Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 30 maja 2025 16:31
  • Data zakończenia: 30 maja 2025 17:15

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaka powinna być wartość prądu znamionowego bezpiecznika chroniącego uzwojenie pierwotne transformatora bezpieczeństwa 230/24 V, jeżeli przewidziano go do pracy z maksymalnym obciążeniem rezystancyjnym 200 W?

A. 1,0 A
B. 0,4 A
C. 0,8 A
D. 0,5 A
Wartość prądu znamionowego bezpiecznika do zabezpieczenia uzwojenia pierwotnego transformatora bezpieczeństwa 230/24 V powinna wynosić 1,0 A. Obliczając wartość prądu, korzystamy ze wzoru: P = U * I, gdzie P to moc (w watach), U to napięcie (w woltach), a I to prąd (w amperach). W przypadku naszego transformatora, przy maksymalnym obciążeniu rezystancyjnym 200 W i napięciu 230 V, obliczamy prąd znamionowy: I = P / U = 200 W / 230 V ≈ 0,87 A. Ze względów bezpieczeństwa oraz dobrych praktyk inżynieryjnych, zaleca się zastosowanie bezpiecznika o wartości minimalnie wyższej niż obliczona, co w tym przypadku daje 1,0 A. Dobrze dobrany bezpiecznik nie tylko chroni transformator, ale także zapobiega potencjalnym zagrożeniom elektrycznym. Istotne jest również, aby bezpiecznik był dostosowany do charakterystyki obciążenia; w przypadku obciążeń rezystancyjnych, jak lampy czy grzejniki, bezpieczniki szybkie są bardziej odpowiednie. Takie podejście zapewnia zgodność z normami bezpieczeństwa, takimi jak PN-EN 60269, która reguluje dobór i zastosowanie elementów zabezpieczających.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Dodatkowy przewód ochronny w instalacji wykonanej przewodem LYd 750 4x2,5 zamocowanej na uchwytach na ścianie piwnicy powinien być oznaczony symbolem

A. LYc 300/500 1x6
B. ADY 750 1x2,5
C. YDY 450/750 1x2,5
D. Dyd 750 1x4
Wybór innych oznaczeń przewodów, takich jak YDY 450/750 1x2,5, ADY 750 1x2,5 czy LYc 300/500 1x6, wskazuje na nieporozumienie w zakresie doboru przewodów ochronnych w instalacjach elektrycznych. Przewód YDY 450/750 1x2,5 charakteryzuje się niższą klasą napięciową, co sprawia, że nie jest odpowiedni do zastosowań, gdzie występują napięcia do 750V. Podobnie przewód ADY 750 1x2,5, mimo że oznaczenie sugeruje, iż jest przystosowany do napięcia 750V, nie spełnia wymogów dotyczących ochrony, które są kluczowe w instalacjach z przewodami LYd. Z kolei przewód LYc 300/500 1x6 ma oznaczenie wskazujące na jeszcze niższe napięcie i nieodpowiednią średnicę, co czyni go nieodpowiednim do warunków wymagających solidnej ochrony. Typowym błędem myślowym, prowadzącym do wyboru tych przewodów, jest skupienie się wyłącznie na oznaczeniu napięcia, bez uwzględnienia ich rzeczywistej charakterystyki oraz przeznaczenia. Kluczowe jest, aby przy doborze przewodów nie tylko kierować się wartościami napięcia, ale również odpowiednimi normami bezpieczeństwa, jak PN-IEC 60364, które określają wymagania dla instalacji elektrycznych. W praktyce, stosowanie niewłaściwych przewodów może prowadzić do poważnych skutków, takich jak uszkodzenia sprzętu, a co gorsza, zagrożenia dla życia użytkowników.

Pytanie 6

Badania instalacji odgromowej w obiekcie budowlanym ujawniły rezystancję uziomu równą 35 Ω. Aby uzyskać zalecaną rezystancję uziomu na poziomie 10 Ω, należy

A. wydłużyć uziom szpilkowy
B. usunąć zaciski probiercze
C. powiększyć średnicę przewodu odgromowego
D. zwiększyć średnicę zwodów w instalacji odgromowej
Wydłużenie uziomu szpilkowego jest kluczowym działaniem zmierzającym do obniżenia rezystancji uziomu do zalecanych 10 Ω. Uziom szpilkowy, umieszczony w gruncie, działa jako przewodnik, który odprowadza prąd do ziemi. Jego efektywność zależy od długości, średnicy oraz rodzaju gruntu. Zwiększenie długości uziomu pozwala na większy kontakt z różnymi warstwami gleby, co zmniejsza opór elektryczny. Zgodnie z normą PN-EN 62305, zaleca się, aby długość uziomów wynosiła co najmniej 2 m, a w przypadku odporności na wyładowania atmosferyczne długość uziomu powinna być jeszcze większa. W praktyce, jeśli standardowa szpilka ma długość 1,5 m, przedłużenie jej o kolejne 1,5 m lub zastosowanie kilku szpilek połączonych ze sobą w odpowiednich miejscach przyczynia się do znaczącego obniżenia rezystancji. Warto również pamiętać, że jakość uziomu wpływa na bezpieczeństwo instalacji odgromowej, a jego odpowiednia rezystancja jest kluczowa dla skutecznego działania całego systemu ochrony przed wyładowaniami atmosferycznymi.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Jaki dodatkowy komponent (urządzenie) jest wymagany do funkcjonowania silnika indukcyjnego trójfazowego, zasilanego napięciem jednofazowym U = 230 V, f= 50 Hz?

A. Kondensator
B. Bezpiecznik silnikowy
C. Bezpiecznik różnicowoprądowy
D. Opornik
Kondensator jest niezbędnym elementem w przypadku zasilania silnika indukcyjnego trójfazowego napięciem jednofazowym. Silniki indukcyjne trójfazowe wymagają trzech faz zasilania dla uzyskania pełnej mocy oraz momentu obrotowego. Zasilanie jednofazowe powoduje, że silnik nie może wygenerować odpowiedniego momentu obrotowego oraz obrotu, dlatego kondensator służy jako środek do generowania drugiej fazy. W praktyce, kondensatory są stosowane w różnych konfiguracjach, takich jak kondensatory rozruchowe, które pomagają w uruchomieniu silnika, oraz kondensatory pracy, które poprawiają efektywność jego działania. Zastosowanie kondensatora pozwala na zrównoważenie obciążeń oraz zmniejszenie zniekształceń w sieci zasilającej, co jest zgodne z dobrymi praktykami zarządzania energią w instalacjach elektrycznych. W branży często stosuje się standardy IEC dotyczące urządzeń elektrycznych, w tym odpowiednich parametrów kondensatorów do silników, co zapewnia ich bezpieczeństwo i efektywność.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Jakie przyrządy należy zastosować do określenia rezystancji uzwojeń w transformatorze średniej mocy metodą techniczną?

A. Amperomierz oraz watomierz
B. Woltomierz oraz omomierz
C. Woltomierz oraz watomierz
D. Amperomierz oraz woltomierz
Wybór mierników do oceny rezystancji uzwojeń transformatora jest istotny, a niewłaściwe zestawienia mogą prowadzić do błędnych wyników i ocen stanu urządzenia. Odpowiedzi, które sugerują użycie woltomierza i watomierza, są mylące, ponieważ watomierz mierzy moc, a nie rezystancję. W praktyce, moc oblicza się na podstawie napięcia i prądu, co jest niewłaściwym podejściem do bezpośredniego pomiaru rezystancji uzwojeń. Używanie amperomierza i watomierza również nie jest zasadne, ponieważ, chociaż amperomierz poprawnie mierzy prąd, watomierz nie dostarcza informacji na temat napięcia, które jest kluczowe w obliczeniach rezystancji. Natomiast zastosowanie woltomierza i omomierza nie jest efektywne ze względu na to, że omomierz jest zazwyczaj używany do pomiaru rezystancji w obwodach wyłączonych, podczas gdy w przypadku uzwojeń transformatora mówimy o rezystancji dynamicznej. Amperomierz i woltomierz są narzędziami, które pozwalają na pomiar parametrów pracy transformatora w działaniu, co jest niezbędne do oceny jego efektywności i stanu technicznego. Kluczowym błędem myślowym w rozważaniach nad tymi odpowiedziami jest zrozumienie różnicy między pomiarem rezystancji statycznej a dynamicznej, co w kontekście transformatora ma fundamentalne znaczenie dla analizy jego działania. Dlatego ważne jest, aby w procesie pomiarowym stosować odpowiednie urządzenia oraz metody zgodne z obowiązującymi normami branżowymi.

Pytanie 13

Grzałka jednofazowa o mocy 4 kW jest zasilana przewodem o długości 10 m i przekroju 1,5 mm2. W jaki sposób zmienią się straty mocy w przewodzie zasilającym, jeśli jego przekrój zostanie zwiększony do 2,5 mm2?

A. Spadną o 100%
B. Wzrosną o 40%
C. Wzrosną o 100%
D. Spadną o 40%
Odpowiedź, że straty mocy w przewodzie zmniejszą się o 40%, jest prawidłowa z kilku powodów związanych z zasadami działania prądów elektrycznych i strat energii. Straty mocy w przewodach elektrycznych są związane z oporem przewodnika, który można obliczyć z wykorzystaniem wzoru: P = I²R, gdzie P to moc strat, I to natężenie prądu, a R to opór przewodu. Przy zwiększeniu przekroju przewodu z 1,5 mm2 do 2,5 mm2, opór przewodu maleje, co prowadzi do zmniejszenia strat mocy. W praktyce, stosowanie przewodów o większym przekroju jest zalecane w celu minimalizacji strat energii, co jest zgodne z normami i zasadami efektywności energetycznej. Na przykład, w instalacjach przemysłowych oraz budowlanych, dobór odpowiednich przewodów elektrycznych wpływa na bezpieczeństwo, efektywność operacyjną oraz oszczędności w kosztach energii. To podejście jest zgodne z dobrymi praktykami branżowymi, które promują zwiększenie efektywności energetycznej, a tym samym ograniczenie emisji CO2. Zmniejszenie strat mocy o 40% przy zastosowaniu przewodu o większym przekroju jest wymiernym zyskiem, który powinien być brany pod uwagę na etapie projektowania instalacji. Warto pamiętać, że zastosowanie odpowiednich przekrojów przewodów ma również wpływ na ich temperaturę roboczą, co poprawia bezpieczeństwo całego systemu.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Wartość rezystancji cewki stycznika w układzie sterującym silnikiem wynosi 0 Ω. Co można na podstawie tego pomiaru wnioskować?

A. przewód neutralny jest odłączony
B. cewka stycznika jest uszkodzona
C. przewód fazowy jest odłączony
D. cewka stycznika działa prawidłowo
Rozważając inne odpowiedzi, można zauważyć, że stwierdzenie o odłączeniu przewodu fazowego jest mylne, ponieważ w przypadku odłączonego przewodu nie można by było zmierzyć rezystancji cewki. Przy braku połączenia zasilania nie byłoby żadnych wartości pomiarowych. Z drugiej strony, twierdzenie o sprawności cewki stycznika również jest fałszywe, ponieważ pomiar rezystancji 0 Ω wskazuje na zwarcie, co jest jednoznacznie oznaką uszkodzenia, a nie sprawności. Z kolei koncepcja odłączenia przewodu neutralnego również nie może być uznana za prawidłową, ponieważ niezależnie od stanu przewodu neutralnego, cewka stycznika, będąc elementem elektromagnetycznym, wymaga zarówno przewodu fazowego, jak i neutralnego do prawidłowego działania. W związku z tym, wszelkie błędne wnioski prowadzą do nieporozumień dotyczących diagnozowania problemów z cewkami styczników. Kluczowe jest zrozumienie, że pomiar rezystancji jest podstawowym narzędziem w diagnostyce, a jego interpretacja wymaga wiedzy o działaniu układów elektrycznych. Umiejętność skutecznej diagnostyki pozwala uniknąć kosztownych przestojów i niebezpieczeństw związanych z niewłaściwym działaniem instalacji.

Pytanie 16

Korzystając z przedstawionej tabeli obciążalności długotrwałej dobierz minimalny przekrój przewodów dla instalacji trójfazowej ułożonej przewodami YDY w rurze instalacyjnej na ścianie drewnianej (sposób B2).
Wartość przewidywanego prądu obciążenia instalacji wynosi 36 A.

Obciążalność prądowa długotrwała przewodów miedzianych, w amperach
Izolacja PVC, trzy żyły obciążone
Temperatura żyły: 70°C. Temperatura otoczenia: 30°C w powietrzu, 20°C w ziemi
ułożenieA1A2B1B2CD
Przekrój
żyły
4 mm2242328273231
6 mm2312936344139
10 mm2423950465752
16 mm2565268627667

A. 4 mm2
B. 16 mm2
C. 10 mm2
D. 6 mm2
Wybór niewłaściwego przekroju przewodów dla instalacji trójfazowej może prowadzić do poważnych konsekwencji, zarówno w aspekcie bezpieczeństwa, jak i efektywności energetycznej. W przypadku odpowiedzi 6 mm2, chociaż teoretycznie zbliżone do wartości 36 A, przekrój ten jest na granicy obciążalności, co w praktyce może powodować ryzyko przegrzewania się przewodów, a w konsekwencji ich uszkodzenia. Przekrój 4 mm2 jest zdecydowanie niewystarczający, ponieważ jego obciążalność wynosi tylko 25 A, co stanowi poważne zagrożenie dla instalacji, a w skrajnych przypadkach może prowadzić do pożaru. Wybór przekroju 16 mm2, mimo iż wydaje się bezpieczny, jest nieekonomiczny i niepraktyczny dla danego obciążenia, co skutkuje niepotrzebnymi kosztami materiałowymi. Wszystkie te błędy są wynikiem braku zrozumienia podstawowych zasad dotyczących doboru przekrojów przewodów, które powinny bazować na przewidywanych obciążeniach oraz specyfice instalacji. Zgodnie z wytycznymi norm, takich jak PN-IEC 60364, powinno się stosować przekroje adekwatne do warunków pracy, aby zapewnić bezpieczeństwo i efektywność energetyczną systemu. Odpowiednie podejście do doboru przekrojów jest kluczem do minimalizacji ryzyka awarii oraz zwiększenia trwałości systemu elektrycznego.

Pytanie 17

Jaką wartość powinno mieć napięcie pomiarowe przy pomiarze rezystancji izolacji kabla umieszczonego w gruncie?

A. 500 V
B. 250 V
C. 2 500 V
D. 1 000 V
Napięcia 1 000 V, 500 V i 250 V są nieodpowiednie do pomiarów rezystancji izolacji kabli ułożonych w ziemi, ponieważ są zbyt niskie, aby zapewnić dokładne i wiarygodne wyniki. Użycie napięcia 1 000 V może być stosowane w niektórych aplikacjach, jednak w przypadku kabli ułożonych w ziemi, nie dostarcza ono wystarczającej energii do identyfikacji potencjalnych uszkodzeń izolacji, które mogą być przyczyną awarii w przyszłości. Podobnie, napięcie 500 V jest zdecydowanie poniżej standardów przemysłowych dla takich zastosowań, co skutkuje brakiem możliwości wykrycia słabych punktów w izolacji. Z kolei wartość 250 V jest znacznie zbyt niska, aby jakiekolwiek pomiary miały sens w kontekście oceny stanu izolacji w trudnych warunkach gruntowych. Zastosowanie niewłaściwego napięcia podczas pomiarów może prowadzić do fałszywych wyników, co w konsekwencji prowadzi do błędnych decyzji w zakresie konserwacji i eksploatacji kabli. Kluczowe jest, aby w takich sytuacjach polegać na uznanych standardach i dobrach praktykach branżowych, które jasno wskazują, że napięcie 2 500 V powinno być stosowane w celu zapewnienia odpowiedniej dokładności pomiarów i bezpieczeństwa całej instalacji.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Jakie są minimalne wymagania, oprócz odpowiedniego wykształcenia, które powinna spełniać osoba odpowiedzialna za przeprowadzanie pomiarów odbiorczych instalacji elektrycznej w budynku mieszkalnym?

A. Wyłącznie świadectwo kwalifikacyjne w zakresie D
B. Świadectwo kwalifikacyjne w zakresie E + pomiary
C. Świadectwo kwalifikacyjne w zakresie E + D + pomiary
D. Jedynie świadectwo kwalifikacyjne w zakresie E
Osoba wykonująca pomiary odbiorcze instalacji elektrycznej w budynku mieszkalnym powinna posiadać świadectwo kwalifikacyjne w zakresie E, które uprawnia do eksploatacji urządzeń, instalacji i sieci elektrycznych. Dodatkowo, ważnym elementem jest posiadanie wiedzy oraz umiejętności praktycznych w zakresie przeprowadzania pomiarów. Wiedza ta obejmuje znajomość metod pomiarowych, zasad ich wykonywania oraz interpretacji wyników. Pomiary odbiorcze są kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznej. Na przykład, pomiar rezystancji izolacji pozwala na ocenę stanu zabezpieczeń przed porażeniem elektrycznym, co jest szczególnie istotne w domowych instalacjach. Standardy branżowe, takie jak PN-EN 60204-1, podkreślają znaczenie takich pomiarów dla zapewnienia zgodności z normami bezpieczeństwa. Z tego powodu posiadanie świadectwa kwalifikacyjnego w zakresie E wraz z umiejętnością wykonywania pomiarów jest niezbędne do efektywnego i bezpiecznego wykonywania prac w tej dziedzinie.

Pytanie 23

Silnik prądu stałego w układzie szeregowym intensywnie iskrzy na segmentach komutatora. Najbardziej prawdopodobnym powodem uszkodzenia jest

A. przerwa w obwodzie stojana
B. zwarcie międzyzwojowe w obwodzie stojana
C. zwarcie międzyzwojowe w obwodzie wirnika
D. przerwa w obwodzie wirnika
Przerwa w obwodzie wirnika, zwarcie międzyzwojowe w obwodzie stojana oraz przerwa w obwodzie stojana to nieprawidłowe odpowiedzi, które mogą prowadzić do nieporozumień na temat działania silnika szeregowego prądu stałego. Przerwa w obwodzie wirnika skutkowałaby brakiem prądu w części uzwojenia, co teoretycznie mogłoby zmniejszyć iskrzenie, a nie je zwiększać. W praktyce, gdy wirnik nie jest w pełni zasilany, silnik doświadcza znacznych spadków momentu obrotowego, co może prowadzić do niestabilności w pracy. Podobnie, zwarcie międzyzwojowe w obwodzie stojana nie wpływa bezpośrednio na obwód wirnika, a ich skutki są odczuwalne tylko w kontekście całej maszyny. W efekcie, taki stan może prowadzić do nieprawidłowej pracy silnika, ale nie manifestuje się w postaci iskrzenia na komutatorze. Przerwa w obwodzie stojana, z drugiej strony, również prowadziłaby do utraty wydajności, jednak nie miałaby bezpośredniego wpływu na iskrzenie, ponieważ obwód stojana zazwyczaj nie jest odpowiedzialny za wytwarzanie efektów komutacji. Zrozumienie dynamiki działania silnika oraz jego komponentów jest kluczowe dla diagnozowania problemów, a błędne przypisanie przyczyn może prowadzić do nieprawidłowej konserwacji i kosztownych awarii.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Które z poniższych rozwiązań gwarantuje podstawową ochronę przed porażeniem w grzejniku elektrycznym działającym w systemie TN-S?

A. Podłączenie obudowy do uziemienia ochronnego
B. Zastosowanie wyłącznika różnicowoprądowego w obwodzie zasilania
C. Zastosowanie wyłącznika instalacyjnego nadprądowego w obwodzie zasilania
D. Izolacja robocza
Podłączenie obudowy do uziemienia ochronnego jest często mylone z podstawową ochroną przeciwporażeniową, jednak w przypadku grzejnika elektrycznego pracującego w sieci TN-S to podejście nie jest wystarczające. Uziemienie ma na celu zabezpieczenie przed skutkami awarii w sytuacji, gdy izolacja robocza zawiedzie, jednak nie eliminuje konieczności stosowania izolacji jako pierwszej linii obrony. Uziemienie chroni użytkownika w przypadku, gdy obudowa urządzenia staje się naładowana wskutek uszkodzenia, ale nie chroni przed porażeniem w sytuacji, gdy elementy elektryczne są w kontakcie z użytkownikiem, zanim dojdzie do zadziałania systemu uziemiającego. Izolacja robocza zapewnia, że nawet w przypadku uszkodzenia, nie dojdzie do sytuacji, w której prąd elektryczny może przepłynąć przez obudowę grzejnika. Ponadto zastosowanie wyłącznika różnicowoprądowego lub instalacyjnego nadprądowego to metody zabezpieczające, które działają w momencie wykrycia nieprawidłowości, ale nie eliminują ryzyka podczas normalnej pracy urządzenia. Błędem może być zatem postrzeganie uziemienia lub wyłączników jako samodzielnych rozwiązań ochronnych, zamiast traktowania ich jako uzupełniających elementów systemu ochrony, który powinien zawsze obejmować odpowiednią izolację roboczą, jako fundamentalny wymóg bezpieczeństwa w instalacjach elektrycznych.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Kontrola instalacji elektrycznych w obiektach użyteczności publicznej powinna być przeprowadzana nie rzadziej niż co

A. 4 lata
B. 3 lata
C. 5 lat
D. 2 lata
Wiesz, przeglądy instalacji elektrycznej w budynkach publicznych powinny być robione co 5 lat. To ważne, bo chodzi o bezpieczeństwo ludzi i to, by wszystko działało jak należy. Jak robisz to regularnie, to można szybciej zauważyć różne usterki, takie jak uszkodzone kable czy korozja. Na przykład, w teatrach czy halach sportowych jest mnóstwo ludzi, więc tam warto być szczególnie czujnym, żeby nie było awarii, które mogą być niebezpieczne. Fajnie też mieć dokumentację tych przeglądów, bo widać, co się działo z instalacją przez lata. Ważne, żeby przeglądami zajmowali się fachowcy, którzy potrafią ocenić, co jest do zrobienia. W Polsce można znaleźć przepisy na ten temat w Kodeksie Pracy i normach PN-IEC.

Pytanie 28

Osoby zajmujące się naprawą instalacji elektrycznych w budynkach mieszkalnych powinny posiadać

A. pisemne zezwolenie na pracę od kierownika robót
B. uprawnienie potwierdzone odpowiednim świadectwem kwalifikacyjnym
C. zaświadczenie o przeszkoleniu wystawione przez osobę mającą uprawnienia
D. zaświadczenie o przeszkoleniu wydane przez administratora budynku
Odpowiedź "uprawnienie potwierdzone odpowiednim świadectwem kwalifikacyjnym" jest prawidłowa, ponieważ zgodnie z obowiązującymi przepisami prawa budowlanego oraz normami dotyczącymi bezpieczeństwa pracy, osoby zajmujące się instalacjami elektrycznymi muszą posiadać odpowiednie kwalifikacje, które są dokumentowane przez świadectwa kwalifikacyjne. Tego typu świadectwa są wydawane na podstawie ukończenia specjalistycznych szkoleń oraz zdania egzaminów, które potwierdzają znajomość przepisów, norm i standardów dotyczących instalacji elektrycznych. Przykładem może być świadectwo wydawane przez Urząd Dozoru Technicznego, które jest wymagane do przeprowadzania prac w obiektach, gdzie stosuje się urządzenia elektryczne pod napięciem. Dzięki posiadaniu takich uprawnień, technicy elektrycy zapewniają bezpieczeństwo nie tylko sobie, ale również użytkownikom budynków. Posiadanie świadectwa kwalifikacyjnego jest zatem kluczowe dla profesjonalizmu w branży oraz zgodności z obowiązującym prawem, co przekłada się na bezpieczne i efektywne wykonywanie zadań w zakresie instalacji i konserwacji systemów elektrycznych.

Pytanie 29

Możliwość przebicia izolacji uzwojeń silnika indukcyjnego trójfazowego w stosunku do korpusu można ustalić przez pomiar

A. rezystancji przewodu ochronnego
B. symetrii uzwojeń
C. prądu upływu
D. rezystancji uzwojeń stojana
Prąd upływu jest kluczowym wskaźnikiem stanu izolacji uzwojeń silnika indukcyjnego trójfazowego. W momencie wystąpienia przebicia izolacji, prąd upływu wzrasta, co może prowadzić do niebezpiecznych sytuacji, w tym uszkodzenia silnika oraz zagrożeń dla użytkowników. Pomiar prądu upływu pozwala na wykrycie niewłaściwych warunków izolacyjnych oraz wczesną identyfikację problemów, zanim dojdzie do poważniejszych awarii. W praktyce, stosuje się urządzenia pomiarowe, takie jak mierniki izolacji czy detektory prądu upływu, które mogą zarówno diagnozować stan izolacji, jak i monitorować jej zmiany w czasie. W myśl dobrych praktyk, regularne kontrole stanu izolacji silników są zalecane przez standardy branżowe, takie jak IEC 60034, co podkreśla znaczenie zapobiegania awariom oraz zapewnienia bezpieczeństwa eksploatacji urządzeń elektrycznych.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Na podstawie zamieszczonych wyników pomiarów rezystancji w przewodzie elektrycznym przedstawionym na ilustracji można stwierdzić, że żyły

Pomiar pomiędzy końcami żyłRezystancja
Ω
L1.1 – L1.20
L2.1 – L2.20
L3.1 – L3.20
N.1 – N.20
PE.1 – PE.2
L1.1 – L2.1
L1.1 – L3.1
L1.1 – N.1
L1.1 – PE.1
N.1 – PE.1
N.1 – L2.1
N.1 – L3.10

Ilustracja do pytania
A. N i L3 są zwarte oraz PE jest przerwana.
B. N i PE są zwarte oraz L3 jest przerwana.
C. L1 i L2 są zwarte.
D. L1 i L2 są przerwane.
Odpowiedź, że żyły N i L3 są zwarte oraz PE jest przerwana, jest prawidłowa, ponieważ wyniki pomiarów rezystancji wskazują na bezpośrednie połączenie elektryczne między tymi żyłami, co objawia się rezystancją równą 0 Ω. Taka sytuacja może wynikać z zastosowania odpowiednich technik testowania, które są zgodne z normami, takimi jak PN-EN 60204-1, dotyczące bezpieczeństwa urządzeń elektrycznych. W praktyce oznacza to, że w przypadku awarii lub zwarcia w obwodzie, może dojść do niebezpiecznych sytuacji, dlatego niezwykle istotne jest regularne testowanie instalacji elektrycznych. Przewód PE jest kluczowy dla bezpieczeństwa, a jego przerwanie wskazuje na poważne ryzyko. W takich sytuacjach należy podejść do naprawy systemu z najwyższą ostrożnością, stosując odpowiednie metody diagnostyczne, aby zapobiec zagrożeniom związanym z porażeniem prądem elektrycznym.

Pytanie 32

Na podstawie podanych w tabeli wyników pomiarów rezystancji izolacji silnika asynchronicznego trójfazowego o danych UN = 230/400 V i PN = 3 kW można stwierdzić, że

RPE-U1RPE-V1RPE-W1RU1-V1RV1-W1RW1-U1
6,2 MΩ5,4 MΩ3,9 MΩ6,9 MΩ4,4 MΩ4,8 MΩ

A. w uzwojeniu V występuje przerwa.
B. wystąpiło zwarcie między uzwojeniami V i W.
C. pogorszyła się izolacja uzwojenia W.
D. w uzwojeniu U występuje zwarcie do obudowy.
Wybór odpowiedzi sugerującej przerwę w uzwojeniu V jest nieuzasadniony, ponieważ przerwa w uzwojeniu zwykle charakteryzuje się nieskończoną rezystancją, co jest łatwe do zidentyfikowania podczas pomiarów. W rzeczywistości, pomiar rezystancji powinien wykazać brak ciągłości obwodu, co jest nielogiczne w kontekście podanych wyników. Z kolei sugerowanie zwarcia między uzwojeniami V i W jest błędne, ponieważ takie zwarcie prowadziłoby do istotnego spadku rezystancji, a w przypadku, gdy uzwojenia są w dobrym stanie, nie zaobserwujemy takich wartości. Ponadto, twierdzenie o zwarciu do obudowy w uzwojeniu U wskazuje na niepełne zrozumienie zasad działania silników asynchronicznych. Zwarcie do obudowy zazwyczaj skutkuje trwającym uszkodzeniem i może prowadzić do natychmiastowego odłączenia urządzenia od zasilania w celu uniknięcia potencjalnych zagrożeń. Te błędne rozumowania często wynikają z nieprawidłowego myślenia o kondycji izolacji i zjawiskach zachodzących w silnikach. Kluczowe jest zrozumienie, że właściwa diagnoza opiera się na dokładnej analizie pomiarów, a nie na domniemaniach. Dlatego ważne jest, aby zawsze polegać na danych pomiarowych oraz stosować się do standardów branżowych, takich jak normy ISO oraz IEC, które podkreślają znaczenie zrozumienia procesów zachodzących w urządzeniach elektrycznych.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

W tabeli zamieszczono wyniki kontrolnych pomiarów rezystancji uzwojeń stojana silnika trójfazowego połączonego w gwiazdę. Przedstawione wyniki świadczą o

Rezystancja uzwojeń stojana między zaciskamiWartość, Ω
U1 – V115
V1 – W1
W1 – U1

Ilustracja do pytania
A. zwarciu międzyzwojowym w uzwójeniu V1 - V2
B. zwarciu międzyzwojowym w uzwojeniu Ul - U2
C. przerwie w uzwojeniu Wl - W2
D. przerwie w uzwojeniu VI - V2
Poprawna odpowiedź wskazuje na przerwę w uzwojeniu W1-W2, co można zdiagnozować na podstawie pomiarów rezystancji. W przypadku silników trójfazowych połączonych w gwiazdę, każdy z trzech uzwojeń (U, V, W) powinien mieć zbliżoną rezystancję. W analizowanym przypadku, jeśli rezystancja między zaciskami V1-W1 oraz W1-U1 wynosi nieskończoność, oznacza to, że w obwodzie występuje przerwa. Tego rodzaju awarie mają poważne konsekwencje operacyjne, ponieważ przerywają ciągłość elektryczną, co prowadzi do nieprawidłowego działania silnika. Przerwa w uzwojeniu skutkuje brakiem obciążenia dla pozostałych uzwojeń, co może prowadzić do ich przegrzewania się i w konsekwencji do uszkodzenia. W praktyce ważne jest, aby regularnie przeprowadzać pomiary rezystancji uzwojeń, co jest zgodne z normami branżowymi, takimi jak IEC 60034, które podkreślają znaczenie monitorowania stanu technicznego maszyn elektrycznych.

Pytanie 35

Jaki stopień ochrony powinien posiadać silnik trójfazowy eksploatowany w pomieszczeniu narażonym na wybuch?

A. IP11
B. IP00
C. IP34
D. IP56
Wybór niewłaściwego stopnia ochrony IP dla silnika trójfazowego w pomieszczeniach zagrożonych wybuchem może prowadzić do poważnych konsekwencji. Stopień IP34, na przykład, zapewnia jedynie ograniczoną ochronę przed pyłem oraz wodą, co jest niewystarczające w kontekście stref Ex, gdzie ryzyko zapłonu jest znacznie podwyższone. Takie podejście może wynikać z błędnego przekonania, że wystarczy podstawowa ochrona przed zanieczyszczeniami, co jest dużym niedopatrzeniem. IP11 zapewnia jedynie ochronę przed dużymi obiektami stałymi, ale nie chroni przed wodą, co czyni go całkowicie nieodpowiednim dla środowisk przemysłowych. Zastosowanie stopnia IP00, który nie oferuje żadnej ochrony, może prowadzić do natychmiastowego uszkodzenia silnika. Kluczowym błędem jest także bagatelizowanie znaczenia standardów takich jak ATEX, które nakładają surowe wymagania dotyczące bezpieczeństwa w strefach zagrożonych wybuchem. Wybór odpowiedniego stopnia ochrony powinien być oparty na dokładnej analizie ryzyka, co jest kluczowe dla zapewnienia nie tylko efektywności operacyjnej, ale także bezpieczeństwa pracowników oraz ochrony środowiska. Wnioskując, niewłaściwy dobór stopnia ochrony może skutkować nie tylko uszkodzeniem urządzeń, ale także poważnymi zagrożeniami dla zdrowia i życia ludzi.

Pytanie 36

Jaki jest minimalny stopień zabezpieczenia sprzętu oraz osprzętu używanego na placach budowy?

A. IP 55
B. IP 44
C. IP 35
D. IP 67
Odpowiedź IP 44 jest prawidłowa, ponieważ oznacza ona, że sprzęt i osprzęt instalacyjny są chronione przed ciałami stałymi o średnicy większej niż 1 mm oraz przed wodą, która będzie miała wpływ na działanie urządzenia w ograniczonym stopniu. To szczególnie ważne na placach budowy, gdzie sprzęt narażony jest na pył, brud oraz wilgoć. W praktyce oznacza to, że urządzenia z klasą IP 44 mogą być używane w warunkach, gdzie może wystąpić kontakt z wodą, na przykład w przypadku deszczu. Taki stopień ochrony jest zalecany w normach ISO oraz IEC, które regulują bezpieczeństwo i niezawodność urządzeń elektrycznych. W kontekście budowy, zastosowanie takich urządzeń minimalizuje ryzyko awarii, a także zapewnia bezpieczeństwo użytkowników i personelu. Przykładem mogą być skrzynki elektryczne, które są używane do zasilania narzędzi i maszyn na otwartej przestrzeni, gdzie ochrona przed wodą i kurzem jest kluczowa dla ich prawidłowego funkcjonowania.

Pytanie 37

Które z poniższych zjawisk nie wpływa na pogorszenie jakości energii elektrycznej?

A. Obecność harmonicznych
B. Czystość powietrza
C. Wahania napięcia
D. Przepięcia
Czystość powietrza nie jest czynnikiem wpływającym na jakość energii elektrycznej, ponieważ nie ma bezpośredniego związku z parametrami elektrycznymi sieci. Jakość energii elektrycznej określana jest przez stabilność napięcia, częstotliwość, zawartość harmonicznych oraz obecność przepięć i zapadów napięcia. Czystość powietrza może mieć wpływ na inne aspekty funkcjonowania instalacji, takie jak chłodzenie urządzeń czy ochrona przed korozją, ale nie bezpośrednio na jakość samej energii. W kontekście eksploatacji maszyn, urządzeń i instalacji elektrycznych, czystość powietrza jest bardziej istotna z punktu widzenia utrzymania sprzętu w dobrej kondycji, a nie jakości energii elektrycznej jako takiej. W praktyce, osoby zajmujące się eksploatacją instalacji powinny zwracać uwagę na zanieczyszczenia, które mogą osadzać się na urządzeniach, powodując ich przegrzewanie lub przyspieszoną korozję.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Jaką wkładkę topikową bezpiecznikową powinno się wykorzystać do ochrony silnika indukcyjnego przed skutkami zwarć?

A. WT/NHaM
B. WT-2gTr
C. WT/NH DC
D. WT-00 gF
Wkładka topikowa WT/NHaM została zaprojektowana specjalnie do ochrony silników indukcyjnych przed skutkami zwarć. Posiada ona właściwości, które pozwalają na szybkie odłączenie obwodu w przypadku wystąpienia zwarcia, co jest kluczowe dla ochrony zarówno samego silnika, jak i całej instalacji elektrycznej. Zastosowanie tej wkładki jest zgodne z normami IEC 60269, które definiują wymagania dotyczące wkładek bezpiecznikowych. W praktyce, wkładki WT/NHaM charakteryzują się niskimi wartościami prądu zwarciowego, co zapewnia ich efektywność w przypadku krótkotrwałych przeciążeń, typowych dla pracy silników. W przypadku, gdy w silniku dojdzie do zwarcia, wkładka ta reaguje w sposób błyskawiczny, co minimalizuje ryzyko uszkodzenia komponentów. Przykładem zastosowania może być przemysł, w którym silniki napędzają maszyny, a ich bezpieczne i niezawodne funkcjonowanie jest kluczowe dla ciągłości produkcji.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.