Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 15 maja 2025 19:31
  • Data zakończenia: 15 maja 2025 20:05

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W jakim urządzeniu stosuje się zjawisko defleksji elektronów w polu elektromagnetycznym?

A. Nośniku optycznym
B. Ekranie LCD
C. Monitorze CRT
D. Dysku twardym
Twarde dyski, panele LCD oraz napędy optyczne nie bazują na zjawisku odchylania elektronów w polu elektromagnetycznym. Twarde dyski działają na zasadzie magnetyzmu i wykorzystują mechaniczne elementy do odczytu i zapisu danych, co różni się od wykorzystania elektronów w monitorach CRT. W przypadku paneli LCD, obraz jest generowany przez manipulację światłem, które przechodzi przez ciekłe kryształy, a nie przez odchylanie elektronów. Technologia LCD nie wykorzystuje elektronów w sposób, w jaki robi to CRT; zamiast tego, kontroluje intensywność światła poprzez zmiany w orientacji cząsteczek ciekłych kryształów. Napędy optyczne, takie jak napędy DVD, działają na zasadzie lasera, który odczytuje dane zapisane na płytach, co również jest całkowicie różne od zjawiska odchylania elektronów. W wyborach odpowiedzi na takie pytania, kluczowe jest zrozumienie, jak konkretne technologie działają na poziomie fizycznym i technicznym, aby uniknąć mylnych wniosków. Nieprawidłowe odpowiedzi mogą wynikać z niepełnego zrozumienia różnic między technologiami oraz ich zastosowań w praktyce, co jest istotne w kontekście zawodów związanych z informatyką i inżynierią.

Pytanie 2

Wykonano pomiar napięcia stałego za pomocą woltomierza cyfrowego w zakresie 20 V, uzyskując wynik 5 V. Błąd przyrządu wynosi ± 1 % ± 2 D, a pole odczytowe miernika to 3,5 cyfry. Która forma zapisu wyniku pomiaru jest właściwa?

A. U = (5,00 ± 0,02) V
B. U = (5,00 ± 0,05) V
C. U = (5,00 ± 0,07) V
D. U = (5,00 ± 0,01) V
Niepoprawne odpowiedzi wykazują pomyłki w obliczaniu błędów pomiarowych oraz ich interpretacji. W przypadku pierwszej koncepcji, błąd ± 0,05 V nie uwzględnia błędu stałego, co prowadzi do niedoszacowania niepewności wyniku. Przyjęcie tylko błędu procentowego na poziomie 1 % przy odczycie 5 V to niewystarczające podejście, ponieważ rzeczywisty błąd instrumentu obejmuje również komponent stały, który nie może być pominięty. W drugiej opcji, ± 0,02 V nie odzwierciedla rzeczywistej sytuacji, ponieważ jest to tylko błąd wynikający z błędu stałego, podczas gdy błąd procentowy nadal pozostaje ważny i musi być uwzględniony. Z kolei w trzeciej odpowiedzi podano zbyt niski błąd, co wynika z nieprawidłowych obliczeń, które nie sumują błędów w sposób właściwy. Wysoka jakość pomiarów wymaga uwzględnienia wszystkich źródeł niepewności, co jest kluczowym elementem standardów metrologicznych. Bez prawidłowego zrozumienia tych koncepcji, pomiary mogą prowadzić do błędnych wniosków oraz decyzji, co w profesjonalnych zastosowaniach, takich jak inżynieria, może mieć poważne konsekwencje. Kluczowe jest, aby każdy pomiar był dokumentowany z uwzględnieniem pełnej charakterystyki błędów, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 3

Aby prawidłowo wykonać zakładanie wtyku RJ45, należy użyć

A. płaskiego śrubokręta
B. zaciskarki do złączy
C. narzędzia LSA typu KRONE
D. nóż monterskiego
Zaciskarka złącz to narzędzie kluczowe w procesie instalacji wtyków RJ45, które służy do trwałego połączenia przewodów z wtykiem. Jej konstrukcja umożliwia precyzyjne wciśnięcie metalowych pinów w wtyku w przewody, co zapewnia stabilne i niezawodne połączenie. W przypadku użycia wtyków RJ45, które są powszechnie stosowane w sieciach Ethernet, fundamentalne jest, aby przewody były odpowiednio ułożone w standardzie T568A lub T568B przed ich zaciskiem. Właściwie użyta zaciskarka zapewnia nie tylko poprawne połączenie, ale także minimalizuje ryzyko zakłóceń sygnału, co jest kluczowe dla utrzymania wysokiej wydajności sieci. Dodatkowo, stosowanie zaciskarki z funkcją automatycznego cięcia może przyspieszyć proces instalacji oraz poprawić jakość końcowego połączenia. Znajomość i umiejętność posługiwania się tym narzędziem są niezbędne w pracy technika sieciowego oraz elektrotechnika, co czyni je istotnym elementem szkolenia w tej dziedzinie.

Pytanie 4

Jakie urządzenie pomiarowe powinno być użyte do analizy sygnału o wysokiej częstotliwości?

A. Mostek RLC
B. Oscyloskop
C. Waromierz
D. Multimetr
Oscyloskop jest idealnym przyrządem do pomiaru sygnałów o wysokich częstotliwościach, ponieważ umożliwia wizualizację przebiegów elektrycznych w czasie rzeczywistym. Wysoka częstotliwość sygnałów, zwykle powyżej kilku megaherców, wymaga urządzenia, które jest w stanie zarejestrować zmiany napięcia w krótkich odstępach czasu i precyzyjnie odwzorować je na ekranie. Oscyloskopy cyfrowe, dzięki dużej przepustowości i możliwości zapisu danych, pozwalają na analizę sygnałów, identyfikację ich kształtu oraz określenie istotnych parametrów, takich jak amplituda, częstość oraz czas trwania sygnału. Przykładowo, w inżynierii elektronicznej oscyloskopy są powszechnie stosowane do testowania i analizy układów komunikacyjnych, gdzie sygnały o wysokiej częstotliwości są kluczowe dla funkcjonowania systemów. Użycie oscyloskopu w praktyce pozwala inżynierom na diagnozowanie problemów z sygnałem, takich jak zniekształcenia, które mogą wpływać na jakość transmisji danych.

Pytanie 5

Który z wymienionych komponentów obwodów elektronicznych wytwarza sygnał napięciowy pod działaniem pola magnetycznego i znajduje zastosowanie w miernikach pola magnetycznego?

A. Piezorezystor
B. Kontaktron
C. Hallotron
D. Warystor
Kontaktron to element, który działa na zasadzie zjawiska magnetycznego, ale jego zastosowanie jest ograniczone w porównaniu do hallotronu. Kontaktrony są używane głównie jako przełączniki w obwodach, które wykorzystują mechaniczne zamknięcie obwodu w odpowiedzi na obecność pola magnetycznego. W przeciwieństwie do hallotronów, które generują sygnał analogowy, kontaktrony oferują jedynie sygnał cyfrowy, co ogranicza ich funkcjonalność w aplikacjach wymagających precyzyjnego pomiaru. Warystor, natomiast, jest elementem pasywnym, który zabezpiecza obwody przed przepięciami, a nie generuje sygnałów na podstawie pola magnetycznego. Działa na zasadzie zmiany oporu przy określonym napięciu, co również eliminuje jego zastosowanie w kontekście pomiarów pola magnetycznego. Piezorezystor to kolejny ciekawy element, który zmienia opór elektryczny pod wpływem sił mechanicznych, jednak nie ma on związku z polem magnetycznym. Typowym błędem myślowym, który prowadzi do wyboru nieprawidłowych odpowiedzi, jest mylenie funkcji i zasad działania różnych elementów elektronicznych. Zrozumienie, że nie każdy element, który reaguje na zjawiska fizyczne, ma zdolność do generowania sygnału napięciowego pod wpływem pola magnetycznego, jest kluczowe dla poprawnego rozwiązywania zadań z zakresu elektroniki. Dlatego ważne jest, aby przy wyborze odpowiedzi kierować się nie tylko funkcjonalnością, ale także specyfiką zastosowań danego elementu.

Pytanie 6

Jeśli złącze BE tranzystora bipolarnego jest spolaryzowane w kierunku przewodzenia, a złącze CB w kierunku zaporowym, to w jakim stanie pracuje tranzystor?

A. aktywnym
B. aktywnym inwersyjnym
C. zatkania (odcięcia)
D. nasycenia
Odpowiedź "aktywnym" jest prawidłowa, ponieważ w takim ustawieniu tranzystora bipolarnego, złącze BE (baza-emiter) jest spolaryzowane w kierunku przewodzenia, co pozwala na przepływ prądu przez to złącze. Złącze CB (kolektor-baza) jest zaporowo spolaryzowane, co skutkuje brakiem przepływu prądu wstecznego. W efekcie tranzystor działa w trybie aktywnym, co oznacza, że może być używany jako wzmacniacz sygnału. W praktyce, to ustawienie jest kluczowe w zastosowaniach takich jak wzmacniacze audio czy obwody analogowe, gdzie wymagane jest precyzyjne kontrolowanie sygnału. W trybie aktywnym, mała zmiana prądu bazy prowadzi do dużej zmiany prądu kolektora, co czyni tranzystory bipolarne bardzo efektywnymi komponentami w projektowaniu układów elektronicznych. Warto również zauważyć, że w trybie aktywnym tranzystor działa w bezpiecznym zakresie pracy, co jest istotne dla długoterminowej stabilności układów elektronicznych.

Pytanie 7

Jaką rolę w systemie automatyki przemysłowej odgrywa przetwornik?

A. Przekształca sygnał z czujnika
B. Rejestruje działanie sieci
C. Wizualizuje procesy przemysłowe
D. Kontroluje pracę siłownika
Przetwornik w sieci automatyki przemysłowej pełni kluczową rolę w przekształcaniu sygnałów z czujników na formaty odpowiednie do analizy i dalszego przetwarzania. Przykładem może być przetwornik temperatury, który konwertuje sygnał analogowy z czujnika na sygnał cyfrowy, który może być następnie interpretowany przez systemy sterowania. Takie przetworniki są standardowym elementem w systemach SCADA oraz w projektach związanych z monitorowaniem i kontrolą procesów przemysłowych. Dobre praktyki w zakresie użycia przetworników obejmują ich odpowiedni dobór do rodzaju sygnału oraz zastosowanie w kontekście wymaganych norm, takich jak IEC 61131-9, która definiuje standardy dla systemów automatyki. Oprócz przekształcania sygnałów, przetworniki często posiadają dodatkowe funkcje, takie jak filtracja szumów, co zwiększa dokładność pomiarów. Zrozumienie tej funkcji jest kluczowe dla efektywnego projektowania systemów automatyki, gdzie precyzyjne dane są fundamentem dla podejmowania decyzji operacyjnych.

Pytanie 8

Automatyczne wyłączanie telewizora z lampą kineskopową w różnych interwałach czasowych oraz towarzyszący mu chwilowy błysk ekranu w jednym z podstawowych kolorów wskazuje na

A. zwarcia międzyelektrodowe
B. usterkę toru odchylania poziomego
C. przerwę w torze zasilania
D. uszkodzenie toru odchylania poziomego
Wybór odpowiedzi związanej z uszkodzeniem toru odchylania poziomego jest błędny, ponieważ objawy samoczynnego wyłączania się telewizora z kineskopem nie są typowe dla tego rodzaju awarii. Uszkodzenie toru odchylania poziomego prowadziłoby raczej do zniekształcenia obrazu, takiego jak zniekształcenie geometrii ekranowej, a nie do nagłego wyłączania się urządzenia. W przypadku toru odchylania poziomego, problemy mogą objawiać się jako smużenie obrazu albo niewłaściwe odchylenie wiązki elektronów, co nie prowadzi do rozbłysku kolorów na ekranie. Ponadto, zwarcia międzyelektrodowe są bardziej prawdopodobne, gdyż skutkują one nagłą zmianą w pracy kineskopu, co może powodować krótkotrwałe rozbłyski. Podobnie, odpowiedzi dotyczące przerwy w torze zasilania nie są adekwatne, ponieważ przerwy w zasilaniu prowadziłyby do całkowitego wyłączenia telewizora, a nie do jego nieregularnego wyłączania się po krótkim czasie. Typowym błędem myślowym jest zakładanie, że zjawisko rozbłysku na ekranie jest związane z problemami z zasilaniem lub torami odchylania, kiedy w rzeczywistości jest to rezultat zwarcia w kineskopie. Dlatego kluczowe jest zrozumienie specyfiki problemu i umiejętność różnicowania objawów związanych z różnymi rodzajami uszkodzeń w telewizorach kineskopowych.

Pytanie 9

W trakcie regularnej inspekcji instalacji telewizyjnej należy zwrócić uwagę na

A. metodę ułożenia przewodów
B. jakość sygnału w gniazdku
C. usytuowanie gniazd
D. położenie anteny
Podczas okresowej kontroli instalacji TV kluczowym elementem jest sprawdzenie poziomu sygnału w gniazdku. Sygnał telewizyjny musi mieć odpowiednią moc, aby zapewnić jakość odbioru. Standardy branżowe, takie jak DVB-T lub DVB-S, określają minimalne wartości poziomu sygnału, które powinny być osiągane, aby gwarantować stabilny i bezawaryjny odbiór. Niski poziom sygnału może prowadzić do zniekształceń obrazu, a nawet do jego całkowitego braku. Przykładowo, w instalacjach antenowych, jeśli poziom sygnału jest niższy niż -80 dBm, może to skutkować problemami z odbiorem. Regularne kontrole poziomu sygnału pozwalają na szybką identyfikację problemów, takich jak uszkodzenia kabli czy niewłaściwe ustawienie anteny. W praktyce, technicy często korzystają z mierników sygnału, które umożliwiają precyzyjne określenie moc sygnału i jakości, a także przeprowadzają pomiary w różnych warunkach, aby upewnić się, że instalacja działa optymalnie.

Pytanie 10

Jakim narzędziem wykonuje się pobielanie końcówek przewodów elektrycznych?

A. lutownicy
B. opalarki
C. zgrzewarki
D. nagrzewnicy
Pobielanie końcówek przewodów elektrycznych za pomocą lutownicy jest standardową praktyką w branży elektroinstalacyjnej. Lutownica, która wykorzystuje wysoką temperaturę do stopienia lutu, umożliwia trwałe połączenie przewodu z końcówką, co jest kluczowe dla zapewnienia dobrej przewodności elektrycznej oraz długotrwałej trwałości połączenia. W procesie lutowania ważne jest, aby przed przystąpieniem do pracy, odpowiednio przygotować powierzchnię przewodu, usuwając wszelkie zanieczyszczenia oraz oksydację. Zastosowanie lutownicy jest szczególnie istotne w kontekście norm i standardów, takich jak IEC 60364, które określają wymagania dotyczące instalacji elektrycznych. Dobrą praktyką jest również stosowanie lutów o odpowiednich parametrach, co wpływa na jakość oraz niezawodność wykonanego połączenia. Warto zaznaczyć, że technika lutowania wymaga pewnej wprawy oraz znajomości zasad bezpieczeństwa, aby uniknąć poparzeń oraz innych niebezpieczeństw związanych z obsługą urządzeń grzewczych.

Pytanie 11

Skrót ADSL odnosi się do technologii, która pozwala na

A. szerokopasmowy asymetryczny dostęp do sieci teleinformatycznych
B. kompresję materiałów audio i wideo
C. transmisję informacji cyfrowych za pośrednictwem fal radiowych
D. odbieranie cyfrowej telewizji naziemnej
ADSL, czyli Asymmetrical Digital Subscriber Line, to technologia szerokopasmowego dostępu do internetu, która wykorzystuje istniejące linie telefoniczne do przesyłania danych cyfrowych. Jej główną cechą jest asymetryczność, co oznacza, że prędkość pobierania danych (downstream) jest znacznie wyższa niż prędkość wysyłania danych (upstream). Dzięki temu ADSL jest szczególnie przystosowane do typowego użytkowania, gdzie użytkownicy częściej pobierają dane (np. przeglądanie stron internetowych, oglądanie filmów) niż je wysyłają. Przykładem zastosowania ADSL jest domowe lub biurowe łącze internetowe, które umożliwia korzystanie z szerokopasmowego dostępu bez potrzeby instalacji kosztownych infrastrukturalnych rozwiązań. ADSL jest zgodne z międzynarodowymi standardami ITU-T G.992.1, co zapewnia interoperacyjność między różnymi urządzeniami i dostawcami usług. Ponadto, ADSL jest często wykorzystywane w kontekście usług Triple Play, które integrują dostęp do internetu, telewizji i telefonii w jedną ofertę.

Pytanie 12

Jakie zabezpieczenie przed uszkodzeniem lutowanego elementu powinno być użyte podczas przyłączenia tranzystora CMOS do płyty głównej telewizora?

A. Pokrycie końcówek tranzystora pastą termoprzewodzącą
B. Noszenie okularów ochronnych
C. Założenie opaski uziemiającej na rękę
D. Wykorzystanie spoiwa o niższej temperaturze topnienia do lutowania
Założenie opaski uziemiającej na rękę to naprawdę ważna sprawa, kiedy lutujemy tranzystory CMOS. Te elementy są mega wrażliwe na wyładowania elektrostatyczne, więc lepiej nie ryzykować. Użycie opaski zmniejsza ryzyko zgromadzenia ładunku, który może zniszczyć układy scalone. Nawet małe ładunki mogą spowodować ESD i to zazwyczaj kończy się zniszczeniem tranzystora lub sprawia, że działa on nie tak, jak powinien. W branży mówi się o standardach, takich jak IEC 61340-5-1, które podkreślają, jak ważna jest ochrona przed ESD w miejscach, gdzie mamy do czynienia z wrażliwymi komponentami. Takie opaski powinny być na stałe w procedurach roboczych w laboratoriach i na liniach produkcyjnych, żeby zapewnić bezpieczeństwo sprzętu i sprawność pracy. A no i jeszcze warto pamiętać o matach ESD oraz odpowiedniej odzieży roboczej – to wszystko razem tworzy system ochronny przed złymi ładunkami.

Pytanie 13

Router to urządzenie wykorzystywane w warstwie

A. sieci
B. aplikacji
C. prezentacji
D. sesji
Router to urządzenie, które operuje w warstwie sieci modelu OSI. Jego główną funkcją jest przesyłanie pakietów danych pomiędzy różnymi sieciami, co umożliwia komunikację między urządzeniami pracującymi w różnych lokalizacjach. Routery analizują adresy IP zawarte w pakietach, a następnie podejmują decyzje o najlepszej trasie przesyłania tych pakietów, korzystając z tablic routingu. Routery są kluczowe w budowie sieci lokalnych oraz szerokopasmowych, a ich zastosowanie można znaleźć w domowych sieciach Wi-Fi, centrach danych oraz w infrastrukturze internetowej. Dobre praktyki w konfiguracji routerów obejmują zabezpieczanie ich poprzez zastosowanie silnych haseł, aktualizację oprogramowania oraz konfigurowanie zapór sieciowych, aby minimalizować ryzyko ataków. Zrozumienie roli routera w architekturze sieciowej jest istotne dla zapewnienia efektywnej komunikacji oraz bezpieczeństwa danych.

Pytanie 14

Którego urządzenia nie wykorzystuje się przy ustawianiu anten satelitarnych?

A. Multimetru
B. Kompasu
C. Kątomierza
D. Miernika sygnału
Wybór innych przyrządów, takich jak miernik sygnału, kompas czy kątomierz, może prowadzić do błędnych założeń na temat ich funkcji w kontekście ustawiania anten satelitarnych. Miernik sygnału jest kluczowym narzędziem, które pozwala instalatorom na bezpośrednie podejrzenie, jak silny i stabilny jest sygnał odbierany przez antenę. Jego użycie jest niezbędne do skutecznego ustawienia anteny, co czyni go niezastąpionym w procesie instalacji. Kompas jest również istotnym narzędziem, gdyż pozwala na orientację anteny w odpowiednim kierunku geograficznym, co jest fundamentem do prawidłowego ustawienia anteny na satelitę. Kątomierz zaś umożliwia precyzyjne określenie kąta azymutu i elewacji, co ma kluczowe znaczenie dla efektywności odbioru sygnału. Używanie multimetrów w tej sytuacji jest błędnym podejściem, ponieważ ich funkcje nie obejmują pomiaru parametrów sygnału satelitarnego. Typowym błędem myślowym jest połączenie różnych zastosowań przyrządów pomiarowych, co prowadzi do nieefektywnej pracy i frustracji podczas instalacji. Wiedza na temat specyfiki każdego z narzędzi oraz ich prawidłowego zastosowania jest kluczowa dla zapewnienia wysokiej jakości usług w dziedzinie instalacji systemów satelitarnych.

Pytanie 15

Wymiana bezpiecznika 500 mA na bezpiecznik 2 A w urządzeniu elektronicznym może prowadzić do

A. zwiększenia zużycia prądu
B. uszkodzenia urządzenia
C. wzrostu strat cieplnych
D. zmniejszenia efektywności
Wybór nieprawidłowego bezpiecznika, takiego jak zamiana 500 mA na 2 A, nie tylko może wydawać się na pierwszy rzut oka korzystny, ale w rzeczywistości prowadzi do wielu błędnych założeń. Na przykład, odpowiedzi sugerujące, że taka zmiana może prowadzić do zwiększenia strat cieplnych, są mylne, ponieważ to nie bezpośrednio wartość bezpiecznika, ale warunki pracy urządzenia oraz jego konstrukcja wpływają na straty energii. W kontekście obniżenia sprawności, można zauważyć, że zmiana bezpiecznika sama w sobie nie wpływa na efektywność energetyczną urządzenia, o ile nie prowadzi do przeciążenia. Z kolei stwierdzenie o zwiększeniu poboru prądu jest także nieprecyzyjne, ponieważ bezpiecznik nie generuje większego prądu, a jedynie zabezpiecza przed jego nadmiernym wzrostem. Rzeczywiście, większy bezpiecznik może pozwolić na przepływ większego prądu, co w praktyce prowadzi do uszkodzeń, gdy urządzenie zostanie przeciążone. Kluczowym błędem myślowym jest założenie, że wyższy bezpiecznik świadczy o lepszej ochronie. W rzeczywistości, dobór zabezpieczeń musi opierać się na dokładnych parametrach urządzenia oraz jego specyfikacji. Zgodnie z praktykami inżynieryjnymi, decyzje dotyczące wyboru bezpieczników powinny być oparte na analizie parametrów znamionowych, co podkreśla znaczenie właściwego doboru komponentów w celu zapewnienia bezpieczeństwa i niezawodności systemów elektronicznych.

Pytanie 16

Napięcie na wyjściu czujnika generacyjnego wynosi około 18 V, a rezystancja wyjściowa tego czujnika to około 200 kOhm. Aby uzyskać jak najbardziej precyzyjny pomiar napięcia na tym czujniku, powinno się zastosować woltomierz

A. cyfrowy na zakresie U=200 V i Rwe=10 MOhm
B. cyfrowy na zakresie U=20 V i Rwe=10 MOhm
C. analogowy na zakresie U=200 V i Rwe=10 kOhm
D. analogowy na zakresie U=20 V i Rwe=100 kOhm
Wybór cyfrowego woltomierza na zakresie U=20 V z rezystancją wewnętrzną Rwe=10 MOhm jest najlepszym rozwiązaniem w tej sytuacji z kilku powodów. Po pierwsze, napięcie wyjściowe czujnika wynosi około 18 V, co oznacza, że zakres 20 V jest optymalny, ponieważ umożliwia dokładny pomiar w pełnym zakresie napięcia bez ryzyka przesterowania. Po drugie, wysoka rezystancja wewnętrzna woltomierza (10 MOhm) minimalizuje wpływ samego instrumentu na obwód, co jest kluczowe, gdy mierzony czujnik ma dużą rezystancję wyjściową wynoszącą około 200 kOhm. W przypadku pomiarów w obwodach wysokorezystancyjnych, jak ten, zastosowanie woltomierza o wysokiej rezystancji wewnętrznej jest standardem, który pozwala na uzyskanie najbardziej wiarygodnych wyników. Na przykład, w aplikacjach, gdzie istotne jest zachowanie integralności sygnału, takich jak pomiary w naukach przyrodniczych czy elektronice, wybór odpowiedniego woltomierza jest kluczowy. Dzięki temu pomiar staje się dokładniejszy, a wyniki bardziej wiarygodne.

Pytanie 17

Która forma transmisji sygnału jest najbardziej odporna na zakłócenia elektromagnetyczne?

A. światłowodu
B. skrętki nieekranowanej
C. skrętki ekranowanej
D. kabla koncentrycznego
Transmisja sygnału za pośrednictwem światłowodu jest uważana za najbardziej odporną na zakłócenia elektromagnetyczne, co wynika z samej natury światłowodów. Sygnał przesyłany w światłowodach oparty jest na zjawisku całkowitego wewnętrznego odbicia światła, co sprawia, że sygnał nie jest narażony na zakłócenia elektromagnetyczne, jakie mogą wpływać na transmisję w przewodach miedzianych. W praktyce oznacza to, że światłowody są idealnym rozwiązaniem w środowiskach, gdzie występują silne źródła zakłóceń, takie jak w pobliżu dużych maszyn przemysłowych czy nadajników radiowych. Przykładem zastosowania światłowodów są sieci telekomunikacyjne oraz systemy informacyjne w dużych miastach, gdzie niezawodność i jakość transmisji danych są kluczowe. Zgodnie z normami ITU-T G.652 oraz G.657, światłowody zapewniają wysoką przepustowość i niskie tłumienie sygnału, co czyni je standardem w nowoczesnych instalacjach telekomunikacyjnych.

Pytanie 18

Którego koloru nie powinien mieć przewód fazowy w instalacji zasilającej sprzęt elektroniczny?

A. Szarego
B. Czarnego
C. Brązowego
D. Niebieskiego
Przewód fazowy w instalacji zasilającej urządzenia elektroniczne powinien być oznaczony kolorem innym niż niebieski, ponieważ ten kolor jest zarezerwowany dla przewodu neutralnego zgodnie z normą PN-IEC 60446. W praktyce oznacza to, że przewód fazowy, który może przenosić napięcie, powinien być czarny, brązowy lub szary, co pozwala na jednoznaczną identyfikację przewodów w instalacji oraz na uniknięcie pomyłek podczas prac serwisowych i montażowych. Przykładowo, podczas wykonywania instalacji elektrycznej w budynku mieszkalnym, technicy muszą upewnić się, że stosują właściwe kolory przewodów, aby zapewnić bezpieczeństwo użytkowników oraz zgodność z przepisami. Ponadto, odpowiednie oznaczenie przewodów jest kluczowe w przypadku diagnostyki i konserwacji instalacji, co może zapobiec wypadkom związanym z niewłaściwym podłączeniem przewodów. Wiedza na temat kolorów przewodów jest niezbędna dla elektryków, instalatorów i każdej osoby zajmującej się pracami związanymi z instalacjami elektrycznymi.

Pytanie 19

Aby zidentyfikować przerwę w obwodzie systemu alarmowego, należy użyć

A. generatora
B. bramki
C. multimetru
D. manometru
Multimetr jest kluczowym narzędziem w diagnostyce elektrycznej i elektronice, pozwalającym na pomiar napięcia, prądu oraz oporu w obwodach. W przypadku lokalizacji przerwy w obwodzie instalacji alarmowej, multimetr umożliwia szybkie zidentyfikowanie, czy obwód jest zamknięty, czy otwarty. Przykładowo, można ustawić multimetr na pomiar oporu (Ω) i sprawdzić, czy zasilany obwód wykazuje wartość bliską zeru (co wskazywałoby na zamknięcie obwodu) czy nieskończoności (co sugerowałoby przerwę). Dobrą praktyką jest również użycie funkcji pomiaru napięcia, aby upewnić się, że zasilanie dociera do wszystkich istotnych punktów obwodu. Warto również zwrócić uwagę na standardy bezpieczeństwa podczas pracy z urządzeniami elektrycznymi, takie jak odpowiednie uziemienie multimetru oraz przestrzeganie instrukcji producenta, co znacząco zmniejsza ryzyko uszkodzenia sprzętu oraz zapewnia bezpieczeństwo użytkownika w trakcie diagnostyki.

Pytanie 20

Który z poniższych przyrządów jest używany do pomiaru rezystancji izolacji kabli?

A. Mostek Thomsona
B. Wobulator
C. Induktor
D. Mostek Wiena
Wybór wobulatora, mostka Thomsona lub mostka Wiena jako narzędzi do pomiaru rezystancji izolacji kabli oparty jest na nieporozumieniu dotyczącym funkcji tych urządzeń. Wobulator jest narzędziem stosowanym głównie do analizy i pomiarów częstotliwościowych oraz badania jakości sygnałów elektrycznych, a nie do oceny rezystancji izolacyjnej. Mostek Thomsona służy do pomiaru rezystancji, ale jest przeznaczony do zastosowań w sytuacjach, gdzie izolacja nie jest kluczowym czynnikiem, a jego zastosowanie w kontekście kabli z izolacją może prowadzić do błędnych odczytów. Z kolei mostek Wiena jest używany w pomiarach impedancji, szczególnie w dziedzinie analizy częstotliwości, a jego zastosowanie w pomiarach izolacji jest ograniczone i nieodpowiednie, ponieważ nie uwzględnia specyfiki testowania izolacji. Typowym błędem myślowym jest mylenie różnych typów pomiarów elektrycznych i ich przeznaczenia. Kluczowe jest zrozumienie, że pomiar rezystancji izolacji wymaga zastosowania dedykowanych narzędzi, które są zgodne z odpowiednimi normami i standardami, a nie ogólnych przyrządów do analizy sygnałów czy impedancji.

Pytanie 21

Kiedy po zainstalowaniu domofonu i podłączeniu zasilania w słuchawce słychać pisk lub rozmowa jest niewyraźna, powinno się

A. dostosować napięcie w kasecie rozmownej
B. zwiększyć poziom głośności w unifonie
C. zwiększyć napięcie zasilania elektrozaczepu
D. dostosować poziom głośności w zasilaczu
Podwyższenie głośności w unifonie wydaje się logiczne, gdy dźwięk jest słabo słyszalny, ale nie zawsze to działa. Unifon to końcowe urządzenie w systemie i jego głośność powinna być dostosowana do tego, co zasilacz może wysłać. Jak zasilacz nie ma wystarczającej mocy, to raczej nic nie zdziałasz na unifonie. Podwyższenie napięcia zasilania elektrozaczepu też raczej nie pomoże w sprawie dźwięku. Elektrozaczep działa na innym poziomie i nie wpływa na to, co słychać w słuchawce. Regulacja napięcia w kasecie rozmownej to też nie najlepszy pomysł, bo ona ma swoje normy i nie powinna być zmieniana na siłę, bo to może tylko zepsuć. Takie myślenie może prowadzić do błędnych wniosków, że problem z dźwiękiem można rozwiązać na poziomie unifonu, a w rzeczywistości trzeba się skupić na zasilaniu, bo to podstawowa rzecz dla całego systemu.

Pytanie 22

Podczas instalacji komputerowej na zewnątrz budynku, należy użyć kabla w izolacji

A. gumowej lub polietylenowej z żyłami aluminiowymi
B. papierowej z żyłami aluminiowymi
C. gumowej lub polietylenowej z żyłami miedzianymi
D. papierowej z żyłami miedzianymi
Wybór kabli papierowych, niezależnie od rodzaju żył, jest nieodpowiedni w kontekście instalacji zewnętrznych. Kable papierowe, chociaż mogą być stosowane w niektórych aplikacjach wewnętrznych, nie oferują odpowiedniego poziomu ochrony przed wilgocią, promieniowaniem UV i innymi czynnikami atmosferycznymi, które mogą znacznie obniżyć trwałość i bezpieczeństwo instalacji. Żyły aluminiowe z kolei, choć są lżejsze i tańsze, mają znacznie gorsze właściwości przewodzenia prądu w porównaniu do miedzi. Kable z żyłami aluminiowymi wymagają większych przekrojów, aby osiągnąć tę samą wydajność, co prowadzi do nieefektywności kosztowej i potencjalnych problemów z przegrzewaniem. Dodatkowo, ich podatność na utlenianie i korozję sprawia, że w warunkach zewnętrznych mogą stawać się niebezpieczne. Zastosowanie takich kabli w instalacjach zewnętrznych może prowadzić do problemów z bezpieczeństwem, w tym do pożarów czy awarii urządzeń. Dlatego istotne jest, aby dobrze rozumieć właściwości materiałów, z których wykonane są kable, oraz ich odpowiednie zastosowanie zgodnie z normami branżowymi, aby zapewnić trwałość i bezpieczeństwo instalacji.

Pytanie 23

Jakim stosunkiem uciśnięć klatki piersiowej do oddechów powinno się prowadzić resuscytację krążeniowo-oddechową u osoby nieprzytomnej, która została porażona prądem elektrycznym i nie oddycha?

A. 2:30
B. 30:2
C. 15:2
D. 2:15
Właściwy stosunek uciśnięć mostka do wentylacji podczas resuscytacji krążeniowo-oddechowej (RKO) dla osoby dorosłej wynosi 30:2. Oznacza to, że wykonujemy 30 uciśnięć klatki piersiowej, a następnie 2 wdechy. Ten protokół odzwierciedla standardy wytycznych opublikowanych przez Europejską Radę Resuscytacji oraz American Heart Association. Uciśnięcia klatki piersiowej mają na celu zapewnienie odpowiedniego przepływu krwi do najważniejszych narządów, w tym serca i mózgu. Prawidłowe tempo uciśnięć wynosi 100-120 na minutę, a ich głębokość powinna wynosić co najmniej 5 cm, co jest kluczowe dla efektywności resuscytacji. Włączenie wentylacji po 30 uciśnięciach jest istotne, aby dostarczyć tlen do płuc, co zwiększa szansę na powrót spontanicznego krążenia. W praktyce, podczas resuscytacji, ważne jest, aby osoba prowadząca RKO nie traciła rytmu i zachowała skupienie, co jest kluczowe dla skuteczności akcji ratunkowej. W sytuacjach, gdy jest więcej niż jedna osoba, warto rotować między wykonawcami, aby uniknąć zmęczenia, które może obniżyć jakość uciśnięć.

Pytanie 24

Gdy w wzmacniaczu użyjemy ujemnego sprzężenia zwrotnego równoległego o charakterze napięciowym, to wzmocnienie

A. prądowe pozostanie na tym samym poziomie
B. napięciowe zmniejszy się
C. napięciowe wzrośnie
D. napięciowe zostanie niezmienne
Rozważając inne odpowiedzi, należy zwrócić uwagę na koncepcje związane z działaniem sprzężenia zwrotnego. Przykładowo, stwierdzenie, że wzmocnienie prądowe będzie stałe, jest mylnym podejściem, ponieważ ujemne sprzężenie zwrotne wpływa przede wszystkim na wzmocnienie napięciowe, a nie prądowe. Wzmocnienie prądowe może się zmieniać w zależności od obciążenia i warunków pracy wzmacniacza. Z kolei wskazanie, że napięciowe wzrośnie, jest błędne, ponieważ zastosowanie ujemnego sprzężenia zwrotnego ma na celu redukcję wzmocnienia, a nie jego zwiększenie. Stabilizacja wzmocnienia wiąże się z efektem ograniczenia wzmocnienia do wartości określającej funkcjonalność wzmacniacza, co z kolei zapobiega nieliniowości w jego działaniu. Odpowiedzi sugerujące, że napięciowe może zmaleć, także są nieprawidłowe, gdyż wzmocnienie napięciowe nie maleje w wyniku wprowadzenia sprzężenia zwrotnego, ale stabilizuje się na określonym poziomie. Błędne przekonania w tej kwestii często wynikają z braku zrozumienia mechanizmów działania sprzężenia zwrotnego oraz ich wpływu na parametry wzmacniacza. Wzmacniacze, w których zastosowano odpowiednią konfigurację sprzężenia zwrotnego ujemnego, są projektowane zgodnie z najlepszymi praktykami inżynieryjnymi, co pozwala na uzyskanie wysokiej jakości sygnału przy jednoczesnym unikaniu zniekształceń.

Pytanie 25

Czas potrzebny na naprawę magnetowidu to 0,5 godziny. Koszt materiałów wynosi 80 zł, a stawka godzinowa technika to 40 zł. Jaki będzie całkowity koszt naprawy, uwzględniając 22% podatek VAT?

A. 117,60 zł
B. 100,00 zł
C. 146,40 zł
D. 122,00 zł
Jak się liczy koszt naprawy magnetowidu? To całkiem proste. Musisz dodać do siebie koszty materiałów oraz opłatę dla serwisanta, a potem jeszcze doliczyć VAT. Mamy tu 80 zł na materiały i 40 zł za godzinę pracy serwisanta. Naprawa trwa pół godziny, więc serwisant dostanie 20 zł (40 zł za godzinę razy 0,5 godziny). Jak to zsumujemy, to mamy 80 zł plus 20 zł, co daje nam 100 zł przed podatkiem. Następnie bierzemy 22% z tej kwoty na VAT, co wychodzi 22 zł. Więc rzeczywisty koszt naprawy, po doliczeniu VAT-u, wyniesie 122 zł. Dobrze jest pamiętać, żeby zawsze uwzględniać wszystkie koszty, w tym podatki. To bardzo ważne, żeby mieć jasny obraz tego, ile to wszystko kosztuje w serwisie.

Pytanie 26

Jakie narzędzie wykorzystuje się do usuwania resztek topnika z płytek drukowanych?

A. pędzelka
B. wacika
C. ligniny
D. gąbki
Wybór gąbki, ligniny lub wacika do usuwania resztek topnika z płytek drukowanych nie jest właściwy z kilku istotnych powodów. Gąbki, mimo że są absorbujące, mogą zostawiać włókna, co jest niepożądane w kontekście precyzyjnych urządzeń elektronicznych. Włókna te mogą stać się źródłem zwarcia lub wpływać na działanie elementów elektronicznych, prowadząc do ich degradacji lub awarii. Lignina, choć może być stosowana w kontekście czyszczenia, nie jest odpowiednia ze względu na swoją szorstkość oraz możliwości zostawiania resztek, co może prowadzić do zanieczyszczenia płytki. Z kolei waciki, które mogą wydawać się praktyczne, także nie są idealnym rozwiązaniem, gdyż ich struktura może zarysować delikatne powierzchnie lub również pozostawić włókna. Każda z tych alternatyw nie spełnia wymogów dotyczących dokładności oraz bezpieczeństwa, które są kluczowe w procesach związanych z elektroniką. Stosowanie niewłaściwych narzędzi czyszczących może prowadzić do uszkodzenia komponentów, co w dłuższej perspektywie generuje dodatkowe koszty i obniża jakość wyrobów. Dlatego w branży elektroniki zdefiniowane są specjalistyczne narzędzia i metody czyszczenia, które zapewniają dokładność oraz minimalizują ryzyko uszkodzeń, a pędzelek jest jednym z najczęściej zalecanych narzędzi w takich sytuacjach.

Pytanie 27

Odbiornik cyfrowy DVB-C jest zaprojektowany do przyjmowania sygnałów telewizyjnych

A. kablowych
B. z internetu
C. satelitarnych
D. naziemnych
Odbiornik DVB-C to sprzęt stworzony właśnie do telewizji kablowej. Działa dzięki standardowi DVB-C, czyli Digital Video Broadcasting - Cable. Co to oznacza? Że sygnał jest przesyłany przez kable koncentryczne. Dzięki temu, jakość obrazu i dźwięku jest na naprawdę dobrym poziomie, a do tego można oglądać więcej kanałów niż w tradycyjny sposób. Telewizje kablowe, które korzystają z DVB-C, oferują różne pakiety programowe, co daje użytkownikom dostęp do masy kanałów, w tym tych w jakości HD czy VOD, czyli video na żądanie. To fajne, bo nie tylko można oglądać ulubione programy, ale także korzystać z EPG, czyli elektronicznego przewodnika po programach, oraz interaktywnych usług, co znacząco ułatwia korzystanie z telewizji.

Pytanie 28

Użycie akumulatora żelowego w ekstremalnie niskich temperaturach prowadzi do

A. obniżenia pojemności akumulatora
B. konieczności podwyższenia prądu ładowania
C. konieczności obniżenia napięcia ładowania
D. wzrostu pojemności akumulatora
Użytkowanie akumulatora żelowego w bardzo niskich temperaturach prowadzi do zmniejszenia jego pojemności ze względu na zwiększony opór wewnętrzny, który występuje w wyniku niskich temperatur. W takich warunkach, chemiczne reakcje zachodzące w elektrolitach są spowolnione, co skutkuje obniżeniem zdolności akumulatora do przekazywania energii. Na przykład, w temperaturach poniżej -10°C, akumulatory żelowe mogą tracić nawet 30% swojej nominalnej pojemności. Z tego powodu, w praktyce, akumulatory te powinny być używane w warunkach, które zapewniają im optymalne temperatury pracy, zazwyczaj w zakresie 0°C do 40°C. W przypadku zastosowań w bardzo zimnym klimacie, warto rozważyć użycie akumulatorów przystosowanych do takich warunków, albo zainwestować w systemy ogrzewania akumulatorów, które pomogą utrzymać odpowiednią temperaturę operacyjną, co jest zgodne z rekomendacjami wielu producentów akumulatorów oraz standardami branżowymi.

Pytanie 29

Jakiego sprzętu należy użyć podczas wymiany uszkodzonej diody w elektrozaczepie drzwi wejściowych?

A. Lutownicy transformatorowej
B. Lutownicy oporowej
C. Stacji na gorące powietrze
D. Stacji lutowniczej
Kiedy wybierasz inne narzędzia lutownicze, jak lutownica oporowa czy stacja lutownicza, mogą się zdarzyć problemy przy wymianie diod w elektrozaczepach. Lutownica oporowa, wiadomo, też się używa w elektronice, ale nie daje takiej samej kontroli nad temperaturą jak transformatorowa, co jest istotne, bo diody są wrażliwe na ciepło. Stacje lutownicze są lepsze jakościowo, ale też bardziej skomplikowane w obsłudze, co może być problemem dla początkujących. A stacje na gorące powietrze, choć przydatne, nie nadają się do precyzyjnego lutowania małych elementów, bo mogą rozgrzać otoczenie i uszkodzić inne komponenty. Niektórzy mylą sytuacje niskiej i wysokiej temperatury użytkowania, co może prowadzić do złych decyzji przy wyborze narzędzi. W sumie, ważne jest, żeby w odpowiednich sytuacjach sięgać po narzędzia, które są zgodne z branżowymi zaleceniami.

Pytanie 30

Jaką czynność należy zrealizować przed włączeniem sterownika PLC w systemie automatyki?

A. Ustawić zegar wewnętrzny w sterowniku
B. Odłączyć sygnały od sterownika
C. Wprowadzić program do sterownika
D. Odłączyć elementy wykonawcze od sterownika
Jak wprowadzasz program do sterownika PLC, to tak naprawdę robisz kluczowy krok przed jego uruchomieniem. To właśnie ten program definiuje, jak cały system automatyki ma działać. Bez odpowiedniego oprogramowania sterownik po prostu nie wykona żadnych operacji ani nie zareaguje na sygnały, które dostaje. Przykładowo, w systemach sterujących procesem produkcji, program mówi nam, jak sterować zaworami czy silnikami, żeby osiągnąć zamierzony efekt. Dobrze jest też, żeby wprowadzenie programu było zgodne z dokumentacją i procedurami firmy, bo to zapewnia, że wszystko będzie działać tak, jak powinno. Zgodnie z normami IEC 61131-3, które dotyczą programowania PLC, każdy program powinien być dobrze przetestowany w symulatorze przed wgraniem do rzeczywistego systemu. Dzięki temu można znaleźć błędy i poprawić logikę sterowania. Podsumowując, wprowadzenie programu to nie tylko praktyka, ale też kluczowy element, który zapewnia bezpieczeństwo i efektywność całego systemu automatyki.

Pytanie 31

Aby stworzyć niewidoczną dla ludzkiego oka barierę świetlną, należy zastosować

A. zestaw składający się z diody LED emitującej światło widzialne oraz fotodiody
B. zestaw składający się z diody LED emitującej światło podczerwone oraz fotodiody
C. fototranzystor
D. transoptor
Zestaw złożony z diody LED emitującej światło podczerwone i fotodiody jest idealnym rozwiązaniem do tworzenia niewidocznych dla oka ludzkiego barier świetlnych. Dioda LED podczerwonego emituje fale świetlne, które są niewidoczne dla ludzkiego oka, co pozwala na instalowanie systemów detekcji bez zauważalnych elementów. Fotodioda działa jako detektor, rejestrując światło podczerwone tylko wtedy, gdy obiekt zakłóca ten wiązkę. Takie rozwiązania są szeroko stosowane w systemach alarmowych, automatyce domowej oraz w przemyśle do wykrywania obecności ludzi lub przedmiotów. Zastosowanie podczerwieni zwiększa niezawodność systemu, minimalizując ryzyko fałszywych alarmów wywołanych przez światło dzienne. Dodatkowo, standardy dotyczące bezpieczeństwa i efektywności energetycznej wymagają użycia takich technologii w nowoczesnych instalacjach, co czyni tę metodę zgodną z dobrymi praktykami branżowymi.

Pytanie 32

Podłączenie telewizyjnej anteny lub odbiornika TV o wejściu symetrycznym przy użyciu przewodu współosiowego wymaga stosowania

A. falowodów
B. symetryzatorów
C. linii rezonansowych równoległych
D. linii nierezonansowych typu delta
Wybór falowodów jako metody połączenia anteny telewizyjnej lub odbiornika TV o wejściu symetrycznym jest nietrafiony, ponieważ falowody są stosowane głównie w wysokich częstotliwościach i wymagają specyficznych warunków do prawidłowego funkcjonowania. Falowody są skuteczne w przypadku komunikacji mikrofalowej i nie są przeznaczone do aplikacji niskoczęstotliwościowych, jak większość systemów telewizyjnych. Dodatkowo, linie rezonansowe równoległe oraz linie nierezonansowe typu delta również nie są odpowiednie do tego typu zastosowań. Linie rezonansowe są projektowane do pracy na określonych częstotliwościach rezonansowych, co w praktyce nie jest zgodne z wymaganiami dla sygnałów telewizyjnych, które muszą być odbierane w szerokim zakresie częstotliwości. Linie nierezonansowe typu delta z kolei są bardziej skomplikowane i mogą wprowadzać dodatkowe straty sygnału, co jest niepożądane w kontekście jakości odbioru telewizyjnego. Wybór niewłaściwych rozwiązań technologicznych może prowadzić do problemów z jakością sygnału, a także do zwiększenia kosztów instalacji, dlatego kluczowe jest zrozumienie i zastosowanie odpowiednich komponentów, takich jak symetryzatory, które są dostosowane do specyfiki systemów telewizyjnych.

Pytanie 33

Jaki czujnik pozwala na pomiar naprężeń mechanicznych w konstrukcjach?

A. Czujnik tensometryczny
B. Czujnik pojemnościowy
C. Czujnik hallotronowy
D. Czujnik magnetyczny
Czujnik tensometryczny jest specjalistycznym urządzeniem, które umożliwia pomiar naprężeń mechanicznych w elementach konstrukcyjnych poprzez wykorzystanie zasady zmiany oporu elektrycznego pod wpływem odkształceń. Tensometry działają na bazie efektu tensometrycznego, gdzie cienkie przewody lub folia, umieszczone na powierzchni mierzonego elementu, zmieniają swoją rezystancję w zależności od odkształceń mechanicznych. Przykłady zastosowania czujników tensometrycznych obejmują monitorowanie naprężeń w mostach, budynkach oraz innych konstrukcjach inżynierskich, co pozwala na wczesne wykrywanie uszkodzeń i zapewnia bezpieczeństwo użytkowników. Stanowią one integralną część systemów monitorowania strukturalnego, które są zgodne z normami, takimi jak ISO 3340, dotyczące oceny stanu technicznego obiektów. Dzięki ich wysokiej dokładności i niezawodności, czujniki tensometryczne są kluczowym narzędziem w inżynierii, umożliwiającym projektowanie bezpieczniejszych i bardziej efektywnych konstrukcji.

Pytanie 34

Który z komponentów półprzewodnikowych ma czterowarstwową budowę typu n-p-n-p?

A. Tyrystor
B. Tranzystor bipolarny
C. Dioda LED
D. Warikap
Dioda elektroluminescencyjna, czyli LED, to półprzewodnikowe źródło światła, które świeci dzięki rekombinacji elektronów i dziur. Zazwyczaj ma dwuwarstwową strukturę p-n, przez co nie działa jak tyrystor, który ma cztery warstwy. Wydaje mi się, że niektórym może się pomylić, że dioda może mieć czterowarstwową budowę, a to nieprawda. Z kolei warikap to dioda, która zmienia pojemność w odpowiedzi na napięcie, więc to też nie jest to, czego szukamy w tej sytuacji. A jeśli chodzi o tranzystory bipolarne, to mają trzy warstwy, co sprawia, że są zupełnie inne niż tyrystory. Wiem, że czasem łatwo pomylić różne elementy półprzewodnikowe, ale warto to zrozumieć, żeby nie wprowadzać się w błąd i nie robić błędów przy projektowaniu układów elektronicznych.

Pytanie 35

Jakie urządzenie pozwala na łączenie się z Internetem poprzez sieć CATV?

A. modem
B. hub
C. switch
D. wzmacniacz
Modem jest urządzeniem, które konwertuje sygnały analogowe na cyfrowe i vice versa, umożliwiając tym samym komunikację komputerów z siecią Internet. W kontekście sieci CATV (Cable Television), modem kablowy jest niezbędnym elementem, który pozwala użytkownikom na dostęp do Internetu za pośrednictwem infrastruktury telewizyjnej. Dzięki zastosowaniu technologii DOCSIS (Data Over Cable Service Interface Specification), modemy kablowe zapewniają wysoką prędkość transferu danych oraz stabilne połączenie. Przykładem zastosowania modemu może być domowe połączenie z Internetem, gdzie użytkownik łączy modem z routerem, co umożliwia korzystanie z sieci na wielu urządzeniach jednocześnie. Warto również zaznaczyć, że dobór odpowiedniego modemu powinien być zgodny z wymaganiami dostawcy usług internetowych oraz z aktualnymi standardami branżowymi, co zapewnia optymalne parametry pracy i bezpieczeństwo połączenia.

Pytanie 36

Jakie urządzenie służy do ochrony elektroniki przed skutkami wyładowań atmosferycznych?

A. ochronnik termiczny
B. wyłącznik różnicowoprądowy
C. wyłącznik nadprądowy
D. ochronnik przepięciowy
Odpowiedzi, które nie zostały wybrane, wskazują na brak zrozumienia funkcji i zastosowania poszczególnych urządzeń zabezpieczających. Wyłącznik nadprądowy, chociaż istotny w ochronie instalacji, działa głównie w przypadku przeciążeń i zwarć, zabezpieczając przed przepływem prądu większym od nominalnego, co nie jest związane z wyładowaniami atmosferycznymi. Z kolei wyłącznik różnicowoprądowy ma na celu ochronę przed porażeniem prądem elektrycznym poprzez wykrywanie różnicy prądów między przewodami roboczymi, co również nie odnosi się do ochrony przed przepięciami. Ochronnik termiczny, jak sama nazwa wskazuje, jest przeznaczony do zabezpieczania przed przegrzaniem i nie ma zastosowania w ochronie przed wyładowaniami atmosferycznymi. Typowym błędem myślowym jest mylenie różnych funkcji zabezpieczeń i ich zastosowań. Kluczowe jest zrozumienie, że każdy z tych elementów ma swoją specyfikę i nie należy ich stosować zamiennie. Aby skutecznie zabezpieczać instalacje i urządzenia przed wyładowaniami atmosferycznymi, niezbędne jest stosowanie odpowiednich rozwiązań, takich jak ochronniki przepięciowe, które są projektowane do tego celu. Wiedza o różnorodnych urządzeniach zabezpieczających jest istotna dla zapewnienia bezpieczeństwa zarówno w domach, jak i w obiektach przemysłowych.

Pytanie 37

Nie wolno stosować gaśnicy do gaszenia pożaru w instalacji elektrycznej, gdy jest pod napięciem?

A. halonowej
B. proszkowej
C. pianowej
D. śniegowej
Gaśnica pianowa jest odpowiednia do gaszenia pożarów instalacji elektrycznych, ponieważ nie przewodzi prądu. W przypadku pożaru w instalacji elektrycznej, kluczowym aspektem jest unikanie używania środków gaśniczych, które mogą przewodzić prąd, co może prowadzić do porażenia prądem oraz dodatkowego zagrożenia pożarowego. Standardy ochrony przeciwpożarowej zalecają stosowanie gaśnic pianowych, które tworzą warstwę piany, izolując ogień od tlenu, co skutecznie gasi ogień. Przykładem zastosowania gaśnicy pianowej może być sytuacja, w której dochodzi do zapalenia się przewodów elektrycznych w obiektach przemysłowych. W takich przypadkach, użycie gaśnicy pianowej nie tylko jest zgodne z zasadami bezpieczeństwa, ale również jest skuteczne w ograniczaniu skutków pożaru. Zgodnie z normami, w budynkach użyteczności publicznej oraz w różnych obiektach przemysłowych powinny być dostępne gaśnice pianowe, które są przeszkolone do użycia przez pracowników, co zwiększa bezpieczeństwo w razie zagrożenia.

Pytanie 38

Który z komponentów elektronicznych wymaga właściwej polaryzacji podczas instalacji na płytce drukowanej?

A. Stabilizator scalony
B. Rezystor węglowy
C. Kondensator ceramiczny
D. Bezpiecznik topikowy
Wybór innych komponentów, takich jak rezystor węglowy, bezpiecznik topikowy czy kondensator ceramiczny, może prowadzić do nieporozumień dotyczących ich wymagań montażowych i polaryzacji. Rezystory, niezależnie od ich typu, są elementami pasywnymi, które nie mają określonej polaryzacji; ich montaż może odbywać się w dowolnym kierunku, co sprawia, że nie wymagają one szczególnych oznaczeń ani przemyślanej lokalizacji na płytce. Z kolei bezpieczniki topikowe, chociaż mają istotne znaczenie w ochronie obwodów przed przeciążeniem czy zwarciem, również nie wymagają zachowania polaryzacji. Ich działanie polega na fizycznej przerwie w obwodzie, gdy prąd przekroczy ustaloną wartość, a ich zamontowanie w dowolny sposób nie wpływa na ich funkcjonalność. Kondensatory ceramiczne, podobnie jak rezystory, mogą być montowane w obu kierunkach, ponieważ nie mają określonej polaryzacji, co sprawia, że ich stosowanie jest bardziej elastyczne. Dlatego błędne podejście do tych komponentów, zakładające, że również wymagają one polaryzacji, może prowadzić do niewłaściwego ich użytkowania i zrozumienia ich funkcji w układzie. W praktyce, kluczowe jest zrozumienie różnic między tymi elementami a stabilizatorami scalonymi, co pozwala na uniknięcie typowych błędów podczas projektowania oraz montażu obwodów drukowanych.

Pytanie 39

Zgodnie z dyrektywą 2002/95/EC Parlamentu Europejskiego z dnia 27 stycznia 2003, w sprzęcie ogólnego przeznaczenia (z wyjątkiem wybranych urządzeń techniki komputerowej oraz systemów telekomunikacyjnych) zabrania się stosowania w stopach lutowniczych

A. ołowiu
B. kalafonii
C. cyny
D. pasty lutowniczej
Zgodnie z dyrektywą 2002/95/EC, znaną jako dyrektywa RoHS (Restriction of Hazardous Substances), stosowanie ołowiu w sprzęcie powszechnego użytku jest zabronione ze względu na jego potencjalnie szkodliwy wpływ na zdrowie ludzi i środowisko. Ołów jest substancją toksyczną, która może prowadzić do poważnych problemów zdrowotnych, w tym uszkodzenia układu nerwowego, szczególnie u dzieci. Dlatego dyrektywa RoHS ma na celu ograniczenie obecności niebezpiecznych substancji w produktach elektronicznych. Przykładowo, w produkcji lutowia stosuje się alternatywne materiały, takie jak lutowie bezołowiowe, które może zawierać cynę, srebro i miedź, aby spełniać wymagania środowiskowe i zdrowotne. Warto również zauważyć, że zgodność z dyrektywą RoHS jest kluczowym elementem procesów certyfikacji produktów elektronicznych, co przekłada się na ich akceptację na rynkach europejskich.

Pytanie 40

Jakie urządzenie należy zastosować do gaszenia pożarów w miejscach, gdzie działają urządzenia elektryczne?

A. hydronetki wodnej
B. gaśnicy pianowej
C. koca azbestowego
D. gaśnicy proszkowej
Koc azbestowy nie jest odpowiednim środkiem do gaszenia pożarów w pomieszczeniach z urządzeniami elektrycznymi. Oprócz tego, że azbest jest materiałem niebezpiecznym dla zdrowia i zakazanym w wielu krajach, jego zastosowanie w gaśnictwie jest ograniczone. Koc azbestowy może być użyty do tłumienia płomieni w przypadku niewielkich pożarów, jednak nie zapewnia on bezpieczeństwa w sytuacjach, gdzie obecne są urządzenia pod napięciem, ponieważ nie jest skuteczny w gaszeniu pożarów elektrycznych. Hydronetka wodna, z drugiej strony, również nie jest zalecana do gaszenia pożarów w obszarach z urządzeniami elektrycznymi, ponieważ woda może przewodzić prąd i prowadzić do porażenia. Zastosowanie wody w takich okolicznościach jest niebezpieczne i może pogorszyć sytuację. Gaśnica pianowa jest odpowiednia do walki z pożarami cieczy łatwopalnych, jednak jej stosowanie w pomieszczeniach z urządzeniami elektrycznymi nie jest zalecane, ponieważ może nie zapewniać odpowiedniej ochrony przed porażeniem prądem. Wybór odpowiednich środków gaśniczych powinien być oparty na przepisach i standardach, jak PN-EN 2 oraz na charakterystyce zagrożenia. Właściwa identyfikacja ryzyka oraz zastosowanie odpowiednich środków gaśniczych są kluczowe w zapewnieniu bezpieczeństwa w miejscach pracy.