodowa. Z kolei Bluetooth to technologia bezprzewodowa, ale jest stworzona do komunikacji na średnie odległości, zazwyczaj do 100 metrów, i nie wykorzystuje technologii optycznej, lecz radiowej. Bluetooth jest powszechnie stosowany w urządzeniach audio, słuchawkach i smartfonach do przesyłania danych, jednak w kontekście krótkodystansowej transmisji optycznej, jak w przypadku IrDA, nie jest właściwym rozwiązaniem. Typowym błędem myślowym jest nieodróżnienie technologii bezprzewodowej od przewodowej oraz mylenie różnych standardów komunikacyjnych pod względem ich zastosowania i charakterystyki. Warto zrozumieć, że każdy z tych standardów ma swoje unikalne cechy i zastosowania, które należy brać pod uwagę przy wyborze odpowiedniego rozwiązania dla określonego problemu komunikacyjnego.

Pytanie 2

Dobrze zaplanowana sieć komputerowa powinna pozwalać na rozbudowę, co oznacza, że musi charakteryzować się

A. efektywnością
B. redundancją
C. nadmiarowością
D. skalowalnością
Skalowalność to kluczowa cecha prawidłowo zaprojektowanej sieci komputerowej, która pozwala na łatwe dostosowywanie jej zasobów do rosnących potrzeb użytkowników i obciążenia systemu. W praktyce oznacza to, że można dodawać nowe urządzenia, takie jak serwery, przełączniki czy routery, bez znaczącego wpływu na wydajność istniejącej infrastruktury. Przykładem skalowalnej sieci może być architektura chmurowa, gdzie zasoby są dynamicznie alokowane w odpowiedzi na zmiany w zapotrzebowaniu. Rozwiązania takie jak wirtualizacja i konteneryzacja, zgodne z najlepszymi praktykami branżowymi, również przyczyniają się do zwiększenia skalowalności sieci. Oprócz tego, projektowanie z myślą o skalowalności pozwala na lepsze zarządzanie kosztami operacyjnymi, ponieważ organizacje mogą inwestować w rozwój infrastruktury w miarę potrzeb, zamiast przeznaczać środki na nadmiarowe zasoby, które mogą nie być wykorzystywane. W związku z tym, skalowalność jest kluczowym aspektem, który powinien być brany pod uwagę już na etapie planowania i projektowania sieci.

Pytanie 3

Jak powinno być usytuowanie gniazd komputerowych RJ45 względem powierzchni biurowej zgodnie z normą PN-EN 50174?

A. Gniazdo komputerowe 1 x RJ45 na 10 m2 powierzchni biura
B. Gniazdo komputerowe 2 x RJ45 na 20 m2 powierzchni biura
C. Gniazdo komputerowe 2 x RJ45 na 10 m2 powierzchni biura
D. Gniazdo komputerowe 1 x RJ45 na 20 m2 powierzchni biura
Wybór zbyt małej liczby gniazd komputerowych, jak w odpowiedziach dotyczących 1 x RJ45 na 10 m2 czy 20 m2, jest nieadekwatny w kontekście aktualnych potrzeb biur. Współczesne miejsca pracy wymagają większej liczby punktów dostępowych, aby umożliwić płynne korzystanie z technologii oraz wszechstronność w organizacji stanowisk pracy. Odpowiedzi te nie uwzględniają rosnącego zapotrzebowania na łączność, szczególnie w kontekście wzrastającej liczby urządzeń peryferyjnych. W praktyce, umiejscowienie jednego gniazda na większej powierzchni, jak 20 m2, ogranicza elastyczność użytkowników i może prowadzić do przeciążenia infrastruktury sieciowej. Ponadto, koncepcja, która sugeruje używanie jednego gniazda na 20 m2, nie jest zgodna z najlepszymi praktykami w zakresie projektowania sieci komputerowych, które zalecają większą gęstość gniazd w celu zapewnienia optymalnej wydajności i komfortu pracy. Oparcie się na takich mniejszych liczbach gniazd może prowadzić do nadmiernego uzależnienia od urządzeń sieciowych, takich jak switch'e, co niewłaściwie wpływa na rozplanowanie przestrzeni biurowej oraz użytkowników.

Pytanie 4

Zamiana baterii jest jedną z czynności związanych z użytkowaniem

A. drukarki laserowej
B. myszy bezprzewodowej
C. telewizora projekcyjnego
D. skanera płaskiego
Wymiana baterii w myszach bezprzewodowych jest kluczowym elementem ich eksploatacji, ponieważ urządzenia te są zasilane bateryjnie, co oznacza, że ich sprawność operacyjna w dużej mierze zależy od stanu baterii. W miarę użytkowania, bateria ulega rozładowaniu, co skutkuje spadkiem wydajności sprzętu oraz może prowadzić do przerw w pracy. Standardy branżowe zalecają regularne sprawdzanie poziomu naładowania baterii i jej wymianę, gdy osiąga ona niski poziom. Praktyka ta nie tylko przedłuża żywotność sprzętu, ale również zapewnia ciągłość jego działania, co jest szczególnie ważne w środowiskach wymagających wysokiej precyzji, takich jak projekty graficzne czy gry komputerowe. Użytkownicy powinni również być świadomi, że niektóre myszki oferują funkcję oszczędzania energii, co może wpłynąć na czas pracy urządzenia na pojedynczej baterii, ale ostatecznie wymiana jest nieodzownym aspektem ich konserwacji. Warto również zwrócić uwagę na odpowiednie przechowywanie baterii oraz ich recykling po zużyciu, co wpisuje się w obowiązujące normy ochrony środowiska.

Pytanie 5

Który z wymienionych protokołów przekształca 48-bitowy adres MAC na 32-bitowy adres IP?

A. TCP
B. IP
C. ARP
D. RARP
Protokół IP jest podstawowym protokołem komunikacyjnym w sieci Internet i odpowiedzialny jest za przesyłanie pakietów danych między urządzeniami. Nie ma on jednak funkcji odwzorowywania adresów MAC na adresy IP. Jego głównym zadaniem jest fragmentacja i trasowanie pakietów, co czyni go nieodpowiednim do roli, którą pełni RARP. TCP natomiast jest protokołem transportowym, który działa na wyższej warstwie modelu OSI i odpowiada za zapewnienie niezawodnej, uporządkowanej i kontrolowanej transmisji danych między aplikacjami. Nie zajmuje się on mapowaniem adresów. Możliwe nieporozumienia mogą wynikać z faktu, że TCP współpracuje z IP, a nie z adresami MAC. ARP, z kolei, to protokół, który odwzorowuje adresy IP na adresy MAC, co jest przeciwnością funkcji RARP, co może prowadzić do dezorientacji. Typowym błędem myślowym jest zakładanie, że każdy protokół związany z adresowaniem w sieciach działa w obie strony, podczas gdy w rzeczywistości istnieją protokoły o różnych funkcjach, a ich zgodność z określonymi wymaganiami nie zawsze jest jednoznaczna. Dlatego zrozumienie zakresu działania każdego z protokołów jest kluczowe dla efektywnego projektowania i zarządzania sieciami komputerowymi.

Pytanie 6

Jakie urządzenie powinno być wykorzystane do pomiaru mapy połączeń w okablowaniu strukturalnym sieci lokalnej?

A. Analizator sieci LAN
B. Przyrząd do monitorowania sieci
C. Reflektometr OTDR
D. Analizator protokołów
Monitor sieciowy jest narzędziem, które pozwala na wizualizację stanu sieci, jednak jego zastosowanie jest ograniczone do prostego monitorowania i nie obejmuje analizy szczegółowych parametrów okablowania. W praktyce, monitor sieciowy nie dostarcza informacji o jakości sygnału ani o rzeczywistym przepływie danych w sieci, co czyni go mniej użytecznym w kontekście szczegółowych pomiarów wymaganych dla mapowania połączeń okablowania strukturalnego. Analizator protokołów, z kolei, jest narzędziem specjalistycznym, które zajmuje się analizą komunikacji w sieci na poziomie protokołów, ale nie jest przeznaczony do pomiarów fizycznych połączeń ani oceny stanu kabli. Reflektometr OTDR, choć przydatny do oceny jakości włókien optycznych, nie jest odpowiedni dla tradycyjnych sieci lanowych opartych na kablach miedzianych. Wybór niewłaściwego narzędzia może prowadzić do niepełnych lub błędnych informacji, co w praktyce może skutkować nieefektywnym zarządzaniem siecią oraz trudnościami w diagnozowaniu problemów. Kluczowe jest zrozumienie, że podczas analizy okablowania strukturalnego sieci lokalnej, należy korzystać z narzędzi dedykowanych tym specyficznym zadaniom, co pozwoli na uzyskanie rzetelnych i użytecznych wyników.

Pytanie 7

W jednostce ALU w akumulatorze zapisano liczbę dziesiętną 500. Jaką ona ma binarną postać?

A. 111110100
B. 110110000
C. 111111101
D. 111011000
Reprezentacja binarna liczby 500 to 111110100. Aby uzyskać tę wartość, należy przekształcić liczbę dziesiętną na system binarny, który jest podstawowym systemem liczbowym wykorzystywany w komputerach. Proces konwersji polega na podzieleniu liczby przez 2 i zapisywaniu reszt z kolejnych dzielen. W przypadku liczby 500 dzielimy ją przez 2, co daje 250 z resztą 0, następnie 250 dzielimy przez 2, co daje 125 z resztą 0, kontynuując ten proces aż do momentu, gdy otrzymamy 1. Reszty zapiszemy w odwrotnej kolejności: 1, 111110100. W praktyce, zrozumienie konwersji między systemami liczbowymi jest kluczowe w programowaniu niskopoziomowym, operacjach na danych oraz w pracy z mikrokontrolerami. Znalezienie tej umiejętności w kontekście standardów branżowych, takich jak IEEE 754 dla reprezentacji liczb zmiennoprzecinkowych, ilustruje znaczenie prawidłowego przekształcania danych w kontekście architektury komputerów.

Pytanie 8

Urządzenie funkcjonujące w warstwie łącza danych, które umożliwia połączenie segmentów sieci o różnych architekturach, to

A. most
B. koncentrator
C. ruter
D. regenerator
Koncentrator, regenerator i ruter to urządzenia, które pełnią różne funkcje w ekosystemie sieciowym, ale nie są odpowiednie do opisanego zadania łączenia segmentów sieci o różnych architekturach. Koncentrator działa na poziomie fizycznym, działając jako prosty przekaźnik sygnału, co oznacza, że nie analizuje danych ani nie podejmuje decyzji dotyczących ich przekazywania. Oznacza to, że każde przesyłane przez niego dane są wysyłane do wszystkich podłączonych urządzeń, co może prowadzić do zatorów i nieefektywności w sieci. Regenerator jest urządzeniem stosowanym do wzmacniania sygnałów w sieciach, które są rozciągnięte na dużą odległość, co jest niezbędne w przypadku, gdy sygnał może ulegać degradacji, ale nie ma on zdolności do łączenia segmentów o różnych architekturach. Ruter natomiast operuje na warstwie trzeciej modelu OSI i jest odpowiedzialny za przekazywanie pakietów między różnymi sieciami, ale nie łączy segmentów o różnych standardach na poziomie warstwy łącza danych. Typowe błędy myślowe prowadzące do wyboru tych odpowiedzi mogą wynikać z niepełnego zrozumienia różnic między warstwami modelu OSI oraz funkcjami poszczególnych urządzeń sieciowych. Ważne jest, aby dokładnie rozumieć, jakie zadania pełnią te urządzenia, aby móc skutecznie projektować i zarządzać infrastrukturą sieciową.

Pytanie 9

Złącze o rozmiarze ferruli 1,25 to jakie?

A. RJ45
B. MT-RJ
C. LC
D. SC
Wybór innych typów złączy, takich jak MT-RJ, SC czy RJ45, nie jest zgodny z opisanym standardem ferruli o wielkości 1,25 mm. Złącze MT-RJ, choć stosunkowo małe, wykorzystuje inną konstrukcję, która różni się od LC, a jego ferrula ma szerszą średnicę. MT-RJ jest złączem wielodrożnym, co sprawia, że w praktyce jego zastosowanie jest ograniczone w kontekście gęstości połączeń. Złącze SC, natomiast, ma ferrulę o średnicy 2,5 mm, co czyni je większym i mniej odpowiednim do aplikacji o dużym zagęszczeniu. RJ45 to z kolei złącze stosowane w sieciach miedzianych, a nie w instalacjach światłowodowych, przez co nie można go porównywać pod względem technicznym z złączami optycznymi. W kontekście nowoczesnych instalacji telekomunikacyjnych, wybór odpowiedniego złącza jest kluczowy dla osiągnięcia wysokiej wydajności i niezawodności sieci. Zrozumienie różnic między tymi typami złączy oraz ich odpowiednich zastosowań w praktyce jest fundamentalne dla inżynierów zajmujących się projektowaniem i wdrażaniem rozwiązań telekomunikacyjnych.

Pytanie 10

Jaką maksymalną długość kabla typu skrętka pomiędzy panelem krosowniczym a gniazdem abonenckim przewiduje norma PN-EN 50174-2?

A. 100 m
B. 90 m
C. 10 m
D. 50 m
Długości 10 m i 50 m są znacznie poniżej wymagań określonych w normach dla kabli skrętkowych, co może prowadzić do nieprawidłowych założeń dotyczących instalacji sieciowych. Krótsze kable mogą wydawać się bardziej efektywne, jednak w praktyce mogą ograniczać elastyczność układu sieci. Na przykład, w biurze zaprojektowanym na 10 m długości kabli, może być trudno dostosować rozmieszczenie stanowisk pracy, co prowadzi do zwiększenia kosztów związanych z rozbudową lub przelokowaniem instalacji. Z drugiej strony, długość 100 m przekracza dopuszczalne limity określone przez normę PN-EN 50174-2, co może skutkować degradacją sygnału i obniżeniem wydajności sieci. Długie kable mogą generować większe straty sygnału, co jest szczególnie zauważalne w sieciach działających na wyższych prędkościach, takich jak 1 Gbps czy nawet 10 Gbps. Przekroczenie dopuszczalnej długości może prowadzić do błędów w transmisji danych, co w wielu sytuacjach kończy się koniecznością przeprowadzenia kosztownych napraw lub modyfikacji instalacji. Właściwe zrozumienie długości segmentów kabli i ich wpływu na jakość sieci jest kluczowe dla efektywnego projektowania i wdrażania systemów okablowania strukturalnego.

Pytanie 11

Na płycie głównej uszkodzona została zintegrowana karta sieciowa. Komputer nie ma zainstalowanego dysku twardego ani żadnych innych napędów, takich jak stacja dysków czy CD-ROM. Klient informuje, że w firmowej sieci komputery nie mają napędów, a wszystko "czyta" się z serwera. W celu przywrócenia utraconej funkcji należy zainstalować

A. kartę sieciową  samodzielnie wspierającą funkcję Preboot Execution Environment w gnieździe rozszerzeń
B. dysk twardy w komputerze
C. kartę sieciową samodzielnie wspierającą funkcję Postboot Execution Enumeration w gnieździe rozszerzeń
D. napęd CD-ROM w komputerze
Zainstalowanie dysku twardego lub napędu CD-ROM nie rozwiąże problemu, ponieważ urządzenia te są fizycznymi nośnikami danych, których brak w opisanej sytuacji. Klient wskazuje, że w sieci firmowej komputery nie korzystają z lokalnych napędów, co oznacza, że system operacyjny oraz aplikacje ładowane są bezpośrednio z serwera. Dlatego montaż dysku twardego byłby zbędny i nieefektywny, a dodatkowo nie pasowałby do opisanego scenariusza, gdzie lokalne nośniki nie są wykorzystywane. Karty sieciowe, które nie obsługują funkcji PXE, są niewystarczające, ponieważ nie umożliwiają zdalnego uruchamiania systemu. Różnica między PXE a innymi metodami rozruchu polega na tym, że PXE wykorzystuje protokoły sieciowe do załadowania obrazu systemu operacyjnego z serwera, co jest niezbędne w tym przypadku. Wybór karty sieciowej, która obsługuje tylko POST i nie oferuje PXE, również nie byłby właściwy, gdyż nie zapewniałby pożądanej funkcjonalności. Zrozumienie różnicy między różnymi typami kart sieciowych oraz ich funkcjami jest kluczowe w kontekście zarządzania infrastrukturą IT. Prawidłowe podejście do problemu wymaga analizy potrzeb i warunków pracy w danej sieci, a wybór odpowiedniego sprzętu powinien być dostosowany do specyficznych wymagań środowiska operacyjnego.

Pytanie 12

Aby zwiększyć wydajność komputera, można zainstalować procesor obsługujący technologię Hyper-Threading, która pozwala na

A. przesył danych pomiędzy procesorem a dyskiem twardym z szybkością działania procesora
B. automatyczne dostosowanie częstotliwości rdzeni procesora w zależności od jego obciążenia
C. podniesienie częstotliwości pracy zegara
D. wykonywanie przez jeden rdzeń procesora dwóch niezależnych zadań równocześnie
Technologia Hyper-Threading, opracowana przez firmę Intel, umożliwia procesorom wykonywanie dwóch wątków jednocześnie na jednym rdzeniu. Oznacza to, że jeden rdzeń procesora, zamiast obsługiwać tylko jedno zadanie w danym czasie, jest w stanie efektywnie dzielić swoje zasoby, co prowadzi do lepszego wykorzystania mocy obliczeniowej. Przykładowo, w sytuacji, gdy aplikacja wykorzystuje wiele wątków, jak programy do renderowania wideo lub obróbki grafiki, Hyper-Threading pozwala na równoległe przetwarzanie danych, co przyspiesza cały proces. Technologia ta jest szeroko stosowana w serwerach i stacjach roboczych, gdzie wydajność wielowątkowa ma kluczowe znaczenie. Warto zaznaczyć, że chociaż Hyper-Threading nie podwaja całkowitej wydajności procesora, jego zastosowanie może znacznie zwiększyć efektywność w bardziej złożonych zadaniach, co jest zgodne z najlepszymi praktykami w obszarze inżynierii komputerowej, gdzie optymalizacja zasobów jest kluczowym celem.

Pytanie 13

Urządzenie ADSL wykorzystuje się do nawiązania połączenia

A. cyfrowego symetrycznego
B. radiowego
C. cyfrowego asymetrycznego
D. satelitarnego
Ważne jest, aby zrozumieć, że odpowiedzi dotyczące połączeń cyfrowych symetrycznych, radiowych i satelitarnych nie są poprawne w kontekście urządzenia ADSL. Połączenia cyfrowe symetryczne, jak na przykład technologie Ethernet, oferują równą prędkość zarówno dla pobierania, jak i wysyłania danych, co jest przeciwieństwem asymetrycznego charakteru ADSL. Użytkownicy, którzy wybierają symetryczne połączenia, często potrzebują wyższej prędkości wysyłania dla aplikacji takich jak przesyłanie dużych plików czy hosting serwisów internetowych. Z kolei technologie radiowe i satelitarne różnią się od ADSL pod względem sposobu transmisji danych. Połączenia radiowe wykorzystują fale radiowe do dostarczania sygnału, co może wprowadzać większe opóźnienia i problemy z jakością sygnału, zwłaszcza w warunkach atmosferycznych. Z kolei technologie satelitarne, mimo że oferują zasięg w odległych lokalizacjach, mają znaczne opóźnienia wynikające z odległości do satelitów na orbicie, co czyni je mniej praktycznymi dla codziennego użytku porównując do ADSL. Wybór nieodpowiedniej technologii może prowadzić do nieefektywnego korzystania z internetu, dlatego kluczowe jest, aby zrozumieć różnice między nimi oraz odpowiednio dostosować wybór technologii do swoich potrzeb. Zrozumienie tych różnic jest kluczowe w kontekście optymalizacji usług internetowych dla użytkowników końcowych.

Pytanie 14

Administrator powinien podzielić sieć o adresie 193.115.95.0 z maską 255.255.255.0 na 8 równych podsieci. Jaką maskę sieci powinien wybrać administrator?

A. 255.255.255.240
B. 255.255.255.224
C. 255.255.255.192
D. 255.255.255.248
Odpowiedź 255.255.255.224 jest prawidłowa, ponieważ pozwala na podział sieci o adresie 193.115.95.0 na 8 równych podsieci. W przypadku maski 255.255.255.0, mamy do dyspozycji 256 adresów (od 0 do 255), z czego 2 są zarezerwowane (adres sieci i adres rozgłoszeniowy). Aby podzielić tę sieć na 8 podsieci, musimy wprowadzić dodatkowe bity do maski. Maska 255.255.255.224, co odpowiada binarnie 11111111.11111111.11111111.11111100, dodaje 3 bity do maski, co daje 2^3 = 8 podsieci. Każda z tych podsieci będzie miała 32 adresy (256/8), z czego 30 będzie użytecznych dla hostów. Przykładowo, pierwsza podsieć to 193.115.95.0/27, a ostatnia to 193.115.95.224/27. W praktyce, stosowanie podziału sieci na podsieci zwiększa efektywność zarządzania adresacją IP i poprawia bezpieczeństwo oraz wydajność sieci, co jest zgodne z zaleceniami organizacji takich jak IETF.

Pytanie 15

Aby zabezpieczyć system przed atakami typu phishing, nie zaleca się

A. aktualizowania oprogramowania do obsługi e-maili
B. używania stron WWW, które korzystają z protokołu HTTPS
C. wykorzystywania bankowości internetowej
D. posługiwania się przestarzałymi przeglądarkami internetowymi
Używanie starszych przeglądarek internetowych jest niewłaściwe, ponieważ te przeglądarki często nie są aktualizowane, co prowadzi do luk w zabezpieczeniach. Starsze wersje przeglądarek mogą nie obsługiwać najnowszych standardów bezpieczeństwa, takich jak protokoły TLS, co naraża użytkowników na ataki phishingowe. Phishing to technika oszustwa, w której hakerzy podszywają się pod zaufane źródła, aby wyłudzić poufne dane, takie jak hasła czy numery kart kredytowych. Przykładowo, przeglądarki, które nie wspierają nowoczesnych zabezpieczeń, mogą nie ostrzegać użytkowników przed stronami, które są potencjalnie niebezpieczne, co zwiększa ryzyko udanego ataku. Warto regularnie aktualizować przeglądarki oraz korzystać z tych, które mają aktywne wsparcie techniczne i są zgodne z bieżącymi standardami bezpieczeństwa, takimi jak OWASP. Pamiętajmy, że cyberprzestępcy stale udoskonalają swoje metody, dlatego kluczowe jest, aby nasze narzędzia do przeglądania internetu były zawsze na czasie.

Pytanie 16

W systemach operacyjnych Windows system plików pozwala na ograniczenie dostępu użytkowników do określonych katalogów, plików czy dysków

A. NTFS
B. FAT32
C. EXT3
D. FAT16
Odpowiedź NTFS (New Technology File System) jest prawidłowa, ponieważ ten system plików wprowadza zaawansowane mechanizmy zarządzania uprawnieniami do plików i katalogów. Dzięki NTFS użytkownicy mogą definiować szczegółowe prawa dostępu, co pozwala na skuteczne ograniczenie dostępu do danych na poziomie użytkownika lub grupy. Działanie NTFS opiera się na listach kontroli dostępu (ACL), które określają, kto ma prawo do odczytu, zapisu, a także usuwania plików. Przykładem zastosowania NTFS jest stworzenie katalogu, do którego dostęp posiada tylko wybrana grupa pracowników, co jest istotne w środowiskach korporacyjnych, gdzie bezpieczeństwo danych jest kluczowe. Dodatkowo, NTFS obsługuje kompresję plików, szyfrowanie oraz odzyskiwanie danych, co czyni go preferowanym wyborem w systemach operacyjnych Windows. Poznanie i umiejętne zarządzanie uprawnieniami w NTFS jest zgodne z najlepszymi praktykami w zarządzaniu infrastrukturą IT, co przyczynia się do zwiększenia bezpieczeństwa informacji.

Pytanie 17

Aby uruchomić monitor wydajności oraz niezawodności w systemie Windows, należy skorzystać z przystawki

A. taskschd.msc
B. perfmon.msc
C. diskmgmt.msc
D. fsmgmt.msc
Odpowiedzi, które nie mówią o perfmon.msc, dotyczą innych narzędzi w systemie Windows, które mają swoje własne zadania. Na przykład, diskmgmt.msc zajmuje się zarządzaniem dyskami i partycjami, więc bardziej koncentruje się na tym, jak przechowywane są dane, a nie na tym, jak sprawnie działa system. Z kolei taskschd.msc to narzędzie, które pozwala ustawiać zadania do uruchamiania w określonym czasie, co też nie ma nic wspólnego z monitorowaniem wydajności. Fsmgmt.msc za to służy do zarządzania udostępnianiem folderów, czyli kontroluje dostęp do plików, a nie analizuje ich wydajności. Kluczowy błąd w myśleniu to pomylenie dwóch różnych ról: zarządzania i monitorowania. Żeby dobrze zarządzać wydajnością, trzeba korzystać z odpowiednich narzędzi, jak perfmon.msc, które dają bardziej zaawansowane opcje diagnozowania problemów. Nie rozumiejąc tych różnic, można łatwo wybrać niewłaściwe narzędzia do zarządzania systemem.

Pytanie 18

Wysyłanie żetonu (ang. token) występuje w sieci o fizycznej strukturze

A. pierścienia
B. magistrali
C. gwiazdy
D. siatki
Przekazywanie żetonu w sieci pierścieniowej to naprawdę ważna sprawa. W takim układzie każdy węzeł łączy się z dwoma innymi i tworzy zamkniętą pętlę. Dzięki temu dane mogą płynąć w określonym kierunku, co redukuje ryzyko kolizji i pozwala na sprawniejszą transmisję. Na przykład, w sieciach lokalnych (LAN) używa się protokołów jak Token Ring, gdzie żeton krąży między węzłami. Tylko ten, kto ma żeton, może wysłać dane, co fajnie zwiększa kontrolę nad dostępem do medium. Plus, taka architektura pozwala lepiej zarządzać pasmem i zmniejszać opóźnienia w przesyłaniu danych. Moim zdaniem, to podejście jest zgodne z najlepszymi praktykami w budowaniu złożonych sieci komputerowych, gdzie liczy się stabilność i efektywność.

Pytanie 19

Zakres operacji we/wy dla kontrolera DMA w notacji heksadecymalnej wynosi 0094-009F, a w systemie dziesiętnym?

A. 2368-2544
B. 73-249
C. 148-159
D. 1168-3984
Fajnie, że zajmujesz się zakresem adresów kontrolera DMA. Wiesz, wartość heksadecymalna 0094-009F w dziesiętnym to tak jakby 148 do 159. Przemiana z heksadecymalnego na dziesiętny to nie takie trudne, wystarczy pamietać, żeby każdą cyfrę pomnożyć przez 16 do odpowiedniej potęgi. Na przykład, jak mamy 0x0094, to się to rozkłada tak: 0*16^3 + 0*16^2 + 9*16^1 + 4*16^0, co daje 148. A z kolei 0x009F to 0*16^3 + 0*16^2 + 9*16^1 + 15*16^0 i wychodzi 159. Te zakresy są mega ważne, zwłaszcza przy programowaniu i zarządzaniu pamięcią, szczególnie w systemach wbudowanych, gdzie kontroler DMA musi być precyzyjny. Jak dobrze to rozumiesz, to możesz lepiej zarządzać pamięcią i unikać problemów z przesyłaniem danych, co naprawdę ma znaczenie, zwłaszcza w złożonych systemach.

Pytanie 20

Jaką funkcjonalność oferuje program tar?

A. ustawianie karty sieciowej
B. pokazywanie listy aktualnych procesów
C. archiwizowanie plików
D. administrowanie pakietami
Program tar (tape archive) jest narzędziem, które umożliwia archiwizowanie plików, co oznacza, że potrafi łączyć wiele plików w jeden plik archiwum, często stosowany w celu łatwiejszego zarządzania danymi oraz ich przenoszenia. Jest to niezwykle przydatne w systemach Unix i Linux, gdzie użytkownicy często muszą wykonywać kopie zapasowe, przesyłać pliki przez sieć lub przechowywać dane w sposób zorganizowany. Narzędzie tar obsługuje różne formaty kompresji, co pozwala na zmniejszenie rozmiaru archiwum, a także na ich szybsze przesyłanie i przechowywanie. W praktyce, archiwizacja za pomocą tar jest standardową procedurą, stosowaną w wielu firmach do zabezpieczania danych krytycznych. Na przykład, archiwizacja kodu źródłowego projektu przed jego wdrożeniem pozwala na łatwe przywrócenie wcześniejszej wersji w razie potrzeby. Dodatkowo, tar wspiera operacje takie jak rozpakowywanie archiwów, co czyni go wszechstronnym narzędziem do zarządzania plikami. W branży IT, zarządzanie danymi i archiwizacja stanowią kluczowy element strategii w zakresie bezpieczeństwa danych oraz ciągłości biznesowej.

Pytanie 21

Jaką fizyczną topologię sieci komputerowej przedstawia ilustracja?

Ilustracja do pytania
A. Gwiazdy
B. Pierścienia
C. Siatki
D. Hierarchiczna
Topologia gwiazdy jest jedną z najczęściej stosowanych fizycznych topologii sieci komputerowych, gdzie każde urządzenie sieciowe jest bezpośrednio połączone z centralnym urządzeniem, takim jak przełącznik lub serwer. Zaletą tej topologii jest łatwość zarządzania i rozbudowy sieci poprzez dodawanie nowych urządzeń bez wpływu na działanie już istniejących. Awaria jednego urządzenia nie wpływa bezpośrednio na pozostałe, co znacząco zwiększa niezawodność sieci. W praktyce taka topologia jest wykorzystywana w lokalnych sieciach komputerowych (LAN) w biurach i domach. Standardy takie jak Ethernet bardzo dobrze współpracują z tą topologią, umożliwiając efektywną komunikację danych. W przypadku większych sieci, topologia gwiazdy może być łączona z innymi topologiami w celu tworzenia bardziej złożonych struktur, co jest zgodne z zasadami dobrej praktyki projektowania sieci. Centralne urządzenie w topologii gwiazdy pełni kluczową rolę w zarządzaniu przepływem danych, co pozwala na optymalne wykorzystanie zasobów sieciowych.

Pytanie 22

Jaką fizyczną topologię sieci komputerowej ilustruje ten rysunek?

Ilustracja do pytania
A. Pierścienia
B. Gwiazdy
C. Hierarchiczna
D. Siatki
Topologia gwiazdy jest jedną z najpopularniejszych fizycznych topologii sieci komputerowych. W tej konfiguracji wszystkie urządzenia sieciowe są podłączone do centralnego punktu, którym najczęściej jest switch lub hub. Dzięki temu, jeżeli dojdzie do awarii jednego z kabli, tylko jedno urządzenie zostanie odcięte od sieci, co minimalizuje ryzyko paralizacji całej sieci. Centralny punkt pozwala także na łatwiejsze zarządzanie siecią i monitorowanie jej aktywności. W praktyce topologia gwiazdy jest szczególnie ceniona w sieciach LAN, takich jak lokalne sieci biurowe, ze względu na jej prostotę w implementacji i konserwacji oraz skalowalność. Dzięki używaniu przełączników sieciowych możliwe jest także zwiększenie efektywności poprzez segmentację ruchu sieciowego, co jest zgodne z dobrymi praktykami zarządzania infrastrukturą IT. Topologia gwiazdy wspiera również różne technologie komunikacyjne, w tym Ethernet, co czyni ją bardzo uniwersalnym rozwiązaniem w nowoczesnych środowiskach IT.

Pytanie 23

Protokół SNMP (Simple Network Management Protocol) służy do

A. szyfrowania połączenia terminalowego z komputerami zdalnymi
B. konfiguracji urządzeń sieciowych i zbierania informacji o nich
C. przydzielania adresów IP, bramy oraz DNS-a
D. odbierania wiadomości e-mail
Protokół SNMP (Simple Network Management Protocol) jest kluczowym narzędziem w zarządzaniu sieciami komputerowymi, umożliwiającym administratorom monitorowanie i konfigurację urządzeń sieciowych, takich jak routery, przełączniki czy serwery. SNMP działa na zasadzie modelu klient-serwer, gdzie agent SNMP na urządzeniu zbiera dane o stanie i wydajności oraz wysyła je do menedżera SNMP, który gromadzi i analizuje te informacje. Dzięki temu administratorzy mogą na bieżąco śledzić parametry takie jak wykorzystanie pasma, stany portów czy błędy urządzeń. Praktycznym zastosowaniem SNMP jest automatyczne tworzenie raportów oraz alertów w przypadku awarii, co podnosi efektywność zarządzania infrastrukturą IT. Standardowe wersje protokołu, takie jak SNMPv1, SNMPv2c i SNMPv3, różnią się poziomem zabezpieczeń, co daje możliwość wyboru odpowiedniego rozwiązania w zależności od wymagań bezpieczeństwa w danej organizacji. W kontekście dobrych praktyk, zaleca się stosowanie SNMPv3, który wprowadza silniejsze mechanizmy autoryzacji i szyfrowania, co jest niezbędne w dzisiejszych, coraz bardziej złożonych środowiskach sieciowych.

Pytanie 24

Aby podłączyć dysk z interfejsem SAS, należy użyć kabla przedstawionego na diagramie

Ilustracja do pytania
A. rys. D
B. rys. C
C. rys. B
D. rys. A
Na rysunku A widać kabel USB, który jest używany do podłączania różnych urządzeń, takich jak klawiatury i myszki, oraz niektórych zewnętrznych dysków twardych. Niestety, to nie jest odpowiedni kabel do podłączenia dysków z interfejsem SAS. USB jest uniwersalnym interfejsem, ale jego prędkość jest znacznie mniejsza niż to, co potrzebne w profesjonalnych zastosowaniach, jak SAS. Rysunek B pokazuje kabel IDE, który to już dość stary standard do podłączania starszych dysków twardych. IDE ma dużo wolniejszy transfer danych i nie pasuje do nowoczesnych interfejsów, takich jak SAS. Na rysunku C jest kabel HDMI, który służy do przesyłania sygnału wideo i audio, zupełnie inna bajka w porównaniu do dysków twardych. Użycie takiego kabla w tym kontekście to spory błąd. Często mylimy funkcje różnych kabli, co prowadzi do złych wyborów technologicznych. Zrozumienie tych różnic jest kluczowe, żeby architektura systemu działała efektywnie i zapewniała dobrą wydajność w IT. Ludzie zajmujący się infrastrukturą IT powinni znać te standardy, żeby utrzymać kompatybilność i niezawodność swoich systemów.

Pytanie 25

Która z usług na serwerze Windows umożliwi użytkownikom końcowym sieci zaprezentowanej na ilustracji dostęp do Internetu?

Ilustracja do pytania
A. Usługa udostępniania
B. Usługa drukowania
C. Usługa rutingu
D. Usługa LDS
Usługa rutingu jest kluczowym elementem umożliwiającym urządzeniom w sieci lokalnej dostęp do Internetu poprzez przekierowywanie pakietów sieciowych pomiędzy różnymi segmentami sieci. Na serwerach Windows funkcja rutingu jest realizowana poprzez rolę Routing and Remote Access Services (RRAS). Umożliwia ona nie tylko tradycyjny routing, ale także implementację funkcji takich jak NAT (Network Address Translation), co jest niezbędne w przypadku, gdy sieć lokalna korzysta z adresów IP prywatnych. Dzięki NAT, adresy IP prywatne mogą być translokowane na publiczne, co umożliwia komunikację z Internetem. W praktyce, aby skonfigurować serwer do pełnienia roli routera, należy zainstalować usługę RRAS i odpowiednio skonfigurować tablice routingu oraz reguły NAT. Dobrym przykładem zastosowania jest mała firma, gdzie serwer z zainstalowanym RRAS pozwala wszystkim komputerom w sieci lokalnej na dostęp do Internetu, jednocześnie zabezpieczając sieć poprzez kontrolowanie przepływu pakietów i filtrowanie ruchu, zgodnie z najlepszymi praktykami bezpieczeństwa sieciowego.

Pytanie 26

Do weryfikacji funkcjonowania serwera DNS na systemach Windows Server można zastosować narzędzie nslookup. Jeżeli w poleceniu jako argument zostanie podana nazwa komputera, np. nslookup host.domena.com, to system sprawdzi

A. aliasu zdefiniowanego dla rekordu adresu domeny.
B. strefy przeszukiwania do przodu.
C. strefy przeszukiwania wstecz.
D. obie strefy przeszukiwania, najpierw wstecz, a potem do przodu.
Odpowiedź wskazująca na strefę przeszukiwania do przodu jest prawidłowa, ponieważ polecenie nslookup, używane w systemach Windows Server, domyślnie wykonuje zapytanie DNS w celu uzyskania adresu IP na podstawie podanej nazwy hosta. Strefa przeszukiwania do przodu to mechanizm, w którym serwer DNS przekształca nazwy domen na odpowiadające im adresy IP. Przykładowo, jeśli wprowadzisz polecenie nslookup host.domena.com, serwer DNS przeszuka swoją bazę danych rekordów, aby znaleźć odpowiadający adres IP dla tej nazwy. W praktyce, narzędzie to jest nieocenione dla administratorów IT w diagnozowaniu problemów z rozwiązywaniem nazw, umożliwiając weryfikację, czy odpowiednie rekordy DNS są dostępne i poprawne. Zgodnie z najlepszymi praktykami, regularne testowanie i monitorowanie DNS przy użyciu takich narzędzi, jak nslookup, jest kluczowe dla zapewnienia niezawodności i dostępności usług sieciowych.

Pytanie 27

W systemie Linux komenda chown pozwala na

A. przeniesienie pliku
B. zmianę właściciela pliku
C. naprawę systemu plików
D. zmianę parametrów pliku
Polecenie chown (change owner) w systemie Linux służy do zmiany właściciela pliku lub katalogu. Właściciel pliku ma prawo do zarządzania nim, co obejmuje możliwość jego edytowania, przesuwania czy usuwania. W praktyce, polecenie to jest kluczowe w kontekście zarządzania uprawnieniami w systemach wieloużytkownikowych, gdzie różni użytkownicy mogą potrzebować dostępu do różnych zasobów. Na przykład, aby zmienić właściciela pliku na użytkownika 'janek', użyjemy polecenia: `chown janek plik.txt`. Ważne jest, aby użytkownik wykonujący to polecenie miał odpowiednie uprawnienia, najczęściej wymaga to posiadania roli administratora (root). Zmiana właściciela pliku jest również stosowana w przypadku przenoszenia plików pomiędzy różnymi użytkownikami, co pozwala na odpowiednią kontrolę nad danymi. W kontekście bezpieczeństwa IT, właściwe zarządzanie właścicielami plików jest istotne dla ochrony danych i zapobiegania nieautoryzowanemu dostępowi.

Pytanie 28

Aby serwerowa płyta główna mogła działać poprawnie, potrzebuje pamięci z rejestrem. Który z poniższych modułów pamięci będzie z nią zgodny?

A. Kingston 4GB 1333 MHz DDR3 Non-ECC CL9 DIMM
B. Kingston 8GB 1333 MHz DDR3 ECC Reg CL9 DIMM 2Rx8
C. Kingston Hynix B 8GB 1600 MHz DDR3L CL11 ECC SODIMM 1,35V
D. Kingston 4GB 1600 MHz DDR3 ECC CL11 DIMM 1,5V
Wybór pamięci niezgodnej z wymaganiami serwera,bądź serwerowej płyty głównej prowadzi do problemów z kompatybilnością, co może skutkować niemożnością uruchomienia systemu lub niestabilnością działania. W przypadku pamięci Kingston 4GB 1600 MHz DDR3 ECC CL11 DIMM 1,5V, mimo że jest to pamięć ECC, brakuje jej rejestru, co czyni ją nieodpowiednią dla serwerów, które wymagają pamięci Registered. Druga opcja, Kingston 4GB 1333 MHz DDR3 Non-ECC CL9 DIMM, jest całkowicie nieodpowiednia, ponieważ nie obsługuje korekcji błędów, co jest kluczowe w aplikacjach serwerowych. Pamięci Non-ECC mogą prowadzić do błędów danych, co w środowisku krytycznym może mieć katastrofalne skutki. Z kolei Kingston Hynix B 8GB 1600 MHz DDR3L CL11 ECC SODIMM 1,35V, choć posiada funkcję ECC, jest modułem SODIMM, co oznacza, że jest przeznaczony do laptopów i nie pasuje do standardowych slotów DIMM w serwerach. Użycie niewłaściwej pamięci może prowadzić do nieoptymalnej pracy systemów operacyjnych i aplikacji, co zwiększa ryzyko awarii. W praktyce, przy wyborze pamięci do serwerów, należy kierować się specyfikacjami producenta płyty głównej i stosować tylko takie moduły, które są zgodne z wymaganiami technicznymi oraz standardami branżowymi.

Pytanie 29

Program wirusowy, którego zasadniczym zamiarem jest samoistne rozprzestrzenianie się w sieci komputerowej, to:

A. trojan
B. keylogger
C. robak
D. backdoor
Robaki komputerowe to samodzielne programy, które mają zdolność do rozprzestrzeniania się w sieciach komputerowych, najczęściej bez interakcji użytkownika. Główną charakterystyką robaka jest to, że potrafi kopiować swoje własne instancje i przesyłać je do innych urządzeń, co czyni je szczególnie niebezpiecznymi w kontekście bezpieczeństwa sieci. W przeciwieństwie do trojanów, które udają legalne oprogramowanie i zależą od użytkowników, aby je uruchomić, robaki działają automatycznie. Przykładem robaka jest Blaster, który zainfekował tysiące komputerów w 2003 roku, wykorzystując lukę w zabezpieczeniach systemu Windows. Zrozumienie mechanizmów działania robaków jest kluczowe dla wdrażania skutecznych strategii obronnych, takich jak aktualizacje oprogramowania, instalacja zapór ogniowych oraz monitorowanie ruchu sieciowego, co jest zgodne z najlepszymi praktykami w zakresie zarządzania bezpieczeństwem IT.

Pytanie 30

Aby chronić systemy sieciowe przed atakami z zewnątrz, należy zastosować

A. serwera DHCP
B. protokołu SSH
C. menedżera połączeń
D. zapory sieciowej
Zapora sieciowa, znana również jako firewall, jest kluczowym elementem zabezpieczającym systemy sieciowe przed nieautoryzowanym dostępem i atakami z zewnątrz. Działa ona na granicy pomiędzy zaufaną siecią a siecią zewnętrzną, kontrolując ruch przychodzący i wychodzący na podstawie ustalonych reguł bezpieczeństwa. Przykładowo, organizacje mogą skonfigurować zapory sieciowe tak, aby zezwalały na określone rodzaje ruchu (np. protokoły HTTP/HTTPS) oraz blokowały inne (np. porty wykorzystywane przez złośliwe oprogramowanie). Ponadto, zapory mogą być używane do segmentacji sieci, co zwiększa bezpieczeństwo poprzez ograniczenie dostępu do krytycznych zasobów. Dobre praktyki wskazują również na regularne aktualizowanie reguł oraz monitorowanie logów zapory, aby szybko reagować na potencjalne zagrożenia. Korzystanie z zapór, zarówno sprzętowych, jak i programowych, jest zalecane w standardach takich jak ISO/IEC 27001 czy NIST Cybersecurity Framework, co podkreśla ich znaczenie w ochronie danych i zasobów informacyjnych.

Pytanie 31

Interfejs równoległy, który ma magistralę złożoną z 8 linii danych, 4 linii sterujących oraz 5 linii statusowych, nie zawiera linii zasilających i umożliwia transmisję na dystans do 5 metrów, gdy kable sygnałowe są skręcone z przewodami masy, a w przeciwnym razie na dystans do 2 metrów, jest określany mianem

A. EISA
B. AGP
C. LPT
D. USB
Odpowiedź LPT jest poprawna, ponieważ dotyczy interfejsu równoległego, który obsługuje 8 linii danych, 4 linie sterujące oraz 5 linii statusu. LPT, czyli Parallel Port, był powszechnie stosowany w komputerach do podłączania drukarek oraz innych urządzeń peryferyjnych. Jego konstrukcja umożliwia przesyłanie danych na odległość do 5 metrów, przy odpowiednim skręceniu przewodów sygnałowych z przewodami masy. W praktyce, aby zapewnić maksymalną jakość sygnału, ważne jest stosowanie skręconych par przewodów, co redukuje zakłócenia elektromagnetyczne i poprawia integralność sygnału. W branży IT LPT był standardowym rozwiązaniem do komunikacji z urządzeniami, zanim został zdominowany przez interfejsy szeregowe oraz USB, które oferują większą prędkość przesyłu danych oraz większą elastyczność. Znajomość specyfikacji LPT jest istotna w kontekście starszych urządzeń oraz systemów operacyjnych, które mogą wymagać tego typu interfejsu do prawidłowego funkcjonowania.

Pytanie 32

Jakie urządzenie powinno się zastosować do podłączenia żył kabla skrętki do gniazda Ethernet?

A. Zaciskarkę BNC
B. Wciskacz LSA
C. Zaciskarkę RJ-45
D. Zaciskarkę RJ-11
Zaciskarka BNC, RJ-45 i RJ-11 to narzędzia, które są niby do różnych zastosowań w telekomunikacji i nie da się ich użyć do podłączania żył kabli skrętki do gniazd Ethernet. Zaciskarka BNC jest głównie do kabli koncentrycznych, które są używane w systemach CCTV i do przesyłania sygnałów wideo. Nie zadziała z Ethernetem, bo nie obsługuje transmisji danych tak, jak skrętka. Zaciskarka RJ-45, mimo że wygląda na odpowiednią, nie jest do wciśnięcia żył w LSA, a to jest kluczowe dla jakości połączenia. Co do zaciskarki RJ-11, ona działa z cieńszymi kablami telefonicznymi, które mają inną konfigurację żył. Jak użyjesz tych narzędzi w niewłaściwy sposób, to możesz mieć problemy z połączeniem, takie jak utraty pakietów czy niska przepustowość. Ci, co zajmują się instalacją sieci, muszą pamiętać, że używanie odpowiednich narzędzi jest istotne, żeby mieć dobrze działającą infrastrukturę telekomunikacyjną. Wiedza o tym, jak i gdzie używać tych narzędzi, pozwala uniknąć typowych błędów, które mogą powodować poważne kłopoty w działaniu sieci.

Pytanie 33

Jak brzmi nazwa klucza rejestru w systemie Windows, gdzie zapisane są relacje między typami plików a programami je obsługującymi?

A. HKEY_CURRENT_PROGS
B. HKEY_CLASSES_ROT
C. HKEY_LOCAL_MACHINE
D. HKEY_USERS
HKEY_CURRENT_PROGS nie istnieje w standardowej hierarchii rejestru systemu Windows, co czyni tę odpowiedź niepoprawną. Możliwe, że użytkownik pomylił tę nazwę z innym kluczem, co prowadzi do błędnych wniosków o jego istnieniu. Klucz HKEY_CLASSES_ROOT, na przykład, jest rzeczywiście używany do przechowywania powiązań typów plików, a HKEY_USERS przechowuje ustawienia dla różnych kont użytkowników, jednak HKEY_LOCAL_MACHINE jest bardziej właściwym miejscem dla ogólnych ustawień systemowych, w tym powiązań aplikacji. HKEY_USERS odpowiada za przechowywanie profili użytkowników, co nie ma związku z powiązaniami typów plików. W praktyce, błędne rozumienie tej struktury rejestru może prowadzić do nieefektywnego zarządzania systemem. Administratorzy, którzy nie są świadomi właściwych kluczy, mogą wprowadzać zmiany w niewłaściwych miejscach, co skutkuje niestabilnością systemu lub problemami z dostępem do aplikacji. Wiedza na temat rejestru systemowego jest fundamentalna dla efektywnego rozwiązywania problemów oraz dostosowywania środowiska użytkownika, dlatego tak ważne jest zrozumienie, jakie klucze są kluczowe dla funkcjonowania systemu. Przypisanie odpowiednich aplikacji do typów plików wymaga precyzyjnego zarządzania rejestrem, a wszelkie nieporozumienia mogą prowadzić do poważnych problemów w codziennej pracy użytkowników.

Pytanie 34

Wynik wykonania polecenia ```ls -l``` w systemie Linux przedstawia poniższy rysunek

Ilustracja do pytania
A. C
B. D
C. B
D. A
Polecenie ls -l w systemie Linux jest używane do wyświetlania szczegółowych informacji o plikach i katalogach w danym katalogu. Poprawna odpowiedź to D ponieważ wynik tego polecenia pokazuje informacje takie jak prawa dostępu do plików liczbę dowiązań użytkownika właściciela grupę właściciela rozmiar pliku datę i czas ostatniej modyfikacji oraz nazwę pliku. W przykładzie D mamy trzy pliki z odpowiednimi informacjami: prawa dostępu -rw-r--r-- które oznaczają że właściciel ma prawo do odczytu i zapisu grupa oraz inni użytkownicy mają tylko prawo do odczytu. Liczba dowiązań wynosi 1 co jest typowe dla plików. Użytkownik właściciel i grupa to Egzamin users. Rozmiar plików wynosi 0 bajtów co oznacza że są puste. Daty i godziny wskazują na czas ostatniej modyfikacji. Zrozumienie wyjścia polecenia ls -l jest kluczowe w codziennej administracji systemu Linux ponieważ pozwala na szybkie sprawdzenie uprawnień i właścicieli plików oraz monitorowanie zmian zachodzących w systemie. To także dobry punkt wyjścia do nauki o zarządzaniu prawami dostępu przy użyciu poleceń chmod i chown co stanowi fundament bezpieczeństwa w systemach opartych na Unixie.

Pytanie 35

Aby usunąć konto użytkownika student w systemie operacyjnym Ubuntu, można skorzystać z komendy

A. userdel student
B. net user student /del
C. user net student /del
D. del user student
Wszystkie pozostałe odpowiedzi są błędne z kilku powodów, które warto szczegółowo wyjaśnić. Pierwsza z nich, 'del user student', nie jest poprawnym poleceniem w żadnym systemie operacyjnym opartym na Unixie, takim jak Ubuntu. W rzeczywistości, format tego polecenia przypomina bardziej składnię języków skryptowych, ale nie ma zastosowania w kontekście zarządzania użytkownikami w systemie Linux. Warto również zauważyć, że w systemach Unix polecenia nie używają terminu 'del', co może prowadzić do nieporozumień. Kolejna odpowiedź, 'net user student /del', jest specyficzna dla systemów Windows i nie ma zastosowania w Ubuntu. W systemie Windows to polecenie działa w kontekście zarządzania użytkownikami w Active Directory lub lokalnych kontach użytkowników, jednak nie ma odpowiednika w systemie Linux. Ostatnia odpowiedź, 'user net student /del', jest niepoprawna z punktu widzenia składni oraz nie odnosi się do żadnego znanego polecenia w systemie operacyjnym Linux. Warto zwrócić uwagę na typowe błędy, które mogą prowadzić do takich niepoprawnych odpowiedzi, takie jak pomieszanie składni poleceń między różnymi systemami operacyjnymi lub brak zrozumienia specyfiki poleceń do zarządzania kontami użytkowników. Aby poprawnie zarządzać użytkownikami w systemie Linux, ważne jest poznanie i zrozumienie narzędzi i poleceń przypisanych do konkretnego środowiska. Znajomość tych różnic jest kluczowa w pracy z różnymi systemami operacyjnymi oraz w kontekście zarządzania infrastrukturą IT.

Pytanie 36

Firma uzyskała zakres adresów 10.10.10.0/16. Po podzieleniu na podsieci zawierające 510 hostów, jakie są adresy podsieci z zastosowaną maską?

A. 255.255.254.0
B. 255.255.253.0
C. 255.255.240.0
D. 255.255.0.0
Propozycje 255.255.0.0, 255.255.240.0 i 255.255.253.0 nie są trafione i warto by je lepiej przeanalizować. Zaczynając od 255.255.0.0, to odpowiada notacji /16, co oznacza, że 16 bitów idzie na sieć. W takim wypadku liczba dostępnych adresów dla hostów wynosi 2^(32-16) - 2 = 65,534, co zdecydowanie więcej niż potrzebujesz, bo potrzebujesz tylko 510. Zbyt wiele adresów to kiepskie zarządzanie przestrzenią adresową, więc to nie jest dobra droga. Maska 255.255.240.0, czyli /20, także się nie sprawdzi, bo daje 12 bitów na hosty, co pozwala na 2^(32-20) - 2 = 4,094 adresów. No i maska 255.255.253.0, co to /21, daje 11 bitów na hosty i 2^(32-21) - 2 = 2,046 adresów. Generalnie, zbyt duże przydziały adresów mogą wprowadzać zamieszanie. Kluczowy błąd to brak ogarnięcia, jak dobrze dopasować maskę podsieci do realnych potrzeb, co jest mega istotne dla każdego, kto się zajmuje sieciami.

Pytanie 37

Adapter USB do LPT można zastosować w sytuacji, gdy występuje niezgodność złączy podczas podłączania starszych modeli

A. keyboarda
B. mousea
C. displaya
D. printera
Odpowiedź 'drukarki' jest prawidłowa, ponieważ adapter USB na LPT jest najczęściej stosowany do podłączenia drukarek, które wykorzystują starsze porty LPT (Parallel Port). W miarę postępu technologii, wiele nowoczesnych komputerów nie ma portów LPT, a adapter USB pozwala na integrację starszych urządzeń drukujących z nowymi komputerami, które obsługują jedynie porty USB. Przykładem może być podłączenie klasycznej drukarki atramentowej do laptopa, który nie ma złącza LPT. Adaptery te są zgodne z zasadą plug and play, co oznacza, że po podłączeniu do portu USB i właściwym skonfigurowaniu systemu operacyjnego, drukarka powinna być automatycznie wykrywana. Warto również zauważyć, że korzystanie z takich adapterów jest zgodne z dobrymi praktykami w zakresie przedłużenia życia starszych urządzeń oraz minimalizowania odpadów elektronicznych. Dzięki adapterom użytkownicy mogą nadal korzystać z funkcjonalności swoich starszych drukarek, co jest szczególnie przydatne w biurach, gdzie sprzęt może być kosztowny do wymiany.

Pytanie 38

Który adres IPv4 identyfikuje urządzenie działające w sieci z adresem 14.36.64.0/20?

A. 14.36.48.1
B. 14.36.17.1
C. 14.36.80.1
D. 14.36.65.1
Kiedy próbujesz ustalić, które adresy IP są w danym zakresie, ważne jest, żeby dobrze zrozumieć, jak działają adresy IP. Zasięg sieci 14.36.64.0/20 mówi, że pierwsze 20 bitów to identyfikacja sieci. Adresy 14.36.80.1 i 14.36.48.1 są poza tym zakresem, bo 14.36.80.1 wskazuje na 14.36.80.0/20, a jego pierwsze 20 bitów to 00001110.00100100.01010000.00000000, natomiast 14.36.48.1 pokazuje na 14.36.48.0/20, co w binarnym to 00001110.00100100.00110000.00000000. Myślę, że błąd w wyborze tych adresów bierze się z niepełnego zrozumienia, gdzie kończą się granice podsieci. Często ludzie mylą adresy, myśląc, że są blisko siebie, a w rzeczywistości mogą być zupełnie w innych podsieciach. Do tego, 14.36.17.1 też nie pasuje, bo jego pierwsze trzy oktety wskazują na inną podsieć z maską /20. Kluczowy błąd, który widać, to nieprzestrzeganie zasad podziału adresów IP, co może prowadzić do kłopotów z zarządzaniem i bezpieczeństwem sieci.

Pytanie 39

W jakiej warstwie modelu ISO/OSI wykorzystywane są adresy logiczne?

A. Warstwie łącza danych
B. Warstwie transportowej
C. Warstwie fizycznej
D. Warstwie sieciowej
Odpowiedź 'Sieciowa' jest zdecydowanie trafna. W modelu ISO/OSI warstwa sieciowa ma za zadanie trasować i przesyłać pakiety między różnymi sieciami. Używamy tu adresów IP, żeby móc rozpoznać urządzenia w sieci i sprawnie się komunikować. Kiedy komputer chce wysłać dane do innego urządzenia, to właśnie adres IP wskazuje, gdzie te dane mają trafić. Protokół IP działa na tej warstwie, co jest super ważne, bo dzięki temu dane mogą być efektywnie kierowane między różnymi sieciami. Fajnie też pomyśleć o używaniu zarówno adresów IP wersji 4, jak i 6, bo to zapewnia lepszą kompatybilność w różnych środowiskach sieciowych. No i nie zapominajmy, że warstwa sieciowa współpracuje z transportową, co w praktyce oznacza, że odpowiednio zarządza sesjami komunikacyjnymi, dbając o to, żeby dane były przesyłane rzetelnie i w dobrym porządku.

Pytanie 40

Ile sieci obejmują komputery z adresami IP przedstawionymi w tabeli oraz standardową maską sieci?

Komputer 1172.16.15.5
Komputer 2172.18.15.6
Komputer 3172.18.16.7
Komputer 4172.20.16.8
Komputer 5172.20.16.9
Komputer 6172.21.15.10

A. Jednej
B. Dwóch
C. Czterech
D. Sześciu
Adresy IP należą do klasy B oznacza to że standardowa maska sieci to 255.255.0.0. W tej klasie dwie pierwsze części adresu określają sieć a dwie ostatnie hosta. Adresy które zaczynają się od 172.16 172.18 172.20 i 172.21 należą do różnych sieci. Dlatego też te sześć adresów reprezentuje cztery różne sieci. Przy przydzielaniu adresów IP ważne jest zrozumienie jak maska podsieci wpływa na klasyfikację sieci co jest kluczowe w projektowaniu skalowalnych i wydajnych sieci. W praktyce administracja sieci musi często implementować strategie takie jak VLSM (Variable Length Subnet Masking) aby zoptymalizować wykorzystanie adresów IP. Wiedza o podziałach na podsieci jest niezbędna do zarządzania dużymi sieciami z wieloma segmentami co pozwala na efektywne użycie przestrzeni adresowej oraz poprawę bezpieczeństwa i wydajności sieci. Zrozumienie tej koncepcji jest nieodzowne dla profesjonalistów zajmujących się projektowaniem i zarządzaniem sieciami komputerowymi.
Strona wykorzystuje pliki cookies do poprawy doświadczenia użytkownika oraz analizy ruchu. Szczegóły