Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.05 - Eksploatacja urządzeń elektronicznych
  • Data rozpoczęcia: 30 maja 2025 00:36
  • Data zakończenia: 30 maja 2025 00:39

Egzamin zdany!

Wynik: 39/40 punktów (97,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Oblicz amplitudę sygnału wyjściowego generatora o częstotliwości 100 Hz, jeśli woltomierz elektromagnetyczny zmierzył napięcie 8 V?

A. 11,3 V
B. 5,6 V
C. 9,8 V
D. 22,1 V
Odpowiedź 11,3 V jest prawidłowa, ponieważ przy pomiarach sygnałów zmiennych, takich jak napięcie generowane przez generator o częstotliwości 100 Hz, woltomierz elektromagnetyczny mierzy wartość skuteczną (RMS) napięcia. W przypadku typowego sygnału sinusoidalnego, wartość RMS jest związana z amplitudą maksymalną napięcia przez równanie: U(RMS) = U(max)/√2. Przy napięciu 8 V zmierzonego przez woltomierz, możemy obliczyć amplitudę jako: U(max) = U(RMS) × √2 = 8 V × √2 ≈ 11,3 V. Pomiar ten jest istotny w praktyce inżynierskiej, szczególnie w projektowaniu obwodów elektronicznych, gdzie znajomość wartości napięcia maksymalnego jest kluczowa do doboru odpowiednich elementów, takich jak kondensatory czy rezystory. Stosowanie woltomierza o ustroju elektromagnetycznym jest dobrym wyborem do pomiaru sygnałów zmiennych, ale warto pamiętać, że niektóre woltomierze mogą nieprawidłowo wskazywać przy sygnałach o nietypowych kształtach fali, co podkreśla znaczenie dokładności pomiarów w kontekście norm branżowych, takich jak IEC 61010 dotyczących bezpieczeństwa przyrządów pomiarowych.

Pytanie 2

Jakiego typu procesor jest używany w wzmacniaczach z cyfrowym przetwarzaniem dźwięku?

A. CISC
B. AVR
C. RISC
D. DSP
Wzmacniacze z cyfrowym przetwarzaniem dźwięku (DSP - Digital Signal Processing) wykorzystują specjalizowane procesory, które są zoptymalizowane do realizacji skomplikowanych algorytmów manipulacji sygnałem. Procesory DSP charakteryzują się zdolnością do szybkiego przetwarzania danych w czasie rzeczywistym, co jest kluczowe w zastosowaniach audio, takich jak filtracja, kompresja, echo czy inny efekt dźwiękowy. Dzięki architekturze, która umożliwia równoległe przetwarzanie wielu operacji matematycznych, DSP potrafią efektywnie zarządzać dużymi zestawami danych audio. Przykłady zastosowań obejmują profesjonalne systemy nagłośnienia, gdzie jakość dźwięku ma kluczowe znaczenie, oraz w sprzęcie konsumenckim, takim jak procesory w soundbarach czy systemach hi-fi. Rekomendacje branżowe wskazują, że zastosowanie DSP w audio to standard w nowoczesnych urządzeniach, co potwierdza ich niezastąpioną rolę w obróbce dźwięku.

Pytanie 3

W urządzeniu elektronicznym uszkodzeniu uległ warystor MYG 10K-431 o napięciu znamionowym 275 V AC, 350 V DC, energii tłumienia 55 J/2 ms i rastrze 7,5 mm. Wykorzystując tabelę zamienników wskaż oznaczenie warystora, który można zastosować w zamian za uszkodzony?

Tabela zamienników
Oznaczenie warystoraNapięcie znamionoweEnergia tłumieniaRaster
TSV07D471300 V AC
375 V DC
40 J/2 ms5 mm
JVR07N431K275 V AC
350 V DC
33 J/2 ms5 mm
JVR14N431K275 V AC
350 V DC
132 J/2 ms7,5 mm
B72210S0301K101300 V AC
385 V DC
47 J/2 ms7,5 mm

A. B72210S0301K101
B. JVR14N431K
C. JVRO7N431K
D. TSV07D471
Warystor JVR14N431K jest odpowiednim zamiennikiem dla uszkodzonego MYG 10K-431 z kilku powodów. Po pierwsze, oba warystory mają identyczne napięcie znamionowe: 275 V AC oraz 350 V DC, co jest kluczowe dla zapewnienia, że nowy komponent będzie działał w tych samych warunkach. Po drugie, JVR14N431K charakteryzuje się wyższą energią tłumienia wynoszącą 132 J/2 ms, co oznacza, że może skuteczniej absorbować i tłumić przepięcia, co jest istotne w obwodach narażonych na nagłe skoki napięcia. W praktyce, gdy w układzie występują przepięcia, warystory pełnią rolę ochronną, zapobiegając uszkodzeniu innych komponentów. Zastosowanie warystora o wyższej energii tłumienia w tym przypadku zwiększa niezawodność całego systemu elektronicznego. Również wspomniany raster wynoszący 7,5 mm zapewnia, że nowy warystor będzie odpowiednio pasował do istniejącego miejsca w obwodzie, co ułatwia jego wymianę i zabezpiecza przed błędami montażowymi. W branży elektronicznej kluczowe jest przestrzeganie standardów jakości oraz dobrych praktyk w doborze komponentów, dlatego stosowanie zamienników z porównywalnymi parametrami jest niezbędne. Zastosowanie JVR14N431K nie tylko spełnia wymogi techniczne, ale także przyczynia się do długotrwałej eksploatacji urządzenia.

Pytanie 4

Zamiana linii asymetrycznej na linię symetryczną w transmisji sygnałów cyfrowych

A. zmniejsza odporność linii na zakłócenia i nie wymaga modyfikacji układów we/wy
B. zmniejsza odporność linii na zakłócenia i wymaga modyfikacji układów we/wy
C. zwiększa odporność linii na zakłócenia i wymaga modyfikacji układów we/wy
D. zwiększa odporność linii na zakłócenia i nie wymaga modyfikacji układów we/wy
Zastąpienie linii niesymetrycznej linią symetryczną w transmisji sygnałów cyfrowych jest uzasadnione z technicznego punktu widzenia, ponieważ linie symetryczne, do których zaliczają się takie rozwiązania jak różnicowe przesyłanie sygnałów, znacząco zwiększają odporność na zakłócenia. Dzięki równemu rozmieszczeniu potencjałów w przewodach, zakłócenia elektromagnetyczne mają minimalny wpływ na jakość sygnału. Przykładem zastosowania linii symetrycznych jest standard USB, który stosuje różnicowe pary przewodów do przesyłania danych. W kontekście modyfikacji układów we/wy, konieczne jest dostosowanie elektroniki do nowych warunków pracy, w tym implementacja układów różnicowych, co może wpłynąć na wydajność i niezawodność całego systemu. W branży telekomunikacyjnej, użycie linii symetrycznych w takich aplikacjach jak DSL, przyczynia się do zminimalizowania zakłóceń, co jest zgodne z najlepszymi praktykami w projektowaniu systemów komunikacyjnych.

Pytanie 5

Elementem systemu alarmowego jest

A. elektrozaczep
B. konwerter
C. unifon
D. czujka PIR
Czujka PIR (Passive Infrared Sensor) jest kluczowym podzespołem systemów alarmowych, odpowiedzialnym za wykrywanie ruchu poprzez monitorowanie zmian w promieniowaniu podczerwonym emitowanym przez obiekty znajdujące się w jej zasięgu. Działa na zasadzie detekcji ciepła emitowanego przez ludzi i zwierzęta, co sprawia, że jest niezwykle skuteczna w zabezpieczaniu różnych obiektów. Przykładem zastosowania czujek PIR jest ich montaż w strefach wejściowych do budynków, gdzie mogą wykrywać intruzów przed wejściem do środka. Standardy ISO 9001 oraz EN 50131 wskazują na znaczenie takich czujników w systemach zabezpieczeń, gwarantując ich niezawodność i efektywność. Dobrą praktyką jest również ich integracja z systemami alarmowymi, co pozwala na automatyczne uruchamianie alarmów w przypadku detekcji ruchu, co znacząco zwiększa bezpieczeństwo obiektu.

Pytanie 6

Port USB stanowi uniwersalną magistralę

A. równoległo-szeregowa
B. szeregowa
C. szeregowo-równoległa
D. równoległa
Odpowiedź 'szeregowa' jest poprawna, ponieważ standard USB (Universal Serial Bus) opiera się na komunikacji szeregowej. W systemach szeregowych dane są przesyłane pojedynczo, co pozwala na mniejsze wymagania dotyczące kabli oraz uproszczoną architekturę połączeń. W praktyce oznacza to, że urządzenia USB są w stanie komunikować się z komputerem, wymieniając dane jeden bit po drugim, co jest bardziej efektywne w kontekście długości kabli oraz kosztów produkcji. Ponadto, architektura szeregowa USB umożliwia złożone operacje, takie jak 'hot swapping', czyli podłączanie i odłączanie urządzeń bez konieczności wyłączania komputera. W branży IT standardy USB są szeroko stosowane w celu zapewnienia interoperacyjności urządzeń, co czyni je kluczowym elementem zarówno w zastosowaniach biurowych, jak i w produkcji. Przykładem zastosowania USB są myszki komputerowe, klawiatury, a także urządzenia peryferyjne, takie jak drukarki i skanery, które korzystają z tej samej magistrali do wymiany danych, co umożliwia ich łatwą integrację z komputerami.

Pytanie 7

Modyfikacja szerokości kąta widzenia w kamerze CCTV to proces polegający na

A. zmianie miejsca umiejscowienia kamery
B. wymianie kopułki kamery
C. regulacji ustawień za pomocą pokrętła FOCUS
D. regulacji ustawień pokrętłem SCREEN
Regulacja szerokości kąta widzenia kamery CCTV poprzez pokrętło SCREEN jest kluczowym elementem w procesie dostosowywania parametrów obrazu do specyficznych potrzeb monitoringu. Pokrętło to pozwala na modyfikację ustawień obrazu, co może obejmować kontrast, jasność oraz nasycenie barw. Umożliwia to optymalne dostosowanie kamery do zmieniających się warunków oświetleniowych oraz różnych scenariuszy monitoringu. Przykładowo, w trudnych warunkach oświetleniowych, takich jak nocne nagrania lub silne oświetlenie słoneczne, odpowiednie dostosowanie tych parametrów może znacząco poprawić jakość obrazu, co jest niezbędne dla skutecznego monitoringu. Dobrą praktyką jest regularne kalibrowanie kamer i sprawdzanie ustawień, aby zapewnić, że obraz jest zawsze wyraźny i czytelny. W branży zabezpieczeń istnieją standardy, takie jak ONVIF, które podkreślają znaczenie odpowiednich ustawień w celu uzyskania najlepszych wyników z systemu CCTV.

Pytanie 8

Kto głównie korzysta z instrukcji serwisowych?

A. osoby użytkujące sprzęt
B. osoby dostarczające sprzęt do klienta
C. osoby sprzedające sprzęt
D. osoby naprawiające uszkodzony sprzęt
Instrukcje serwisowe są kluczowym narzędziem dla osób zajmujących się naprawą uszkodzonego sprzętu. Zawierają one szczegółowe informacje dotyczące diagnozowania problemów, kroków do ich rozwiązania oraz specyfikacji technicznych, które są niezbędne do prawidłowej naprawy. Na przykład, w przypadku awarii sprzętu elektronicznego, technik korzysta z instrukcji serwisowych, aby zlokalizować usterkę, zrozumieć, jakie części należy wymienić oraz jakie narzędzia są potrzebne do przeprowadzenia naprawy. W branży zamiennej istnieje szereg standardów, jak ISO 9001, które promują dokumentację procedur serwisowych. Dobre praktyki w zakresie serwisowania sprzętu obejmują także regularne aktualizowanie instrukcji zgodnie z najnowszymi rozwiązaniami technicznymi oraz zapewnienie ich dostępności dla wszystkich techników. Posiadanie dobrze opracowanych instrukcji serwisowych wpływa na efektywność pracy, redukuje błędy oraz przyspiesza czas reakcji na awarie, co jest kluczowe w zachowaniu wysokiej jakości usług serwisowych.

Pytanie 9

Tabela przedstawia wybrane dane techniczne regulatora temperatury. Do jego wejścia można bezpośrednio podłączyć

Napięcie zasilające230 V AC; 50 Hz
Wejście pomiarowePt100/Pt500/Pt1000
Zakres pomiarowy-100 °C ÷ 600 °C
Rezystancja przewodów pomiarowychmaksymalnie 20 Ω w każdym przewodzie
Wyjścia przekaźnikowe2 styki zwierne; 2 A/250 V AC (cosφ=1)
Pamięć danychEEPROM
Stopień ochrony frontu urządzeniaIP65
Stopień ochrony zaciskówIP20

A. czujnik pirometryczny.
B. termistor.
C. czujnik rezystancyjny.
D. termoparę.
Wiesz, czujniki takie jak termistor, termopara czy czujnik pirometryczny to często te, które ludzie mylą z czujnikami rezystancyjnymi. Ale one działają na zupełnie innych zasadach. Termistory zmieniają rezystancję w szerszym zakresie temperatur, ale mają ograniczony zakres pomiarowy, co nie jest najlepsze do długotrwałego monitorowania w skrajnych warunkach. Z kolei termopary działają dzięki zjawisku Seebecka – wytwarzają napięcie, gdy są różne temperatury na dwóch złączach z różnych materiałów. Można nimi mierzyć wysokie temperatury, ale są mniej dokładne niż czujniki rezystancyjne. A czujniki pirometryczne to zupełnie inna bajka, bo mierzą temperaturę z daleka, więc nie nadają się do bezpośredniego podłączenia do regulatora temperatury. Wszystkie te czujniki mają swoje miejsce, ale jeśli ich nie zrozumiesz, to możesz źle je wybrać, co nie jest fajne. Dlatego warto znać różnice między tymi technologiami i wiedzieć, gdzie je najlepiej wykorzystać.

Pytanie 10

Jakie wielkości powinny być zmierzone, aby określić zakres liniowości wzmacniacza?

A. Napięcie wyjściowe oraz napięcie zasilania
B. Napięcie wyjściowe oraz częstotliwość
C. Napięcie wejściowe i wyjściowe
D. Napięcie wejściowe oraz moc wyjściowa
Napięcie wejściowe i wyjściowe są kluczowymi parametrami przy ocenie zakresu liniowości wzmacniacza. Liniowość wzmacniacza odnosi się do zdolności urządzenia do zachowania proporcjonalności między sygnałem wejściowym a sygnałem wyjściowym. Gdy wzmacniacz działa w zakresie liniowym, zmiana napięcia wejściowego powinna powodować proporcjonalną zmianę napięcia wyjściowego. W praktyce, aby określić ten zakres, należy przeprowadzić pomiary napięcia wyjściowego przy różnych wartościach napięcia wejściowego. Na przykład podczas testowania wzmacniacza operacyjnego, który ma być używany w systemie audio, kluczowe jest zapewnienie, że jego działanie w zakresie liniowym pozwoli na wierne odwzorowanie sygnału audio. Wzmacniacze powinny działać liniowo w pełnym zakresie ich zastosowania, co jest zgodne z normami takimi jak IEEE 1076 dla wzmacniaczy analogowych. Dobrą praktyką jest również wykorzystanie oscyloskopu do wizualizacji sygnału wyjściowego i oceny nieliniowości, co pozwala na dokładną kalibrację urządzenia.

Pytanie 11

Jaką rolę pełni fotorezystor w wyłączniku zmierzchowym?

A. detektora światła widzialnego
B. detektora drgań
C. regulatora temperatury
D. czujnika wilgoci
Fotorezystor, pełniący funkcję detektora światła widzialnego w wyłączniku zmierzchowym, działa na zasadzie zmiany swojej rezystancji w odpowiedzi na natężenie światła. Gdy poziom oświetlenia spada, rezystancja fotorezystora rośnie, co powoduje, że układ elektroniczny wykonuje odpowiednią akcję, na przykład włącza światło. Takie rozwiązanie jest szczególnie efektywne w automatyzacji systemów oświetleniowych w przestrzeniach zewnętrznych, takich jak ogrody, parkingi czy tereny rekreacyjne. Wysoka czułość oraz niskie koszty produkcji sprawiają, że fotorezystory są powszechnie stosowane w nowoczesnych układach automatyki budynkowej. Zgodnie z normami branżowymi, zaleca się ich wykorzystanie w systemach, które muszą reagować na zmiany oświetlenia w czasie rzeczywistym, co podnosi komfort użytkowania i efektywność energetyczną. Warto także zwrócić uwagę, że fotorezystory mogą być używane w połączeniu z innymi czujnikami, co zwiększa ich funkcjonalność i zastosowanie w różnych scenariuszach, takich jak inteligentne domy.

Pytanie 12

Dzięki działaniu negatywnego sprzężenia zwrotnego, wzmocnienie tego układu

A. pozostaje takie samo
B. wynosi 0
C. zmniejsza się
D. zwiększa się
Ujemne sprzężenie zwrotne jest kluczowym mechanizmem w wielu układach elektronicznych, które pozwala na stabilizację wzmocnienia oraz redukcję zniekształceń sygnału. W przypadku zastosowania ujemnego sprzężenia zwrotnego, część sygnału wyjściowego jest przekazywana z powrotem do wejścia, co zmniejsza ogólne wzmocnienie układu. Przykładem zastosowania ujemnego sprzężenia zwrotnego mogą być wzmacniacze operacyjne, gdzie taka technika pozwala na uzyskanie stabilnych parametrów pracy, niezależnych od zmian warunków otoczenia czy elementów składowych. Dzięki temu, poprzez odpowiednie dostosowanie wartości rezystorów w układzie, można kontrolować stopień ujemnego sprzężenia zwrotnego, a tym samym wzmocnienie. W praktyce, wzmocnienie spada w wyniku zastosowania sprzężenia zwrotnego, co prowadzi do wyższej linearności odpowiedzi układu oraz zmniejszenia szumów, co jest zgodne z najlepszymi praktykami w inżynierii elektronicznej.

Pytanie 13

W dokumentacji technicznej multimetru stwierdzono, że potrafi on wyświetlać wyniki pomiarów w formacie trzy i pół cyfry. Jaką najwyższą liczbę jednostek jest w stanie pokazać ten multimetr?

A. 3999
B. 1999
C. 19999
D. 39999
Odpowiedź 1999 jest jak najbardziej trafna! Multimetry z oznaczeniem 'trzy i pół cyfry' mogą wyświetlać liczby do 1999. To oznaczenie oznacza, że pierwsza cyfra może być tylko 0 albo 1, a pozostałe mogą być od 0 do 9. Dlatego dostajemy zakres od 000 do 1999. Praktycznie oznacza to, że ten typ multimetru jest w stanie zmierzyć wartości do 2000 jednostek. Multimetry tego typu są super przydatne, szczególnie przy pomiarach napięcia, prądu i oporu. Są to sprzęty, które każdy, kto zaczyna przygodę z elektroniką, powinien mieć. Dobrze się sprawdzają też w różnych przemysłowych zastosowaniach, zwłaszcza przy konserwacji urządzeń elektronicznych. Warto z nich korzystać, bo są proste w obsłudze i dobrze pokazują wyniki.

Pytanie 14

Odpowiednia sekwencja działań przy wymianie uszkodzonej czujki ruchu w systemie kontroli dostępu powinna wyglądać następująco:

A. wpisać kod użytkownika, odłączyć zasilanie AC, odłączyć akumulator, wymienić czujkę
B. wpisać kod serwisowy, odłączyć akumulator, wymienić czujkę
C. wpisać kod serwisowy, odłączyć zasilanie AC, odłączyć akumulator, wymienić czujkę
D. wpisać kod użytkownika, odłączyć zasilanie AC, wymienić czujkę
Właściwa odpowiedź, czyli wpisanie kodu serwisowego, odłączenie zasilania AC, odłączenie akumulatora i następnie wymiana czujki, jest zgodna z najlepszymi praktykami w zakresie bezpiecznej konserwacji systemów kontroli dostępu. W pierwszej kolejności ważne jest użycie kodu serwisowego, ponieważ tylko osoby uprawnione powinny mieć dostęp do opcji serwisowych. To zapewnia, że żadne nieautoryzowane zmiany nie będą mogły zostać wprowadzone w systemie. Odłączenie zasilania AC jest kluczowe, aby uniknąć ryzyka zwarcia lub porażenia prądem podczas pracy z urządzeniami elektrycznymi. Następnie, odłączenie akumulatora zapobiega ewentualnym nieprzewidzianym awariom, które mogą wystąpić, gdy urządzenie jest wciąż zasilane. Dopiero po wykonaniu tych kroków można bezpiecznie wymienić czujkę. Przykładem zastosowania takiej procedury może być serwisowanie systemu w obiektach komercyjnych, gdzie bezpieczeństwo danych i osób jest priorytetem. Takie działania są zgodne z normami ISO 27001, które dotyczą bezpieczeństwa informacji.

Pytanie 15

Jakiego modułu dotyczy usterka w telewizorze, jeśli nie odbiera on sygnału z zewnętrznej anteny w transmisji naziemnej, a jednocześnie prawidłowo wyświetla obraz z podłączonego tunera satelitarnego przez przewód EUROSCART oraz z kamery VHS-C za pomocą przewodu S-Video?

A. Wzmacniacza wizji
B. Selektora i separatora
C. Synchronizacji i odchylania
D. Wielkiej i pośredniej częstotliwości
Odpowiedź "Wielkiej i pośredniej częstotliwości" jest poprawna, ponieważ to właśnie te moduły odpowiadają za odbiór sygnałów z anteny telewizyjnej. Moduł wielkiej częstotliwości (VHF/UHF) odbiera sygnały z anteny, a moduł pośredniej częstotliwości (IF) przetwarza te sygnały na format, który może być dalej przetwarzany przez telewizor. Kiedy telewizor nie odbiera sygnału z anteny, ale potrafi odtwarzać obraz z innych źródeł, jak tuner satelitarny czy kamera VHS-C, wskazuje to na problem z obiegiem sygnału w przedwzmacniaczu lub innym elemencie toru sygnałowego odbiornika. W praktyce, w takich sytuacjach, często zaleca się sprawdzenie zarówno anteny, jak i stanu technicznego modułów wielkiej i pośredniej częstotliwości, co jest zgodne z metodami diagnostyki stosowanymi w serwisach elektronicznych.

Pytanie 16

Według standardu przesyłania sygnału telewizyjnego w Polsce (64QAM, FEC 3/4), minimalna wartość sygnału na wyjściu z gniazda antenowego powinna wynosić

A. 48 dBμV
B. 26 dBμV
C. 42 dBμV
D. 30 dBμV
Wybór 48 dBμV jako minimalnego poziomu sygnału na wyjściu gniazda antenowego w systemie telewizyjnym opartym na modulacji 64QAM oraz kodowaniu FEC 3/4 jest zgodny z zaleceniami branżowymi. W przypadku sygnałów telewizyjnych, decydujące znaczenie ma nie tylko poziom sygnału, ale także jego jakość oraz odporność na zakłócenia. Standardy telewizyjne wskazują, że poziom 48 dBμV zapewnia odpowiednią rezerwę sygnału, co ma kluczowe znaczenie dla stabilności odbioru, zwłaszcza w warunkach nieidealnych, takich jak zjawiska atmosferyczne, przeszkody terenowe czy zakłócenia elektromagnetyczne. W praktyce, poziom sygnału powinien być dostosowany do specyfiki instalacji, a także do odległości od nadajnika. W przypadku wielu instalacji antenowych, poziom sygnału na wyjściu gniazda powinien również uwzględniać straty sygnału na drodze do odbiornika, dlatego 48 dBμV jest uważany za optymalny, aby zapewnić niezawodny i wysokiej jakości odbiór sygnału telewizyjnego w systemach cyfrowych. Warto również dodać, że przy ustawianiu anteny oraz projektowaniu systemów telewizyjnych, stosowanie się do standardów takich jak DVB-T (Digital Video Broadcasting - Terrestrial) oraz ich wymagań dotyczących poziomu sygnału jest kluczowe dla uzyskania optimalnych warunków pracy systemu.

Pytanie 17

Jaką rolę pełni program debugger?

A. Generuje kod maszynowy na podstawie kodu źródłowego
B. Przekształca funkcję logiczną w układ funkcjonalny
C. Umożliwia uruchomienie programu i identyfikację błędów w nim
D. Konwertuje kod napisany w jednym języku na odpowiednik w innym języku
Debugger to narzędzie, które odgrywa kluczową rolę w procesie tworzenia oprogramowania, umożliwiając programistom uruchamianie ich kodu w kontrolowanych warunkach oraz wykrywanie błędów. Główne funkcje debuggera obejmują możliwość zatrzymywania wykonania programu w określonych punktach (tzw. breakpointy), co pozwala na analizę stanu zmiennych oraz śledzenie przepływu wykonywania programu. Dzięki temu programiści mogą zidentyfikować, dlaczego dany fragment kodu nie działa zgodnie z oczekiwaniami. Na przykład, jeśli program nie zwraca oczekiwanego wyniku, debugger umożliwia analizę wartości zmiennych w momencie przerywania działania program, co jest nieocenionym wsparciem w diagnozowaniu problemów. W praktyce, używanie debuggera jest zgodne z najlepszymi praktykami inżynierii oprogramowania, które zalecają testowanie oraz poprawianie kodu w iteracyjnym cyklu życia projektu. Dodatkowo, nowoczesne IDE (Integrated Development Environment) często integrują funkcje debugowania, co ułatwia programistom efektywne usuwanie błędów na wczesnych etapach rozwoju oprogramowania.

Pytanie 18

Obniżenie stałej czasowej T w regulatorze PI skutkuje

A. obniżeniem przeregulowania oraz wydłużeniem czasu regulacji
B. podwyższeniem przeregulowania oraz obniżeniem czasu regulacji
C. obniżeniem przeregulowania oraz obniżeniem czasu regulacji
D. podwyższeniem przeregulowania oraz wydłużeniem czasu regulacji
Odpowiedź, że zmniejszenie stałej czasowej T w regulatorze PI prowadzi do zwiększenia przeregulowania oraz zmniejszenia czasu regulacji, jest poprawna. Zmniejszenie T skutkuje szybszą reakcją regulatora na zmiany w systemie, co przekłada się na krótszy czas regulacji. W praktycznych zastosowaniach inżynieryjnych, takich jak systemy automatyki przemysłowej, skrócony czas regulacji jest kluczowy dla osiągnięcia stabilności i wydajności procesu. Przykładowo, w systemach HVAC (ogrzewanie, wentylacja, klimatyzacja) zastosowanie regulatora PI z mniejszą stałą czasową T pozwala na szybsze dostosowywanie temperatury i wilgotności w pomieszczeniach, co zwiększa komfort użytkowników. Jednakże, zbyt szybka reakcja może prowadzić do wystąpienia przeregulowania, co jest zjawiskiem, w którym system przekracza wartość docelową przed ustabilizowaniem się, co może prowadzić do nieefektywności i nawet uszkodzenia sprzętu. Dlatego ważne jest, aby przy projektowaniu regulatorów PI kierować się zasadami dobrych praktyk inżynieryjnych, zapewniając odpowiednie dobieranie stałych czasowych w kontekście konkretnego zastosowania.

Pytanie 19

Aby dwukrotnie zmniejszyć wzmocnienie członu inercyjnego pierwszego rzędu z transmitancją G(s) = k / (1 + sT), konieczne jest

A. zmniejszyć wartość k dwukrotnie
B. zmniejszyć wartość T dwukrotnie
C. podwoić wartość T
D. podwoić wartość k
Aby dwukrotnie zmniejszyć wzmocnienie członu inercyjnego pierwszego rzędu opisanego transmitancją G(s) = k / (1 + sT), należy zmniejszyć wzmocnienie k o połowę. Transmitancja systemu pokazuje, że wzmocnienie k jest kluczowym parametrem wpływającym na odpowiedź systemu. Zmniejszając k, zmniejszamy amplitudę odpowiedzi, co odpowiada zmniejszeniu wzmocnienia systemu. Przykładem zastosowania tej zmiany może być regulacja kontrolera PID w automatyce, gdzie obniżenie wzmocnienia w celu redukcji oscylacji lub przechyłów w odpowiedzi systemu może być konieczne, aby osiągnąć stabilność. W praktyce, zmniejszenie wzmocnienia pozwala na lepsze dopasowanie odpowiedzi systemu do oczekiwanego zachowania, co jest zgodne z zasadami projektowania systemów sterowania, gdzie dąży się do uzyskania stabilnej i precyzyjnej regulacji. Warto również zauważyć, że zmniejszając k, system staje się mniej czuły na zakłócenia, co jest istotne w wielu aplikacjach inżynieryjnych.

Pytanie 20

Przepustowość transferu danych w sieci wynosząca 256 kb/s odpowiada wartości

A. 8kB/s
B. 32kB/s
C. 16kB/s
D. 64kB/s
Odpowiedź 32kB/s jest prawidłowa, ponieważ 1 bajt (B) składa się z 8 bitów (b). Aby przeliczyć prędkość transferu z kilobitów na kilobajty, należy podzielić wartość w kilobitach przez 8, ponieważ 8 bitów tworzy 1 bajt. Zatem, 256 kb/s podzielone przez 8 daje 32 kB/s. Przykładowo, w przypadku pobierania pliku o wielkości 32 kB z prędkością 256 kb/s, czas pobierania wyniesie zaledwie 1 sekundy. W praktyce, znajomość tej konwersji jest kluczowa dla projektantów sieci oraz inżynierów zajmujących się optymalizacją wydajności transferu danych. Przykładowo, w kontekście monitorowania przepustowości sieci, umiejętność szybkiego przeliczania jednostek pozwala na lepszą ocenę efektywności transferu oraz identyfikację potencjalnych wąskich gardeł w komunikacji sieciowej.

Pytanie 21

Standard umożliwiający bezprzewodową, optyczną transmisję danych zawiera interfejs

A. LoRa
B. IrDa
C. Bluetooth
D. WiFi
IrDa, czyli Infrared Data Association, to standard, który rzeczywiście zapewnia bezprzewodową, optyczną transmisję danych. W przeciwieństwie do innych standardów, takich jak Bluetooth, WiFi czy LoRa, które operują na falach radiowych, IrDa korzysta z podczerwieni do przesyłania informacji. Technologia ta była szeroko stosowana w urządzeniach, takich jak telefony komórkowe, laptopy czy drukarki, zwłaszcza w latach 90. i na początku 2000. Zastosowanie IrDa wymaga bezpośredniego widzenia między urządzeniami, co oznacza, że odległość i kąt widzenia mają kluczowe znaczenie dla jakości połączenia. Chociaż obecnie technologia ta jest mniej popularna na rzecz bardziej uniwersalnych standardów, takich jak Bluetooth, jej zalety obejmują niskie zużycie energii oraz bezpieczeństwo, ponieważ sygnał podczerwieni jest trudniejszy do przechwycenia niż fale radiowe. Warto także zauważyć, że IrDa był jednym z pierwszych standardów umożliwiających wymianę danych między urządzeniami bez użycia kabli, co miało ogromny wpływ na rozwój technologii mobilnych.

Pytanie 22

Jakiego przyrządu pomiarowego powinno się użyć do zmierzenia wartości skutecznej napięcia prostokątnego o częstotliwości 100 Hz?

A. Galwanometru do pomiaru napięcia stałego
B. Woltomierza AC bez opcji TRUE RMS
C. Woltomierza AC z opcją TRUE RMS
D. Galwanometru do pomiaru napięcia zmiennego
Woltomierz AC z funkcją TRUE RMS jest odpowiednim narzędziem do pomiaru wartości skutecznej napięcia przebiegu prostokątnego, zwłaszcza przy częstotliwości 100 Hz. Funkcja TRUE RMS (Root Mean Square) pozwala na dokładne określenie wartości skutecznej napięcia, niezależnie od kształtu jego przebiegu. W przypadku przebiegów prostokątnych, które mają wyraźnie zdefiniowane wartości szczytowe, tradycyjne woltomierze AC bez funkcji TRUE RMS mogą dawać zafałszowane wyniki, ponieważ są zaprojektowane do pomiaru przebiegów sinusoidalnych. Użycie woltomierza z funkcją TRUE RMS jest zgodne z najlepszymi praktykami w pomiarach elektrycznych, co zapewnia rzetelność wyników. Przykładowo, w zastosowaniach przemysłowych, gdzie często spotyka się różnorodne kształty przebiegów napięcia, posługiwanie się woltomierzem TRUE RMS jest kluczowe dla precyzyjnej analizy parametrów elektrycznych urządzeń, takich jak silniki elektryczne czy generatory. Takie podejście zwiększa efektywność diagnostyki i pozwala na lepsze zarządzanie energią.

Pytanie 23

Aby wymienić uszkodzony rezystor, należy

A. przygotować rezystor o tych samych wymiarach
B. zmierzyć jego rezystancję
C. przygotować rezystor o rezystancji o 50% mniejszej
D. odczytać wartość jego rezystancji z dokumentacji lub schematu
Aby prawidłowo wymienić uszkodzony rezystor, kluczowym krokiem jest odczytanie wartości jego rezystancji ze schematu lub dokumentacji. Taki dokument zawiera szczegółowe informacje na temat wszystkich komponentów elektronicznych w danym układzie, w tym ich specyfikacji, takich jak wartość rezystancji, tolerancja oraz moc znamionowa. Stosując się do schematu, możemy uniknąć zastosowania niewłaściwego rezystora, co mogłoby doprowadzić do dalszych uszkodzeń w układzie. W praktyce, rezystory są często klasyfikowane według standardowych kodów kolorów, które również mogą być wykorzystane do szybkiej identyfikacji ich wartości. Warto także pamiętać, że zastosowanie rezystora o nieodpowiedniej rezystancji może wpłynąć na działanie całego obwodu, prowadząc do nieprawidłowego funkcjonowania urządzenia. Dlatego precyzyjne odczytywanie dokumentacji i schematów jest częścią dobrych praktyk w elektronice, która zapewnia niezawodność i bezpieczeństwo systemów elektronicznych.

Pytanie 24

W specyfikacji technicznej zasilacza podano, że współczynnik tętnień kt < 2%. Współczynnik tętnień zdefiniowano jako stosunek wartości skutecznej składowej zmiennej do wartości średniej przebiegu. Jaką wartość ma ten współczynnik i czy spełnia on normy techniczne zasilacza, jeżeli przebieg wyjściowy zasilacza można przedstawić równaniem uwyj(t) = 1 0 + 0,1√2sin(628t) ?

A. 3%, nie
B. 3%, tak
C. 1%, tak
D. 1%, nie
Prawidłowa odpowiedź wynika z analizy wzoru przebiegu wyjściowego zasilacza: uwyj(t) = 1 0 + 0,1√2sin(628t). Aby obliczyć współczynnik tętnień (kt), musimy najpierw określić wartość skuteczną składowej zmiennej oraz wartość średnią. Wartość skuteczna składowej zmiennej sinusoidalnej, w tym przypadku, wynosi 0,1√2, co odpowiada 0,1414. Wartość średnia tej samej składowej sinusoidalnej wynosi 0, ponieważ dla sinusoidy, średnia z jednego pełnego okresu równoważy się do zera. Z tego powodu współczynnik tętnień obliczamy jako: kt = (0,1414 / 1) * 100% = 14,14%. W praktyce dla zasilaczy wymagany współczynnik tętnień powinien być mniejszy niż 2%, co oznacza, że nasz wynik 1% jest znacznie poniżej tego progu, a zatem spełnia wymagania techniczne. Takie zasilacze są odpowiednie do zasilania wrażliwych urządzeń elektronicznych, gdzie stabilność napięcia jest kluczowa dla ich prawidłowego działania. Przykładem mogą być systemy audio czy urządzenia pomiarowe, które wymagają wysokiej jakości zasilania.

Pytanie 25

W systemie z wzmacniaczem oraz głośnikiem kluczowe jest z perspektywy efektywności układu, aby impedancja głośnika

A. była jak największa
B. była równa impedancji wyjściowej wzmacniacza
C. była jak najmniejsza
D. przekraczała impedancję wyjściową wzmacniacza
Poprawną odpowiedzią jest "równa impedancji wyjściowej wzmacniacza", gdyż zasadniczym celem w projektowaniu systemów audio jest osiągnięcie maksymalnej efektywności energetycznej. Zasada dopasowania impedancji wskazuje, że impedancja głośnika powinna być zgodna z impedancją wyjściową wzmacniacza, co minimalizuje straty energii. W praktyce, jeśli impedancja głośnika jest na poziomie 8 Ohm, a wzmacniacz ma impedancję wyjściową również 8 Ohm, to cała moc wyjściowa wzmacniacza zostanie przekazana do głośnika, co zapewnia optymalne wykorzystanie energii i jakość dźwięku. Niedopasowanie impedancji prowadzi do strat mocy, co skutkuje niższą głośnością oraz zniekształceniami dźwięku. Dlatego ważne jest, aby przy wyborze głośników do wzmacniaczy, uwzględniać parametry techniczne, takie jak impedancja, zgodnie z zaleceniami producentów sprzętu audio. Warto również pamiętać, że standardy branżowe, takie jak AES (Audio Engineering Society), promują stosowanie dopasowania impedancji dla poprawy jakości dźwięku w systemach audio.

Pytanie 26

Jaką funkcję pełni soczewka Fresnela w czujkach ruchu typu PIR?

A. ma za zadanie skupiać wiązki detekcji na pyroelemencie
B. gwarantuje efektywne działanie systemu przeciwsabotażowego
C. emituje promieniowanie podczerwone w stronę intruza
D. jest komponentem wyłącznie dekoracyjnym
Soczewka Fresnela w czujkach ruchu typu PIR (Passive Infrared) pełni kluczową rolę jako element skupiający wiązki detekcji na pyroelemencie. Jej konstrukcja, składająca się z wielu segmentów, pozwala na efektywne zbieranie promieniowania podczerwonego emitowanego przez obiekty w ruchu. Dzięki zastosowaniu soczewek Fresnela, czujniki PIR mogą wykrywać ruch w szerszym zakresie i z większą precyzją, co jest szczególnie istotne w systemach zabezpieczeń. Przykładowo, w zastosowaniach domowych lub komercyjnych, soczewki te mogą być używane w alarmach antywłamaniowych, a także w automatycznych systemach oświetleniowych, które włączają się tylko wtedy, gdy wykryją obecność osoby. W praktyce oznacza to, że czujniki z soczewkami Fresnela są bardziej niezawodne i efektywne w wykrywaniu intruzów, co zwiększa bezpieczeństwo obiektów. Standardy branżowe, takie jak EN 50131, podkreślają znaczenie efektywności detekcji w systemach alarmowych, co czyni soczewki Fresnela niezbędnym elementem nowoczesnych rozwiązań zabezpieczających.

Pytanie 27

Mostek wykorzystywany jest do pomiaru parametrów cewek indukcyjnych?

A. Wheatstone'a
B. Wiena
C. Thomsona
D. Maxwella
Mostek Maxwella to naprawdę fajny układ do pomiarów cewek. Dzięki niemu można zmierzyć różne parametry, jak indukcyjność czy rezystancję, a wszystko to w miarę dokładnie. Działa na zasadzie równowagi, więc można określić indukcyjność bez zakłócania innych wartości w obwodzie. W laboratoriach elektronicznych i inżynieryjnych jest wykorzystywany do testowania różnych komponentów, jak transformatory czy dławiki. Ważne jest też, że mostek Maxwella spełnia normy IEC i IEEE, co daje nam pewność, że pomiary są rzetelne. W porównaniu do mostka Wheatstone'a, który skupia się głównie na rezystancji, mostek Maxwella ma szersze możliwości, jeśli chodzi o analizę cewek. I jeszcze jedna rzecz – dzięki pomiarom można ocenić, jak czynniki jakości (Q) wpływają na wydajność układów indukcyjnych, co jest naprawdę istotne w projektowaniu obwodów elektronicznych. Moim zdaniem, jeśli zajmujesz się elektroniką, warto znać ten mostek.

Pytanie 28

Ile wejść adresowych posiada multiplekser 8-wejściowy?

A. 5 wejść adresowych
B. 2 wejścia adresowe
C. 4 wejścia adresowe
D. 3 wejścia adresowe
Multiplekser 8-wejściowy wymaga 3 wejść adresowych, aby skutecznie zidentyfikować jeden z ośmiu dostępnych sygnałów wejściowych. Każde wejście adresowe może przyjąć wartość binarną 0 lub 1, co oznacza, że 3 bity adresowe mogą reprezentować 2^3 = 8 kombinacji, co idealnie odpowiada liczbie sygnałów wejściowych w tym przypadku. Przykładem zastosowania multipleksera 8-wejściowego jest w systemach cyfrowych, gdzie może on być używany do wyboru jednego z wielu sygnałów w systemach telekomunikacyjnych lub w obwodach logicznych. Standardy takie jak IEEE 802.3 dla Ethernetu wykorzystują podobne mechanizmy do zarządzania ruchem danych. Dobre praktyki w projektowaniu systemów cyfrowych sugerują stosowanie multiplekserów w celu uproszczenia architektury i minimalizacji ilości wymaganych połączeń, co zapewnia większą elastyczność i łatwiejsze zarządzanie komponentami systemu.

Pytanie 29

Aby zweryfikować prawidłowość działania generatora funkcyjnego, należy wykorzystać

A. oscyloskopu
B. watomierza
C. amperomierza
D. omomierza
Oscyloskop jest narzędziem niezbędnym do analizy sygnałów elektrycznych, w tym tych generowanych przez generator funkcyjny. Umożliwia wizualizację przebiegów napięcia w funkcji czasu, co pozwala na ocenę kształtu, częstotliwości oraz amplitudy sygnału. W praktyce, podczas testowania generatora funkcyjnego, oscyloskop pozwala na identyfikację zniekształceń sygnału, które mogą wpływać na jego poprawność działania. Na przykład, jeśli sygnał powinien mieć kształt fali sinusoidalnej, oscyloskop pozwala na natychmiastowe zidentyfikowanie ewentualnych zniekształceń, co jest kluczowe w aplikacjach audio oraz telekomunikacyjnych. Stosowanie oscyloskopów zgodnie z normami branżowymi, takimi jak IEC 61010, zapewnia bezpieczeństwo i dokładność pomiarów. Warto również zaznaczyć, że w zaawansowanych zastosowaniach oscyloskop umożliwia analizę sygnałów wielokanałowych, co jest istotne przy testowaniu układów cyfrowych i analogowych w nowoczesnych systemach elektronicznych.

Pytanie 30

Do przetwornicy 12 V DC/ 230 V AC 1 000 W podłączono działający silnik indukcyjny o mocy 120 W. Silnik nie funkcjonuje prawidłowo. Żarówka o mocy 200 W podłączona do tej przetwornicy działa poprawnie. Zmierzona wartość napięcia wyjściowego przetwornicy wynosi 229 V. Na podstawie obserwacji oraz wyniku pomiaru można wnioskować, że

A. akumulator zasilający przetwornicę jest wyczerpany
B. przetwornica nie generuje przebiegu sinusoidalnego
C. napięcie wyjściowe jest zbyt wysokie
D. przetwornica dysponuje zbyt niską mocą, aby zasilić silnik
Silnik indukcyjny wymaga do prawidłowego działania napięcia o określonym przebiegu, najlepiej sinusoidalnym. Przetwornice z reguły powinny wytwarzać taki przebieg, aby urządzenia elektryczne mogły pracować bez zakłóceń. W przypadku silników indukcyjnych, ich działanie opiera się na zjawisku magnetycznym, które jest silnie uzależnione od jakości dostarczonego napięcia. Jeśli przetwornica nie generuje przebiegu sinusoidalnego, lecz na przykład przebieg prostokątny lub modyfikowany, może to prowadzić do nieprawidłowej pracy silnika. Przykładem praktycznym jest sytuacja, gdy używamy przetwornicy, aby zasilać urządzenia wymagające stabilnego napięcia, jak komputery czy silniki, ponieważ niewłaściwy przebieg może prowadzić do uszkodzeń urządzeń. Zgodnie z normami, takimi jak IEC 61000, jakość napięcia i jego przebieg są kluczowe dla zapewnienia niezawodności działania urządzeń. W przypadku silników indukcyjnych, które mogą być bardziej wrażliwe na jakość zasilania, zaleca się użycie przetwornic o czystym przebiegu sinusoidalnym.

Pytanie 31

Ile bitów ma adres IP zapisany w standardzie protokołu IPv4?

A. 32 bity
B. 12 bitów
C. 8 bitów
D. 16 bitów
Adres IP w formacie protokołu IPv4 jest reprezentowany jako 32 bity, co oznacza, że składa się z czterech oktetów, z których każdy ma 8 bitów. To podejście jest zgodne ze standardem określonym w dokumencie RFC 791, który definiuje protokół IPv4. Dzięki 32-bitowej przestrzeni adresowej możliwe jest wygenerowanie 2^32, czyli 4 294 967 296 unikalnych adresów IP. Ta liczba jest kluczowa w kontekście globalnych sieci komputerowych, umożliwiając identyfikację urządzeń podłączonych do Internetu. W praktyce, adresy IPv4 są zwykle zapisywane w postaci dziesiętnej, oddzielonej kropkami, na przykład 192.168.1.1. W obliczeniach oraz projektowaniu sieci, zrozumienie struktury adresacji IPv4 jest niezbędne do efektywnego zarządzania zasobami sieciowymi, a także do implementacji takich technik jak NAT (Network Address Translation), które pozwalają na efektywne wykorzystanie dostępnych adresów IP.

Pytanie 32

Na podstawie fragmentu instrukcji zamka zbliżeniowego określ sygnalizację informującą, że urządzenie jest w trybie programowania.

SYGNALIZACJA DŹWIĘKOWA I OPTYCZNA
Status działaniaŚwiatło czerwoneŚwiatło zieloneŚwiatło niebieskieBrzęczyk
Strefa 1, odblokowana-Jasne-Krótki dzwonek
Strefa 2, odblokowana--JasneKrótki dzwonek
ZasilanieJasne--Długi dzwonek
GotowośćZapala się powoli---
Naciśnięcie klawisza---Krótki dzwonek
Operacja zakończona pomyślnie--JasnyDługi dzwonek
Operacja zakończona niepowodzeniem---3 krótkie dzwonki
Wprowadzenie trybu programowaniaJasny--Długi dzwonek
Wprowadzony tryb programowaniaJasnyJasny--
Wyjście z trybu programowaniaZapala się powoli--Długi dzwonek
AlarmZapala się szybko--Alarm

A. Trzy krótkie dzwonki, wyłączone diody LED.
B. Włączone diody LED czerwona i niebieska.
C. Szybkie zapalanie diody LED czerwonej.
D. Wyłączona dioda LED niebieska, bez brzęczyka.
Jak widzisz, gdy niebieska dioda LED jest wyłączona i brzęczyk też nie działa, to znaczy, że urządzenie jest w trybie programowania. To bardzo ważne, bo w systemach zbliżeniowych możemy wtedy dostosować różne ustawienia, na przykład dodać nowych użytkowników czy zmienić kody dostępu. Musimy dobrze rozumieć, w jakim stanie jest nasze urządzenie, bo to kluczowe dla bezpieczeństwa. Na przykład w automatyce budynkowej, jeśli źle zrozumiemy, co sygnalizują diody LED lub dźwięki, możemy przez przypadek zmienić coś, co wpłynie na cały system. Dlatego warto znać te sygnały, bo to duża część szkolenia dla techników, którzy zajmują się instalowaniem i naprawianiem zabezpieczeń zbliżeniowych. To naprawdę istotna kwestia w codziennej pracy.

Pytanie 33

Skrót odnoszący się do zakresu fal radiowych o częstotliwości od 30 MHz do 300 MHz z modulacją FM to

A. LF
B. VHF
C. ULF
D. MF
Odpowiedź VHF, czyli Very High Frequency, odnosi się do pasma fal radiowych o częstotliwości od 30 MHz do 300 MHz. Jest to kluczowy zakres częstotliwości, który znajduje szerokie zastosowanie w komunikacji radiowej, w tym w nadawaniu telewizyjnym, radiu FM oraz w systemach komunikacji bezprzewodowej. Przykładem zastosowania VHF są stacje telewizyjne, które nadawane są w tym paśmie, zapewniając wysoką jakość sygnału i zasięg. W praktyce, urządzenia działające w zakresie VHF, takie jak transceivery i odbiorniki, muszą spełniać określone normy techniczne, aby zapewnić efektywność i niezawodność działania w tym zakresie. Warto również zauważyć, że VHF jest mniej podatne na zakłócenia ze strony przeszkód terenowych, co czyni je bardziej efektywnym w zastosowaniach mobilnych i na otwartych przestrzeniach. Dlatego VHF jest preferowane w wielu zastosowaniach, od komunikacji morskiej po systemy awaryjne, co pokazuje jego znaczenie w nowoczesnej technologii komunikacyjnej.

Pytanie 34

Jakiego typu kabel wykorzystuje się do przesyłania cyfrowych sygnałów audio zgodnie ze standardem TOSLINK?

A. Kabel koncentryczny
B. Kabel skrętkowy
C. Kabel światłowodowy
D. Kabel symetryczny
Odpowiedź 'światłowodowy' jest poprawna, ponieważ TOSLINK (Toshiba Link) to standard technologii audio, który pozwala na przesyłanie cyfrowych sygnałów audio za pomocą światłowodów. Kabel światłowodowy jest w stanie przesyłać dane szybko i z minimalnymi stratami sygnału, co czyni go idealnym rozwiązaniem w przypadku przesyłania audio wysokiej jakości, takiego jak dźwięk przestrzenny czy sygnał bezstratny. Przykłady zastosowania kabla TOSLINK obejmują połączenia między odtwarzaczami Blu-ray, telewizorami i systemami audio, co zapewnia czysty dźwięk. Dobre praktyki branżowe zalecają korzystanie z kabli światłowodowych w zastosowaniach, gdzie istotna jest jakość dźwięku oraz minimalizacja zakłóceń elektromagnetycznych. Dodatkowo, kable światłowodowe są odporne na wpływ zakłóceń zewnętrznych, co jest istotne w środowiskach z dużą ilością urządzeń elektronicznych.

Pytanie 35

Dokumentacja serwisowa odbiornika radiowego nie zawiera

A. schematu blokowego
B. informacji o cenie odbiornika
C. schematu ideowego
D. opisu panelu przedniego
Poprawna odpowiedź wskazuje, że instrukcja serwisowa odbiornika radiowego nie zawiera informacji o cenie odbiornika. W kontekście serwisowania urządzeń elektronicznych, instrukcje serwisowe mają na celu dostarczenie technicznych i praktycznych wskazówek dotyczących napraw, konserwacji i diagnostyki. Zawierają one szczegółowe opisy konstrukcji, takie jak opis płyty czołowej, schematy blokowe i ideowe, które są kluczowe dla technika w procesie serwisowania. Informacja o cenie, chociaż istotna z perspektywy marketingowej, nie jest częścią dokumentacji technicznej. Przykładowo, podczas naprawy odbiornika radiowego technik może odnosić się do schematu ideowego, aby zrozumieć, jak poszczególne obwody są połączone i jak działają, co jest wyjątkowo istotne w diagnozowaniu problemów.

Pytanie 36

Tranzystor pracuje w układzie wspólnego emitera. Podstawowym zadaniem zaznaczonego na rysunku kondensatora C w tym układzie jest

Ilustracja do pytania
A. odseparowanie składowej stałej napięcia wyjściowego.
B. realizacja pętli ujemnego sprzężenia zwrotnego.
C. minimalizacja wpływu tętnień napięcia zasilającego.
D. ograniczenie od góry pasma przenoszenia układu.
Wiesz, kondensator C w układzie wspólnego emitera to naprawdę ważny element. Jego rola polega na tym, żeby oddzielić składową stałą od zmiennej. Dzięki niemu sygnały zmienne mogą swobodnie przechodzić, a składowa stała zostaje zablokowana. To jest super istotne, zwłaszcza w wzmacniaczach. Jak masz różne stopnie wzmacniacza, to każdy z nich może działać na swoim punkcie pracy, co w praktyce przekłada się na lepszą jakość sygnału wyjściowego. A to ma znaczenie, zwłaszcza w audio, bo każdy chce mieć czystszy dźwięk. W projektach wzmacniaczy fajnie jest mieć takie kondensatory, bo pomagają w stabilizacji całego układu i zmniejszają zakłócenia. To jest zgodne z tym, co się robi w inżynierii elektronicznej. I wiesz, nowoczesne wzmacniacze operacyjne też często z tego korzystają, żeby wszystko działało jak najlepiej.

Pytanie 37

Obniżenie stałej czasowej Ti w regulatorze PI spowoduje

A. redukcję przeregulowania oraz wydłużenie czasu regulacji
B. redukcję przeregulowania oraz skrócenie czasu regulacji
C. wzrost przeregulowania oraz wydłużenie czasu regulacji
D. wzrost przeregulowania oraz skrócenie czasu regulacji
Zmniejszenie stałej czasowej Ti w regulatorze PI prowadzi do zwiększenia przeregulowania oraz zmniejszenia czasu regulacji, co jest wynikiem szybszej reakcji układu na zmiany sygnału wejściowego. W praktyce, niższa wartość Ti oznacza, że regulator PI będzie bardziej responsywny i reagować na błędy regulacji szybciej, co z kolei może prowadzić do overshoot'u, czyli przeregulowania. Przykładem zastosowania tej zasady może być regulacja temperatury w piecu przemysłowym. Szybsza reakcja na zmiany temperatury może jednoznacznie przyspieszyć proces grzania, ale jednocześnie może spowodować, że temperatura przekroczy pożądany poziom, co jest niepożądane. W inżynierii automatyzacji i przemysłowej, dobrym podejściem jest przeprowadzenie analizy systemu oraz dostosowanie Ti w kontekście całego układu, aby zminimalizować przeregulowanie, podczas gdy czas regulacji pozostaje na akceptowalnym poziomie. Takie praktyki są zgodne z metodyką PID tuning oraz standardami dotyczącymi regulacji procesów przemysłowych.

Pytanie 38

Jaką moc generuje rezystor o rezystancji 10 Ω, przez który przepływa prąd o natężeniu 100 mA?

A. 1 W
B. 10 W
C. 0,01 W
D. 0,1 W
Moc wydzielana w rezystorze można obliczyć korzystając z prawa Ohma oraz wzoru na moc elektryczną. Prawo Ohma mówi, że napięcie (U) na rezystorze jest równe iloczynowi rezystancji (R) i natężenia prądu (I), czyli U = R * I. W naszym przypadku mamy R = 10 Ω i I = 0,1 A (100 mA). Z tego wynika, że U = 10 Ω * 0,1 A = 1 V. Z kolei moc (P) wydzielająca się w rezystorze obliczamy ze wzoru P = U * I. Podstawiając wartości, otrzymujemy P = 1 V * 0,1 A = 0,1 W. Tego typu obliczenia są niezwykle istotne w inżynierii elektrycznej, szczególnie w projektowaniu i analizie obwodów elektrycznych, gdzie poprawne określenie mocy jest kluczowe dla doboru komponentów, ich chłodzenia oraz efektywności energetycznej. W praktyce, wiedza o mocy wydzielanej w rezystorze pomaga w zapobieganiu przegrzewaniu się elementów obwodu i zapewnienia ich długotrwałej pracy zgodnie z normami bezpieczeństwa i niezawodności.

Pytanie 39

W przypadku której z czujek do jej prawidłowego funkcjonowania nie jest konieczne posiadanie zewnętrznego (dodatkowego) źródła zasilania?

A. Zalania.
B. Dualnej.
C. Ruchu PIR.
D. Magnetycznej.
Czujka magnetyczna jest urządzeniem, które działa na zasadzie detekcji zmian w polu magnetycznym. Jej podstawowe zastosowanie polega na monitorowaniu otwarcia drzwi lub okien, co czyni ją popularnym rozwiązaniem w systemach alarmowych. Co istotne, czujki te z reguły wykorzystują magnes i styk, które mogą być zasilane z wewnętrznego źródła, co oznacza, że nie wymagają dodatkowego zewnętrznego zasilania. Tego typu rozwiązanie jest zgodne z najlepszymi praktykami w branży zabezpieczeń, ponieważ minimalizuje ryzyko przerwy w zasilaniu, co mogłoby prowadzić do fałszywych alarmów lub całkowitego braku reakcji systemu na zagrożenie. Przykładowo, w budynkach mieszkalnych czujki magnetyczne są często instalowane na oknach i drzwiach, co pozwala na efektywne zabezpieczenie przed włamaniami. Warto również zauważyć, że czujki magnetyczne mogą być stosowane w połączeniu z innymi systemami zabezpieczeń, co zwiększa ich funkcjonalność i efektywność działania, a także komfort użytkowania.

Pytanie 40

W jakim urządzeniu wykorzystuje się przetwornik cyfrowo-analogowy?

A. W generatorze RC
B. W odtwarzaczu CD
C. W mierniku cyfrowym
D. W magnetowidzie VHS
Odtwarzacz CD wykorzystuje przetwornik cyfrowo-analogowy (DAC) do konwersji sygnału cyfrowego na analogowy, co jest niezbędne dla uzyskania dźwięku słyszalnego przez głośniki. Odtwarzacze CD zapisują muzykę w formacie cyfrowym, wykorzystując kodowanie PCM (Pulse Code Modulation), co oznacza, że dźwięk jest reprezentowany jako ciąg bitów. Przetwornik DAC odgrywa kluczową rolę w tym procesie, zamieniając te bity na sygnał analogowy, który następnie można wzmocnić i odtworzyć przez głośniki. To zastosowanie jest zgodne z najlepszymi praktykami w branży audio, gdzie jakość konwersji DAC wpływa bezpośrednio na jakość odtwarzanego dźwięku. Wysokiej jakości przetworniki DAC są często używane w sprzęcie audio wysokiej klasy, a ich znaczenie rośnie w kontekście nowoczesnych formatów audio, takich jak Hi-Res Audio. Przykładami zastosowania DAC w odtwarzaczach CD mogą być urządzenia z możliwością odtwarzania plików audio w formacie FLAC, które wymagają dokładnej konwersji w celu uzyskania pełnej jakości dźwięku.