Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 9 maja 2025 11:01
  • Data zakończenia: 9 maja 2025 11:51

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Materiał uzyskany przez zmieszanie prób pobranych w ustalonych odstępach czasu określa się mianem próbki

A. złożonej
B. ogólnej
C. proporcjonalnej
D. ogólną okresową
Odpowiedzi "proporcjonalną", "złożoną" i "ogólną" są błędne z kilku powodów związanych z definicjami oraz kontekstem, w którym są używane. Próbka proporcjonalna odnosi się do próbki, która jest zbierana w sposób, który odzwierciedla proporcje różnych składników w populacji, lecz nie uwzględnia aspektu czasowego. Takie podejście może prowadzić do zniekształceń wyników, szczególnie w dynamicznych systemach, gdzie warunki mogą się zmieniać w czasie. Z kolei termin "złożona" używany jest w kontekście materiałów, które składają się z wielu różnych komponentów, ale niekoniecznie odnosi się do prób pobranych w określonych odstępach czasowych. Definicja ta jest zbyt ogólna i nie oddaje istoty badań o długoterminowym monitoringu. Ostatnia odpowiedź, "ogólna", również jest nieprecyzyjna, ponieważ nie wskazuje na regularność pobierania próbek, co jest kluczowe w kontekście analizy okresowej. Niezrozumienie tych subtelności może prowadzić do poważnych błędów w analizach, a także do niewłaściwych wniosków opartych na danych, które nie odzwierciedlają rzeczywistości. W kontekście badań naukowych oraz kontroli jakości, ważne jest, aby stosować odpowiednie metody pobierania próbek, które spełniają uzgodnione standardy i praktyki, aby wyniki były rzetelne i użyteczne.

Pytanie 5

Różnica pomiędzy średnim wynikiem pomiaru a wartością rzeczywistą stanowi błąd

A. przypadkowy
B. systematyczny
C. bezwzględny
D. względny
Błąd bezwzględny to różnica między średnim wynikiem pomiarów a wartością rzeczywistą, która jest stałą wartością odniesienia. Ta miara błędu dostarcza informacji o tym, jak daleko od rzeczywistej wartości znajduje się wartość zmierzona. Przykładowo, jeśli w eksperymencie zmierzono długość obiektu wynoszącą 10 cm, a rzeczywista długość obiektu wynosi 9,5 cm, błąd bezwzględny wynosi 0,5 cm. Obliczenia błędu bezwzględnego są istotne w różnych dziedzinach, takich jak inżynieria, nauki przyrodnicze czy jakość produkcji, gdzie precyzyjność pomiarów jest kluczowa dla uzyskania wiarygodnych wyników. Błędy bezwzględne są również stosowane do oceny sprzętu pomiarowego, gdzie standardy takie jak ISO 9001 podkreślają znaczenie dokładności i precyzji w procesach pomiarowych. Poprawne identyfikowanie błędów bezwzględnych pozwala na podejmowanie działań korygujących, co jest niezbędne dla utrzymania wysokiej jakości procesów produkcyjnych oraz rzetelności badań naukowych.

Pytanie 6

W próbkach obecne są składniki, które znacznie różnią się pod względem zawartości. Składnik, którego procentowy udział w próbce jest niższy od 0,01%, nazywamy

A. matrycą
B. ultraśladem
C. śladem
D. domieszką
Odpowiedzi takie jak 'domieszka', 'matryca' i 'ultraślad' nie oddają właściwego znaczenia terminu 'ślad'. Domieszka odnosi się do dowolnego składnika, który jest obecny w próbce, ale niekoniecznie w tak niskich stężeniach, jak te opisane w pytaniu. Z kolei matryca to termin używany do opisu podstawowej substancji, w której zawarte są inne składniki. W kontekście analitycznym matryca ma ogromne znaczenie, ponieważ jej skład i właściwości mogą wpływać na dokładność i precyzję analizy. Ultraślad to termin, który jest rzadziej używany i może sugerować jeszcze niższe stężenia niż te określone dla 'śladu', ale nie jest to standardowa definicja, co może prowadzić do nieporozumień. Typowe błędy myślowe związane z tymi odpowiedziami często wynikają z niepełnego zrozumienia terminologii chemicznej oraz kontekstu analitycznego. Kluczowe jest, aby rozróżniać te pojęcia i wiedzieć, jak wpływają one na interpretację wyników analitycznych. Niepoprawne zrozumienie tych terminów może prowadzić do poważnych błędów w ocenie jakości próbek oraz ich składników, co jest niezbędne w wielu dziedzinach, takich jak kontrola jakości, badania środowiskowe czy bezpieczeństwo żywności.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Korzystając z danych w tabeli wskaż, ile cm3 36% roztworu HCl należy użyć, aby przygotować 250 cm3 0,1-molowego roztworu tego kwasu.

% wagowy
[%]
d420
[g/cm3]
m HCl
w 100 cm3
[g/100cm3]
CM HCl
[mol/dm3]
301,149234,489,46
321,159337,1010,17
341,169139,7510,90
361,178942,4411,64

A. 2,15 cm3
B. 2,13 cm3
C. 2,52 cm3
D. 2,50 cm3
Aby przygotować 250 cm³ 0,1-molowego roztworu HCl z 36% roztworu, użycie 2,15 cm³ tego roztworu jest poprawne. Obliczenia opierają się na zasadzie rozcieńczenia, która jest kluczowym pojęciem w chemii. Przygotowując roztwory, istotne jest, aby znać stężenie molowe roztworu wyjściowego oraz objętość roztworu, który chcemy uzyskać. W tym przypadku, 36% roztwór HCl ma stężenie molowe wynoszące około 10 mol/dm³. Aby obliczyć, ile tego roztworu potrzeba, stosujemy równanie rozcieńczenia: C1 * V1 = C2 * V2, gdzie C1 to stężenie roztworu wyjściowego, V1 to objętość roztworu wyjściowego, C2 to stężenie roztworu docelowego, a V2 to objętość roztworu docelowego. Po podstawieniu wartości i przekształceniu równania otrzymujemy, że V1 wynosi 2,15 cm³. Praktyczne zastosowanie tej wiedzy jest niezwykle istotne w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania powtarzalnych i wiarygodnych wyników eksperymentalnych. Dobrą praktyką jest również zawsze zwracać uwagę na jednostki oraz dokładność pomiaru, co jest fundamentalne w chemii analitycznej.

Pytanie 9

Piktogram nie jest konieczny dla

A. mieszanin samoreaktywnych typu G
B. substancji, które powodują korozję metali
C. substancji, które mają działanie drażniące na oczy
D. substancji, które działają drażniąco na skórę
Wybór substancji działających drażniąco na oczy oraz substancji działających drażniąco na skórę jako odpowiedzi na pytanie o piktogramy jest oparty na niewłaściwym zrozumieniu wymogów dotyczących klasyfikacji chemikaliów. Substancje te, zgodnie z regulacjami CLP, wymagają jednoznacznego oznakowania za pomocą piktogramów, ponieważ ich działanie na organizm człowieka jest dobrze udokumentowane i klasyfikowane jako niebezpieczne. Piktogramy mają na celu zapewnienie szybkiego i jasnego przekazu informacji o zagrożeniach dla osób pracujących z tymi substancjami. Osoby zajmujące się bezpieczeństwem chemicznym często popełniają błąd, nie rozróżniając pomiędzy różnymi kategoriami substancji oraz ich właściwościami niebezpiecznymi. Dodatkowo, wybór substancji powodujących korozję metali również nie jest trafny, ponieważ substancje te również wymagają odpowiednich piktogramów, aby ostrzegać o ich agresywnym działaniu na materiały. Powszechnym błędem jest myślenie, że jeśli substancja nie jest bezpośrednio niebezpieczna dla zdrowia, to nie wymaga oznakowania. W rzeczywistości, każda substancja, która ma potencjalne działanie szkodliwe, powinna być klasyfikowana i odpowiednio oznaczana, co jest kluczowe dla bezpieczeństwa w miejscu pracy oraz ochrony środowiska.

Pytanie 10

Z 250 g benzenu (M = 78 g/mol) uzyskano 350 g nitrobenzenu (M = 123 g/mol). Jaka jest wydajność reakcji nitrowania?

A. 77,7%
B. 83,5%
C. 88,8%
D. 93,4%
Wydajność reakcji nitrowania obliczamy, porównując masę uzyskanego produktu z maksymalną masą, którą moglibyśmy otrzymać, bazując na ilości reagenta. W przypadku benzenu, z jego masy molowej (M = 78 g/mol) możemy obliczyć, ile moli benzenu mamy w 250 g: 250 g / 78 g/mol = 3,21 mol. Reakcja nitrowania benzenu do nitrobenzenu produkuje jeden mol nitrobenzenu na każdy mol benzenu. Dlatego teoretycznie moglibyśmy otrzymać 3,21 mol nitrobenzenu, co przekłada się na masę: 3,21 mol * 123 g/mol = 394,83 g nitrobenzenu. Jednak w praktyce uzyskaliśmy tylko 350 g. Aby obliczyć wydajność, stosujemy wzór: (masa uzyskana / masa teoretyczna) * 100%. W naszym przypadku wydajność wynosi (350 g / 394,83 g) * 100% = 88,8%. Taka analiza i obliczenia są kluczowe w przemyśle chemicznym, ponieważ pozwalają na ocenę skuteczności procesów oraz optymalizację wykorzystania surowców, co jest zgodne z najlepszymi praktykami w zakresie zarządzania produkcją chemiczną.

Pytanie 11

Co oznacza skrót AKT?

A. kontrolno-techniczną analizę
B. krzywą titracyjną analityczną
C. amid kwasu tiooctowego
D. titranta automatyczną kontrolę
Skrót AKT odnosi się do amidu kwasu tiooctowego, który jest istotnym związkiem chemicznym o szerokim zastosowaniu w różnych dziedzinach, w tym w chemii analitycznej i syntezie organicznej. Amid kwasu tiooctowego jest wykorzystywany jako odczynnik w reakcjach chemicznych, w tym w tworzeniu złożonych cząsteczek organicznych. Jego unikalne właściwości sprawiają, że jest przydatny w procesach, takich jak modyfikacja powierzchni materiałów i nanoszenie warstw ochronnych. Przykładowo, w laboratoriach chemicznych używa się go do syntezy związków, które następnie mogą być badane pod kątem ich właściwości biologicznych lub fizykochemicznych. Ponadto, amid kwasu tiooctowego ma zastosowanie w branży farmaceutycznej, gdzie jest wykorzystywany w produkcji niektórych leków. Zrozumienie roli AKT w chemii pozwala na lepsze projektowanie eksperymentów i analizę wyników, co jest kluczowe dla zapewnienia wysokiej jakości badań i zgodności z najlepszymi praktykami w branży.

Pytanie 12

Jeżeli partia towaru składa się z 10 dużych opakowań, wtedy z jednego opakowania pobiera się kilka próbek, które następnie łączy, uzyskując próbkę

A. jednostkową
B. średnią
C. laboratoryjną
D. pierwotną
Odpowiedź "jednostkową" jest prawidłowa, ponieważ w kontekście pobierania próbek z dużych opakowań, próbka jednostkowa odnosi się do pojedynczej próbki pobranej z konkretnego opakowania. W przypadku partii składającej się z 10 dużych opakowań, każda próbka jednostkowa jest reprezentatywna dla danego opakowania. Zbieranie próbek jednostkowych jest kluczowe w kontroli jakości, ponieważ pozwala na ocenę jednorodności i zgodności wyrobów z określonymi standardami. Przykładem zastosowania tej praktyki jest przemysł spożywczy, gdzie próbki jednostkowe są pobierane z różnych partii, aby sprawdzić ich jakość i bezpieczeństwo. Standardy takie jak ISO 2859-1 dotyczące pobierania próbek oraz normy branżowe zapewniają, że proces ten jest przeprowadzany zgodnie z zasadami statystycznymi, co zwiększa wiarygodność wyników.

Pytanie 13

W trakcie korzystania z odczynnika opisanego na etykiecie, należy szczególnie zwrócić uwagę na zagrożenia związane

A. z poparzeniem
B. z pożarem
C. z wybuchem
D. z lotnością
Wybór odpowiedzi związanej z lotnością, poparzeniem czy wybuchem nie uwzględnia kluczowego zagrożenia, jakim jest pożar, które jest szczególnie istotne w kontekście wielu reagentów chemicznych. Lotność substancji chemicznych, chociaż ważna, odnosi się głównie do ich zdolności do przechodzenia w stan gazowy. Substancje lotne mogą tworzyć łatwopalne mieszaniny z powietrzem, lecz to nie zawsze prowadzi do wybuchu. Z kolei poparzenia chemiczne są rzeczywiście zagrożeniem, jednak nie są one bezpośrednio związane z pożarem, a bardziej z reakcjami chemicznymi, które mogą wystąpić w kontakcie z reagentem. Odpowiedź związana z wybuchem odnosi się do specyficznych warunków, które są wymagane, by doszło do takiego zdarzenia, jak np. obecność silnie reaktywnych substancji czy niewłaściwe warunki przechowywania. Typowym błędem myślowym jest mylenie tych zagrożeń lub niewłaściwe ocenianie ich prawdopodobieństwa. Kluczowe jest zrozumienie, że wiele substancji chemicznych, które mogą wydawać się niegroźne, w rzeczywistości mają wysoką tendencję do zapłonu i muszą być przechowywane oraz używane zgodnie z obowiązującymi normami bezpieczeństwa, jak na przykład NFPA (National Fire Protection Association), które dostarczają wytycznych dotyczących ochrony przed pożarami w laboratoriach.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Aby uzyskać całkowicie bezwodny Na2CO3, przeprowadzono prażenie 143 g Na2CO3·10H2O (M = 286 g/mol). Po upływie zalecanego czasu prażenia odnotowano utratę masy 90 g. W związku z tym prażenie należy

A. powtórzyć, ponieważ sól uległa rozkładowi
B. uznać za zakończone
C. kontynuować, ponieważ sól nie została całkowicie odwodniona
D. kontynuować, aż do potwierdzenia, że masa soli nie ulega zmianie
Rozważając inne odpowiedzi, warto zauważyć, że powtarzanie procesu prażenia, ponieważ sól uległa rzekomemu rozkładowi, jest błędnym podejściem. W rzeczywistości rozkład Na2CO3·10H2O podczas prażenia nie powinien prowadzić do jego degradacji, o ile temperatura jest odpowiednio kontrolowana. Zastosowanie nieodpowiednich warunków temperaturowych może prowadzić do rozkładu, jednak w kontekście przedstawionego problemu, nie zaobserwowano żadnych dowodów na rozkład substancji. Twierdzenie, że proces można uznać za zakończony, jest również mylne, gdyż wcześniej stwierdzony ubytek masy wskazuje na dalsze odparowywanie wody. Należy pamiętać, że proces odwodnienia soli wymaga czasu, co czyni kontynuację prażenia konieczną, aż do osiągnięcia stałej masy. Ostatecznie, stwierdzenie, że sól nie jest całkowicie odwodniona, jest zasadne, jednak poleganie na tym jako na uzasadnieniu do zakończenia procesu jest niewłaściwe. W praktyce laboratoryjnej, zawsze należy skupiać się na precyzyjnych pomiarach i obserwacjach, aby uzyskać oczekiwane rezultaty bez ryzyka powstawania nieoczyszczonych produktów reakcji.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Do narzędzi pomiarowych zalicza się

A. kolbę stożkową
B. zlewkę
C. naczynko wagowe
D. cylinder
Cylinder miarowy to naprawdę fajne narzędzie, które znajdziesz w każdym laboratorium. Używa się go do dokładnego mierzenia objętości cieczy, co jest mega ważne podczas różnych eksperymentów chemicznych czy fizycznych. W przeciwieństwie do zlewki, cylinder ma wyraźne podziałki i prostokątną formę, co naprawdę ułatwia odczytywanie wartości. Dzięki temu błąd pomiarowy jest znacznie mniejszy. Osobiście uważam, że korzystanie z cylindra to podstawa, gdy przychodzi do przygotowywania roztworów, gdzie musisz mieć pewność, że wszystko jest dokładnie odmierzone. Oczywiście, pamiętaj, żeby cylinder był odpowiednio skalibrowany, bo to pozwala na powtarzalność wyników, a to chyba każdy chce mieć w swoich eksperymentach.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Jakie pH ma roztwór buforowy otrzymany w wyniku zmieszania 0,2 M roztworu kwasu octowego i 0,2 M roztworu octanu sodu, w stosunku objętościowym 3 : 2?

Bufor octanowy według Walpole'a
0,2 M
kwas octowy [ml]
0,2 M
octan sodu [ml]
pH
7,03,04,39
6,04,04,58
5,05,04,75
4,06,04,94
3,07,05,13

A. 4,39
B. 4,94
C. 4,58
D. 5,13
Odpowiedź 4,58 jest jak najbardziej trafna! Można ją uzyskać dzięki równaniu Hendersona-Hasselbalcha, które łączy pH, pKa oraz stosunek stężeń kwasu i zasady. Kwas octowy, czyli CH₃COOH, ma pKa w okolicach 4,76. W naszym buforze mamy stosunek 3:2 dla kwasu octowego i octanu sodu, co daje nam 0,6 M kwasu i 0,4 M zasady. Podstawiając te wartości do równania, dostajemy: pH = pKa + log([A-]/[HA]) = 4,76 + log(0,4/0,6) = 4,58. Takie obliczenia są naprawdę ważne w laboratoriach chemicznych. Kontrola pH to kluczowy sprawa w wielu procesach, na przykład w biologii molekularnej czy w produkcji leków, gdzie stabilność pH ma ogromny wpływ na działanie substancji.

Pytanie 21

Zestaw do filtracji pod obniżonym ciśnieniem powinien obejmować między innymi

A. kolbę okrągłodenną, lejek szklany z sączkiem, płuczkę bezpieczeństwa
B. kolbę ssawkową, lejek Büchnera, płuczkę bezpieczeństwa
C. kolbę stożkową, lejek szklany z sączkiem, pompę próżniową
D. kolbę miarową, lejek Büchnera, pompę próżniową
Wybór kolby miarowej, lejka Büchnera i pompy próżniowej nie jest właściwy w kontekście zestawu do sączenia pod zmniejszonym ciśnieniem. Kolba miarowa, mimo że jest istotnym narzędziem w laboratoriach chemicznych, nie jest przeznaczona do pracy pod próżnią i nie wytrzyma negatywnego ciśnienia, co może prowadzić do jej pęknięcia i wypadku. Zamiast tego, kolba ssawkowa, która jest zaprojektowana specjalnie do pracy w warunkach podciśnienia, jest odpowiedniejsza. Z kolei pompa próżniowa to element, który rzeczywiście jest niezbędny do generowania próżni, jednak w kontekście tego zestawu, najważniejszym elementem jest kolba ssawkowa. W przypadku drugiej odpowiedzi, kolba ssawkowa zastąpiona jest kolbą ssawkową, co również nie jest zgodne z najlepszymi praktykami, ponieważ kolba przypisana do sączenia musi być odporna na ciśnienie. Lejek szklany z sączkiem, chociaż powszechnie stosowany, nie oferuje efektywności sączenia, jaką zapewnia lejek Büchnera. Natomiast płuczka bezpieczeństwa, mimo że jest ważnym elementem w kontekście bezpieczeństwa laboratoryjnego, nie odnosi się bezpośrednio do procesu sączenia. W związku z tym, kluczowym błędem w tych odpowiedziach jest niezrozumienie funkcji i zastosowania odpowiednich narzędzi w kontekście operacji pod zmniejszonym ciśnieniem.

Pytanie 22

Podczas oznaczania kwasu siarkowego zachodzi reakcja:

H2SO4 + 2NaOH → Na2SO4 + 2H2O 
Zgodnie z zamieszczoną instrukcją, roztwór poreakcyjny należy

Fragmenty instrukcji zbierania, utylizacji i eliminacji odpadów chemicznych
Lista substancji, które mogą być usunięte z odpadami komunalnymi w postaci stałej, lub wprowadzone do systemu kanalizacyjnego w postaci rozcieńczonych roztworów wodnych, o ile ich ilość nie przekracza jednorazowo 100 g.
Związki nieorganiczne
Siarczany sodu, potasu, magnezu, wapnia, amonu
Kwasy nieorganiczne
Stężone kwasy ostrożnie rozcieńczyć przez wkroplenie z równoczesnym mieszaniem do wody z lodem, a następnie zneutralizować roztworem wodorotlenku sodowego. Po neutralizacji doprowadzić pH roztworu do zakresu 6-8 przelać do pojemnika S. Małe ilości kwasów takich jak siarkowy, solny, azotowy czy fosforowy (nie więcej niż 10 g) po rozcieńczeniu wodą i neutralizacji roztworem wodorotlenku sodowego oraz doprowadzeniu pH takiego roztworu do zakresu 6-8 można wylać do zlewu i obficie spłukać wodą.
Sole nieorganiczne
Stałe sole nieorganiczne – pojemnik N.
Obojętne roztwory soli nieorganicznych pojemnik S. Sole metali ciężkich, sole o właściwościach toksycznych – pojemnik TN.

A. umieścić w pojemniku TN.
B. umieścić w pojemniku S.
C. wylać do zlewu i spłukać bieżącą wodą.
D. zobojętnić i usunąć z odpadami komunalnymi.
Wybór niewłaściwej metody utylizacji roztworu po reakcji kwasu siarkowego z wodorotlenkiem sodu może prowadzić do poważnych konsekwencji zarówno dla środowiska, jak i dla bezpieczeństwa osób pracujących w laboratoriach. Umieszczanie roztworów w pojemnikach przeznaczonych dla odpadów niebezpiecznych, jak sugeruje jedna z odpowiedzi, jest nieadekwatne, ponieważ powstały siarczan sodu jest substancją neutralną i nie stwarza zagrożenia, co jest sprzeczne z zasadami efektywnej gospodarki odpadami. Ponadto, niewłaściwe wylewanie takich roztworów do zlewu bez wcześniejszego rozcieńczenia wodą może prowadzić do lokalnych zanieczyszczeń, a także może być niezgodne z lokalnymi przepisami dotyczącymi utylizacji odpadów chemicznych. Kwestia zobojętniania przed usunięciem jest również problematyczna, ponieważ w większości przypadków neutralizacja nie jest wymagana dla substancji obojętnych i może wprowadzać dodatkowe reakcje chemiczne, które generują odpady, zamiast ich minimalizować. Takie błędne podejścia pokazują, jak ważne jest posiadanie wiedzy na temat właściwego zarządzania odpadami oraz umiejętność rozpoznawania potencjalnych zagrożeń w praktyce laboratoryjnej. Właściwe postępowanie z odpadami chemicznymi powinno być zgodne z normami ochrony środowiska oraz wewnętrznymi procedurami bezpieczeństwa w laboratoriach, co jest kluczowe dla zapewnienia bezpieczeństwa osób oraz minimalizacji wpływu na środowisko.

Pytanie 23

Aby wykonać czynności analityczne wskazane w ramce, należy użyć:

Otrzymaną do badań próbkę badanego roztworu rozcieńczyć wodą destylowaną w kolbie miarowej o pojemności 100 cm3 do kreski i dokładnie wymieszać. Następnie przenieść pipetą 10 cm3 tego roztworu do kolby stożkowej, dodać ok. 50 cm3 wody destylowanej.

A. kolby stożkowej, moździerza, lejka Shotta, naczynka wagowego.
B. zlewki, kolby ssawkowej, lejka Buchnera, cylindra miarowego.
C. kolby miarowej, tygla, pipety, naczynka wagowego.
D. kolby stożkowej, kolby miarowej, pipety, cylindra miarowego.
Odpowiedź wskazująca na użycie kolby stożkowej, kolby miarowej, pipety oraz cylindra miarowego jest poprawna, ponieważ każdy z tych przyrządów odgrywa kluczową rolę w procesie analitycznym. Kolba miarowa jest niezbędna do precyzyjnego rozcieńczania roztworów, co jest istotne w chemii analitycznej, gdzie dokładność stężeń ma fundamentalne znaczenie dla uzyskania wiarygodnych wyników. Pipeta, z kolei, pozwala na precyzyjne odmierzanie małych objętości roztworów, co jest kluczowe przy przygotowywaniu prób do analiz. Kolba stożkowa znajduje zastosowanie w mieszaniu reagentów oraz w prowadzeniu reakcji chemicznych, a cylinder miarowy umożliwia dokładne pomiary większych objętości cieczy. Użycie tych instrumentów jest zgodne z najlepszymi praktykami laboratoryjnymi i standardami dotyczącymi chemii analitycznej, co zapewnia rzetelność przeprowadzanych badań oraz powtarzalność eksperymentów.

Pytanie 24

Jakie procedury powinny być stosowane podczas ustalania miana roztworu?

A. Ustalanie miana roztworu polega na dokładnym określeniu stężenia roztworu, w reakcji z roztworem substancji podstawowej o precyzyjnie znanym stężeniu
B. Ustalanie miana roztworu polega na starannym zagęszczeniu roztworu, aby osiągnąć wcześniej ustalone stężenie
C. Ustalanie miana każdego roztworu powinno być wykonane natychmiast po jego przygotowaniu
D. Ustalanie miana roztworu polega na dokładnym rozcieńczeniu roztworu, aby uzyskać wcześniej zaplanowane stężenie
Nastawianie miana roztworu to kluczowy proces w chemii analitycznej, który polega na dokładnym ustaleniu stężenia roztworu przez reakcję z roztworem substancji podstawowej o znanym stężeniu. Ta metoda jest niezwykle istotna, ponieważ precyzyjne określenie miana roztworu pozwala na uzyskanie wiarygodnych wyników analitycznych. Na przykład, w przypadku titracji, przy użyciu roztworu wzorcowego o znanym stężeniu, możemy ustalić stężenie substancji analitowanej, co ma kluczowe znaczenie w laboratoriach chemicznych oraz w badaniach jakościowych i ilościowych. Zgodnie z dobrą praktyką laboratoryjną, należy zapewnić, aby roztwory wzorcowe były przygotowane i przechowywane w odpowiednich warunkach, aby ich stężenie pozostało niezmienne. Ważne jest także wykonywanie pomiarów pod kontrolą określonych protokołów i standardów, jak np. ISO 17025, które zapewniają wysoką jakość i dokładność wyników pomiarów.

Pytanie 25

Gęstość cieczy w próbce określa się bezpośrednio za pomocą

A. kolorymetru
B. konduktometru
C. potencjometru
D. areometru
Areometr to urządzenie służące do pomiaru gęstości cieczy. Działa na zasadzie wyporu, co oznacza, że jego zasada działania opiera się na Archimedesie. Areometr jest zanurzany w cieczy, a jego zanurzenie jest proporcjonalne do gęstości tej cieczy. Im większa gęstość, tym mniejsze zanurzenie. To narzędzie jest powszechnie wykorzystywane w laboratoriach chemicznych, przemysłowych i w gospodarstwie domowym, na przykład do pomiaru gęstości roztworów cukru, alkoholu czy innych cieczy. W praktyce, areometry są kalibrowane do konkretnych temperatur, co jest ważnym aspektem ich użytkowania, ponieważ gęstość cieczy zmienia się wraz z temperaturą. Użycie areometru, zamiast innych urządzeń, jest zgodne z najlepszymi praktykami laboratoryjnymi, ponieważ zapewnia dokładne pomiary w różnych zastosowaniach, takich jak kontrola jakości w przemyśle spożywczym czy chemicznym.

Pytanie 26

Wybierz spośród wymienionych właściwości tę, która nie dotyczy naczyń kwarcowych.

A. Niska wrażliwość na zmiany temperatury
B. Większa kruchość oraz mniejsza odporność na uderzenia niż naczynia wykonane z normalnego szkła
C. Przepuszczalność promieniowania ultrafioletowego
D. Odporność na działanie kwasu fluorowodorowego oraz roztworu wodorotlenku potasu
Odporność na działanie kwasu fluorowodorowego i roztworu wodorotlenku potasu nie jest cechą naczyń kwarcowych. Naczynia kwarcowe, wykonane ze szkła kwarcowego, charakteryzują się wysoką odpornością chemiczną, ale nie są odporne na działanie kwasu fluorowodorowego, który jest jednym z niewielu kwasów zdolnych do atakowania szkła kwarcowego. W praktyce oznacza to, że naczynia te mogą być używane do przechowywania i reakcji chemicznych z wieloma substancjami, ale należy unikać kontaktu z kwasami fluorowodorowymi. Z drugiej strony, szkło kwarcowe dobrze znosi działanie zasadowych roztworów, takich jak wodorotlenek potasu, dlatego jest często wykorzystywane w laboratoriach chemicznych i przemysłowych do przechowywania odczynników. Ponadto, naczynia kwarcowe wykazują wysoką odporność na wysokie temperatury, co czyni je idealnymi do zastosowania w piecach i innych urządzeniach wymagających zachowania stabilności w ekstremalnych warunkach temperaturowych.

Pytanie 27

Aby oddzielić galaretowaty osad typu Fe(OH)3 od roztworu, jaki sączek należy zastosować?

A. miękki
B. twardy
C. średni
D. częściowy
Odpowiedź "miękki" jest chociażby słuszna, bo przy filtracji osadu galaretowatego Fe(OH)3 musimy mieć dobry sączek, który nie tylko zatrzyma cząsteczki, ale i pozwoli je łatwo oddzielić od roztworu. Miękkie sączki, jak te z papieru filtracyjnego, mają drobne pory, więc świetnie zatrzymują małe cząsteczki osadu. W laboratoriach używa się takich miękkich sączków, zwłaszcza przy gęstych substancjach. Na przykład, w oczyszczaniu wody czy w chemicznych analizach, gdzie oddzielamy osady od cieczy, miękki sączek daje nam dobrą selektywność i zmniejsza ryzyko zatykania porów. Dlatego wybór sączka jest mega ważny i trzeba go dopasować do właściwości substancji, co jak się domyślam, jest zgodne z zasadami dobrych praktyk w labie.

Pytanie 28

W trakcie określania miana roztworu NaOH, do zmiareczkowania 25,0 cm3 tego roztworu, użyto 30,0 cm3 roztworu HCl o stężeniu 0,1000 mol/dm3. Jakie miało miano zasady?

A. 0,1200 mol/dm3
B. 0,2000 mol/dm3
C. 0,1500 mol/dm3
D. 0,1000 mol/dm3
Miano zasady NaOH oblicza się na podstawie reakcji zobojętnienia z kwasem HCl, w której stosunek molowy NaOH do HCl wynosi 1:1. Ustalając miano roztworu NaOH, wykorzystujemy wzór na miano: c(NaOH) = (c(HCl) * V(HCl)) / V(NaOH), gdzie c oznacza stężenie, a V objętość. W naszym przypadku mamy c(HCl) = 0,1000 mol/dm³ oraz V(HCl) = 30,0 cm³ (0,030 dm³) i V(NaOH) = 25,0 cm³ (0,025 dm³). Podstawiając wartości do wzoru, uzyskujemy: c(NaOH) = (0,1000 mol/dm³ * 0,030 dm³) / 0,025 dm³ = 0,1200 mol/dm³. Przykład ten ilustruje, jak ważne jest odpowiednie wyważenie ilości reagentów w reakcjach chemicznych, co jest kluczowe w laboratoriach chemicznych i przemyśle, gdzie precyzyjne stężenia roztworów mają istotne znaczenie dla efektywności procesów chemicznych oraz jakości końcowego produktu. Standardy analityczne podkreślają konieczność dokładności w pomiarach, co ma wpływ na wiarygodność uzyskanych wyników.

Pytanie 29

Jakie jest stężenie molowe roztworu, jeśli w 100 cm3 roztworu znajduje się 5,6 g KOH?
MK = 39 g/mol, MO = 16 g/mol, MH = 1 g/mol

A. 1 mol/dm3
B. 0,1 mol/dm3
C. 100 mol/dm3
D. 10 mol/dm3
Aby obliczyć stężenie molowe roztworu, należy najpierw obliczyć liczbę moli KOH zawartych w 5,6 g. Masa molowa KOH wynosi 56 g/mol (39 g/mol dla K + 16 g/mol dla O + 1 g/mol dla H). Możemy więc obliczyć liczbę moli jako: n = m / M = 5,6 g / 56 g/mol = 0,1 mol. Następnie przekształcamy objętość roztworu z centymetrów sześciennych na decymetry sześcienne: 100 cm³ = 0,1 dm³. Stężenie molowe (C) obliczamy korzystając ze wzoru C = n / V, co daje C = 0,1 mol / 0,1 dm³ = 1 mol/dm³. Tego typu obliczenia są niezwykle istotne w chemii analitycznej, gdzie precyzyjne stężenia roztworów są kluczowe dla uzyskania poprawnych wyników eksperymentalnych oraz w syntezie substancji chemicznych. Zrozumienie tych obliczeń pomaga w zachowaniu właściwych proporcji w reakcjach chemicznych, co jest podstawą wielu procesów przemysłowych oraz laboratoriów badawczych.

Pytanie 30

Który symbol literowy umieszczany na naczyniach miarowych wskazuje na kalibrację do "wlewu"?

A. IN
B. A
C. EX
D. B
Odpowiedź 'IN' oznacza, że to naczynie miarowe jest skalibrowane na 'wlew'. To jest naprawdę ważne, gdy chodzi o dokładne pomiary objętości cieczy. W praktyce to znaczy, że ilość cieczy, którą zobaczysz na naczyniu, odnosi się do tego, co wlewasz do środka, a nie do tego, co zostaje po opróżnieniu. Kiedy używasz naczynia z takim oznaczeniem, działasz zgodnie z normami ISO i metrologicznymi. To ma znaczenie, zwłaszcza w laboratoriach chemicznych lub medycznych, gdzie dokładne pomiary objętości są kluczowe. Używając naczyń oznaczonych jako 'IN', masz pewność, że otrzymujesz dokładną ilość płynu potrzebną do eksperymentów czy analiz. Warto też dodać, że to oznaczenie jest zwłaszcza istotne w badaniach, bo każda pomyłka w pomiarze może prowadzić do błędnych wyników.

Pytanie 31

Aby przygotować 500 g roztworu o stężeniu 10% (m/m), ile substancji należy odważyć?

A. 10 g substancji
B. 100 g substancji
C. 50 g substancji
D. 5 g substancji
Aby sporządzić roztwór o stężeniu 10% (m/m), należy zrozumieć, że stężenie to oznacza, że na każde 100 g roztworu przypada 10 g substancji rozpuszczonej. W przypadku przygotowywania 500 g roztworu, można obliczyć potrzebną ilość substancji, stosując proporcję. 10% z 500 g to 50 g substancji: 500 g * 0,10 = 50 g. Taki sposób obliczenia jest zgodny z zasadami chemii analitycznej, gdzie dokładność i precyzja są kluczowe. W praktyce, przygotowując roztwory, należy zawsze stosować odpowiednie wagi analityczne oraz zapewnić odpowiednie warunki do ich mieszania, aby uzyskać jednorodny roztwór. Ważne jest również, aby znać właściwości substancji, które są wykorzystywane do sporządzania roztworów, aby uniknąć niebezpieczeństw związanych z ich stosowaniem, co jest zgodne z dobrą praktyką laboratoryjną.

Pytanie 32

Podaj nazwę reagentu chemicznego, który w specyficznych warunkach reaguje tylko z jednym jonem, pierwiastkiem lub związkiem chemicznym?

A. Selektywny
B. Wzorcowy
C. Specyficzny
D. Grupowy
Odczynnik specyficzny to substancja chemiczna, która reaguje wyłącznie z określonymi jonami, pierwiastkami lub związkami chemicznymi, co czyni go niezbędnym narzędziem w chemii analitycznej. Przykładem takiego odczynnika może być wskaźnik pH, który zmienia kolor tylko w obecności określonego zakresu wartości pH. Użycie odczynników specyficznych jest kluczowe w różnych dziedzinach, od analizy środowiskowej po medycynę, gdzie precyzyjne oznaczenie obecności określonych substancji jest niezbędne dla bezpieczeństwa i jakości produktów. W praktyce, standardy branżowe, takie jak ISO 17025, podkreślają znaczenie stosowania odczynników specyficznych w laboratoriach, aby zapewnić wiarygodność i dokładność wyników analiz. Używając odczynnika specyficznego, laboratoria mogą minimalizować ryzyko błędnych odczytów i zwiększać efektywność przeprowadzanych ekspertyz, co jest niezwykle ważne w kontekście regulacji prawnych i zarządzania jakością.

Pytanie 33

Związki chromu(VI) oddziałują negatywnie na środowisko, ponieważ

A. powodują nadmierny wzrost roślinności w zbiornikach wodnych
B. prowadzą do zakwaszenia wód
C. wykazują toksyczne działanie na organizmy żywe
D. stanowią główną przyczynę korozji urządzeń technicznych w wodzie
Związki chromu(VI), takie jak chromiany i dichromiany, są znane z ich wysokiej toksyczności dla organizmów żywych. Działają one na poziomie komórkowym, wpływając na różne procesy biochemiczne oraz powodując uszkodzenia DNA, co może prowadzić do nowotworów. Chrom(VI) jest szczególnie niebezpieczny, ponieważ ma zdolność do przenikania przez błony komórkowe i wywoływania reakcje oksydacyjne, które mogą prowadzić do stresu oksydacyjnego w komórkach. Z tego powodu substancje te są klasyfikowane jako substancje niebezpieczne i wymagają szczególnej ostrożności podczas transportu oraz przechowywania. W praktyce, w zakładach przemysłowych, gdzie stosuje się związki chromu(VI), należy wdrażać odpowiednie środki ochrony, takie jak systemy wentylacyjne, osobiste zabezpieczenia dla pracowników oraz ścisłe kontrole emisji do środowiska. Przykładem standardów, które regulują te kwestie, są normy ISO 14001 dotyczące zarządzania środowiskowego oraz dyrektywy unijne dotyczące substancji niebezpiecznych. Dzięki tym praktykom można minimalizować ryzyko związane z wykorzystaniem tych toksycznych substancji.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Stosunek masowy miedzi do siarki w siarczku miedzi(I) wynosi

16S
Siarka
32
29Cu
Miedź
63,55

A. 3:1
B. 2:1
C. 1:1
D. 4:1
Zrozumienie, jak obliczać stosunek masowy miedzi do siarki w Cu2S, jest naprawdę ważne. Często ludzie myślą, że ten stosunek wynosi 1:1 lub 2:1, bo nie rozumieją dobrze, jak to działa. Wybierając odpowiedź 1:1, zakładają, że miedź i siarka są w równych ilościach, co nie jest prawdą. Z kolei 2:1 też jest mylące, bo nie bierze pod uwagę masy molowej miedzi, a tylko liczbę atomów. Myślenie, że ilość atomów równa się masie, to częsty błąd, który prowadzi do nieporozumień. Odpowiedź 3:1 również nie jest poprawna, bo wynika z błędnego przyporządkowania mas do atomów. Ważne, żeby nauczyć się, że stosunek masowy opiera się na masas molowych, a nie tylko na liczbie atomów. To naprawdę kluczowe w nauce chemii, żeby dobrze to rozumieć i zwracać uwagę na szczegóły.

Pytanie 36

Na podstawie danych zawartych w tabeli wskaż, które opakowania zawierają produkt zgodny ze specyfikacją.

WŁAŚCIWOŚCINORMA KLASY A
wg specyfikacji produktu
OPAKOWANIE
123
POSTAĆBezbarwna ciecz, bez zanieczyszczeń.
Dopuszcza się niebieskawе zabаrwienie
i obecność skrystalizowanego osadu
Bezbarwna ciecz
Zawartość ługu sodowego
(NaOH), min, % masy
46,046,546,848,0
Węglan sodu (Na₂CO₃),
nie więcej niż, % masy
0,40,30,30,2
Chlorek sodu (NaCl),
nie więcej niż, % masy
0,0200,0150,0140,011
Chloran sodu (NaClO₃),
nie więcej niż, % masy
0,0070,0060,0050,002
Siarczan sodu (Na₂SO₄),
nie więcej niż, % masy
0,0400,0380,0350,029
Zawartość żelaza (Fe₂O₃),
max, WT. PPM
15151510

A. Tylko 1 i 2.
B. Wszystkie.
C. Żadne.
D. Tylko 3.
Wybranie odpowiedzi mówiącej, że żadne opakowania nie są zgodne z normami, to typowy błąd. Może się to brać stąd, że nie widzisz wszystkich ważnych szczegółów w danych. Wydaje mi się, że to trochę przez brak zrozumienia specyfikacji produktu i norm dotyczących jakości opakowań. Czasem ludzie mają tendencję do uogólniania, co prowadzi do błędnych wniosków. Pamiętaj, że każde opakowanie trzeba przeanalizować dokładnie, a stwierdzenie, że nic nie spełnia norm, jest po prostu nietrafione. Gdy mówisz, że tylko niektóre są zgodne, to znaczy, że mogłeś nie uwzględnić wszystkich parametrów z specyfikacji. Każde opakowanie powinno się oceniać z osobna, a złe oceny mogą mieć poważne konsekwencje, jak wprowadzenie wadliwych produktów na rynek, co może skutkować stratami lub zepsuciem reputacji firmy. Dlatego ważne jest, by oceniający też byli dobrze poinformowani i trzymali się standardów, żeby uniknąć takich sytuacji.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Sączenie osadów kłaczkowatych odbywa się przy użyciu sączków

A. twarde
B. średnio gęste
C. rzadkie
D. bardzo gęste
Wybór gęstych lub średnio gęstych sączków do filtracji osadów kłaczkowatych jest nieprawidłowy, ponieważ te materiały nie są przystosowane do skutecznego oddzielania tego rodzaju zanieczyszczeń. Gęste sączki, posiadające bardzo małe pory, mogą prowadzić do zatykania się, co spowoduje zwiększenie ciśnienia i zmniejszenie efektywności procesu filtracji. Użytkownicy mogą błędnie zakładać, że gęstsze materiały będą bardziej efektywne w usuwaniu osadów, co jest mylące, ponieważ nie uwzględniają, że osady kłaczkowate mogą mieć różne rozmiary oraz kształty, które mogą nie przechodzić przez małe pory, a tym samym zablokować filtr. Ponadto, twarde sączki również nie będą właściwie pełnić swojej roli, ponieważ ich struktura nie pozwala na odpowiednią elastyczność niezbędną do dobrze uformowanej filtracji. Również sączki rzadkie są preferowane w kontekście analitycznym, gdzie wymagane jest szybkie usunięcie osadów bez pociągania za sobą ryzyka kontaminacji próbki. Zastosowanie nieodpowiednich sączków może prowadzić do błędnych wyników analitycznych, co jest niezgodne z praktykami laboratoriami, które dążą do zapewnienia wysokiej jakości wyników zgodnych z regulacjami i standardami branżowymi, takimi jak GLP (Dobre Praktyki Laboratoryjne) i ISO 17025.