Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 30 maja 2025 12:40
  • Data zakończenia: 30 maja 2025 12:50

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Czujnik indukcyjny zbliżeniowy

A. reaguje, gdy do sensora zbliżają się obiekty metalowe
B. informuje o kontakcie z zewnętrznym przedmiotem
C. informuje o odległości od zbliżającego się obiektu
D. reaguje, gdy do sensora zbliżają się obiekty nieprzezroczyste
Indukcyjny sensor zbliżeniowy jest urządzeniem, które reaguje na obecność metalowych obiektów w swoim polu detekcji. Działa na zasadzie generowania pola elektromagnetycznego, które zmienia się w obecności metalu. Kiedy metalowy obiekt zbliża się do sensora, jego pole zmienia właściwości, co powoduje, że sensor uruchamia sygnał wyjściowy. Tego typu czujniki są często wykorzystywane w automatyce przemysłowej, na przykład do wykrywania pozycji narzędzi w maszynach, kontroli obecności elementów w liniach produkcyjnych, a także w systemach bezpieczeństwa, gdzie mają za zadanie monitorować dostęp do zamkniętych przestrzeni. Dzięki ich odporności na zewnętrzne warunki, takie jak zanieczyszczenia czy wilgoć, są to jedne z najczęściej stosowanych sensorów w trudnych warunkach przemysłowych. Ponadto, zgodnie z normami IEC 60947-5-2, czujniki indukcyjne powinny być odpowiednio zainstalowane, by zapewnić ich niezawodną pracę oraz bezpieczeństwo operacyjne.

Pytanie 2

Jakie urządzenie jest używane do mierzenia prędkości obrotowej wału silnika?

A. czujnik termoelektryczny
B. prądnica tachometryczna
C. potencjometr obrotowy
D. mostek tensometryczny
Prądnica tachometryczna jest urządzeniem wykorzystywanym do pomiaru prędkości obrotowej wału silnika, które działa na zasadzie indukcji elektromagnetycznej. Jej działanie opiera się na generacji napięcia proporcjonalnego do prędkości obrotowej, co czyni ją niezwykle przydatną w monitorowaniu pracy maszyn. Prądnice tachometryczne znajdują zastosowanie w różnych dziedzinach, takich jak automatyka przemysłowa, kontrola procesów technologicznych oraz systemy napędowe. Dzięki nim można dokładnie kontrolować prędkość obrotową silników, co jest kluczowe dla utrzymania stabilności pracy urządzeń oraz minimalizacji zużycia energii. Współczesne prądnice tachometryczne są często zintegrowane z systemami sterowania, co pozwala na automatyzację procesów i zwiększenie efektywności produkcji. Używane są także w aplikacjach wymagających precyzyjnego pomiaru, takich jak robotyka czy systemy CNC, gdzie dokładność i niezawodność pomiarów są krytyczne.

Pytanie 3

Napięcie składa się z dwóch elementów: zmiennej sinusoidalnej oraz stałej. Aby zmierzyć stałą część tego napięcia, można użyć oscyloskopu w trybie

A. ADD
B. AC
C. GND
D. DC
Wybór jednego z pozostałych trybów oscyloskopu, takich jak AC, GND czy ADD, prowadzi do błędnej interpretacji składowych napięcia. W trybie AC oscyloskop filtruje składową stałą, co oznacza, że użytkownik nie zobaczy wartości stałej napięcia, a jedynie zmienną część sygnału. To uniemożliwia dokładne pomiary, gdyż w wielu aplikacjach inżynieryjnych istotna jest analiza zarówno składowej stałej, jak i zmiennej. Z kolei tryb GND wyłącza sygnał całkowicie, co również nie pozwala na obserwację jakichkolwiek składowych napięcia. Wybór trybu ADD może wprowadzać w błąd, ponieważ nie służy on do wydobywania składowych stałych, a do dodawania dwóch sygnałów. Typowe błędy myślowe obejmują utożsamianie pomiaru sygnałów AC z pomiarem całkowitym napięcia, co może prowadzić do fałszywych wniosków na temat działania układów. Właściwe rozumienie trybu DC na oscyloskopie jest kluczowe dla efektywnej diagnostyki i analizy systemów elektronicznych, a także dla przestrzegania standardów branżowych, które podkreślają znaczenie całościowego podejścia do pomiarów.

Pytanie 4

Jakie są etapy podstawowych cykli działania sterownika PLC?

A. Inicjalizacja sterownika, aktualizacja stanu wyjść, aktualizacja stanu wejść, wykonanie programu
B. Aktualizacja stanu wyjść, inicjalizacja sterownika, wykonanie programu, uaktualnianie stanu wejść
C. Inicjalizacja sterownika, aktualizacja stanu wejść, wykonanie programu, aktualizacja stanu wyjść
D. Aktualizacja stanu wejść, inicjalizacja sterownika, aktualizacja stanu wyjść, wykonanie programu
Wybór niewłaściwych sekwencji cykli pracy sterownika PLC może prowadzić do licznych błędów w działaniu systemu, co ma bezpośredni wpływ na efektywność procesów automatyki. W przypadku pierwszej z niepoprawnych odpowiedzi, sekwencja zaczyna się od aktualizacji stanu wyjść przed odczytem stanu wejść, co jest fundamentalnym błędem. Sterownik PLC powinien najpierw poznać aktualny stan otoczenia (wejść), zanim podejmie decyzje, które wyjścia należy aktywować. W drugim przykładzie, sekwencja rozpoczyna się od aktualizacji stanu wejść, co jest poprawne, ale inicjalizacja sterownika powinna zająć miejsce przed tym krokiem, aby zapewnić, że wszystkie parametry są odpowiednio ustawione. Trzecia odpowiedź pokazuje, że aktualizacja stanu wyjść następuje przed wykonaniem programu, co jest sprzeczne z zasadą logiki sterowania, gdyż decyzje dotyczące wyjść powinny być oparte na obliczeniach i analizach przeprowadzonych w trakcie wykonania programu. Wreszcie, ostatnia odpowiedź wprowadza dodatkowy chaos, gdyż zaczyna się od aktualizacji stanu wyjść oraz nie uwzględnia sekwencji wykonania programu. Takie podejścia mogą prowadzić do nieprzewidywalnych rezultatów, błędów w automatyce oraz problemów z bezpieczeństwem. Kluczowe jest, aby zrozumieć, że każdy z tych kroków jest od siebie zależny, a ich odpowiednia sekwencja jest fundamentem prawidłowego działania systemów sterowania.

Pytanie 5

Zbyt mała lepkość oleju hydraulicznego może być wynikiem zbyt

A. niskiej ściśliwości oleju
B. niskiej temperatury oleju
C. wysokiej temperatury oleju
D. wysokiego ciśnienia oleju
Wysokie ciśnienie oleju hydraulicznego nie wpływa na jego lepkość w sposób, który prowadziłby do jej znacznego zmniejszenia. Ciśnienie w układzie hydraulicznym ma na celu przede wszystkim zapewnienie skutecznego przesyłu energii, a nie determinowanie właściwości reologicznych oleju. W kontekście układów hydraulicznych, zbyt wysokie ciśnienie może prowadzić do uszkodzeń elementów konstrukcyjnych, ale nie ma bezpośredniego związku z lepkością oleju jako taką. Niska ściśliwość oleju również nie jest czynnikiem wpływającym na jego lepkość. W rzeczywistości, ściśliwość odnosi się do zmiany objętości cieczy pod wpływem ciśnienia, co w większości przypadków nie ma istotnego wpływu na lepkość w normalnych warunkach pracy. Z kolei niska temperatura oleju może prowadzić do wzrostu lepkości, a nie jej spadku. Warto pamiętać, że lepkość oleju hydraulicznego jest zazwyczaj zmniejszana przez podwyższoną temperaturę, co jest zgodne z zasadami termodynamiki oraz reologii płynów. Dlatego identyfikowanie temperatury jako kluczowego czynnika w regulacji lepkości oleju hydraulicznego jest kluczowe dla zrozumienia działania układów hydraulicznych i ich prawidłowego funkcjonowania.

Pytanie 6

Aby ustalić wznios silnika indukcyjnego, należy wykonać pomiar

A. szerokości silnika oraz średnicy wirnika
B. wysokości silnika
C. odległości między osią wału a podstawą uchwytów silnika
D. średnicy stojana
Odległość między osią wału a podstawą łap silnika to naprawdę ważna sprawa, jeśli chodzi o wznios silnika indukcyjnego. W zasadzie pokazuje, jak ten silnik jest zamontowany w danym miejscu. Z tego wynika, na jakiej wysokości silnik jest w stosunku do jego osi obrotu, co ma spory wpływ na to, jak wszystko działa w całym układzie napędowym. Na przykład, jak wznios jest źle ustawiony, to może to spowodować, że silnik będzie dużo więcej zużywał energii i szybciej się psuł. W przemyśle, gdzie silniki indukcyjne są na porządku dziennym, na przykład w wentylacjach czy taśmach transportowych, dokładne pomiary wzniosu są niezbędne, żeby wszystko działało jak należy. Przydaje się też trzymanie się standardów, jak IEC 60034, bo to pomaga w montażu i eksploatacji silników elektrycznych.

Pytanie 7

Silnik liniowy przekształca

A. ruch obrotowy w ruch liniowy
B. energię mechaniczną w energię elektryczną
C. energię elektryczną w energię mechaniczną
D. ruch liniowy w ruch obrotowy
Wybór odpowiedzi, która sugeruje, że silnik liniowy zamienia ruch liniowy na ruch obrotowy, oparty jest na błędnym zrozumieniu zasad działania tych urządzeń. Silniki liniowe i obrotowe różnią się zasadniczo w sposobie generacji ruchu. Silnik liniowy prowadzi do powstania ruchu bezpośrednio wzdłuż osi, co eliminuje potrzebę konwersji ruchu obrotowego, jak ma to miejsce w tradycyjnych silnikach. Z kolei odpowiedzi sugerujące zamianę energii mechanicznej na energię elektryczną również wprowadzają w błąd, ponieważ silnik liniowy nie generuje energii elektrycznej, lecz ją konsumuje, aby wytworzyć ruch mechaniczny. Kolejna nieprawidłowa odpowiedź wskazuje na zamianę energii elektrycznej na mechaniczną, co jest poprawne, ale nie odnosi się do zasadniczej funkcji silnika liniowego. Kluczowym jest zrozumienie, że silniki liniowe są projektowane specjalnie do działania w linii prostej, co sprawia, że ich zastosowanie jest znacznie bardziej efektywne w sytuacjach wymagających precyzyjnych ruchów liniowych. Użytkownicy często mylą silniki liniowe z innymi typami silników, co prowadzi do nieporozumień w ich zastosowaniach oraz funkcjach. W praktyce, silniki liniowe są wykorzystywane w systemach automatyki, transportu i robotyki, gdzie ich unikalne właściwości przekształcania energii elektrycznej w ruch liniowy są kluczowe dla efektywności operacyjnej.

Pytanie 8

Ciecze hydrauliczne o podwyższonej odporności na ogień, wykorzystywane w miejscach narażonych na wybuch, to ciecze oznaczone symbolami

A. HPG, HTG, HT
B. HLP, HFA, HTG
C. HV, HLP, HLPD
D. HFA, HFC, HFD
Wybór innych odpowiedzi wiąże się z błędnym zrozumieniem klasyfikacji cieczy hydraulicznych oraz ich właściwości. Odpowiedzi HLP oraz HTG odnoszą się do cieczy, które nie mają właściwości trudnopalnych. HLP to oleje hydrauliczne, które mogą być palne i nie są przeznaczone do stosowania w środowiskach o podwyższonym ryzyku pożarowym. Również HTG to oleje typu 'thermo-glycol', które są wykorzystywane do systemów grzewczych, a nie jako cieczy hydraulicznych w warunkach zagrożenia eksplozją. Odpowiedzi takie jak HPG i HT mogą być mylone z cieczami trudnopalnymi, jednak nie odpowiadają standardom wymaganym dla aplikacji, gdzie bezpieczeństwo jest priorytetem. Często błędem myślowym jest przekonanie, że wszystkie oleje mogą być stosowane w każdym warunku, co prowadzi do niebezpiecznych sytuacji w miejscach, gdzie występuje potencjalne ryzyko zapłonu. W celu zapewnienia bezpieczeństwa, kluczowe jest, aby użytkownicy posiadali wiedzę na temat odpowiednich standardów oraz certyfikacji cieczy hydraulicznych, takich jak ISO 12922, które definiują wymagania dotyczące ich palności oraz zastosowania w specyficznych warunkach operacyjnych.

Pytanie 9

Podczas funkcjonowania urządzenia zaobserwowano nasilenie hałasu, spowodowane przez łożysko toczne. Odpowiednią metodą naprawy maszyny może być

A. wymiana całego łożyska
B. wymiana osłony łożyska
C. zmniejszenie luzów łożyska
D. zmniejszenie nadmiaru smaru w łożysku
Wymiana całego łożyska jest odpowiednim rozwiązaniem w przypadku stwierdzenia zwiększonego hałasu, gdyż najczęściej oznacza to, że łożysko uległo uszkodzeniu lub zużyciu. W praktyce, łożyska toczne są zaprojektowane do pracy z minimalnym luzem i w odpowiednio smarowanych warunkach. Gdy zauważamy hałas, to zazwyczaj jest skutkiem odkształceń materiałowych lub uszkodzenia elementów tocznych, co może prowadzić do dalszych uszkodzeń mechanicznych w obrębie układu napędowego. W takim przypadku wymiana całego łożyska eliminuje ryzyko wystąpienia kolejnych awarii w przyszłości. Dobrą praktyką w branży jest również przeprowadzanie analizy przyczyn źródłowych usterki, co pozwala na zrozumienie, dlaczego łożysko uległo uszkodzeniu, co może być związane z niewłaściwym smarowaniem, luzami, czy też eksploatacją w warunkach przekraczających specyfikacje producenta. Wymiana łożyska powinna być przeprowadzana zgodnie z obowiązującymi standardami, takimi jak ISO 281, które określają metodologię doboru i oceny łożysk, co zwiększa niezawodność całego urządzenia.

Pytanie 10

Zamiana diody prostowniczej na płycie zasilacza wymaga

A. wycięcia uszkodzonej diody, wylutowania jej końcówek oraz wlutowania nowej diody
B. wylutowania uszkodzonej diody, oczyszczenia otworów na płycie, uformowania i pobielenia końcówek nowej diody i jej wlutowania
C. wylutowania uszkodzonej diody oraz wlutowania nowej diody
D. wycięcia uszkodzonej diody, uformowania i pobielenia końcówek nowej diody, a następnie jej wlutowania
Wybór odpowiedzi oznaczonej numerem 4 jest prawidłowy, ponieważ obejmuje wszystkie kluczowe etapy wymiany diody prostowniczej na płycie zasilacza. Pierwszym krokiem jest wylutowanie uszkodzonej diody, co jest niezbędne do usunięcia elementu, który nie działa poprawnie. Następnie ważne jest oczyszczenie otworów na płycie, aby upewnić się, że nie ma resztek lutowia, które mogą wpływać na jakość połączenia nowej diody. Kolejnym krokiem jest uformowanie i pobielenie końcówek nowej diody, co zapewnia lepszą adhezję podczas lutowania oraz zmniejsza ryzyko utlenienia. Ostatecznie, wlutowanie nowej diody powinno być przeprowadzone zgodnie z zasadami dobrego lutowania, aby zapewnić niezawodność i trwałość połączenia. Przestrzeganie tych kroków jest zgodne z rekomendacjami standardów IPC dotyczących montażu elektronicznego, co gwarantuje długotrwałe i bezpieczne funkcjonowanie urządzenia.

Pytanie 11

Wskaż jednostkę głównego parametru prądnicy tachometrycznej (stałej prądnicy)?

A. obr./min
B. V/(obr./min)
C. Hz
D. V
Odpowiedź V/(obr./min) jest poprawna, ponieważ jednostka ta odzwierciedla zależność napięcia wyjściowego prądnicy tachometrycznej od prędkości obrotowej. Prądnice tachometryczne to urządzenia, które przekształcają ruch obrotowy w sygnał elektryczny, a ich zastosowanie jest kluczowe w systemach automatyki i kontroli procesów. Wartość wyjściowa, mierzona w woltach, jest proporcjonalna do prędkości obrotowej wyrażonej w obrotach na minutę. Dlatego stosunek V/(obr./min) idealnie charakteryzuje tę zależność. Na przykład, w aplikacjach takich jak regulacja prędkości silników elektrycznych, prądnice tachometryczne dostarczają istotnych informacji o prędkości obrotowej, co pozwala na precyzyjne sterowanie i monitorowanie systemów. W branży inżynieryjnej wykorzystuje się standardy, takie jak ISO 9001, które zapewniają jakość i niezawodność urządzeń pomiarowych, w tym prądnic tachometrycznych.

Pytanie 12

Która z wymienionych nieprawidłowości może powodować zbyt częste uruchamianie się silnika sprężarki tłokowej?

A. Zabrudzony filtr powietrza
B. Defekt silnika sprężarki
C. Brak smarowania powietrza
D. Nieszczelność w przewodach pneumatycznych
Zanieczyszczony filtr powietrza, uszkodzony silnik sprężarki oraz brak olejenia powietrza to kwestie, które mogą wpływać na wydajność i sprawność sprężarki, ale nie są bezpośrednio przyczyną zbyt częstego załączania się jej silnika. Zanieczyszczony filtr powietrza ogranicza przepływ powietrza do sprężarki, co może prowadzić do spadku efektywności, jednak nie wpływa na częstotliwość załączania się silnika. Wręcz przeciwnie, może to powodować jego dłuższe działanie w jednym cyklu, a nie zwiększać ilość cykli włączania. Uszkodzony silnik sprężarki może powodować wiele problemów, w tym niestabilną pracę, ale najczęściej skutkuje to całkowitym zatrzymaniem urządzenia, a nie częstszymi włączeniami. Z kolei brak olejenia powietrza prowadzi do zwiększonego zużycia i przegrzewania się elementów sprężarki, co może wymagać częstszej interwencji serwisowej, ale nie jest bezpośrednią przyczyną częstego włączania się silnika. W praktyce te nieprawidłowości mogą prowadzić do awarii sprężarki, ale nie generują one sytuacji, w której silnik włącza się nadmiernie. Typowe błędy myślowe dotyczące tych problemów często wynikają z niepełnego zrozumienia działania sprężarki oraz jej komponentów, co podkreśla konieczność solidnej wiedzy na temat systemów pneumatycznych i ich konserwacji.

Pytanie 13

Jaką metodę spawania wykorzystuje się z gazem o właściwościach chemicznych aktywnych?

A. MAG
B. SAW
C. MIG
D. TIG
Metoda spawania MAG (Metal Active Gas) wykorzystuje gaz chemicznie aktywny, najczęściej w postaci mieszanki argonu z dwutlenkiem węgla lub innymi gazami, co pozwala na uzyskanie wysokiej jakości spoiny. W przeciwieństwie do MIG (Metal Inert Gas), gdzie stosuje się gazy obojętne, takie jak argon, w MAG aktywne gazy wpływają na proces spawania, co przyczynia się do lepszego wtopienia materiału oraz zwiększenia odporności na niepożądane zjawiska, takie jak utlenianie. Przykładem zastosowania technologii MAG jest spawanie wszelkiego rodzaju konstrukcji stalowych, takich jak ramy budynków, kontenery i elementy maszyn. Dobre praktyki w tej metodzie obejmują dobór odpowiednich parametrów spawania, jak prędkość, napięcie i natężenie prądu, co jest zgodne z normami EN ISO 4063. Dzięki temu proces staje się bardziej efektywny i kontrolowany, co jest niezwykle ważne w przemyśle metalowym.

Pytanie 14

Jakie narzędzie jest konieczne do wykonania gwintu zewnętrznego?

A. Gwintownik
B. Tłocznik
C. Skrobak
D. Narzynka
Narzynka jest narzędziem skrawającym, które służy do nacinania gwintów zewnętrznych na różnych materiałach, w tym metalach. Użycie narzynki jest szczególnie ważne w procesach obróbczych, gdzie precyzja i jakość gwintu mają kluczowe znaczenie. Narzynki są dostępne w różnych rozmiarach oraz typach, w zależności od wymaganego profilu gwintu, co umożliwia ich zastosowanie w szerokim zakresie aplikacji przemysłowych. W praktyce, narzynki są często używane w produkcji śrub oraz w przemyśle motoryzacyjnym, gdzie precyzyjne dopasowanie gwintów jest niezbędne. Dobrą praktyką jest również stosowanie smaru podczas nacinania gwintu, co minimalizuje tarcie i wydłuża żywotność narzędzia. Przestrzeganie standardów ISO dotyczących gwintów, takich jak ISO 965 dla gwintów metrycznych, gwarantuje, że wykonane gwinty będą odpowiednio dopasowane do elementów złącznych. W związku z tym, umiejętność prawidłowego użycia narzynki jest istotna dla każdego specjalisty w dziedzinie obróbki skrawaniem.

Pytanie 15

Jakiego typu oprogramowanie powinno być zastosowane do monitorowania przebiegu procesów w przemyśle?

A. CAM
B. CAE
C. CAD
D. SCADA
Odpowiedź SCADA (Supervisory Control and Data Acquisition) jest prawidłowa, ponieważ jest to system informatyczny służący do nadzorowania i kontrolowania procesów przemysłowych w czasie rzeczywistym. Systemy SCADA umożliwiają monitoring i zarządzanie urządzeniami zdalnymi, takimi jak pompy, maszyny czy systemy elektryczne, a także zbierają dane z tych urządzeń, które następnie przetwarzane są w celu analizy wydajności oraz optymalizacji procesów. Przykłady zastosowania SCADA obejmują przemysł petrochemiczny, energetykę oraz wodociągi, gdzie konieczne jest nieprzerwane monitorowanie parametrów operacyjnych. Kluczowe dla systemów SCADA jest ich zdolność do integracji z innymi technologiami, takimi jak PLC (Programowalne Sterowniki Logiczne) i HMI (Interfejsy Człowiek-Maszyna), co pozwala na stworzenie kompleksowego środowiska do zarządzania procesami. Wdrażanie standardów takich jak ISA-95 w kontekście integrowania SCADA z systemami zarządzania przedsiębiorstwem (ERP) jest również istotnym aspektem ich efektywności i nowoczesności. Dobrze zaprojektowane systemy SCADA są niezbędne dla zapewnienia bezpieczeństwa operacji i redukcji ryzyka awarii.

Pytanie 16

Osoba pracująca z urządzeniami pneumatycznymi emitującymi głośny dźwięk jest narażona na

A. uszkodzenie skóry dłoni
B. uszkodzenie narządu słuchu
C. porażenie prądem elektrycznym
D. zmiany w układzie kostnym
Uszkodzenie narządu słuchu w wyniku narażenia na wysokie natężenie dźwięku w miejscu pracy jest poważnym zagrożeniem zdrowotnym, które można zminimalizować poprzez wdrożenie odpowiednich środków ochrony. Zgodnie z normami, takimi jak ISO 9612, ocena ryzyka hałasu powinna być regularnie przeprowadzana, a pracownicy powinni być informowani o potencjalnych zagrożeniach. Stosowanie ochronników słuchu, takich jak nauszniki lub wkładki, jest kluczowym elementem strategii redukcji ekspozycji na hałas. Przykładowo, pracownik obsługujący kompresory powietrzne, które generują dźwięk o poziomie przekraczającym 85 dB, powinien zawsze korzystać z odpowiedniego sprzętu ochronnego. Dodatkowo, regularne kontrole słuchu mogą pomóc w wczesnym wykryciu ewentualnych uszkodzeń, co jest zgodne z najlepszymi praktykami w zarządzaniu bezpieczeństwem pracy.

Pytanie 17

Jakie narzędzie jest wykorzystywane do zaciskania końcówek na przewodach elektrycznych?

A. praski ręcznej
B. pincety
C. kombinerki
D. ucinaczki boczne
Praska ręczna to narzędzie zaprojektowane specjalnie do zaciskania końcówek przewodów elektrycznych, co zapewnia solidne i trwałe połączenia. Dzięki mechanizmowi dźwigniowemu, praska umożliwia uzyskanie odpowiedniej siły zacisku, co jest kluczowe dla uniknięcia luzów w połączeniach oraz ich późniejszych awarii. Praski ręczne są dostosowane do różnych typów końcówek, takich jak złącza typu ring, fork czy blade, co czyni je uniwersalnym narzędziem w instalacjach elektrycznych. W praktyce, zaciskanie końcówek przy pomocy praski zapewnia nie tylko bezpieczeństwo, ale także efektywność pracy, ponieważ właściwie wykonane połączenia ograniczają straty energii oraz ryzyko przegrzewania się przewodów. Ponadto, stosując praski, można łatwo dostosować siłę zacisku do specyfiki zastosowania, co jest zgodne z najlepszymi praktykami branżowymi wynikającymi z norm IEC oraz PN-EN. Warto również zaznaczyć, że użycie praski jest zalecane w przypadku pracy z przewodami o różnych przekrojach, co zwiększa wszechstronność tego narzędzia.

Pytanie 18

Woltomierz, podłączony do prądniczki tachometrycznej o stałej 10 V/1000 obr/min, pokazuje napięcie 7,5 V. Jaką prędkość obrotową mierzymy?

A. 7500 obr/min
B. 75 obr/min
C. 7 obr/min
D. 750 obr/min
Odpowiedź 750 obr/min jest poprawna, ponieważ woltomierz wskazuje napięcie 7,5 V, a prądniczka tachometryczna ma stałą 10 V przypadającą na 1000 obr/min. Aby obliczyć prędkość obrotową, stosujemy proporcję: jeśli 10 V odpowiada 1000 obr/min, to 7,5 V odpowiada x obr/min. Wykonując obliczenia, otrzymujemy: x = (7,5 V * 1000 obr/min) / 10 V = 750 obr/min. Praktyczne zastosowanie takiej analizy można znaleźć w automatyce i inżynierii, gdzie prędkości obrotowe silników są kluczowe dla precyzyjnego sterowania procesami. W branży motoryzacyjnej, na przykład, prędkości obrotowe silników są monitorowane za pomocą tachometrów, które mogą być oparte na prądnicach tachometrycznych. Zrozumienie tych zasad jest istotne zarówno dla projektantów, jak i techników, aby zapewnić efektywność i bezpieczeństwo systemów napędowych.

Pytanie 19

Który z wymienionych zaworów hydraulicznych powinien być zainstalowany w układzie, aby prędkość obrotowa silnika hydraulicznego pozostawała stała, niezależnie od zmian wartości momentu obciążenia na wale?

A. Zawór przelewowy
B. Zawór dławiąco-zwrotny
C. Regulator przepływu
D. Rozdzielacz suwakowy
Regulator przepływu jest kluczowym elementem w układach hydraulicznych, który umożliwia utrzymanie stałej prędkości obrotowej silnika hydraulicznego, niezależnie od zmian momentu obciążenia na wale. Działa on poprzez automatyczne dostosowanie przepływu cieczy hydraulicznej, co pozwala na zachowanie stabilności pracy urządzenia. Przykładem zastosowania regulatorów przepływu są maszyny budowlane, gdzie zmienne obciążenia są powszechne. W takich aplikacjach, regulator przepływu zapewnia, że silnik hydrauliczny działa w optymalnym zakresie prędkości, co prowadzi do efektywnego zużycia energii i minimalizacji zużycia komponentów. Stosowanie regulatorów przepływu jest zgodne z najlepszymi praktykami w inżynierii hydraulicznej, ponieważ pozwala na zwiększenie wydajności układów oraz przedłużenie żywotności systemów hydraulicznych poprzez eliminację ryzyka przeciążeń. Dodatkowo, w kontekście norm ISO dotyczących systemów hydraulicznych, regulacja przepływu jest uznawana za niezbędny element, który przyczynia się do bezpieczeństwa i funkcjonalności układów hydraulicznych.

Pytanie 20

W układzie zastosowano przetworniki ciśnienia o prądowych sygnałach wyjściowych. Na podstawie danych katalogowych przetworników oraz wyników przeprowadzonych pomiarów wskaż, który z przetworników nie działa prawidłowo.

PrzetwornikZakres sygnału
wejściowego
[MPa]
Zakres sygnału
wyjściowego [mA]
Wartość sygnału
wejściowego
[MPa]
Wartość sygnału
wyjściowego [mA]
10 ÷ 10 ÷ 200,5010
20 ÷ 20 ÷ 200,505
30 ÷ 14 ÷ 200,5012
40 ÷ 24 ÷ 200,505

A. Przetwornik 3
B. Przetwornik 4
C. Przetwornik 1
D. Przetwornik 2
Przetwornik 4 jest odpowiednią odpowiedzią, ponieważ jego działanie jest niezgodne z oczekiwaniami w kontekście standardów przetworników ciśnienia. Zgodnie z danymi katalogowymi, dla ciśnienia 0,50 MPa przetwornik ten powinien generować sygnał 8 mA. W przypadku braku prawidłowego sygnału, jak w tym przypadku 5 mA, wskazuje to na awarię urządzenia lub błędną kalibrację. Praktyczne zastosowanie przetworników ciśnienia wymaga ich niezawodności, ponieważ od ich działania zależy poprawność pomiarów w różnych procesach technologicznych. W związku z tym, regularne sprawdzanie i kalibracja tych urządzeń są kluczowe w utrzymaniu standardów jakości i bezpieczeństwa w przemyśle. Ponadto, w przypadku nieprawidłowego działania przetwornika, istotne jest przeprowadzenie diagnostyki w celu określenia przyczyn błędów, co może obejmować testy elektryczne oraz analizę warunków pracy. Warto również zaznaczyć, że odpowiednie monitorowanie sygnałów wyjściowych pozwala na wczesne wykrywanie problemów i minimalizowanie przestojów w procesie technologicznym.

Pytanie 21

Jakie jest zastosowanie transoptora?

A. galwanicznego połączenia obwodów
B. sygnalizacji transmisji
C. galwanicznej izolacji obwodów
D. zamiany impulsów elektrycznych na promieniowanie świetlne
Transoptor, znany również jako optoizolator, jest urządzeniem elektronicznym, które służy do galwanicznej izolacji obwodów. Jego podstawową funkcją jest zapewnienie separacji elektrycznej pomiędzy dwoma obwodami, co eliminuje ryzyko przeniesienia zakłóceń, przepięć oraz różnic potencjałów między nimi. Przykładem zastosowania transoptora jest w układach sterowania, gdzie sygnał z jednostki sterującej (np. mikroprocesora) jest izolowany od obwodu mocy, co jest kluczowe dla zabezpieczenia delikatnych komponentów. Transoptory znajdują szerokie zastosowanie w systemach automatyki przemysłowej, gdzie są używane do interfejsowania czujników z systemami sterującymi, a także w telekomunikacji, gdzie pozwalają na przesyłanie sygnałów bezpośrednio między różnymi poziomami potencjału. Stosowanie transoptorów jest zgodne z najlepszymi praktykami w inżynierii elektronicznej, które kładą duży nacisk na bezpieczeństwo oraz niezawodność układów elektronicznych, zwłaszcza w środowiskach przemysłowych.

Pytanie 22

Podczas rozbierania łożysk kulkowych powinno się wykorzystać

A. palnik gazowy
B. ściągacz
C. klucz dynamometryczny
D. młotek
Ściągacz to narzędzie specjalnie zaprojektowane do usuwania łożysk, kołków i innych elementów, które mogą być trudne do wyjęcia z powodu ich pasowania lub osadzenia na wrzecionie. W przypadku łożysk kulkowych, ściągacz umożliwia równomierne i bezpieczne usunięcie łożyska z wału lub obudowy bez ryzyka uszkodzenia elementów. Użycie ściągacza minimalizuje ryzyko uszkodzeń powierzchni oraz zmniejsza potrzebę stosowania siły, co wpływa na przedłużenie żywotności zarówno łożyska, jak i wału. W praktyce, podczas serwisowania maszyn lub pojazdów, ściągacz jest często standardowym wyposażeniem warsztatu, zgodnym z branżowymi standardami bezpieczeństwa i efektywności. Zaleca się stosowanie ściągaczy o odpowiednim rozmiarze, co zapewnia precyzyjne dopasowanie do usuwanego elementu. Dodatkowo, warto zapoznać się z procedurami demontażu opisanymi w dokumentacji technicznej producentów, aby zapewnić prawidłowe wykonanie operacji.

Pytanie 23

Jaką powierzchnię czynną ma tłok siłownika generującego siłę 1 600 N przy ciśnieniu 1 MPa oraz sprawności wynoszącej 0,8?

A. 1 500 mm2
B. 1 000 mm2
C. 2 000 mm2
D. 3 000 mm2
Często można spotkać się z błędami w obliczeniach powierzchni tłoka, które wynikają z nieprawidłowego zrozumienia relacji między siłą, ciśnieniem a powierzchnią. Osoby, które udzieliły odpowiedzi wskazujących na 3000 mm², 1500 mm² czy 1000 mm², mogą nie uwzględniać istotnego czynnika, jakim jest współczynnik sprawności. Taki współczynnik uwzględnia rzeczywiste straty energii w systemie hydraulicznym, a jego zignorowanie prowadzi do błędnych obliczeń. W przypadku odpowiedzi 3000 mm² mogło dojść do błędnego założenia, że siła wytwarzana przez tłok jest wyższa niż w rzeczywistości, co jest niezgodne z podanymi danymi. Osoba, która wskazała 1500 mm², najprawdopodobniej obliczyła powierzchnię czynną bez uwzględnienia ciśnienia lub zastosowała niewłaściwe jednostki. Natomiast wskazanie 1000 mm² może wynikać z mylnego założenia, że współczynnik sprawności działa w odwrotny sposób niż w rzeczywistości. W rzeczywistości, aby uzyskać pożądaną siłę, musimy uwzględnić sprawność jako element redukujący efektywną moc. Dlatego kluczowe jest zrozumienie i prawidłowe stosowanie wzorów, a także znajomość jednostek miary, aby uniknąć takich pomyłek. Zastosowanie odpowiedniej metodologii obliczeniowej oraz znajomość standardów inżynieryjnych może znacząco poprawić jakość i trafność naszych wyników.

Pytanie 24

Skrót THT (Through-Hole Technology) odnosi się do metody montażu

A. powierzchniowego
B. przewlekanego
C. zaciskowego
D. skręcanego
Odpowiedzi, które wskazują na skręcanie, zaciskanie lub montaż powierzchniowy, są nieprawidłowe, ponieważ każda z tych metod różni się zasadniczo od technologii przewlekanego montażu. Skręcanie komponentów to technika, która znajduje zastosowanie w montażu mechanicznym, gdzie elementy są łączone za pomocą śrub lub nakrętek. W kontekście elektroniki, skręcanie może nie zapewniać wymaganej stabilności połączeń elektrycznych, a także jest mniej odpowiednie dla małych komponentów, które często wymagają niższej wagi oraz oszczędności miejsca. Zaciskowy montaż również nie odnosi się do THT; jest to technika używana w połączeniach takich jak złącza przewodowe, gdzie nie stosuje się lutowania. Montaż powierzchniowy (SMT) to nowocześniejsza technologia, w której komponenty są osadzane na powierzchni płytki, co powoduje zmniejszenie rozmiarów i zwiększenie gęstości montażu. Ta metoda ma swoje zastosowanie w wielu nowoczesnych urządzeniach, ale nie jest tożsama z przewlekanym montażem. Istotnym błędem myślowym jest mylenie tych technologii, co może prowadzić do nieprawidłowych założeń dotyczących trwałości, jakości i odpowiedniości technologii dla konkretnych zastosowań. Zrozumienie różnic pomiędzy tymi metodami jest kluczowe dla inżynierów i techników zajmujących się projektowaniem i produkcją układów elektronicznych, aby zapewnić optymalizację procesu produkcji oraz jakości finalnych produktów.

Pytanie 25

Pasek zębaty przenosi moc pomiędzy kołami pasowymi. W trakcie rutynowej inspekcji paska należy ocenić jego poziom zużycia oraz

A. nawilżenie.
B. bicie osiowe.
C. temperaturę.
D. stan napięcia.
Sprawdzanie stanu napięcia paska zębatego jest kluczowym etapem w jego konserwacji, ponieważ niewłaściwe napięcie może prowadzić do przedwczesnego zużycia lub uszkodzeń zarówno paska, jak i kół pasowych. Odpowiednie napięcie zapewnia właściwe przenoszenie napędu, co jest niezbędne dla efektywnego działania całego systemu. Przykładem dobrych praktyk jest stosowanie narzędzi do pomiaru napięcia, które mogą pomóc w ocenie, czy pasek jest odpowiednio napięty, zgodnie z zaleceniami producenta. Niedostateczne napięcie może skutkować ślizganiem się paska, natomiast zbyt duże napięcie może prowadzić do uszkodzenia łożysk lub nadmiernego zużycia paska. W przemyśle stosuje się także standardy, takie jak normy ISO, które definiują procesy konserwacji i inspekcji elementów napędowych, w tym pasków zębatych, aby zapewnić ich niezawodność i długotrwałe użytkowanie. Regularne inspekcje i dostosowywanie napięcia to kluczowe działania, które mogą znacząco wpłynąć na wydajność maszyny oraz zredukować ryzyko awarii.

Pytanie 26

Który instrument pomoże w monitorowaniu jakości sprężonego powietrza pod kątem wilgotności oraz obecności kondensatu?

A. Detektor wycieków
B. Miernik punktu rosy
C. Termomanometr bimetaliczny
D. Miernik przepływu powietrza
Miernik punktu rosy to naprawdę ważne urządzenie, jeżeli chodzi o jakość sprężonego powietrza. Głównie pozwala zmierzyć, w jakiej temperaturze para wodna zaczyna się skraplać, co jest mega istotne w kontekście wilgotności. W różnych branżach, gdzie sprężone powietrze jest na porządku dziennym, kontrolowanie wilgotności to podstawa. Za dużo wody w powietrzu może uszkodzić sprzęt, prowadzić do korozji, a czasem nawet zmniejszyć efektywność działania. Na przykład w systemach pneumatycznych, gdzie wszystko musi działać precyzyjnie, nadmiar wilgoci może spowodować tzw. „hydrauliczne uderzenie”, co w efekcie może doprowadzić do awarii. A skoro mówimy o branży spożywczej czy farmaceutycznej, to według norm ISO 8573, które regulują jakość sprężonego powietrza, pomiar punktu rosy to kluczowa sprawa, bo wpływa na bezpieczeństwo i jakość produktów. Używając miernika punktu rosy, szczególnie w połączeniu z systemami osuszania powietrza, można naprawdę zadbać o odpowiednie standardy jakości, co jest niezbędne, żeby procesy przemysłowe działały jak należy.

Pytanie 27

Który rodzaj smaru powinien być zastosowany do lubrykantowania elementów wykonanych z plastiku?

A. Smar silikonowy
B. Smar litowy
C. Smar grafitowy
D. Smar molibdenowy
Smar silikonowy jest odpowiednim wyborem do smarowania elementów plastikowych z kilku istotnych powodów. Przede wszystkim, silikon jest materiałem, który nie reaguje chemicznie z większością tworzyw sztucznych, co minimalizuje ryzyko ich degradacji czy uszkodzeń. Działa również jako doskonały środek smarny, który zmniejsza tarcie między ruchomymi częściami, co prowadzi do dłuższej żywotności elementów. Smary silikonowe są często stosowane w przemyśle motoryzacyjnym oraz przy produkcji zabawek i sprzętu AGD, gdzie plastikowe komponenty są powszechnie używane. Dodatkowo, smary silikonowe są odporne na działanie wysokich temperatur oraz wilgoci, co czyni je uniwersalnym rozwiązaniem w wielu zastosowaniach. Warto również zauważyć, że smar silikonowy nie przyciąga kurzu, co jest kluczowe w przypadku zastosowań, gdzie czystość powierzchni jest istotna. Zastosowanie smaru silikonowego w odpowiednich aplikacjach jest zgodne z zaleceniami producentów i dobrymi praktykami branżowymi, co zapewnia optymalne funkcjonowanie elementów plastikowych.

Pytanie 28

Jaką metodę łączenia materiałów powinno się wybrać do skrzyżowania elementów ze stali nierdzewnej i mosiądzu?

A. Zgrzewanie
B. Sklejanie
C. Lutowanie twarde
D. Lutowanie miękkie
Lutowanie twarde jest optymalną techniką łączenia stali nierdzewnej i mosiądzu ze względu na różnice w temperaturze topnienia tych materiałów oraz ich właściwościach mechanicznych. Lutowanie twarde polega na stosowaniu lutów o temperaturze topnienia powyżej 450 °C, co pozwala na skuteczne tworzenie połączeń o wysokiej wytrzymałości. W przypadku stali nierdzewnej i mosiądzu lutowanie twarde jest szczególnie ważne, ponieważ oba materiały różnią się nie tylko składem chemicznym, ale również współczynnikiem rozszerzalności cieplnej. Lutowanie twarde zapewnia dobre wypełnienie szczelin oraz pozwala na uzyskanie mocnych połączeń, które są odporne na korozję, co ma kluczowe znaczenie w zastosowaniach inżynieryjnych i przemysłowych. Przykłady zastosowania lutowania twardego to produkcja sprzętu medycznego, elementów hydraulicznych oraz instalacji przemysłowych, gdzie wymagana jest trwałość i odporność na wysokie temperatury. Zastosowanie tej techniki w zgodzie z odpowiednimi normami, takimi jak PN-EN 1045, zapewnia jakość oraz niezawodność wykonanych połączeń.

Pytanie 29

Podłączenie kondensatora (w układzie równoległym do obciążenia) do wyjścia jednofazowego prostownika działającego w konfiguracji mostka Graetza wpłynie na napięcie wyjściowe w sposób

A. redukcji tętnień
B. zmniejszenia składowej stałej
C. zmiany przebiegu jednopulsowego na dwupulsowy
D. zmiany przebiegu dwupulsowego na jednopulsowy
Dołączenie kondensatora równolegle do obciążenia w wyjściu jednofazowego prostownika pracującego w układzie mostka Graetza ma na celu zmniejszenie tętnień napięcia wyjściowego. Kondensator działa jak filtr, magazynując energię elektryczną podczas szczytów napięcia i oddając ją w czasie, gdy napięcie spada, co prowadzi do bardziej stabilnego poziomu napięcia. W praktyce, zmniejszenie tętnień jest kluczowe w aplikacjach, gdzie wymagane są stałe wartości napięcia, takich jak zasilanie urządzeń elektronicznych, w których wahania napięcia mogą powodować uszkodzenia komponentów. Użycie kondensatora jest zgodne z najlepszymi praktykami inżynieryjnymi, które wskazują na znaczenie filtracji w układach zasilających. Dodatkowo, zastosowanie kondensatorów o odpowiednich parametrach pojemnościowych i napięciowych, zgodnych z normami IEC 61000, przyczynia się do poprawy jakości energii elektrycznej i stabilności systemów zasilających.

Pytanie 30

Rozpoczęcie demontażu elektrozaworu w systemie elektropneumatycznym wymaga najpierw odłączenia

A. napięcia zasilającego
B. ciśnienia zasilającego układ
C. przewodów pneumatycznych
D. przewodów elektrycznych
Odłączenie przewodów pneumatycznych lub elektrycznych przed demontażem elektrozaworu jest niewłaściwym podejściem, ponieważ nie uwzględnia kluczowego aspektu bezpieczeństwa, jakim jest odłączenie napięcia zasilającego. Przewody pneumatyczne, mimo że są istotne w kontekście funkcjonowania układu, nie stanowią bezpośredniego zagrożenia dla zdrowia operatora w kontekście elektryczności. W przypadku odłączenia przewodów elektrycznych, istnieje ryzyko, że demontaż elektrozaworu będzie przeprowadzany w warunkach, gdzie możliwe jest przypadkowe włączenie zasilania, co może prowadzić do poważnych wypadków, w tym porażenia prądem. W przypadku ciśnienia zasilającego, stwierdzenie, że jego odłączenie jest wystarczające, ignoruje fakt, że w układzie elektropneumatycznym, zasilanie elektryczne jest kluczowym czynnikiem w sterowaniu pracą urządzenia. Niezastosowanie się do odpowiednich procedur blokowania zasilania elektrycznego może prowadzić do nieodwracalnych uszkodzeń sprzętu, a także zagrażać bezpieczeństwu ludzi. W praktyce, najlepszym rozwiązaniem jest zawsze stosowanie się do wytycznych producentów urządzeń oraz standardów branżowych, które jednoznacznie wskazują, że pierwszym krokiem przed jakimkolwiek demontażem powinno być odłączenie zasilania elektrycznego. Ignorowanie tego kroku jest typowym błędem myślowym, wynikającym z niedoceniania roli zasilania elektrycznego w funkcjonowaniu układów elektropneumatycznych.

Pytanie 31

Do działań wstępnych, które pozwolą na prawidłowy montaż nowego paska klinowego w przekładni pasowej, nie należy zaliczać

A. analizy stopnia zużycia
B. weryfikacji czystości paska
C. sprawdzenia wymiarów
D. oceny stopnia naprężenia
Odpowiedź 'sprawdzenie stopnia naprężenia' jest poprawna, ponieważ nie jest to czynność przygotowawcza, lecz działa niezbędne do zapewnienia prawidłowej pracy paska klinowego po jego montażu. Zanim pasek zostanie zamontowany, kluczowe jest, aby skupić się na weryfikacji wymiarów, kontroli czystości paska oraz ocenie stopnia zużycia. Weryfikacja wymiarów polega na sprawdzeniu długości i szerokości paska, co zapewnia, że nowy pasek będzie pasował do przekładni pasowej. Kontrola czystości paska jest niezbędna, aby zminimalizować ryzyko uszkodzeń mechanicznych i zapewnić odpowiednie tarcie między paskiem a kołami pasowymi. Ocena stopnia zużycia paska pozwala ustalić, czy stary pasek wymaga wymiany. Najważniejsze standardy branżowe, takie jak ISO 9001, zalecają dokładne przygotowanie przed montażem, co podkreśla znaczenie tych czynności, aby uniknąć problemów z wydajnością i trwałością systemu napędowego.

Pytanie 32

Aby połączyć dwa stalowe elementy w procesie zgrzewania, należy

A. docisnąć je podczas podgrzewania miejsca łączenia.
B. stopić je w miejscu styku z użyciem spoiwa.
C. stopić je w miejscu zetknięcia bez użycia spoiwa.
D. wprowadzić płynne spoiwo pomiędzy te elementy.
Zgrzewanie to proces łączenia materiałów, w którym kluczowe jest zastosowanie odpowiedniego nacisku oraz podgrzewania w miejscu styku elementów. W odpowiedzi wskazano, że łączone materiały należy docisnąć z jednoczesnym ich podgrzaniem, co jest zgodne z zasadami zgrzewania oporowego oraz zgrzewania elektrycznego. W procesie tym ciepło generowane jest w wyniku oporu elektrycznego, co prowadzi do stopienia metalu w miejscu styku, a następnie do jego związania. Praktycznym przykładem zastosowania tej metody jest produkcja konstrukcji stalowych, gdzie zgrzewanie jest powszechnie używane do łączenia blach. Kluczowym aspektem jest kontrola temperatury oraz siły docisku, co powinno być zgodne z normami, takimi jak ISO 14731, które określają wymagania dotyczące zgrzewania. Zgrzewanie zapewnia wytrzymałe połączenia, co jest niezbędne w przemyśle motoryzacyjnym, budowlanym oraz w produkcji urządzeń przemysłowych.

Pytanie 33

Która z magistrali komunikacyjnych nie wymaga instalacji rezystorów terminacyjnych na końcach?

A. PROFINET
B. RS 485
C. SmartWire-DT
D. CAN
PROFINET to standard komunikacyjny oparty na Ethernet, który został zaprojektowany z myślą o automatyzacji przemysłowej. Jednym z kluczowych aspektów PROFINET jest to, że nie wymaga stosowania rezystorów terminujących na końcach łącza, co różni go od innych magistrali komunikacyjnych, takich jak RS 485 czy CAN, które zazwyczaj wymagają terminacji dla zapewnienia integralności sygnału. W przypadku PROFINET, sygnał jest przesyłany w formie pakietów danych, co sprawia, że terminacja nie jest konieczna. Dzięki temu, PROFINET oferuje większą elastyczność w projektowaniu sieci oraz upraszcza instalację, co jest szczególnie korzystne w rozbudowanych systemach automatyki, gdzie wiele urządzeń jest połączonych w sieć. Przykłady zastosowania PROFINET obejmują systemy sterowania procesami, robotykę oraz monitoring w czasie rzeczywistym w zakładach przemysłowych, gdzie wysoka prędkość transmisji i niskie opóźnienia są kluczowe dla efektywności działania. Standard ten jest zgodny z normą IEC 61158 i zyskuje coraz większe uznanie w branży dzięki możliwości integracji z istniejącymi infrastrukturami sieciowymi opartymi na Ethernet.

Pytanie 34

Wartość sygnału binarnego (11100111)2 na wyjściu ośmiobitowego przetwornika A/C w urządzeniu mechatronicznym odpowiada liczbie dziesiętnej

A. (231)10
B. (230)10
C. (254)10
D. (255)10
Sygnał binarny (11100111)2 odpowiada liczbie dziesiętnej (231)10 ze względu na konwersję z systemu binarnego na dziesiętny. Aby to przeliczyć, możemy rozłożyć wartość binarną na poszczególne bity: 1*27 + 1*26 + 1*25 + 0*24 + 0*23 + 1*22 + 1*21 + 1*20, co daje 128 + 64 + 32 + 0 + 0 + 4 + 2 + 1 = 231. Tego typu przetwarzanie sygnałów jest kluczowe w systemach mechatronicznych, gdzie przetworniki analogowo-cyfrowe (A/C) umożliwiają digitalizację sygnałów w celu dalszej obróbki. Przykład zastosowania to systemy pomiarowe, gdzie wartości analogowe, takie jak napięcie, są przetwarzane na formę cyfrową umożliwiającą ich analizę przez procesory. Zrozumienie konwersji binarnej jest fundamentalne dla inżynierów zajmujących się automatyką oraz elektroniką, a znajomość tych procesów przyczynia się do poprawnej konstrukcji oraz interpretacji danych w systemach przetwarzania informacji.

Pytanie 35

W tabeli podano dane techniczne sterownika PLC Jakim maksymalnym prądem można obciążyć sterownik dołączając do jego wyjścia silnik?

Dane techniczne
Napięcie zasilająceAC/DC 24 V
Wejścia:
Zakres dopuszczalnyDC 20,4 ... 28,8 V
Przy sygnale „0"maks. AC/DC 5 V
Przy sygnale „1"min. AC/DC 12 V
Prąd wejściowy2,5 mA
Wyjścia:
Rodzaj4 przekaźnikowe
Prąd ciągły10 A - przy obciążeniu rezystancyjnym,
3 A - przy obciążeniu indukcyjnym

A. 2,5 A
B. 3 A
C. 0,75 A
D. 10 A
Wybór odpowiedzi, które wskazują na inne wartości prądu, może wynikać z kilku typowych błędów myślowych obowiązujących w temacie doboru komponentów do systemów automatyki. Podawanie wartości takich jak 0,75 A, 2,5 A czy 10 A może sugerować nieporozumienie dotyczące charakterystyki silników indukcyjnych oraz ich wymagań prądowych. Na przykład, wybranie niskiego prądu, jak 0,75 A, może wynikać z założenia, że silnik o niewielkiej mocy wymaga niewielkiego prądu. Jednakże, nawet małe silniki mogą mieć prąd rozruchowy, który jest znacznie wyższy od prądu nominalnego, co może prowadzić do uszkodzenia sterownika, jeśli jego maksymalny prąd nie jest wystarczający. Z kolei podanie 10 A jako limitu jest całkowicie błędne, ponieważ wiele typowych sterowników PLC nie jest zaprojektowanych do obsługi tak dużych obciążeń bez dodatkowych urządzeń zabezpieczających. Zrozumienie zasadności obliczeń dotyczących prądu oraz ich konsekwencji w praktyce jest kluczowe w doborze odpowiednich komponentów. W automatyce przemysłowej, ignorowanie tych zasad może prowadzić do poważnych uszkodzeń sprzętu, co z kolei wiąże się z kosztami naprawy oraz przestojami w produkcji. Dlatego, przed podłączeniem jakiegokolwiek obciążenia do sterownika, zawsze należy dokładnie zapoznać się z jego specyfikacjami technicznymi i warunkami pracy.

Pytanie 36

Efektor umieszczony na końcu ramienia robota pełni przede wszystkim funkcję

A. ochrony ramienia robota przed przeciążeniem
B. chwytania elementu z odpowiednią siłą
C. umieszczania elementu w odpowiedniej lokalizacji
D. ochrony ramienia robota przed zderzeniem z operatorem
Efektor umieszczony na końcu ramienia robota odgrywa kluczową rolę w procesie manipulacji obiektami, a jego podstawową funkcją jest chwytanie elementu z odpowiednią siłą. Efektory, w zależności od ich konstrukcji i przeznaczenia, mogą być wyposażone w różnorodne mechanizmy, takie jak szczęki, przyssawki czy chwytaki pneumatyczne, które umożliwiają precyzyjne uchwyty. Na przykład, w branży produkcyjnej, roboty stosowane do montażu często wykorzystują efektory do chwytania i manipulacji drobnymi komponentami, co zwiększa efektywność i precyzję procesu. Dobrą praktyką jest dostosowywanie siły chwytu do specyfiki materiałów – w przypadku delikatnych obiektów stosuje się mniejsze siły, aby uniknąć uszkodzeń. Efektory są również zaprojektowane zgodnie z normami bezpieczeństwa, co zapewnia, że ich działanie nie będzie zagrażać operatorom ani innym pracownikom. Wybór odpowiedniego efektora i jego parametrów jest zatem kluczowym elementem w projektowaniu systemów automatyzacji procesów.

Pytanie 37

Jaką metodę należy wykorzystać do połączenia szkła z metalem?

A. Spawanie
B. Zgrzewanie
C. Klejenie
D. Nitowanie
Klejenie to najskuteczniejsza metoda łączenia szkła z metalem ze względu na różnice w ich właściwościach fizycznych i chemicznych. Szkło jest materiałem kruchym, a metal - plastycznym, co sprawia, że tradycyjne metody, takie jak zgrzewanie czy spawanie, mogą prowadzić do uszkodzenia szkła. Klejenie wykorzystuje specjalistyczne kleje, które tworzą mocne, elastyczne połączenie, a także mogą dostosować się do różnic w rozszerzalności cieplnej obu materiałów. W praktyce, odpowiednie kleje epoksydowe lub akrylowe są często stosowane do takich aplikacji, umożliwiając trwałe i estetyczne łączenie. W branży budowlanej i w przemyśle, klejenie szkła do metalowych elementów jest powszechnie stosowane w oknach strukturalnych, elewacjach oraz w produkcji mebli. Dobrą praktyką jest również stosowanie gruntów, które poprawiają adhezję kleju do powierzchni, co zwiększa trwałość i odporność połączenia na różne czynniki zewnętrzne. Takie podejście jest zgodne z normami ISO dotyczących klejenia i pozwala na uzyskanie wysokiej jakości połączeń.

Pytanie 38

Jaką kolejność powinny mieć poszczególne elementy zespołu przygotowania powietrza w instalacji pneumatycznej, zasilającej silnik pneumatyczny, patrząc od strony sprężarki?

A. Filtr powietrza, reduktor ciśnienia, układ smarowania, zawór sterujący
B. Reduktor ciśnienia, filtr powietrza, układ smarowania, zawór sterujący
C. Zawór sterujący, reduktor ciśnienia, układ smarowania, filtr powietrza
D. Układ smarowania, filtr powietrza, zawór sterujący, reduktor ciśnienia
Wszystkie podane odpowiedzi, które nie wskazują na właściwą kolejność elementów, wynikają z nieporozumień dotyczących funkcji poszczególnych składowych oraz ich wpływu na ogólne działanie układu pneumatycznego. W przypadku układu, w którym najpierw znajduje się zawór sterujący, reduktor ciśnienia lub układ smarowania, może to prowadzić do nieodpowiedniego ciśnienia lub zanieczyszczenia powietrza, co z kolei negatywnie wpływa na wydajność i trwałość silnika pneumatycznego. Przykładowo, zainstalowanie reduktora ciśnienia przed filtrem może skutkować zanieczyszczeniem mechanizmu redukcyjnego, co doprowadzi do jego uszkodzenia. Dodatkowo, umiejscowienie układu smarowania na początku, bez uprzedniego oczyszczenia powietrza, prowadzi do wprowadzenia do układu zanieczyszczeń, które mogą zatykać smarownice, a tym samym obniżać efektywność smarowania. Właściwa kolejność montażu nie tylko zwiększa bezpieczeństwo operacyjne, ale również jest zgodna z normami branżowymi, które podkreślają znaczenie odpowiedniego przygotowania mediów roboczych w systemach pneumatycznych. Typowym błędem myślowym jest założenie, że elementy te mogą być montowane w dowolnej kolejności, co jest sprzeczne z zasadami inżynierii pneumatycznej.

Pytanie 39

Jakie elementy należy zweryfikować podczas kontroli smarownicy w zespole przygotowania powietrza w systemie pneumatycznym?

A. Ciśnienie w systemie
B. Wilgotność powietrza
C. Poziom oleju
D. Spust kondensatu
Choć wilgotność powietrza, ciśnienie w instalacji oraz spust kondensatu są istotnymi parametrami w kontekście utrzymania sprawności systemu pneumatycznego, koncentrowanie się wyłącznie na tych aspektach może prowadzić do poważnych problemów. Wilgotność powietrza jest ważna, ponieważ nadmiar wilgoci może powodować korozję i uszkodzenia elementów pneumatycznych. Jednak sama kontrola wilgotności nie wystarczy, jeżeli nie zapewnimy odpowiedniego smarowania. Ciśnienie w instalacji jest kluczowym wskaźnikiem wydajności, ale jego monitorowanie nie zastąpi regularnego sprawdzania poziomu oleju w smarownicy. Zbyt wysokie lub zbyt niskie ciśnienie mogą świadczyć o problemach w systemie, lecz bez odpowiedniego smarowania, nawet prawidłowe ciśnienie nie ochroni elementów przed zużyciem. Spust kondensatu to ważny proces, który zapobiega gromadzeniu się wody w instalacji, ale również nie eliminuje ryzyka wynikającego z niewystarczającego poziomu oleju. Ignorowanie tej sytuacji może prowadzić do niewłaściwej pracy narzędzi pneumatycznych, ich uszkodzenia, a w konsekwencji do przestojów produkcyjnych. W branży przemysłowej, gdzie efektywność i bezpieczeństwo są kluczowe, należy podchodzić do kontroli smarownic z pełną powagą, co obejmuje regularne sprawdzanie poziomu oleju oraz jego wymiany zgodnie z zaleceniami producentów. Błędem jest niedocenianie znaczenia smarowania, co może prowadzić do kosztownych napraw i przestojów.

Pytanie 40

W wyniku incydentu u rannego wystąpił krwotok zewnętrzny, a w ranie pozostało ciało obce. Co należy zrobić w pierwszej kolejności?

A. nałożyć jałowy opatrunek na ranę siedzącego rannego i wezwać lekarza
B. wezwać pomoc i nałożyć opatrunek uciskowy powyżej rany siedzącego rannego
C. założyć jałowy opatrunek na ranę i umieścić rannego z uniesionymi kończynami powyżej poziomu serca
D. usunąć ciało obce, położyć rannego i wezwać lekarza
Usunięcie obcego ciała z rany może się wydawać słuszne, ale w praktyce to dość ryzykowne. Może to prowadzić do większego krwawienia lub dodatkowych uszkodzeń tkanek. Tak naprawdę zasada pierwszej pomocy mówi, żeby unikać wszelkich działań, które mogą pogorszyć sytuację, w tym usuwania ciał obcych, które mogą działać jak „korki”, ograniczając krwotok. W przypadku krwotoku ważne jest, by zmniejszyć przepływ krwi, a najlepszym sposobem jest ucisk na ranę i uniesienie kończyn. Użycie opatrunku uciskowego to standard w pierwszej pomocy, bo skutecznie zmniejsza krwawienie i stabilizuje poszkodowanego. Nie zapominaj, że zawsze trzeba wezwać pomoc, ale najpierw skup się na podstawowych zasadach opieki nad poszkodowanym. Niezrozumienie tych rzeczy może spowodować opóźnienia w skutecznej pomocy i zwiększyć ryzyko zdrowotnych konsekwencji.