Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 13 kwietnia 2025 15:04
  • Data zakończenia: 13 kwietnia 2025 15:23

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaka przyczyna powoduje rozbieżność w działaniu silnika bocznikowego prądu stałego?

A. Brak obciążenia
B. Przerwa w uzwojeniu wzbudzenia
C. Luzy w łożyskach
D. Przerwa w uzwojeniu twornika
Luzy w łożyskach same w sobie nie sprawią, że silnik bocznikowy prądu stałego zacznie się rozbiegać. Owszem, luzy mogą zmniejszyć wydajność i stabilność silnika. Mogą powodować większe tarcie, co prowadzi do przegrzewania, ale to nie kluczowy powód rozbiegania. Brak obciążenia też nie jest głównym problemem, bo nawet bez obciążenia te silniki mogą pracować, tylko kręcą się szybciej, co może prowadzić do uszkodzeń. Przerwa w uzwojeniu twornika nie sprawi, że silnik się rozbiegnie, bo bez prądu w tym uzwojeniu, to ten silnik w ogóle nie wystartuje. Kluczowe w tym wszystkim jest zrozumienie, że rozbieganie się silnika wynika z braku pola magnetycznego i braku stabilizacji prędkości obrotowej. Myślenie, że to przez problemy mechaniczne, to typowy błąd, bo powinno się skupić bardziej na zasadach działania silnika i jego systemie wzbudzenia.

Pytanie 2

Który z podanych sposobów ochrony przed porażeniem elektrycznym pełni rolę zabezpieczenia dodatkowego w przypadku uszkodzenia instalacji elektrycznych niskonapięciowych?

A. Ochronne miejscowe połączenia wyrównawcze
B. Separacja elektryczna odbiornika
C. Podwójna lub wzmocniona izolacja elektryczna
D. Umieszczenie części czynnych poza zasięgiem ręki
Odpowiedzi takie jak podwójna lub wzmocniona izolacja elektryczna, separacja elektryczna odbiornika oraz umieszczenie części czynnych poza zasięgiem ręki, są istotnymi elementami ochrony przeciwporażeniowej, lecz nie spełniają roli uzupełniającej w kontekście uszkodzeń w instalacjach niskonapięciowych. Podwójna lub wzmocniona izolacja może rzeczywiście skutecznie chronić przed porażeniem, jednak w przypadku jej uszkodzenia nie zapewnia dodatkowej ochrony, ponieważ nie ma możliwości odprowadzenia prądu do ziemi. Separacja elektryczna, polegająca na oddzieleniu odbiornika od źródła zasilania, może zredukować ryzyko, ale nie eliminuje go całkowicie i nie zapewnia dodatkowego zabezpieczenia w przypadku awarii izolacji. Umieszczenie części czynnych poza zasięgiem ręki to praktyka prewencyjna, która ma na celu zminimalizowanie ryzyka dostępu do niebezpiecznych elementów, jednak nie odpowiada na sytuacje, gdy dojdzie do awarii systemu. Kluczowym błędem w myśleniu jest skupienie się na pojedynczych metodach ochrony, zamiast na kompleksowym podejściu do bezpieczeństwa elektrycznego. Właściwe wdrożenie połączeń wyrównawczych, zgodnie z normami EN 61140, ma fundamentalne znaczenie w kontekście całościowego bezpieczeństwa instalacji elektrycznych.

Pytanie 3

Jak często powinno się wykonywać przeglądy instalacji elektrycznej w obiektach o napięciu znamionowym 230/400 V?

A. Nie rzadziej niż co 10 lat
B. Tylko po przeprowadzonym remoncie budynku
C. Tylko po wymianie elementów instalacji
D. Nie rzadziej niż co 5 lat
Odpowiedź 'Nie rzadziej niż co 5 lat' jest całkiem zgodna z tym, co mówi prawo i zalecenia dotyczące bezpieczeństwa instalacji elektrycznych, jak normy PN-IEC 60364. Regularne przeglądy instalacji elektrycznej są mega ważne, bo pozwalają upewnić się, że wszystko działa jak należy i że użytkownicy są bezpieczni. Jak robi się inspekcje co 5 lat, można wcześniej wychwycić jakieś awarie czy zużycie materiałów, które mogą potem przynieść poważne kłopoty, jak pożar. Na przykład, wyłączniki różnicowoprądowe mogą z wiekiem przestać działać właściwie przez różne uszkodzenia. Dodatkowo, regularne kontrole pozwalają też dostosować instalacje do nowszych wymagań technologicznych, co jest szczególnie ważne teraz, gdy jest coraz więcej urządzeń elektrycznych w domach. Dlatego dbanie o te przeglądy to nie tylko kwestia prawa, ale też racjonalne podejście do bezpieczeństwa i efektywności budynku.

Pytanie 4

Jakim kolorem należy oznaczać nieizolowany przewód uziemiający punkt gwiazdowy transformatora SN/nn, który zasilają sieć TN-C, gdy jest wykonany w formie taśmy?

A. Jasnoniebieski
B. Czarny
C. Zielony
D. Żółto-zielony
Oznaczenie przewodów w instalacjach elektrycznych jest kluczowym aspektem, który ma bezpośredni wpływ na bezpieczeństwo użytkowania instalacji. Wybór barwy zielonej dla przewodu uziemiającego jest błędny, ponieważ zarezerwowane jest to dla przewodów ochronnych, jednak nie jest zalecane do oznaczania przewodów uziemiających. Zielony kolor mógłby prowadzić do nieporozumień i pomyłek w instalacjach, gdzie ważne jest, aby przewody były właściwie identyfikowane. Przewód czarny, z drugiej strony, jest najczęściej używany w systemach jako przewód fazowy, co również czyni go niewłaściwym wyborem dla uziemienia, gdyż może wprowadzać w błąd podczas wykonywania prac serwisowych. Jasnoniebieski kolor oznacza przewody neutralne, co także kłóci się z wymaganiami dotyczącymi uziemienia. Pomieszanie oznaczeń jest typowym błędem, który może wystąpić, gdy nie ma pełnego zrozumienia norm i standardów dotyczących kolorów przewodów w instalacjach elektrycznych. W przypadku punktów gwiazdowych transformatorów SN/nn, istotne jest, aby przewody uziemiające były wyraźnie oznaczone w sposób jednoznaczny i zgodny z normami, co umożliwia ich łatwą identyfikację i minimalizuje ryzyko porażenia prądem w sytuacjach awaryjnych.

Pytanie 5

Który przekrój przewodu jest najczęściej używany do tworzenia obwodów gniazd wtyczkowych w podtynkowych instalacjach mieszkaniowych?

A. 1,5 mm2
B. 1 mm2
C. 2,5 mm2
D. 4 mm2
Przewód o przekroju 2,5 mm2 jest standardowo stosowany w obwodach gniazd wtyczkowych w instalacjach elektroenergetycznych w budownictwie mieszkaniowym. Taki przekrój zapewnia odpowiednią przewodność elektryczną oraz bezpieczeństwo użytkowania, co jest niezwykle istotne, biorąc pod uwagę maksymalne obciążenia, które mogą wystąpić w codziennym użytkowaniu. Przykładowo, w przypadku podłączenia urządzeń elektrycznych, takich jak odkurzacze czy piekarniki, które mogą wymagać wyższego poboru prądu, przewód 2,5 mm2 spełnia normy bezpieczeństwa i nie doprowadza do przegrzewania się instalacji. Zgodnie z normami PN-IEC 60364, stosowanie przewodów o mniejszym przekroju może prowadzić do nieefektywności energetycznej i zwiększonego ryzyka pożaru. Ważne jest również, aby pamiętać o odpowiednim doborze zabezpieczeń, takich jak bezpieczniki, które powinny być dostosowane do przekroju przewodu oraz przewidywanego obciążenia.

Pytanie 6

Którą z poniższych czynności pracownik ma prawo wykonać bez zlecenia osób nadzorujących jego pracę?

A. Zamiana izolatora na linii napowietrznej nn
B. Gaszenie pożaru urządzenia elektrycznego
C. Zlokalizowanie uszkodzeń w linii kablowej nn
D. Renowacja rozdzielnicy po likwidacji pożaru
Gaszenie pożaru urządzenia elektrycznego jest jedyną czynnością, którą pracownik może wykonać bez wcześniejszego polecenia osób dozorujących, gdyż w sytuacjach awaryjnych priorytetem jest ochrona życia oraz mienia. Standardy BHP wskazują, że w razie pożaru, każdy pracownik ma prawo i obowiązek podjąć działania mające na celu jego ugaszenie, o ile to możliwe i bezpieczne. W praktyce, jeśli pracownik zauważy pożar, powinien niezwłocznie podjąć próbę ugaszenia go przy użyciu odpowiednich środków gaśniczych, takich jak gaśnice lub urządzenia automatycznego gaszenia. Tego rodzaju działanie jest zgodne z zasadą „zatrzymaj ogień, zanim on się rozprzestrzeni”, co jest kluczowe w minimalizowaniu szkód i zagrożeń. Zwracając uwagę na procedury zawarte w przepisach, takich jak Rozporządzenie Ministra Spraw Wewnętrznych i Administracji w sprawie ochrony przeciwpożarowej, można zauważyć, że pracownicy są odpowiednio szkoleni i przygotowani do działania w sytuacjach kryzysowych.

Pytanie 7

Jaką wkładkę topikową należy zastosować zamiast przepalonej wkładki oznaczonej WTS 10A, aby nie zagrażać działaniu ochrony przeciwporażeniowej w przypadku uszkodzenia?

A. WTZ o prądzie 10 A
B. WTZ o wyższym prądzie znamionowym
C. WTS o wyższym prądzie znamionowym
D. WTS o prądzie 10 A
Wybór wkładki topikowej WTS o prądzie 10 A jest prawidłowy, ponieważ ta wkładka jest zaprojektowana do użycia w obwodach chronionych przez zabezpieczenia przeciwporażeniowe. Wkładki typu WTS, czyli wkładki szybkie, zapewniają skuteczną ochronę przed zwarciami i przeciążeniami, a ich zastosowanie w obwodach z zabezpieczeniami różnicowymi jest zgodne z wymaganiami normy PN-EN 60947-3. Utrzymanie tego samego prądu znamionowego (10 A) jest kluczowe, aby nie zakłócić działania istniejących zabezpieczeń. W przypadku zmniejszenia prądu znamionowego, może to prowadzić do nieprzewidywalnych wyłączeń, a zwiększenie prądu może narazić układ na ryzyko uszkodzenia. W praktyce, jeśli w danym obwodzie zastosujemy wkładkę o innym prądzie znamionowym, może to prowadzić do nieprawidłowego działania urządzeń, a w najgorszym przypadku do utraty ochrony przeciwporażeniowej. Dlatego kluczowe jest, aby dobierać wkładki zgodnie z ich oznaczeniem oraz wymaganiami projektu elektrycznego.

Pytanie 8

Jaką czynność powinno się wykonać podczas pomiaru rezystancji uzwojeń stojana oraz rezystancji izolacji silnika trójfazowego w celu zlokalizowania uszkodzeń?

A. Podłączyć napięcie zasilające
B. Obciążyć silnik momentem znamionowym
C. Zewrzeć zaciski silnika z zaciskiem ochronnym
D. Otworzyć łącznik załączający silnik
Jak dla mnie, otwarcie łącznika przed pomiarem rezystancji uzwojeń w silniku trójfazowym to bardzo ważny krok. Dzięki temu unikamy poważnych uszkodzeń sprzętu, a także dbamy o swoje bezpieczeństwo podczas testów. Kiedy łącznik jest otwarty, można spokojnie zmierzyć rezystancję uzwojeń, co jest kluczowe, żeby ocenić stan ich izolacji i wychwycić ewentualne zwarcia międzyzwojowe. Warto wiedzieć, że takie praktyki są potwierdzone przez normy jak IEC 60034-1, które mocno podkreślają, że trzeba mieć bezpieczny dostęp do obwodów przed rozpoczęciem pomiarów. Otwarcie łącznika to także zabezpieczenie przed przypadkowym uruchomieniem silnika, co mogłoby prowadzić do nieprzyjemnych sytuacji. Pamiętaj, żeby używać odpowiednich narzędzi, jak megohmometr, do pomiaru rezystancji izolacji. To pozwoli uzyskać dokładne wyniki i ocenić stan izolacji. Regularne przeglądy silników w zakładach przemysłowych to najlepszy sposób na wczesne wykrywanie usterek i lepsze zarządzanie kosztami eksploatacji.

Pytanie 9

Jak często należy przeprowadzać oględziny domowej instalacji elektrycznej?

A. 24 miesiące
B. 35 miesięcy
C. 12 miesięcy
D. 60 miesięcy
Wydaje mi się, że niektórzy myślą, że przeglądy instalacji elektrycznej powinno robić się częściej niż co 60 miesięcy. Odpowiedzi takie jak 24, 35 czy 12 miesięcy mogą wynikać z niepoprawnego rozumienia norm bezpieczeństwa. Ludzie mogą mieć poczucie, że im częściej, tym lepiej, ale to nie zawsze ma sens. Częstsze przeglądy to dodatkowe koszty, które mogą zniechęcić do regularnych kontroli. A warto pamiętać, że normy jak PN-IEC 60364 zapewniają nie tylko oszczędności, ale też bezpieczeństwo. Robienie przeglądów co 60 miesięcy wyszuka jakieś problemy, jak zużyte przewody czy źle działające zabezpieczenia, zanim będzie za późno. Fajnie jest myśleć, że intensywne korzystanie z urządzeń elektrycznych wymaga częstszych przeglądów, ale to nie zawsze prawda. Ważniejsza jest jakość samej instalacji, która przy dobrym nadzorze może działać bez zarzutu przez długi czas.

Pytanie 10

Który z wymienionych rozwiązań powinien być zastosowany w warsztacie remontowym, aby zapewnić podstawową ochronę przed porażeniem prądem elektrycznym?

A. Wyłączniki różnicowoprądowe
B. Obudowy i osłony
C. Miejscowe połączenia wyrównawcze
D. Separacja elektryczna
Obudowy i osłony to kluczowe elementy zabezpieczeń elektrycznych, które mają na celu ochronę użytkowników przed niebezpieczeństwem porażenia prądem elektrycznym. Ich głównym zadaniem jest zapobieganie bezpośredniemu kontaktowi z elementami pod napięciem, co minimalizuje ryzyko wypadków. Standardy takie jak PN-EN 61140 określają wymagania dotyczące ochrony przed porażeniem prądem, a zastosowanie odpowiednich obudów, które są wykonane z materiałów odpornych na działanie prądu, jest jedną z podstawowych zasad. Przykładowo, w warsztatach remontowych, gdzie często używane są narzędzia elektryczne, zastosowanie obudów ochronnych na gniazdka i urządzenia jest konieczne. Dzięki temu, nawet w przypadku uszkodzenia izolacji, ryzyko porażenia prądem zostaje znacząco ograniczone. Dodatkowo, stosowanie osłon na kable i urządzenia może przyczynić się do zmniejszenia uszkodzeń mechanicznych, co jest istotne w kontekście długoterminowej niezawodności oraz bezpieczeństwa pracy.

Pytanie 11

Jakie z wymienionych powodów wpływa na zmniejszenie prędkości obrotowej trójfazowego silnika klatkowego w trakcie jego pracy?

A. Wzrost wartości napięcia zasilającego.
B. Zwarcie pierścieni ślizgowych.
C. Zmniejszenie obciążenia silnika.
D. Przerwa w zasilaniu jednej z faz.
Spadek obciążenia silnika nie prowadzi do zmniejszenia prędkości obrotowej trójfazowego silnika klatkowego. W rzeczywistości, gdy obciążenie maleje, silnik może utrzymać lub nawet zwiększyć swoją prędkość obrotową, zbliżając się do prędkości synchronizacyjnej. W przypadku wzrostu napięcia zasilania, silnik również nie powinien wykazywać spadku prędkości obrotowej. Wzrost napięcia w układzie trójfazowym zwykle skutkuje zwiększeniem momentu obrotowego, co może poprawić wydajność silnika, o ile nie przekracza to dopuszczalnych wartości. Zwarcie pierścieni ślizgowych odnosi się do sytuacji w silnikach z wirnikiem klatkowym, ale nie ma zastosowania w kontekście trójfazowych silników klatkowych, które nie wykorzystują pierścieni ślizgowych do przekazywania energii. Typowym błędem myślowym jest mylenie przyczyn i skutków działania silnika oraz nieznajomość zasad jego pracy w różnych warunkach zasilania. Zrozumienie fizyki działania silników elektrycznych i ich odpowiednich charakterystyk jest kluczowe dla prawidłowego diagnozowania problemów oraz efektywnego zarządzania ich pracą.

Pytanie 12

Jakie urządzenie gaśnicze powinno być użyte do gaszenia pożaru w rozdzielnicy elektrycznej, której nie można odłączyć od zasilania?

A. Gaśnicę proszkową.
B. Hydronetkę.
C. Tłumicę.
D. Gaśnicę cieczy.
Gaśnice proszkowe są skutecznym narzędziem do gaszenia pożarów klasy C, które obejmują gazy palne oraz pożary elektryczne. W przypadku pożaru rozdzielnicy elektrycznej, której nie można wyłączyć spod napięcia, stosowanie gaśnicy proszkowej jest zalecane ze względu na jej właściwości. Proszek gaśniczy, najczęściej bazujący na wodorofosforanie amonu, skutecznie tłumi płomienie, nie przewodząc prądu, co czyni go bezpiecznym w kontakcie z urządzeniami pod napięciem. Przykładowo, w sytuacji awaryjnej, gdy nie można zredukować napięcia elektrycznego, użycie gaśnicy proszkowej pozwala na szybkie i efektywne działanie, minimalizując ryzyko porażenia prądem. W praktyce, standardy bezpieczeństwa, takie jak normy NFPA i EN 3, jasno wskazują, że gaśnice proszkowe powinny być używane w takich sytuacjach, co czyni je najlepszym wyborem w kontekście ochrony przeciwpożarowej w obiektach z instalacjami elektrycznymi.

Pytanie 13

Który z poniżej wymienionych instrumentów umożliwia najbardziej precyzyjny pomiar rezystancji uzwojenia komutacyjnego prądnicy obcowzbudnej prądu stałego o dużej mocy?

A. Omomierz cyfrowy
B. Omomierz analogowy
C. Mostek Thomsona
D. Mostek Wheatstone'a
Mostek Thomsona jest narzędziem pomiarowym, które pozwala na bardzo dokładne pomiary rezystancji, zwłaszcza w kontekście pomiarów uzwojeń komutacyjnych prądnic obcowzbudnych dużej mocy. Jego zasada działania opiera się na równoważeniu dwóch gałęzi obwodu, co pozwala na eliminację błędów pomiarowych związanych z wpływem rezystancji przewodów oraz innych parametrów, które mogą zniekształcać wynik. Przykładowo, w zastosowaniach przemysłowych, kiedy konieczne jest monitorowanie stanu technicznego maszyn, mostek Thomsona jest idealny do określenia dokładnych wartości rezystancji uzwojeń, co z kolei przekłada się na bezpieczeństwo i wydajność pracy urządzeń. Dzięki swojej precyzji, mostek ten jest zgodny z normami pomiarowymi, co czyni go nieocenionym narzędziem w warsztatach serwisowych oraz laboratoriach zajmujących się badaniem właściwości elektrycznych materiałów.

Pytanie 14

Jakie z wymienionych uszkodzeń można zidentyfikować podczas inspekcji instalacji elektrycznej?

A. Obniżenie rezystancji izolacji przewodów
B. Pogorszenie stanu mechanicznego połączeń przewodów
C. Przerwanie pionowego uziomu w ziemi
D. Zbyt długi czas reakcji wyłącznika różnicowoprądowego
Pogorszenie się stanu mechanicznego połączeń przewodów jest odpowiedzią prawidłową, ponieważ podczas oględzin instalacji elektrycznej można fizycznie ocenić jakość połączeń. W praktyce, mechaniczne uszkodzenia, takie jak luźne złącza, korozja czy pęknięcia, mogą prowadzić do zwiększonego oporu, co z kolei zwiększa ryzyko przegrzewania się i potencjalnych awarii. Standardy takie jak PN-IEC 60364 podkreślają znaczenie regularnych inspekcji połączeń w celu zapewnienia ich niezawodności. W sytuacjach awaryjnych, takich jak pożar spowodowany zwarciem, wiele incydentów można przypisać właśnie do niewłaściwego stanu połączeń. Przykładem skutków takiego pogorszenia może być utrata ciągłości elektrycznej prowadząca do nieprawidłowego działania urządzeń czy nawet ich uszkodzenia. Dlatego też, podczas oględzin, należy szczegółowo badać stan wszystkich połączeń, aby zapewnić bezpieczeństwo i sprawność całej instalacji elektrycznej.

Pytanie 15

Jakie warunki muszą zostać spełnione podczas pomiaru rezystancji izolacji w instalacji elektrycznej po wcześniejszym odłączeniu napięcia zasilającego?

A. Odłączone odbiorniki od gniazd wtyczkowych, włączone przełączniki oświetleniowe, wymontowane źródła światła
B. Włączone odbiorniki do gniazd wtyczkowych, włączone przełączniki oświetleniowe, zamontowane źródła światła
C. Odłączone odbiorniki od gniazd wtyczkowych, włączone przełączniki oświetleniowe, zamontowane źródła światła
D. Włączone odbiorniki do gniazd wtyczkowych, włączone przełączniki oświetleniowe, wymontowane źródła światła
Przy wykonywaniu pomiaru rezystancji izolacji w instalacji elektrycznej, kluczowe jest zapewnienie kompletnego bezpieczeństwa oraz dokładności uzyskiwanych wyników. Wyłączenie odbiorników z gniazd wtyczkowych eliminuje ryzyko przypadkowego załączenia obwodu, co mogłoby zafałszować wyniki pomiarów lub spowodować niebezpieczne sytuacje. Włączone łączniki oświetleniowe pozwalają na uzyskanie pełnej charakterystyki instalacji, ponieważ pomiar dotyczy także przewodów i elementów, które są podłączone do tych łączników. Wymontowanie źródeł światła jest istotne, ponieważ ich obecność może wprowadzać dodatkowe oporności i niepożądane elementy do obwodu, co może również wpłynąć na wynik pomiaru. Zgodnie z normami, takimi jak PN-EN 61557-2, poprawne wykonanie pomiarów rezystancji izolacji jest podstawą do oceny stanu technicznego instalacji oraz zapewnienia jej bezpieczeństwa użytkowania. W praktyce, przestrzeganie tych zasad jest kluczowe dla administratorów budynków, elektryków oraz firm zajmujących się konserwacją i modernizacją instalacji elektrycznych.

Pytanie 16

Jak wpłynie na wartość mocy generowanej przez elektryczny grzejnik, jeśli długość jego spirali grzejnej zostanie skrócona o 50%, a napięcie zasilające pozostanie niezmienne?

A. Zwiększy się czterokrotnie
B. Zwiększy się dwukrotnie
C. Zmniejszy się dwukrotnie
D. Zmniejszy się czterokrotnie
Myśląc o tym, co się dzieje, gdy długość spirali grzejnej się zmniejsza, niektórzy mogą pomyśleć, że moc grzejnika maleje. To jednak nie jest prawda, bo opór elektryczny elementu grzewczego zmienia się bezpośrednio w zależności od długości spirali. Kiedy skracasz spiralę, opór również spada, a to prowadzi do wzrostu mocy grzejnika, a nie do jej zmniejszenia. Niektóre błędne odpowiedzi sugerują, że zmiana długości spirali może negatywnie wpływać na efektywność urządzenia, a to nie ma sensu w świetle praw fizyki. W rzeczywistości, wzór P = U²/R wyraźnie pokazuje, że moc rośnie, skoro opór spada. Takie nieporozumienia mogą brać się z tego, że nie każdy do końca rozumie, jak opór, moc i napięcie się łączą, co jest kluczowe przy projektowaniu i używaniu grzejników. Fajnie by było, żeby przy analizowaniu takich zmian brać pod uwagę wszystkie zmienne, żeby uniknąć nieporozumień.

Pytanie 17

Jakie urządzenie wykorzystuje się do określenia prędkości obrotowej wału silnika?

A. prądnicę tachometryczną
B. pirometr
C. induktor
D. przekładnik napięciowy
Prądnica tachometryczna jest urządzeniem służącym do pomiaru prędkości obrotowej wału silnika poprzez generowanie napięcia elektrycznego proporcjonalnego do tej prędkości. Jej działanie opiera się na zasadzie elektromechanicznej, gdzie wirnik prądnicy obracany przez wał silnika wytwarza napięcie elektryczne, które jest bezpośrednio związane z prędkością obrotową. W praktyce, prądnice tachometryczne są szeroko stosowane w różnych zastosowaniach przemysłowych, takich jak automatyka, robotyka czy systemy sterowania silnikami. Dzięki ich wysokiej dokładności, stosowane są w precyzyjnych układach regulacji prędkości, co pozwala na optymalne zarządzanie procesami technologicznymi. W branży inżynieryjnej, prądnice tachometryczne są często preferowane ze względu na ich stabilność i niezawodność, co wpisuje się w najlepsze praktyki projektowania systemów z kontrolą prędkości. Dodatkowo, są one zgodne z normami IEC oraz ISO, co zapewnia ich uniwersalność i szerokie zastosowanie w przemyśle. Dzięki tym cechom, prądnice tachometryczne stanowią kluczowy element w nowoczesnych systemach pomiarowych i kontrolnych.

Pytanie 18

Jaką wartość ma maksymalna dopuszczalna rezystancja uziomu RA przewodu ochronnego łączącego uziom z dostępnością przewodzącą dla znamionowego prądu różnicowego IN = 30 mA oraz napięcia dotykowego 50 V AC wyłącznika różnicowoprądowego?

A. 4 000 Ω
B. Około 1 660 Ω
C. Około 830 Ω
D. 2 000 Ω
Największa dopuszczalna rezystancja uziomu RA przewodu ochronnego łączącego uziom z częścią przewodzącą dostępną dla prądu różnicowego IN = 30 mA i napięcia dotykowego 50 V AC wynosi około 1 660 Ω. W praktyce oznacza to, że gdy osoba dotknie elementu przewodzącego, prąd różnicowy powinien być w stanie przepływać przez przewód uziemiający, a jego wartość powinna być na tyle niska, aby zminimalizować ryzyko porażenia prądem. Dopuszczalna rezystancja uziomu jest regulowana przez normy, takie jak PN-IEC 60364-4-41, które określają maksymalne wartości dla różnych kategorii instalacji elektrycznych. Używanie tych norm w projektowaniu i budowie instalacji elektrycznych jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. W praktyce, wartość rezystancji powinna być mierzona podczas odbioru instalacji, a także okresowo sprawdzana w celu zapewnienia ciągłej ochrony. Przykładem jest instalacja w budynkach mieszkalnych, gdzie właściwie dobrana rezystancja uziomu zapobiega poważnym skutkom awarii elektrycznych.

Pytanie 19

Aby ograniczyć prąd płynący w obwodzie zasilania silnika indukcyjnego pierścieniowego podczas rozruchu, co należy zrobić?

A. dostosować rozrusznik obwodu wirnika
B. zmienić kolejność faz w stojanie
C. przetoczyć pierścienie ślizgowe wirnika
D. zwiększyć obciążenie na wale
Dopasowanie rozrusznika obwodu wirnika jest kluczowym działaniem mającym na celu zmniejszenie prądu rozruchowego silnika indukcyjnego pierścieniowego. W momencie uruchamiania silnika indukcyjnego, zwłaszcza w przypadku silników o dużej mocy, prąd rozruchowy może być kilkukrotnie większy od prądu nominalnego. Użycie rozrusznika, który ogranicza ten prąd, umożliwia płynne rozpoczęcie pracy silnika oraz zabezpiecza pozostałe elementy obwodu przed uszkodzeniem. Przykładem takiego rozrusznika jest rozrusznik z opornikami, który na początku wprowadza oporność do obwodu wirnika, a następnie stopniowo ją zmniejsza, co pozwala na kontrolowanie momentu obrotowego i prądu. W praktyce, prawidłowe dopasowanie rozrusznika do parametrów silnika i obciążenia ma kluczowe znaczenie dla efektywności energetycznej oraz długowieczności urządzenia, co jest zgodne z najlepszymi praktykami w branży. Warto również zwrócić uwagę na normy ustanowione przez organizacje takie jak IEC, które wskazują na znaczenie odpowiednich systemów rozruchowych w przemyśle.

Pytanie 20

Badania instalacji odgromowej w obiekcie budowlanym ujawniły rezystancję uziomu równą 35 Ω. Aby uzyskać zalecaną rezystancję uziomu na poziomie 10 Ω, należy

A. powiększyć średnicę przewodu odgromowego
B. zwiększyć średnicę zwodów w instalacji odgromowej
C. usunąć zaciski probiercze
D. wydłużyć uziom szpilkowy
Wydłużenie uziomu szpilkowego jest kluczowym działaniem zmierzającym do obniżenia rezystancji uziomu do zalecanych 10 Ω. Uziom szpilkowy, umieszczony w gruncie, działa jako przewodnik, który odprowadza prąd do ziemi. Jego efektywność zależy od długości, średnicy oraz rodzaju gruntu. Zwiększenie długości uziomu pozwala na większy kontakt z różnymi warstwami gleby, co zmniejsza opór elektryczny. Zgodnie z normą PN-EN 62305, zaleca się, aby długość uziomów wynosiła co najmniej 2 m, a w przypadku odporności na wyładowania atmosferyczne długość uziomu powinna być jeszcze większa. W praktyce, jeśli standardowa szpilka ma długość 1,5 m, przedłużenie jej o kolejne 1,5 m lub zastosowanie kilku szpilek połączonych ze sobą w odpowiednich miejscach przyczynia się do znaczącego obniżenia rezystancji. Warto również pamiętać, że jakość uziomu wpływa na bezpieczeństwo instalacji odgromowej, a jego odpowiednia rezystancja jest kluczowa dla skutecznego działania całego systemu ochrony przed wyładowaniami atmosferycznymi.

Pytanie 21

Jakie powinno być znamionowe natężenie prądu dla instalacyjnego wyłącznika nadprądowego używanego w systemie z napięciem 230 V, 50 Hz, jako zabezpieczenie obwodu wykonanego z przewodu 3x2,5 mm2, który zasila 1-fazowy piec elektryczny o mocy 3 kW?

A. 16 A
B. 10 A
C. 25 A
D. 6 A
Wybór znamionowego prądu instalacyjnego wyłącznika nadprądowego na poziomie 16 A w przypadku obwodu zasilającego piec elektryczny o mocy 3 kW jest zgodny z zasadami zabezpieczeń elektrycznych. Przy napięciu 230 V, prąd pobierany przez piec można obliczyć, korzystając ze wzoru P = U * I, co daje I = P / U, a w naszym przypadku I = 3000 W / 230 V = 13,04 A. Z tego wynika, że wyłącznik nadprądowy o znamionowym prądzie 16 A będzie odpowiedni, zapewniając odpowiedni margines bezpieczeństwa oraz uwzględniając warunki pracy, takie jak prądy rozruchowe. Zgodnie z normą PN-IEC 60364-4-41, zabezpieczenia instalacyjne powinny być dobrane z odpowiednim zapasem, aby zminimalizować ryzyko wyzwolenia wyłącznika w normalnych warunkach eksploatacyjnych. Dodatkowo, zastosowanie przewodu 3x2,5 mm², który ma odpowiednią zdolność prądową, sprzyja bezpieczeństwu i niezawodności instalacji. W praktyce, 16 A jest powszechnie stosowane dla podobnych obwodów, co czyni tę odpowiedź właściwą.

Pytanie 22

Który z poniższych rodzajów silników wyróżnia się najlepszą kontrolą prędkości obrotowej poprzez modyfikację wartości napięcia zasilającego?

A. Prądu stałego
B. Synchroniczny jawnobiegunowy
C. Asynchroniczny klatkowy
D. Asynchroniczny pierścieniowy
Silniki prądu stałego charakteryzują się doskonałą regulacją prędkości obrotowej, co czyni je idealnym wyborem w aplikacjach wymagających precyzyjnego sterowania. Dzięki prostocie zmiany napięcia zasilającego, można łatwo dostosować prędkość obrotową silnika do konkretnego zadania. Przykłady zastosowania obejmują napędy w robotyce, gdzie wymagana jest zmienna prędkość w zależności od zadań do wykonania, czy też w wentylatorach, gdzie regulacja obrotów wpływa na efektywność energetyczną. W przemyśle, silniki prądu stałego są wykorzystywane w maszynach takich jak dźwigi czy taśmociągi, gdzie precyzyjne zarządzanie prędkością jest kluczowe dla bezpieczeństwa i efektywności procesu. Dobre praktyki wskazują na wykorzystanie kontrolerów PWM (Pulse Width Modulation) do efektywnej regulacji napięcia oraz ograniczenia strat energii. Warto również zauważyć, że silniki te są bardziej odpowiednie do zadań, gdzie wymagana jest często zmiana kierunku obrotów, co również wpływa na ich popularność w różnorodnych aplikacjach.

Pytanie 23

Jak, w przybliżeniu, zmieni się moc wydobywana przez grzejnik elektryczny, jeśli jego spiralę grzejną skróci się o połowę, a napięcie zasilania pozostanie niezmienione?

A. Zwiększy się czterokrotnie
B. Zwiększy się dwukrotnie
C. Zmniejszy się dwukrotnie
D. Zmniejszy się czterokrotnie
Odpowiedź jest prawidłowa, ponieważ moc wydzielana przez grzejnik elektryczny jest proporcjonalna do kwadratu napięcia zasilania i odwrotnie proporcjonalna do długości spirali grzejnej. Kiedy skracamy spiralę grzejną o połowę, jej rezystancja maleje, co powoduje, że prąd płynący przez nią wzrasta, przy niezmienionym napięciu. Zgodnie z prawem Ohma, moc P można wyrazić jako P = U²/R, gdzie U to napięcie, a R to rezystancja. Skrócenie spirali grzejnika o połowę wpływa na zmniejszenie rezystancji o połowę, co z kolei powoduje, że moc wydzielana przez grzejnik wzrasta dwukrotnie. Przykładowo, w zastosowaniach przemysłowych, gdy grzejniki są wykorzystywane do podgrzewania cieczy, zwiększenie mocy o 100% może znacząco wpłynąć na efektywność procesu grzewczego, co jest zgodne z zasadami optymalizacji energetycznej.

Pytanie 24

Aby zidentyfikować części silników w wersji przeciwwybuchowej, które mają podwyższoną temperaturę, przeprowadza się pomiary temperatury ich obudowy. W którym miejscu silnika nie powinno się przeprowadzać tych pomiarów?

A. W sąsiedztwie pokrywy wentylatora
B. W centralnej części obudowy blisko skrzynki przyłączeniowej
C. Na końcu obudowy w rejonie napędu
D. Na tarczy łożyskowej, od strony napędowej w pobliżu pokrywy łożyska
Pomiar temperatury silników w wykonaniu przeciwwybuchowym jest kluczowy dla zapewnienia ich bezpieczeństwa i niezawodności. Wybór odpowiedniego miejsca do pomiaru temperatury jest niezwykle istotny, ponieważ nieprawidłowe lokalizacje mogą prowadzić do błędnych odczytów oraz mogą nie uwzględniać rzeczywistych warunków pracy silnika. W przypadku podwyższonej temperatury obudowy silnika, pomiar w pobliżu pokrywy wentylatora jest niewłaściwy, gdyż to miejsce jest często narażone na wpływ zewnętrznych warunków atmosferycznych oraz może być miejscem intensywnego przepływu powietrza, co prowadzi do fałszywych wskazań. Standardy branżowe, takie jak IEC 60079, określają, że należy unikać pomiaru w tych miejscach, aby zapewnić dokładność i wiarygodność danych. Zamiast tego, pomiary powinny być wykonywane w miejscach, gdzie temperatura jest rzeczywiście reprezentatywna dla stanu silnika, na przykład pośrodku obudowy lub na tarczy łożyskowej, co pozwala na lepsze śledzenie potencjalnych problemów z przegrzewaniem.

Pytanie 25

Podczas eksploatacji trójfazowego silnika indukcyjnego, który był obciążony momentem znamionowym, doszło do nagłego spadku prędkości obrotowej silnika, a jednocześnie zwiększyła się głośność jego pracy. Najbardziej prawdopodobną przyczyną tego zjawiska jest

A. zanik napięcia w jednej fazie
B. zadziałanie wyłącznika różnicowoprądowego
C. zadziałanie zabezpieczenia termicznego
D. wzrost częstotliwości napięcia sieci
Zanik napięcia w jednej fazie jest najczęstszą przyczyną nagłego zmniejszenia prędkości obrotowej trójfazowego silnika indukcyjnego. W przypadku, gdy jedna z faz silnika przestaje dostarczać energię, silnik działa w trybie dwu-fazowym. W takiej sytuacji moment obrotowy silnika znacząco spada, co prowadzi do zmniejszenia prędkości obrotowej. Dodatkowo, silnik może emitować zwiększony hałas, ponieważ nieprawidłowa praca silnika może generować wibracje i dodatkowe obciążenia. W praktyce, w celu zabezpieczenia silnika przed takimi sytuacjami, stosuje się różne systemy monitorowania i zabezpieczeń, takie jak automatyczne wyłączniki, które detekują zanik napięcia i odłączają silnik od zasilania, co zapewnia jego bezpieczeństwo. Zgodnie z normami IEC dotyczących silników elektrycznych, regularne sprawdzanie układów zasilających oraz instalacja odpowiednich zabezpieczeń jest kluczowe dla zapobiegania uszkodzeniom silnika i jego awariom. Ponadto, należy prowadzić systematyczną konserwację oraz inspekcje, aby zapewnić niezawodność i efektywność pracy urządzeń elektrycznych.

Pytanie 26

Na wartość impedancji pętli zwarcia w systemie sieciowym TN-C mają wpływ

A. rodzaj zamontowanych ochronników przeciwprzepięciowych
B. wytrzymałość napięciowa izolacji przewodów
C. liczba zamontowanych ochronników przeciwprzepięciowych
D. pole przekroju poprzecznego żył przewodów
Wartość impedancji pętli zwarcia w układzie sieciowym TN-C jest ściśle związana z polem przekroju poprzecznego żył przewodów. Pole to wpływa na opór przewodzenia prądu, co z kolei ma istotne znaczenie dla działania zabezpieczeń w przypadku zwarcia. Przewody o większym przekroju charakteryzują się mniejszym oporem, co pozwala na szybsze zadziałanie zabezpieczeń, takich jak wyłączniki nadprądowe. W praktyce oznacza to, że zwiększenie przekroju przewodów w instalacji elektrycznej może poprawić bezpieczeństwo, zmniejszając ryzyko uszkodzenia urządzeń oraz zapewniając lepszą ochronę osób. W Polskich Normach i europejskich standardach, takich jak PN-HD 60364-5-54, podkreśla się znaczenie odpowiedniego doboru przekrojów przewodów w kontekście ich zastosowania, zwłaszcza w instalacjach narażonych na zwarcia. Dlatego kluczowe jest, aby projektanci instalacji elektrycznych zwracali uwagę na te aspekty, aby zapewnić optymalną funkcjonalność oraz bezpieczeństwo systemów elektrycznych.

Pytanie 27

Jakie skutki przyniesie zmiana przewodów ADG 1,5 mm2 na przewody DY 1,5 mm2 w instalacji elektrycznej podtynkowej w budynku mieszkalnym?

A. Wzrost rezystancji pętli zwarcia
B. Obniżenie wytrzymałości mechanicznej przewodów
C. Obniżenie napięcia roboczego
D. Wzrost obciążalności prądowej instalacji
Wymiana przewodów ADG na przewody DY w instalacji elektrycznej przynosi szereg korzyści, w tym zwiększenie obciążalności prądowej. Przewody DY, zgodne z normą PN-IEC 60227, charakteryzują się lepszymi właściwościami przewodzenia prądu elektrycznego, co jest kluczowe w kontekście bezpieczeństwa i efektywności energetycznej. Ich konstrukcja wykonana z materiałów o lepszej przewodności, takich jak miedź, pozwala na większe prądy robocze bez ryzyka przegrzania. Dla przykładu, w instalacjach o dużym zapotrzebowaniu na energię elektryczną, jak kuchnie elektryczne czy systemy grzewcze, wyższa obciążalność prądowa jest niezbędna do zapewnienia stabilności działania urządzeń. W praktyce oznacza to, że instalacje z przewodami DY mogą skuteczniej obsługiwać większe obciążenia, co jest zgodne z zasadą projektowania instalacji elektrycznych, by nie przekraczać maksymalnych obciążeń przewodów. Wybór odpowiednich przewodów jest kluczowy również dla zapewnienia długotrwałej i bezawaryjnej pracy całego systemu elektrycznego, co jest zgodne z dobrymi praktykami inżynieryjnymi.

Pytanie 28

Należy kontrolować instalację elektryczną w obiektach o wysokiej wilgotności (75-100%) pod kątem efektywności ochrony przed porażeniem nie rzadziej niż co

A. 4 lata
B. 1 rok
C. 3 lata
D. 2 lata
Sprawdzenie instalacji elektrycznej przynajmniej raz do roku w wilgotnych pomieszczeniach to naprawdę ważna sprawa. Jest to zgodne z zasadami bezpieczeństwa i ochrony przed porażeniem prądem. Jeśli wilgotność w pomieszczeniu wynosi od 75% do 100%, ryzyko porażenia wzrasta, więc warto, żebyśmy zajmowali się tym regularniej. Dobrze jest przeprowadzać inspekcje urządzeń i instalacji, żeby upewnić się, że nic nie zagraża bezpieczeństwu. Do takiej kontroli należy sprawdzić stan przewodów, działanie wyłączników różnicowoprądowych oraz ogólny stan instalacji. Na przykład, w łazience, gdzie wilgotność jest wysoka, regularne kontrole oświetlenia są kluczowe. Dzięki odpowiednim testom i konserwacji można uniknąć niebezpiecznych sytuacji. Warto też pamiętać o normie PN-EN 61140, która wskazuje na potrzebę regularnych przeglądów w takich warunkach.

Pytanie 29

W instalacji trójfazowej natężenie prądu obciążenia przewodów fazowych Ib wynosi 21 A, a maksymalne dopuszczalne obciążenie tych przewodów Id to 30 A. Który z wymienionych wyłączników nadprądowych powinien być użyty do ochrony tej instalacji?

A. B10
B. B16
C. B25
D. B20
Dobra decyzja z tym wyłącznikiem B25! Wybierając go, postawiłeś na coś, co naprawdę pasuje do wartości prądu obciążenia, która wynosi 21 A. Z tego, co wiemy, wyłącznik powinien mieć wyższą wartość nominalną niż maksymalny prąd roboczy, ale nie może też za bardzo przekraczać obciążalności przewodów. Tu mamy 30 A dla przewodów, więc 25 A dla wyłącznika to świetny wybór. Dzięki temu nie tylko chronisz instalację przed przeciążeniem, ale też zmniejszasz ryzyko uszkodzenia przewodów. Gdybyś wybrał wyłącznik o wyższej wartości, mogłoby to prowadzić do niebezpiecznych sytuacji, w których obciążenia mogą przekraczać to, co jest dozwolone. Generalnie, wyłączniki B25 są dosyć popularne w instalacjach trójfazowych i dobrze się sprawdzają, bo utrzymują wartość prądu na odpowiednim poziomie. Ważne, żeby nie przekraczać 80% tej wartości nominalnej, co w twoim przypadku jest akurat spełnione.

Pytanie 30

Podczas wymiany gniazdka trójfazowego w instalacji przemysłowej należy

A. utrzymać odpowiednią kolejność przewodów fazowych w zaciskach gniazda
B. zmienić przewody na nowe o większym przekroju
C. zagiąć oczka na końcach przewodów
D. zamontować końcówki oczkowe na przewodach
Zachowanie kolejności przewodów fazowych w zaciskach gniazda trójfazowego jest kluczowym aspektem bezpieczeństwa i prawidłowego działania instalacji. W układach trójfazowych, każdy z przewodów fazowych (L1, L2, L3) ma przypisane określone funkcje oraz wartości napięć, które powinny być utrzymywane w odpowiedniej sekwencji. Niezachowanie tej kolejności może prowadzić do problemów z równowagą obciążenia, co z kolei może skutkować uszkodzeniem urządzeń elektrycznych, a nawet zagrożeniem pożarowym. W praktyce, np. w przypadku podłączania silników elektrycznych, niewłaściwa kolejność faz może spowodować, że silnik będzie działał w odwrotnym kierunku, co może prowadzić do poważnych uszkodzeń. Zgodnie z normami PN-IEC 60364, zachowanie odpowiedniej kolejności połączeń jest niezbędne dla zapewnienia właściwej funkcjonalności oraz bezpieczeństwa instalacji elektrycznych.

Pytanie 31

W którym z poniższych miejsc, podczas pracy z urządzeniami elektrycznymi, nie jest dopuszczalne stosowanie izolacji stanowiska jako środków ochrony przed dotykiem pośrednim?

A. Warsztacie sprzętu RTV
B. Laboratorium
C. Placu budowy
D. Pracowni edukacyjnej
Odpowiedź 'plac budowy' to strzał w dziesiątkę! Na budowie mamy do czynienia z różnymi trudnymi warunkami, które utrudniają stosowanie izolacji jako formy ochrony przed dotykiem pośrednim. Często jest tam wilgoć, pyły i materiały budowlane wokół, co zwiększa ryzyko porażenia prądem. Z normami BHP się nie żartuje, bo w takich warunkach izolacja może być niewystarczająca. Wyobraź sobie, że coś się popsuje i pracownicy mogą mieć kontakt z przewodami pod napięciem! Dlatego na budowach zaleca się dodatkowe środki ochrony, jak odpowiednia odzież robocza, systemy ochrony różnicowoprądowej i różne osłony. Regularne szkolenia i audyty sprzętu to też kluczowe elementy utrzymania bezpieczeństwa elektrycznego w takim miejscu.

Pytanie 32

Który z podanych środków można uznać za metodę ochrony przed porażeniem w przypadku uszkodzenia?

A. Umieszczenie części czynnych poza zasięgiem ręki
B. Samoczynne wyłączenie zasilania
C. Ogrodzenie
D. Obudowa
Samoczynne wyłączenie zasilania jest kluczowym środkiem ochrony przeciwporażeniowej, który automatycznie przerywa dopływ energii elektrycznej w przypadku wykrycia nieprawidłowości, takich jak zwarcie czy przeciążenie. To działanie jest zgodne z normami bezpieczeństwa, takimi jak PN-EN 61140, które określają wymagania dotyczące ochrony przed porażeniem prądem elektrycznym. Samoczynne wyłączenie zasilania minimalizuje ryzyko wystąpienia niebezpiecznych sytuacji, a jego zastosowanie jest powszechne w instalacjach elektrycznych, w których występują urządzenia o podwyższonym ryzyku. Przykładem zastosowania może być automatyczny wyłącznik różnicowoprądowy, który nie tylko wyłącza zasilanie, ale także monitoruje różnicę prądów, co jest istotne w ochronie osób pracujących w pobliżu urządzeń elektrycznych. Dzięki takiemu rozwiązaniu, w przypadku wystąpienia niebezpiecznego prądu różnicowego, zasilanie jest natychmiastowo odłączane, co znacznie zwiększa bezpieczeństwo użytkowników.

Pytanie 33

W obwodzie gniazd w przedpokoju zainstalowano przewód YDYt 3×2,5 mm2. Podczas wiercenia w ścianie pracownik przypadkowo uszkodził przewód, przecinając dwie jego żyły. Jak należy prawidłowo naprawić powstałą usterkę?

A. Zdemontować tynk w miejscu uszkodzenia, połączyć przewody, zaizolować taśmą i zatynkować ścianę.
B. Zdemontować tynk w miejscu uszkodzenia, zainstalować dodatkową puszkę i w niej połączyć żyły.
C. Przeciągnąć nowy przewód pomiędzy najbliższymi puszkami, używając pilota.
D. Przeciągnąć wyłącznie uszkodzone żyły, zastępując każdą przewodem jednodrutowym.
Usunięcie usterki w instalacji elektrycznej przez przeciągnięcie uszkodzonych żył za pomocą przewodów jednodrutowych jest niewłaściwym podejściem, które może prowadzić do poważnych problemów. Przewody jednodrutowe mają inne właściwości mechaniczne i elektryczne niż przewody wielodrutowe, co może skutkować niższą elastycznością oraz zwiększoną podatnością na uszkodzenia. Ponadto, takie połączenia są często niezgodne z obowiązującymi normami i przepisami dotyczącymi instalacji elektrycznych, co może narażać użytkownika na niebezpieczeństwo. Przeprowadzenie naprawy bez montażu puszki zwiększa ryzyko wystąpienia zwarć i utrudnia ewentualne przyszłe konserwacje. Połączenie przewodów jedynie za pomocą taśmy izolacyjnej jest również niewłaściwe, ponieważ nie zapewnia stabilności oraz bezpieczeństwa elektrycznego. W kontekście przepisów, jak norma PN-IEC 60364, zaleca się unikanie takich praktyk, które mogą prowadzić do nieodwracalnych uszkodzeń instalacji. Ważne jest, aby pamiętać, że każdy interwencja w instalacji elektrycznej powinna być przeprowadzana zgodnie z zasadami sztuki, co zapewnia bezpieczeństwo oraz trwałość wykonania. Zastosowanie pilotów do przeciągania nowych przewodów bez odpowiedniej inspekcji i naprawy uszkodzeń jest także niebezpieczne, ponieważ może wpłynąć na integralność całego obwodu.

Pytanie 34

Jaką wartość powinien mieć prąd znamionowy bezpiecznika aparatowego zamontowanego w obwodzie uzwojenia pierwotnego transformatora jednofazowego, którego parametry to: U1N = 230 V, U2N = 13 V, używanego w ładowarce do akumulatorów, jeżeli przewidywany prąd obciążenia podczas ładowania akumulatorów wynosi 15 A?

A. 10 A
B. 1 A
C. 6 A
D. 16 A
Wybór wartości prądu znamionowego bezpiecznika aparaturowego jest kluczowy dla prawidłowego funkcjonowania obwodów elektrycznych. W przypadku analizowanej sytuacji, niewłaściwe odpowiedzi mogą wynikać z kilku błędnych koncepcji. Na przykład, wartość 6 A mogłaby sugerować nadmierne zabezpieczenie, które zmniejszyłoby efektywność działania transformatora, jednocześnie nie spełniając potrzeb obciążenia. Bezpiecznik o tej wartości mógłby nie zareagować odpowiednio na chwilowe przeciążenia, co prowadzi do ryzyka uszkodzenia transformatora. Z kolei odpowiedź 10 A wydaje się bliska, ale nadal jest wyższa niż rzeczywiste potrzeby, co może skutkować nadmiernym ryzykiem w przypadku wystąpienia zwarć. Podobnie, wybór 16 A jest niewłaściwy, ponieważ znacznie przekracza obliczony prąd obciążenia 15 A, co byłoby niezgodne z zasadą ochrony przed przeciążeniem i zwarciem. W praktyce, dobór wartości prądu znamionowego powinien być oparty na rzeczywistym obciążeniu, a także dostępnych normach dotyczących zabezpieczeń. Właściwy wybór nie tylko zapewnia bezpieczeństwo instalacji, ale także optymalizuje jej działanie, co ma kluczowe znaczenie w kontekście długotrwałej eksploatacji transformatorów w systemach ładowania akumulatorów.

Pytanie 35

Który z poniższych przypadków prowadzi do nadmiernego iskrzenia na komutatorze w silniku szeregowym?

A. Przegrzanie uzwojeń stojana
B. Przegrzanie uzwojeń wirnika
C. Zwarcie pomiędzy zwojami wirnika
D. Zbyt wysokie obroty wirnika
W przypadku nagrzewania się uzwojeń stojana, choć może to prowadzić do różnych problemów w pracy silnika, nie jest to bezpośrednią przyczyną nadmiernego iskrzenia na komutatorze. Wysokie temperatury mogą prowadzić do degradacji izolacji, co z kolei zwiększa ryzyko zwarcia, ale samo w sobie nagrzewanie nie generuje bezpośrednio iskrzenia. Zjawisko zwarcia pomiędzy zwojami wirnika ma znacznie większy wpływ na to zjawisko. Nagrzewanie się uzwojeń wirnika również nie jest przyczyną iskrzenia, a raczej objawem nieprawidłowego działania silnika, jednak nie generuje ono iskrzenia na komutatorze. Zbyt duże obroty wirnika mogą prowadzić do problemów mechanicznych i niewłaściwego działania komutacji, ale ich wpływ na iskrzenie jest marginalny w porównaniu do zwarcia. W silnikach szeregowych, które charakteryzują się bezpośrednim połączeniem uzwojeń wirnika z obwodem zasilania, nadmierne obroty mogą prowadzić do niestabilności pracy, ale konieczne jest rozróżnienie pomiędzy przyczyną a skutkiem. Typowym błędem myślowym jest zakładanie, że każdy problem z silnikiem musi być związany z jego temperaturą lub prędkością obrotową, podczas gdy kluczowe przyczyny, takie jak zwarcia, mogą być pomijane.

Pytanie 36

Wybierz odpowiedni wyłącznik nadprądowy do ochrony przed przeciążeniem w obwodzie jednofazowym o napięciu znamionowym 230 V, z którego jednocześnie będą zasilane grzejnik oporowy o mocy nominalnej 2 kW oraz chłodziarka o mocy nominalnej 560 W i współczynniku mocy cos ? = 0,7?

A. B10
B. B16
C. C20
D. C10
Dobór wyłącznika nadprądowego do obwodu elektrycznego wymaga zrozumienia mocy urządzeń oraz ich charakterystyki. Odpowiedzi B10 i C10 są nieodpowiednie, ponieważ oferują nominalny prąd zbyt niski w stosunku do wymaganego obciążenia. Prąd znamionowy B10 to jedynie 10 A, co oznacza, że w przypadku załączenia obciążeń, jak grzejnik oporowy i chłodziarka, wyłącznik ten mógłby łatwo zadziałać przy normalnym użytkowaniu. Przy obliczonej wartości prądu 11,13 A, prekursor przeciążenia zostałby osiągnięty, co skutkowałoby częstymi wyłączeniami i frustracją użytkowników. Z kolei wyłącznik C20, mimo że teoretycznie może dostarczyć większy prąd, nie uwzględnia potrzeb użytkownika i aplikacji. Warto zauważyć, że wyłączniki typu C są przeznaczone do obwodów o dużych prądach rozruchowych, takich jak silniki, gdzie przeciążenia mogą występować częściej i dłużej. W przypadku urządzeń grzejnych i chłodniczych, które mają stałe obciążenie, wyłączniki typu B są bardziej odpowiednie, w szczególności w sytuacjach, gdzie wymagane jest szybkie zadziałanie w przypadku przeciążenia. Ponadto, ważne jest, aby przy doborze wyłączników przestrzegać norm i standardów, aby zapewnić bezpieczeństwo oraz ochronę urządzeń. Użycie niewłaściwego wyłącznika może prowadzić nie tylko do uszkodzeń, ale również do zagrożeń pożarowych.

Pytanie 37

Podczas pracy młotowiertarki udarowej zaobserwowano intensywne iskrzenie na komutatorze. Co należy zrobić, aby uniknąć uszkodzenia narzędzia?

A. Należy zatrzymać pracę i dokręcić połączenia kabli wewnątrz obudowy
B. Po zakończeniu pracy należy skontrolować połączenie uzwojenia twornika z uzwojeniem wzbudzenia
C. Wstrzymać pracę i wymienić szczotki
D. Trzeba wstrzymać pracę i wymienić łącznik zasilający
Wymiana szczotek w młotowiertarce udarowej jest kluczowym krokiem, gdy zauważamy nadmierne iskrzenie na komutatorze. Iskrzenie to może być wynikiem zużycia szczotek, które są odpowiedzialne za przewodzenie prądu do wirnika silnika. W miarę eksploatacji, szczotki ulegają ścieraniu, co prowadzi do zwiększenia oporu elektrycznego, a w konsekwencji do iskrzenia. Wymiana szczotek powinna być przeprowadzana zgodnie z zaleceniami producenta, co często wiąże się z regularnymi inspekcjami technicznymi, aby zapobiec poważniejszym uszkodzeniom narzędzia. Przykładowo, w przypadku firmy produkującej młotowiertarki, regularne serwisowanie i monitorowanie stanu szczotek mogą znacząco wydłużyć żywotność narzędzia oraz zapewnić jego optymalne działanie. Praktyka ta nie tylko przyczynia się do bezpieczeństwa użytkownika, ale także utrzymuje wysoką wydajność pracy, co jest niezmiernie ważne w środowisku budowlanym czy remontowym. W ten sposób można uniknąć kosztownych napraw oraz przedłużyć okres użytkowania urządzenia.

Pytanie 38

W przypadku instalacji o parametrach U0 = 230 V, Ia = 100 A oraz Zs = 3,1 Ω funkcjonującej w systemie TN-C nie ma efektywnej dodatkowej ochrony przed porażeniem prądem elektrycznym, ponieważ

A. impedancja sieci zasilającej jest zbyt niska
B. impedancja pętli zwarcia jest zbyt wysoka
C. opór izolacji miejsca pracy jest zbyt wysoki
D. opór uziomu jest zbyt niski
Impedancja pętli zwarcia jest kluczowym parametrem, który wpływa na bezpieczeństwo instalacji elektrycznych. W systemie TN-C, gdzie zneutralizowane przewody są połączone, niska impedancja pętli zwarcia jest niezbędna do szybkiego wyłączenia zasilania w przypadku wystąpienia zwarcia. W omawianym przypadku, wysoka impedancja pętli zwarcia oznacza, że prąd zwarciowy może być zbyt niski, aby wyzwolić odpowiednie zabezpieczenia, takie jak wyłączniki różnicowoprądowe czy bezpieczniki. To prowadzi do sytuacji, w której czas reakcji zabezpieczeń jest zbyt długi, co w konsekwencji zwiększa ryzyko porażenia prądem elektrycznym. Przykładowo, w praktyce inżynieryjnej, zaleca się, aby impedancja pętli zwarcia nie przekraczała 1 Ω dla instalacji zasilających o napięciu 230 V, co pozwala na wyłączenie obwodu w czasie nieprzekraczającym 0,4 s. Takie podejście jest zgodne z normami IEC 60364 oraz PN-EN 61439, które podkreślają znaczenie odpowiednich wartości impedancji dla bezpieczeństwa użytkowników.

Pytanie 39

Jakie urządzenie, przy wykorzystaniu przekaźnika termicznego i stycznika, oferuje kompleksową ochronę przed zwarciem oraz przeciążeniem dla silnika trójfazowego o parametrach:
Pn = 5,5 kW, Un = 400/690 V?

A. Bezpiecznik typu aM
B. Bezpiecznik typu aR
C. Wyłącznik nadprądowy typu Z
D. Wyłącznik nadprądowy typu B
Bezpiecznik typu aM jest optymalnym rozwiązaniem do zabezpieczenia silników trójfazowych, takich jak ten o mocy Pn = 5,5 kW i napięciu Un = 400/690 V. Bezpieczniki typu aM są zaprojektowane do ochrony przed przeciążeniami i zwarciami, a ich charakterystyka prądowa pozwala na tolerowanie krótkotrwałych prądów rozruchowych, które są typowe dla silników. Dzięki temu, w momencie uruchomienia silnika, gdy prąd może wzrosnąć kilkakrotnie w krótkim czasie, bezpiecznik aM nie zadziała, co zapobiega niepotrzebnemu wyłączeniu urządzenia. W praktyce, zastosowanie bezpiecznika typu aM przy odpowiednim doborze prądowym w stosunku do znamionowego prądu silnika, zapewnia nie tylko bezpieczeństwo operacyjne, ale również minimalizuje przerwy w pracy maszyny. Ponadto, zgodnie z normą IEC 60947-4-1, zastosowanie takiego zabezpieczenia jest rekomendowane w instalacjach przemysłowych, gdzie wymagana jest wysoka niezawodność systemu. Dobrze dobrane zabezpieczenia, takie jak bezpieczniki aM, są kluczowe dla utrzymania ciągłości produkcji oraz ochrony przed szkodami materialnymi i osobowymi.

Pytanie 40

Jakie dodatkowe urządzenie jest wymagane do funkcjonowania silnika indukcyjnego trójfazowego, zasilanego napięciem jednofazowym U = 230 V, f = 50 Hz?

A. Kondensator
B. Opornik
C. Wyłącznik różnicowoprądowy
D. Bezpiecznik silnikowy
Kondensator jest niezbędnym elementem dla silnika indukcyjnego trójfazowego zasilanego napięciem jednofazowym, ponieważ umożliwia on utworzenie sztucznego przesunięcia fazowego. Silnik indukcyjny trójfazowy wymaga trzech faz zasilania do prawidłowego działania, a zasilanie jednofazowe dostarcza tylko jedną. Dodanie kondensatora do obwodu silnika pozwala na wytworzenie dodatkowej fazy, co z kolei umożliwia rozwinięcie momentu obrotowego i rozpoczęcie pracy silnika. W praktyce zastosowanie kondensatorów jest powszechne w układach, gdzie konieczne jest zasilanie silników trójfazowych z jednofazowych źródeł energii, na przykład w małych warsztatach czy w domach jednorodzinnych. Warto również zaznaczyć, że przy doborze kondensatora należy kierować się jego pojemnością, która powinna być odpowiednia do konkretnego silnika, aby zapewnić optymalne parametry pracy oraz uniknąć uszkodzenia urządzenia. Dobre praktyki wskazują na konieczność stosowania kondensatorów o odpowiedniej klasie i znamionach, aby zapewnić długotrwałą i bezpieczną pracę silnika.