Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 19 marca 2025 09:20
  • Data zakończenia: 19 marca 2025 09:32

Egzamin niezdany

Wynik: 10/40 punktów (25,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Program antywirusowy oferowany przez Microsoft bezpłatnie dla posiadaczy legalnych wersji systemu operacyjnego Windows to

A. Microsoft Free Antywirus
B. Windows Antywirus
C. Microsoft Security Essentials
D. Windows Defender
Nie ma czegoś takiego jak Windows Antywirus od Microsoftu, więc wybór tej opcji nie jest dobry. Możliwe, że ludzie mylą to z innymi programami, które nie są ich własnością. Często zdarza się, że szukając zabezpieczeń, natykają się na nieoficjalne aplikacje, które mogą wydawać się ok, ale nie spełniają standardów branżowych. Teraz mamy Windows Defender, który jest już wbudowany w Windows 10 i 11, więc takie mylenie nazw może sprawiać problemy. Z kolei Microsoft Free Antywirus sugeruje, że jest jakaś inna darmowa wersja antywirusowa, co jest nieprawdą. To błędne wyobrażenie o dostępnych narzędziach może prowadzić do złych decyzji, a to może narażać na poważne problemy, jak infekcje. Lepiej korzystać z uznanych rozwiązań zabezpieczających, które są wspierane przez producentów systemów i przestrzegają aktualnych norm bezpieczeństwa, żeby mieć pewność, że nasze urządzenia są dobrze chronione.

Pytanie 2

Do wykonania końcówek kabla UTP wykorzystuje się wtyczkę

A. DVI
B. 8P8C
C. RS232
D. BNC
Wtyki DVI, BNC i RS232 nie są odpowiednie do kończenia kabli UTP, ponieważ służą do zupełnie innych zastosowań w dziedzinie technologii komunikacyjnej. Wtyk DVI (Digital Visual Interface) jest przeznaczony do przesyłania sygnałów wideo i nie jest kompatybilny z kablami UTP, które są wykorzystywane głównie do transmisji danych. Jego konstrukcja i protokoły są dostosowane do połączeń między komputerami a monitorami, co czyni go nieodpowiednim w kontekście sieci komputerowych. Wtyk BNC (Bayonet Neill-Concelman) jest używany głównie w systemach telewizyjnych i kamerach CCTV, które wymagają sygnału wideo. Jego zastosowanie w kablach UTP jest niemożliwe, ponieważ nie obsługuje on danych cyfrowych w sposób, który jest wymagany w komunikacji sieciowej. RS232 to standard komunikacji szeregowej, który służy do przesyłania danych między urządzeniami, ale również nie jest związany z okablowaniem UTP. Często mylone jest z danymi przesyłanymi w sieciach Ethernet, przez co użytkownicy mogą sądzić, że można je wykorzystać w podobny sposób. Wniosek jest jasny: tylko wtyk 8P8C jest właściwy do wykorzystania w kablach UTP, ponieważ spełnia wymagania techniczne sieci lokalnych, podczas gdy pozostałe wtyki są przeznaczone do odrębnych zastosowań, co często prowadzi do błędnych założeń i nieefektywnych rozwiązań w infrastrukturze sieciowej.

Pytanie 3

Program iftop działający w systemie Linux ma na celu

A. ustawianie parametrów interfejsu graficznego
B. kończenie procesu, który zużywa najwięcej zasobów procesora
C. monitorowanie aktywności połączeń sieciowych
D. prezentowanie bieżącej prędkości zapisu w pamięci operacyjnej
Program iftop jest narzędziem służącym do monitorowania połączeń sieciowych w systemie Linux. Jego główną funkcjonalnością jest wyświetlanie danych dotyczących aktywności sieciowej w czasie rzeczywistym. Użytkownik może zobaczyć, które adresy IP są najbardziej aktywne, jak również ilość przesyłanych danych w określonym czasie. Dzięki temu administratorzy sieci mogą szybko identyfikować potencjalne problemy, takie jak nadmierne obciążenie sieci, działania złośliwe lub błędy konfiguracyjne. Dodatkowo, iftop umożliwia filtrowanie wyników według interfejsów sieciowych oraz protokołów, co zwiększa jego użyteczność w bardziej złożonych środowiskach. W praktyce, narzędzie to jest często wykorzystywane w połączeniu z innymi narzędziami do monitorowania sieci, takimi jak Wireshark, aby uzyskać pełniejszy obraz stanu infrastruktury sieciowej. Jeżeli chcesz dowiedzieć się więcej o monitoringach sieciowych, warto zaznajomić się z protokołem SNMP oraz narzędziami do jego implementacji.

Pytanie 4

Jaką nazwę powinien mieć identyfikator, aby urządzenia w sieci mogły działać w danej sieci bezprzewodowej?

A. SSID
B. IP
C. MAC
D. URL
Wybór odpowiedzi URL, IP lub MAC może wskazywać na pewne nieporozumienia w zakresie terminologii związanej z sieciami komputerowymi. URL (Uniform Resource Locator) odnosi się do adresu zasobu w Internecie, a jego rola jest zgoła inna niż identyfikowanie lokalnej sieci bezprzewodowej. URL jest używany w kontekście stron internetowych i nie ma zastosowania w identyfikacji sieci Wi-Fi. Z kolei adres IP (Internet Protocol) to unikalny identyfikator przypisany urządzeniom w sieci, który pozwala na komunikację między nimi, jednak nie jest on używany do identyfikacji sieci bezprzewodowych. Adres IP jest kluczowy dla działania sieci internetowych, ale jego funkcjonalność i zastosowanie są izolowane od koncepcji SSID. Adres MAC (Media Access Control) to unikalny identyfikator przypisany do karty sieciowej, pozwalający na identyfikację urządzeń w sieci lokalnej. Choć adres MAC jest istotny w kontekście komunikacji w sieci, to jednak nie pełni roli identyfikatora sieci Wi-Fi, jaką odgrywa SSID. Typowym błędem myślowym jest mylenie funkcji i zastosowań tych terminów, co prowadzi do nieprawidłowych wniosków dotyczących zarządzania oraz konfigurowania sieci bezprzewodowych.

Pytanie 5

Która z przedstawionych na rysunkach topologii jest topologią siatkową?

Ilustracja do pytania
A. A
B. C
C. B
D. D
Topologia siatki charakteryzuje się tym że każdy węzeł sieci jest połączony bezpośrednio z każdym innym węzłem co zapewnia wysoką odporność na awarie Jeśli jedno połączenie zawiedzie dane mogą być przesyłane inną drogą co czyni tę topologię bardziej niezawodną niż inne rozwiązania W praktyce topologia siatki znajduje zastosowanie w systemach wymagających wysokiej dostępności i redundancji takich jak sieci wojskowe czy systemy komunikacji krytycznej W topologii pełnej siatki każdy komputer jest połączony z każdym innym co zapewnia maksymalną elastyczność i wydajność Jednak koszty wdrożenia i zarządzania taką siecią są wysokie ze względu na liczbę wymaganych połączeń Z tego powodu częściej spotykana jest topologia częściowej siatki gdzie nie wszystkie węzły są bezpośrednio połączone ale sieć nadal zachowuje dużą odporność na awarie Topologia siatki jest zgodna z dobrymi praktykami projektowania sieci w kontekście niezawodności i bezpieczeństwa Przykłady jej zastosowania można znaleźć również w zaawansowanych sieciach komputerowych gdzie niezawodność i bezpieczeństwo są kluczowe

Pytanie 6

Recykling można zdefiniować jako

A. odzysk
B. segregację
C. oszczędność
D. produkcję
Odzysk to kluczowy proces w recyklingu, a inne odpowiedzi, takie jak produkcja, segregacja czy oszczędność, odnoszą się do innych aspektów zarządzania odpadami. Produkcja odnosi się do wytwarzania nowych dóbr z surowców, ale niekoniecznie oznacza ponowne wykorzystanie materiałów. W kontekście recyklingu, produkcja nowych wyrobów z surowców wtórnych jest jego efektem, jednak sama w sobie nie definiuje recyklingu. Segregacja, z drugiej strony, to proces oddzielania różnych rodzajów odpadów, który jest konieczny przed ich odzyskiem, ale nie jest tożsama z recyklingiem. Właściwa segregacja odpadów zwiększa efektywność procesu odzysku, ale sama nie prowadzi do recyklingu. Oszczędność, chociaż może być rezultatem efektywnego zarządzania odpadami, nie jest bezpośrednio powiązana z samym procesem recyklingu. Zrozumienie różnicy między odzyskiem a tymi terminami jest kluczowe dla pełnego pojęcia o recyklingu jako procesie. Niezrozumienie tych koncepcji może prowadzić do mylnych wniosków i niewłaściwego podejścia do zarządzania odpadami, co z kolei negatywnie wpływa na środowisko i gospodarkę.

Pytanie 7

Co oznacza standard 100Base-T?

A. standard sieci Ethernet o prędkości 1GB/s
B. standard sieci Ethernet o prędkości 1000Mb/s
C. standard sieci Ethernet o prędkości 100Mb/s
D. standard sieci Ethernet o prędkości 1000MB/s
Standard 100Base-T, nazywany również Fast Ethernet, odnosi się do technologii sieci Ethernet, która umożliwia przesyłanie danych z prędkością 100 megabitów na sekundę (Mb/s). To istotny krok w rozwoju sieci komputerowych, gdyż pozwala na znacznie szybszą transmisję niż wcześniejsze standardy, takie jak 10Base-T, które oferowały jedynie 10 Mb/s. 100Base-T został szeroko wdrożony w latach 90-tych XX wieku i do dziś pozostaje popularnym rozwiązaniem w wielu lokalnych sieciach komputerowych. Przykładem zastosowania tego standardu może być biuro, gdzie komputery są połączone w sieci lokalnej, a dzięki 100Base-T możliwe jest szybkie przesyłanie dużych plików między urządzeniami oraz zapewnienie płynnej pracy aplikacji działających w sieci. Warto również zauważyć, że standard ten jest zgodny z zasadami IEEE 802.3, co zapewnia interoperacyjność między różnymi producentami sprzętu sieciowego, zgodność z dobrą praktyką inżynieryjną oraz możliwość łatwej rozbudowy i modernizacji sieci.

Pytanie 8

Na schemacie przedstawiono konfigurację protokołu TCP/IP pomiędzy serwerem a stacją roboczą. Na serwerze zainstalowano rolę DNS. Wykonanie polecenia ping www.cke.edu.pl na serwerze zwraca pozytywny wynik, natomiast na stacji roboczej jest on negatywny. Jakie zmiany należy wprowadzić w konfiguracji, aby usługa DNS na stacji funkcjonowała poprawnie?

Ilustracja do pytania
A. adres bramy na serwerze na 192.168.1.11
B. adres serwera DNS na stacji roboczej na 192.168.1.11
C. adres bramy na stacji roboczej na 192.168.1.10
D. adres serwera DNS na stacji roboczej na 192.168.1.10
Zamiana adresu bramy na stacji roboczej lub na serwerze nie rozwiązuje problemu związanego z negatywnym wynikiem polecenia ping na stacji roboczej, ponieważ problem dotyczy rozwiązywania nazw, a nie routingu. Brama domyślna w sieciach komputerowych jest używana do przesyłania pakietów IP poza lokalną sieć, jednak w tym przypadku komunikacja jest wewnątrz sieci lokalnej, a błędne ustawienia bramy nie byłyby przyczyną niepowodzenia w pingowaniu domeny. Zamiast tego, poprawna konfiguracja DNS jest kluczowa dla rozwiązywania nazw domenowych. Innym błędnym założeniem byłoby użycie adresu IP bramy jako serwera DNS. Adres bramy domyślnej jest przeznaczony do przesyłania ruchu do innych sieci, a nie do tłumaczenia nazw domen. Często spotykanym błędem jest również używanie adresu 127.0.0.1 jako DNS na komputerze, który nie jest serwerem DNS, ponieważ ten adres wskazuje na lokalną maszynę. W przypadku serwerów rzeczywiście pełniących rolę DNS, jak w tej sytuacji, należy skonfigurować stacje robocze, aby używały odpowiedniego adresu IP serwera DNS, co w tym przypadku jest 192.168.1.10. Takie podejście zapewnia, że stacja robocza ma dostęp do poprawnie skonfigurowanego serwera DNS, który może skutecznie tłumaczyć nazwy domenowe i umożliwiać komunikację sieciową. Warto również pamiętać, że w dużych sieciach czasem stosuje się redundancję serwerów DNS, aby zwiększyć dostępność, co jednak nie zmienia podstawowej potrzeby poprawnego skonfigurowania podstawowego serwera DNS w sieci lokalnej.

Pytanie 9

Administrator systemu Linux wykonał listę zawartości folderu /home/szkola w terminalu, uzyskując następujący wynik -rwx -x r-x 1 admin admin 25 04-09 15:17 szkola.txt. Następnie wpisał polecenie: ```chmod ug=rw szkola.txt | ls -l``` Jaki rezultat jego działania zostanie pokazany w terminalu?

A. -rw- rw- rw- 1 admin admin 25 04-09 15:17 szkola.txt
B. -rwx ~x rw- 1 admin admin 25 04-09 15:17 szkola.txt
C. -rwx r-x r-x 1 admin admin 25 04-09 15:17 szkola.txt
D. -rw- rw- r-x 1 admin admin 25 04-09 15:17 szkola.txt
Wybrane odpowiedzi nie odzwierciedlają poprawnego rozumienia mechanizmu zarządzania uprawnieniami w systemie Linux. W przypadku niepoprawnych odpowiedzi, pojawiają się poważne niedociągnięcia w interpretacji działania polecenia 'chmod'. Warto zauważyć, że uprawnienia są definiowane w trzech sekcjach: dla właściciela, grupy oraz innych użytkowników. Zmiana uprawnień za pomocą 'chmod ug=rw' powoduje, że tylko te uprawnienia są przyznawane właścicielowi oraz grupie, natomiast uprawnienia dla pozostałych użytkowników pozostają nietknięte. Niektóre odpowiedzi sugerują, że uprawnienia dla wszystkich użytkowników uległyby zmianie, co jest błędne. Tego rodzaju nieporozumienia mogą wynikać z braku zrozumienia kluczowych elementów składni polecenia 'chmod', w tym użycia operatorów przypisania (=) oraz ich konsekwencji dla uprawnień. W rzeczywistości, stosując polecenie 'chmod', należy zawsze mieć na uwadze, czy zmiany dotyczą wszystkich użytkowników, czy tylko określonych grup. Dodatkowo, przy przyznawaniu uprawnień, warto stosować zasady minimalnych uprawnień, aby zredukować ryzyko niewłaściwego dostępu do wrażliwych danych.

Pytanie 10

W tabeli zaprezentowano specyfikacje czterech twardych dysków. Dysk, który oferuje najwyższą średnią prędkość odczytu danych, to

Pojemność320 GB320 GB320 GB320 GB
Liczba talerzy2322
Liczba głowic4644
Prędkość obrotowa7200 obr./min7200 obr./min7200 obr./min7200 obr./min
Pamięć podręczna16 MB16 MB16 MB16 MB
Czas dostępu8.3 ms8.9 ms8.5 ms8.6 ms
InterfejsSATA IISATA IISATA IISATA II
Obsługa NCQTAKNIETAKTAK
DyskA.B.C.D.

A. A
B. D
C. C
D. B
Dysk A zapewnia największą średnią szybkość odczytu danych dzięki najniższemu czasowi dostępu wynoszącemu 8.3 ms co jest kluczowym parametrem przy wyborze dysku twardego do zadań jak szybkie przetwarzanie danych czy ładowanie aplikacji Im niższy czas dostępu tym szybciej dysk może odczytywać i zapisywać dane co jest istotne w zastosowaniach wymagających szybkiej reakcji jak w serwerach czy stacjach roboczych Dysk A wyposażony jest także w 16 MB pamięci podręcznej oraz obsługę NCQ co przyspiesza operacje wejścia-wyjścia poprzez optymalne kolejkowanie zadań NCQ (Native Command Queuing) jest istotnym wsparciem w środowiskach wielozadaniowych ułatwiając jednoczesny dostęp do wielu plików Standard SATA II z prędkością 3 Gb/s zapewnia wystarczającą przepustowość dla większości zastosowań komercyjnych i konsumenckich Wybór odpowiedniego dysku twardego zgodnie z wymaganiami aplikacji jest kluczowy dla optymalizacji wydajności systemu Warto zatem inwestować w dyski o niższym czasie dostępu i obsłudze NCQ aby zwiększyć efektywność pracy szczególnie w zastosowaniach profesjonalnych

Pytanie 11

Interfejs UDMA to typ interfejsu

A. szeregowy, który służy do transferu danych między pamięcią RAM a dyskami twardymi
B. równoległy, używany m.in. do połączenia kina domowego z komputerem
C. szeregowy, stosowany do łączenia urządzeń wejściowych
D. równoległy, który został zastąpiony przez interfejs SATA
Interfejs UDMA (Ultra Direct Memory Access) to protokół równoległy, który był szeroko stosowany do komunikacji z dyskami twardymi i innymi urządzeniami pamięci masowej. UDMA umożliwia transfer danych z większą prędkością niż wcześniejsze standardy, co przekłada się na lepszą wydajność systemów komputerowych. Jako przykład zastosowania, UDMA był istotnym elementem w komputerach osobistych i systemach serwerowych z lat 90-tych i początku 2000-tych, gdzie zapewniał szybką wymianę danych pomiędzy dyskami twardymi a kontrolerami. Wraz z rozwojem technologii, UDMA został stopniowo zastąpiony przez interfejs SATA, który oferuje wyższą wydajność oraz prostszą architekturę kablową. W kontekście dobrych praktyk branżowych, stosowanie nowszych standardów, takich jak SATA, jest zalecane, aby zapewnić optymalną wydajność i niezawodność systemów komputerowych, co jest kluczowe w dzisiejszym szybko zmieniającym się świecie technologii.

Pytanie 12

Jak nazywa się magistrala, która w komputerze łączy procesor z kontrolerem pamięci i składa się z szyny adresowej, szyny danych oraz linii sterujących?

A. AGP – Accelerated Graphics Port
B. PCI – Peripheral Component Interconnect
C. ISA – Industry Standard Architecture
D. FSB – Front Side Bus
W przypadku PCI, chodzi o magistralę, która umożliwia podłączanie różnych komponentów do płyty głównej, takich jak karty dźwiękowe czy sieciowe. PCI nie jest bezpośrednio odpowiedzialne za komunikację między procesorem a pamięcią, lecz służy do rozszerzenia funkcjonalności systemu. Innym przykładem jest AGP, który został zaprojektowany specjalnie do obsługi kart graficznych, a jego działanie koncentruje się na zapewnieniu wysokiej przepustowości dla danych graficznych, co nie ma zastosowania w kontekście komunikacji procesora z kontrolerem pamięci. Natomiast ISA to starszy standard, który również dotyczy podłączania urządzeń peryferyjnych, ale w praktyce jest obecnie rzadko stosowany ze względu na swoje ograniczenia w porównaniu do nowszych technologii. Często mylenie tych magistrali z FSB wynika z ich podobieństw w kontekście komunikacji w systemie komputerowym, lecz każda z nich ma swoje specyficzne zastosowania i funkcje. Dlatego ważne jest zrozumienie różnicy między nimi, aby nie mylić ich ról w architekturze komputera. Kluczowe jest, aby przy rozwiązywaniu problemów lub projektowaniu systemów mieć świadomość, jakie magistrale pełnią konkretne funkcje i jak współdziałają z innymi komponentami.

Pytanie 13

Jednym z zaleceń w zakresie ochrony przed wirusami jest przeprowadzanie skanowania całego systemu. W związku z tym należy skanować komputer

A. jedynie w sytuacji, gdy w systemie nie działa monitor antywirusowy
B. tylko po zaktualizowaniu baz danych oprogramowania antywirusowego
C. wyłącznie w przypadkach, gdy istnieje podejrzenie infekcji wirusem
D. regularnie, na przykład co siedem dni
Skanowanie komputera jedynie po aktualizacji baz programu antywirusowego, wyłącznie w sytuacji podejrzenia infekcji, czy tylko wtedy, gdy nie działa monitor antywirusowy, to podejścia, które mogą prowadzić do poważnych luk w zabezpieczeniach. Ograniczanie skanowania wyłącznie do momentów aktualizacji baz wirusów jest błędne, ponieważ złośliwe oprogramowanie może zaatakować system w dowolnym momencie, a nie tylko po aktualizacji. Takie podejście stawia użytkowników w sytuacji, gdzie mogą być nieświadomi istniejących zagrożeń, co jest sprzeczne z zasadą proaktywnej ochrony. Dodatkowo, skanowanie jedynie w sytuacji podejrzenia infekcji oznacza, że użytkownik może przegapić subtelne objawy złośliwego oprogramowania, które nie zawsze są od razu widoczne. Często ataki są skryte i mogą działać w tle przez długi czas, zanim zostaną zauważone. Ostatnia koncepcja, związana z działaniem monitora antywirusowego, jest również mylna; nawet jeśli monitor nie zgłasza aktywnych zagrożeń, nie oznacza to, że system jest bezpieczny. W praktyce, skuteczne zabezpieczenia wymaga regularnych, kompleksowych skanów, które identyfikują i eliminują zagrożenia przed ich eskalacją. Dlatego kluczowe jest, aby stosować się do zalecenia o systematycznym skanowaniu komputera, co stanowi podstawowy element strategii bezpieczeństwa systemów informatycznych.

Pytanie 14

Aby zwiększyć efektywność komputera, można w nim zainstalować procesor wspierający technologię Hyper-Threading, co umożliwia

A. podniesienie częstotliwości pracy zegara
B. automatyczne dostosowanie częstotliwości rdzeni procesora w zależności od ich obciążenia
C. realizowanie przez pojedynczy rdzeń procesora dwóch niezależnych zadań równocześnie
D. przesyłanie danych pomiędzy procesorem a dyskiem twardym z prędkością działania procesora
Zwiększenie szybkości pracy zegara jest związane z taktowaniem procesora, co oznacza, że jego rdzenie mogą wykonywać więcej cykli obliczeniowych na sekundę. Chociaż wyższe taktowanie może poprawić wydajność, nie jest to związane z technologią Hyper-Threading, która skupia się na wielowątkowości. Automatyczna regulacja częstotliwości rdzeni procesora to funkcjonalność znana jako Turbo Boost, która pozwala na dynamiczne dostosowywanie częstotliwości pracy rdzeni w zależności od obciążenia. To również nie ma związku z Hyper-Threading. W kontekście wymiany danych z dyskiem twardym, to zadanie leży poza zakresem działania technologii Hyper-Threading, która koncentruje się na zarządzaniu wątkami wewnątrz samego procesora. Typowe błędy myślowe związane z tymi odpowiedziami wynikają z nieporozumienia dotyczącego architektury procesorów. Warto zrozumieć, że Hyper-Threading jest technologią, która optymalizuje wykorzystanie rdzeni poprzez umożliwienie równoległego przetwarzania wątków, a nie zwiększa ich liczby ani nie wpływa na parametry związane z zegarem czy komunikacją z innymi podzespołami. Zatem, aby poprawić wydajność komputera, bardziej trafnym rozwiązaniem byłoby poszukiwanie procesora z technologią Hyper-Threading, niż skupianie się na aspektach takich jak taktowanie czy wymiana danych z dyskiem.

Pytanie 15

Program do odzyskiwania danych, stosowany w warunkach domowych, umożliwia przywrócenie danych z dysku twardego w sytuacji

A. awarii silnika dysku
B. zamoczenia dysku
C. niezamierzonego skasowania danych
D. problemu z elektroniką dysku
Odzyskiwanie danych w przypadku zalania dysku, uszkodzenia silnika lub elektroniki dysku nie jest możliwe w domowych warunkach i wymaga specjalistycznych usług. Zalana elektronika dysku twardego wpływa na jego działanie oraz integralność danych, a w takich przypadkach niezbędna jest często interwencja profesjonalnych serwisów zajmujących się naprawą sprzętu. Uszkodzenia silnika dysku skutkują brakiem możliwości dostępu do danych, co uniemożliwia ich odzyskanie przy użyciu programów recovery, które działają tylko na logicznych błędach, a nie na fizycznych uszkodzeniach. Ponadto, uszkodzenie elektroniki może prowadzić do poważnych strat danych, a jego naprawa często wymaga skomplikowanych procedur oraz specjalistycznych narzędzi. W przypadku tych problemów, zastosowanie standardów takich jak ISO/IEC 27001, które dotyczą bezpieczeństwa informacji, jest kluczowe. Typowe błędy myślowe polegają na myleniu kategorii problemów - odzyskiwanie danych z uszkodzonych fizycznie dysków twardych wymaga zupełnie innych metod niż przywracanie przypadkowo usuniętych plików. Należy podkreślić, że w przypadku uszkodzeń mechanicznych zawsze zaleca się skorzystanie z usług profesjonalnych laboratoriów zajmujących się odzyskiwaniem danych, które dysponują odpowiednim sprzętem i doświadczeniem, aby nie pogorszyć sytuacji.

Pytanie 16

Aby bezpiecznie połączyć się z firmowym serwerem przez Internet i mieć dostęp do zasobów firmy, należy wykorzystać odpowiednie oprogramowanie klienckie

A. WLAN (Wireless Local Area Network)
B. NAP (Network Access Protection)
C. VLAN (Virtual Local Area Network)
D. VPN (Virtual Private Network)
NAP, czyli Network Access Protection, jest technologią, której głównym celem jest ochrona sieci poprzez zapewnienie, że tylko urządzenia spełniające określone kryteria bezpieczeństwa mogą uzyskać dostęp do zasobów sieciowych. Jednak sama technologia NAP nie zapewnia bezpiecznego połączenia, a raczej kontroluje dostęp do sieci na podstawie polityk bezpieczeństwa. W kontekście zdalnego dostępu do zasobów firmowych przez Internet, NAP nie jest wystarczającym rozwiązaniem, ponieważ nie szyfruje danych ani nie tworzy bezpiecznego tunelu komunikacyjnego, co jest kluczowe w przypadku pracy zdalnej. VLAN, czyli Wirtualna Sieć Lokalna, jest technologią, która segreguje ruch w sieci lokalnej, ale również nie ma zastosowania w kontekście bezpiecznego łączenia z siecią firmową przez Internet. VLAN nie oferuje szyfrowania ani nie zabezpiecza połączeń między użytkownikami a serwerami. WLAN, czyli Bezprzewodowa Sieć Lokalna, odnosi się do technologii sieci bezprzewodowych, a jej zastosowanie w pracy zdalnej również nie gwarantuje bezpieczeństwa przesyłanych danych. Użytkownicy mogą błędnie zakładać, że te technologie mogą zapewnić odpowiedni poziom ochrony, jednak kluczowe jest zrozumienie różnicy między kontrolą dostępu a bezpieczeństwem komunikacji. W kontekście zdalnej pracy, właściwym rozwiązaniem jest stosowanie VPN, które łączy w sobie bezpieczeństwo i dostępność zasobów firmowych.

Pytanie 17

Który z protokołów jest używany do przesyłania plików na serwer?

A. DNS (Domain Name System)
B. HTTP (Hyper Text Transfer Protocol)
C. FTP (File Transfer Protocol)
D. DHCP (Dynamic Host Configuration Protocol)
FTP, czyli File Transfer Protocol, jest protokołem zaprojektowanym specjalnie do przesyłania plików pomiędzy komputerami w sieci. Jest to standardowy protokół internetowy, który umożliwia użytkownikom przesyłanie i pobieranie plików z serwera. FTP działa w oparciu o model klient-serwer, gdzie użytkownik pełni rolę klienta, a serwer jest odpowiedzialny za przechowywanie i udostępnianie plików. Przykładem praktycznego zastosowania FTP może być przesyłanie dużych plików z lokalnego komputera na serwer hostingowy w celu publikacji strony internetowej. FTP obsługuje również różne tryby przesyłania danych, takie jak tryb pasywny i aktywny, co pozwala na lepsze dostosowanie do różnych konfiguracji sieciowych. Standardy FTP są szeroko stosowane w branży IT, a wiele narzędzi i aplikacji, takich jak FileZilla czy WinSCP, oferuje łatwe w użyciu interfejsy graficzne do zarządzania transferem plików za pomocą tego protokołu.

Pytanie 18

Wskaż rodzaj wtyczki zasilającej, którą należy połączyć z napędem optycznym podczas montażu komputera.

Ilustracja do pytania
A. Rys. B
B. Rys. A
C. Rys. C
D. Rys. D
Pozostałe wtyki przedstawione na ilustracjach pełnią różne funkcje w systemie komputerowym ale nie są używane do podłączania napędów optycznych Rysunek B przedstawia złącze ATX używane do zasilania płyty głównej Jest to jedno z najważniejszych złączy w systemie zapewniające energię dla najważniejszych komponentów komputera takich jak procesor i pamięć RAM Wtyk ten zazwyczaj posiada 20 lub 24 piny i jest kluczowy dla funkcjonowania całego systemu Rysunek C przedstawia złącze PCIe które jest używane do zasilania kart graficznych i innych komponentów o wysokim poborze mocy Takie złącze może mieć 6 lub 8 pinów w zależności od zapotrzebowania energetycznego danego urządzenia Wybór niewłaściwego złącza do napędu optycznego byłby błędny ponieważ karta graficzna wymaga specjalnego rodzaju zasilania i próba użycia tego złącza do napędu optycznego mogłaby prowadzić do uszkodzenia podzespołów lub niestabilności systemu Rysunek D pokazuje starsze złącze typu Molex które było używane w starszych modelach komputerów do zasilania dysków twardych i napędów optycznych Obecnie jednak standardem stały się złącza SATA co wynika z ich wyższej wydajności i lepszego zarządzania kablami Wybór złącza Molex zamiast SATA byłby niepraktyczny ze względu na ograniczenia przestrzenne i techniczne które czyniłyby montaż mniej efektywnym oraz mogłyby prowadzić do niepotrzebnych komplikacji w instalacji sprzętu Właściwe rozróżnienie typów złącz jest kluczowe dla efektywnego i bezpiecznego montażu zestawu komputerowego oraz zapewnienia jego optymalnego działania

Pytanie 19

Które z urządzeń używanych w sieci komputerowej NIE WPŁYWA na liczbę domen kolizyjnych?

A. Router
B. Hub
C. Server
D. Switch
Zrozumienie ról różnych urządzeń w sieci komputerowej jest kluczowe dla prawidłowego zarządzania ruchem danych. Ruter, jako urządzenie sieciowe, działa na poziomie warstwy sieci w modelu OSI i jest odpowiedzialny za przesyłanie pakietów między różnymi sieciami oraz zarządzanie ich trasowaniem. Przełącznik, z kolei, działa na poziomie warstwy łącza danych i może segmentować sieć na różne domeny kolizyjne, co pozwala na równoległe przesyłanie danych bez ryzyka kolizji. Koncentrator, będący urządzeniem działającym na poziomie fizycznym, przekazuje sygnały do wszystkich portów, co skutkuje tym, że wszystkie urządzenia podłączone do koncentratora należą do tej samej domeny kolizyjnej. W związku z tym, zarówno ruter, jak i przełącznik mają wpływ na liczbę domen kolizyjnych w sieci, co powoduje, że ich wybór i zastosowanie są istotne w kontekście projektowania efektywnych architektur sieciowych. Typowym błędem myślowym jest mylenie funkcji serwera z funkcjami urządzeń, które zarządzają ruchem. Serwer nie zmienia liczby domen kolizyjnych, ponieważ jego rola ogranicza się do udostępniania zasobów. Właściwe zrozumienie tych ról i ich zastosowanie w praktyce jest kluczowe dla optymalizacji działania sieci oraz unikania problemów z wydajnością i dostępnością zasobów.

Pytanie 20

W dwóch sąsiadujących pomieszczeniach pewnej firmy występują znaczne zakłócenia elektromagnetyczne. Aby zapewnić maksymalną przepustowość w istniejącej sieci LAN, jakie medium transmisyjne powinno być użyte?

A. kabel światłowodowy
B. skrętka nieekranowana
C. fale elektromagnetyczne w zakresie podczerwieni
D. kabel telefoniczny
Wybór złego medium transmisyjnego, szczególnie przy dużych zakłóceniach elektromagnetycznych, może być naprawdę problematyczny. Kabel telefoniczny to stare rozwiązanie, które ma kiepską przepustowość w porównaniu do nowoczesnych technologii i jest mocno podatny na zakłócenia. Korzystanie z takiego medium w obszarze z intensywnymi zakłóceniami może prowadzić do poważnych strat danych, co w efekcie wpływa na działanie całej sieci. Skrętka nieekranowana, chociaż lepsza niż kabel telefoniczny, wciąż nie jest wystarczająco odporna na te zakłócenia. W miejscach z dużymi polami elektromagnetycznymi, jak w pobliżu urządzeń przemysłowych, lepiej sprawdzą się skrętki ekranowane, ale i tak nie dadzą jakości światłowodu. Fale elektromagnetyczne w podczerwieni mogą też wyglądać na ciekawy pomysł, ale ich zasięg jest niewielki, a przesyłanie danych takimi metodami to raczej coś dla krótkich dystansów. Więc nie ma co zakładać, że tradycyjne metody sprawdzą się w trudnych warunkach - technologia jasno pokazuje, że w takich miejscach najlepiej wybrać światłowody, żeby mieć pewność stabilności i niezawodności przesyłu.

Pytanie 21

Unity Tweak Tool oraz narzędzia dostrajania to elementy systemu Linux, które mają na celu

A. personalizację systemu
B. ustawienie zapory sieciowej
C. obsługę kont użytkowników
D. przydzielanie uprawnień do zasobów systemowych
Odpowiedź 'personalizacji systemu' jest poprawna, ponieważ narzędzia dostrajania oraz Unity Tweak Tool są zaprojektowane z myślą o użytkownikach systemów Linux, którzy chcą dostosować środowisko graficzne oraz zachowanie systemu operacyjnego do swoich indywidualnych potrzeb. Te narzędzia oferują szereg opcji, które pozwalają na modyfikację wyglądu interfejsu, ustawień motywów, ikon, czcionek oraz zachowań systemowych. Na przykład, użytkownik może łatwo zmienić domyślny motyw graficzny, co wpłynie na estetykę całego systemu, czy też dostosować skróty klawiszowe do swoich preferencji, co zwiększa efektywność pracy. W praktyce, korzystając z tych narzędzi, można uzyskać bardziej spójne i przyjemne doświadczenie użytkownika, co jest kluczowe w przypadku długotrwałego korzystania z systemu. Dodatkowo, zgodnie z najlepszymi praktykami w zakresie użyteczności, personalizacja pozwala na zwiększenie komfortu użytkowania oraz efektywności, co może mieć pozytywny wpływ na produktywność.

Pytanie 22

Jakie urządzenie sieciowe umożliwia połączenie lokalnej sieci LAN z rozległą siecią WAN?

A. Hub
B. Switch
C. Router
D. Repeater
Wybór urządzeń takich jak repeater, hub czy switch w kontekście łączenia sieci LAN z WAN jest nieprawidłowy z kilku powodów. Repeater służy głównie do wzmacniania sygnału w sieciach lokalnych, co pozwala na wydłużenie zasięgu, ale nie ma zdolności do zarządzania ruchem między różnymi sieciami. Hub, będący urządzeniem działającym na warstwie 1 modelu OSI, po prostu przekazuje dane do wszystkich portów bez analizowania ich zawartości, co nie jest wystarczające w przypadku komunikacji między sieciami. Switch, chociaż działa na warstwie 2 i umożliwia bardziej inteligentne przesyłanie danych w ramach sieci lokalnej dzięki nauce adresów MAC, także nie ma możliwości bezpośrednie

Pytanie 23

Zaprezentowany komputer jest niepełny. Który z komponentów nie został wymieniony w tabeli, a jest kluczowy dla poprawnego funkcjonowania zestawu i powinien być dodany?

Lp.Nazwa podzespołu
1.Cooler Master obudowa komputerowa CM Force 500W czarna
2.Gigabyte GA-H110M-S2H, Realtek ALC887, DualDDR4-2133, SATA3, HDMI, DVI, D-Sub, LGA1151, mATX
3.Intel Core i5-6400, Quad Core, 2.70GHz, 6MB, LGA1151, 14nm, 65W, Intel HD Graphics, VGA, TRAY/OEM
4.Patriot Signature DDR4 2x4GB 2133MHz
5.Seagate BarraCuda, 3,5", 1TB, SATA/600, 7200RPM, 64MB cache
6.LG SuperMulti SATA DVD+/-R24x,DVD+RW6x,DVD+R DL 8x, bare bulk (czarny)
7.Gembird Bezprzewodowy Zestaw Klawiatura i Mysz
8.Monitor Iiyama E2083HSD-B1 19.5inch, TN, HD+, DVI, głośniki
9.Microsoft OEM Win Home 10 64Bit Polish 1pk DVD

A. Karta graficzna
B. Pamięć RAM
C. Zasilacz
D. Wentylator procesora
Zasilacz, karta graficzna oraz pamięć RAM to również kluczowe komponenty każdego komputera, ale w kontekście tego pytania ich brak nie jest przyczyną niekompletności zestawu w odniesieniu do chłodzenia procesora. Zasilacz zapewnia niezbędne zasilanie dla całego systemu, a jego parametry muszą być dobrane odpowiednio do specyfikacji energetycznej wszystkich zainstalowanych komponentów. Karta graficzna, choć nie jest wymieniona w tabeli, to w przypadku niektórych konfiguracji może być zintegrowana z procesorem, jak ma to miejsce w przypadku układów Intel HD Graphics. Pamięć RAM jest niezbędna do przechowywania i szybkiego dostępu do danych, ale jej brak w zestawie uniemożliwiłby w ogóle działanie systemu operacyjnego, co nie jest przedmiotem tego pytania. Typowym błędem myślowym jest niedocenianie znaczenia odpowiedniego chłodzenia procesora, zwłaszcza w przypadku zestawów bez dołączonych fabrycznie systemów chłodzących, co może prowadzić do poważnych problemów termicznych, a w konsekwencji do uszkodzenia sprzętu lub znaczącego obniżenia jego wydajności.

Pytanie 24

Częścią zestawu komputerowego, która zajmuje się zarówno przetwarzaniem danych wejściowych, jak i wyjściowych, jest

A. ploter
B. skaner
C. modem
D. głośnik
Modem jest urządzeniem, które przetwarza zarówno dane wejściowe, jak i wyjściowe, co czyni go kluczowym elementem w komunikacji sieciowej. Działa na zasadzie modulacji i demodulacji sygnałów, co pozwala na przesyłanie danych przez różne media, takie jak linie telefoniczne czy kable światłowodowe. W praktyce, modem przekształca sygnały cyfrowe z komputera na analogowe, które mogą być przesyłane przez linię telefoniczną, a następnie odbierane z powrotem i konwertowane z powrotem na cyfrowe przez drugi modem. Dzięki temu użytkownicy mogą korzystać z Internetu, przesyłać e-maile, korzystać z aplikacji chmurowych, czy realizować wideokonferencje. Modemy są zgodne z różnymi standardami, takimi jak ADSL, VDSL czy DOCSIS, co zapewnia ich interoperacyjność w różnych sieciach. Dzięki tym właściwościom, modem jest niezbędnym elementem w strukturach komunikacyjnych, które wymagają zarówno przesyłania, jak i odbierania danych.

Pytanie 25

Jeśli rozdzielczość myszki wynosi 200 dpi, a rozdzielczość monitora to Full HD, to aby przesunąć kursor w poziomie po ekranie, należy przemieścić mysz o

A. 1080 px
B. 480 i
C. około 35 cm
D. około 25 cm
Często, jak wybierasz inne odpowiedzi, to może być przez zamieszanie z jednostkami i pojmowaniem dpi. Odpowiedź 1080 px wydaje się mylić, bo sugeruje, że przesunięcie kursora o wysokość ekranu to to samo co ruch myszy, co nie jest dokładne. Jak chcesz przesunąć kursor w poziomie, musisz mieć na uwadze całą szerokość ekranu, a nie tylko jego wysokość. Odpowiedź 480 px też nie ma sensu, bo nie pasuje do wymiarów ekranu ani do obliczeń związanych z dpi. To może być złe zrozumienie, jak dpi rzeczywiście działa. Odpowiedź około 35 cm brzmi jak za duże uproszczenie, bo myślenie, że ruch myszy jest większy niż jest w rzeczywistości, może być mylące. Takie myślenie może prowadzić do złego ustawienia sprzętu, co w praktyce może sprawić, że będzie ciężko dokładnie pracować. Warto wiedzieć, jak dpi wpływa na mysz i jak przeliczać jednostki, żeby móc ustawić sprzęt zgodnie z własnymi potrzebami, co jest ważne w takich rzeczach jak projektowanie czy gry.

Pytanie 26

Który z zapisów adresu IPv4 z maską jest niepoprawny?

A. 192.168.0.1, maska 255.250.255.0
B. 100.0.0.0/8
C. 16.1.1.1/5
D. 18.4.0.0, maska 255.0.0.0
Adresy IPv4, takie jak 16.1.1.1/5, 100.0.0.0/8 oraz 18.4.0.0 z maską 255.0.0.0, są przykładem sprawnie skonfigurowanych adresów, jednak nie oznacza to, że są one pozbawione błędów konceptualnych. Zapis 16.1.1.1/5 sugeruje, że pierwsze 5 bitów adresu odnosi się do części sieci, co w praktyce przekłada się na bardzo dużą sieć z maksymalnie 2^27 (134217728) możliwymi adresami hostów, co jest niepraktyczne w większości zastosowań. Adres 100.0.0.0/8 jest stosowany jako adres klasy A, jednak jego wykorzystanie w małych sieciach lokalnych może prowadzić do zbędnego marnotrawienia przestrzeni adresowej. Z kolei adres 18.4.0.0 z maską 255.0.0.0 również nie jest adekwatny do typowych scenariuszy, ponieważ umożliwia tworzenie zbyt dużych podsieci. Błędy te często wynikają z nieporozumienia dotyczącego zasad podziału i przypisywania adresów IP. Właściwe podejście do adresowania wymaga zrozumienia hierarchicznych struktur sieci oraz umiejętności właściwego doboru maski podsieci do specyficznych potrzeb lokalnych sieci. Użytkownicy często mylą zakresy adresów z maskami, co prowadzi do błędnych konfiguracji sieciowych, a w konsekwencji do problemów z komunikacją w sieci.

Pytanie 27

Który adres IP jest zaliczany do klasy B?

A. 198.15.10.112
B. 100.10.10.2
C. 134.192.16.1
D. 96.15.2.4
Adresy IP z pozostałych opcji nie są przypisane do klasy B, co może być źródłem nieporozumień wśród osób uczących się o adresacji IP. Na przykład, adres 96.15.2.4 należy do klasy A, ponieważ jego pierwszy oktet (96) znajduje się w zakresie od 1 do 126. Klasa A jest przeznaczona dla bardzo dużych sieci, gdzie możliwe jest przydzielenie ponad 16 milionów adresów IP. Adres 100.10.10.2 również należy do klasy A, co może być mylące, ponieważ podobnie jak w przypadku 96.15.2.4, jego pierwszy oktet (100) jest w tym samym zakresie. Klasa A składa się z adresów, które często są używane przez globalne organizacje, ponieważ ich struktura sieciowa wymaga dużej ilości adresów. Z kolei adres 198.15.10.112 należy do klasy C, która obejmuje zakres od 192.0.0.0 do 223.255.255.255. Klasa C jest stosowana w mniejszych sieciach, gdzie zwykle przypisuje się od 2 do 254 adresów IP. Osoby mogą mylnie interpretować klasy adresów IP, skupiając się na wartości liczbowej pierwszego oktetu, nie zdając sobie sprawy z ich klasyfikacji oraz zastosowań w praktyce. Zrozumienie różnic pomiędzy klasami A, B i C jest niezbędne do efektywnego zarządzania sieciami, co jest kluczowe w kontekście projektowania i administrowania infrastrukturą sieciową.

Pytanie 28

Po zainstalowaniu systemu Linux, użytkownik pragnie skonfigurować kartę sieciową poprzez wprowadzenie ustawień dotyczących sieci. Jakie działanie należy podjąć, aby to osiągnąć?

A. /etc/network/interfaces
B. /etc/resolv.configuration
C. /etc/profile
D. /etc/shadow
Wszystkie inne wskazane odpowiedzi są nieprawidłowe w kontekście konfiguracji karty sieciowej w systemie Linux. Plik /etc/profile nie jest związany z konfiguracją sieci, lecz definiuje ustawienia środowiskowe dla wszystkich użytkowników systemu, takie jak zmienne środowiskowe oraz ścieżki do programów. Z kolei /etc/shadow zawiera zabezpieczone hasła użytkowników i informacje o ich uprawnieniach, a nie ustawienia sieciowe. Użytkownicy często mylą te pliki, co prowadzi do nieporozumień dotyczących ich funkcji i zastosowań. Plik /etc/resolv.configuration (prawdopodobnie chodziło o /etc/resolv.conf) służy do definiowania serwerów DNS, a nie do konfigurowania interfejsów sieciowych. Zrozumienie struktury i przeznaczenia tych plików jest kluczowe, aby uniknąć typowych błędów w administracji systemem. Użytkownicy, którzy nie są świadomi różnicy między tymi plikami, mogą przypadkowo wprowadzić nieprawidłowe zmiany, co może prowadzić do problemów z dostępem do sieci. Praktyka edytowania pliku /etc/network/interfaces jest fundamentalna dla efektywnej pracy z systemami Linux i odzwierciedla standardowe procedury konfiguracyjne w obszarze administracji sieciowej.

Pytanie 29

Jakie będą całkowite koszty materiałów potrzebnych do stworzenia sieci lokalnej dla 6 komputerów, jeśli do budowy sieci wymagane jest 100 m kabla UTP kat. 5e oraz 20 m kanału instalacyjnego? Ceny komponentów sieci przedstawiono w tabeli.

Elementy siecij.m.cena brutto
Kabel UTP kat. 5em1,00 zł
Kanał instalacyjnym8,00 zł
Gniazdo komputeroweszt.5,00 zł

A. 290,00 zł
B. 160,00 zł
C. 320,00 zł
D. 360,00 zł
Odpowiedź na 29000 zł jest całkiem dobra. Wynika to z dokładnego obliczenia kosztów potrzebnych do zbudowania sieci lokalnej dla 6 komputerów. Zdecydowanie potrzebujesz 100 m kabla UTP kat. 5e i 20 m kanału instalacyjnego. Cena kabla to 100 zł za metr, więc za 100 m wyjdzie 100 zł. Kanał instalacyjny kosztuje 8 zł za metr, więc 20 m to 160 zł. Jak to zsumujesz, dostaniesz 260 zł. Nie zapominaj też o 6 gniazdach komputerowych, które kosztują 5 zł za sztukę, co daje 30 zł. Cały koszt to więc 290 zł. Takie obliczenia to podstawa, gdy planujesz sieć, żeby mieć pewność, że wszystko jest w budżecie. Dobrze jest także myśleć o przyszłości, czyli o tym, jak możesz rozbudować sieć, i wybierać materiały, które spełniają dzisiejsze standardy. Na przykład kabel UTP kat. 5e to dobry wybór, bo daje szybki transfer danych.

Pytanie 30

Jeżeli użytkownik zaznaczy opcję wskazaną za pomocą strzałki, będzie miał możliwość instalacji aktualizacji

Ilustracja do pytania
A. eliminujące krytyczną usterkę, niezwiązaną z bezpieczeństwem
B. dotyczące krytycznych luk w zabezpieczeniach
C. związane ze sterownikami lub nowym oprogramowaniem od Microsoftu
D. prowadzące do uaktualnienia Windows 8.1 do wersji Windows 10
Podczas aktualizacji systemu Windows istotne jest zrozumienie rodzaju aktualizacji, które użytkownik może zainstalować. Aktualizacja uaktualniająca Windows 8.1 do Windows 10 jest procesem migracji do nowszej wersji systemu operacyjnego, nie jest dostępna jako opcjonalna aktualizacja. Tego typu aktualizacje wymagają zazwyczaj osobnej procedury instalacyjnej, ponieważ wiążą się z poważnymi zmianami w strukturze systemu. Usunięcie usterki krytycznej niezwiązanej z zabezpieczeniami może odnosić się do napraw błędów, które nie stanowią zagrożenia bezpieczeństwa, ale mogą wpływać na wydajność lub stabilność. Jednakże, tego typu poprawki są zazwyczaj traktowane jako ważne aktualizacje, nie opcjonalne. Aktualizacje dotyczące luk w zabezpieczeniach o priorytecie krytycznym są kluczowe dla ochrony danych i systemu przed atakami, dlatego są klasyfikowane jako aktualizacje krytyczne, a nie opcjonalne. Często wymagają szybkiej instalacji, aby zminimalizować ryzyko zagrożeń. Użytkownicy mogą mylnie zrozumieć te typy aktualizacji, jeśli nie są świadomi ich znaczenia. Opieranie się na opcjonalnych aktualizacjach jedynie dla funkcji, które nie wpływają bezpośrednio na bezpieczeństwo, pozwala na racjonalne zarządzanie aktualizacjami i uniknięcie przeciążenia systemu poważnymi, nieprzewidzianymi zmianami podczas mniej krytycznych aktualizacji, co jest kluczowe dla ciągłości działania systemów w firmach.

Pytanie 31

Podaj właściwe przyporządkowanie usługi z warstwy aplikacji oraz standardowego numeru portu, na którym ta usługa działa?

A. DNS - 53
B. IMAP - 8080
C. SMTP - 80
D. DHCP - 161
Odpowiedzi wskazujące na inne usługi są nieprawidłowe z kilku powodów. Przykładowo, SMTP, czyli Simple Mail Transfer Protocol, służy do przesyłania wiadomości e-mail i standardowo działa na porcie 25, a nie 80. Port 80 jest zarezerwowany dla HTTP, co oznacza, że jest używany do przesyłania danych stron internetowych. W przypadku DHCP, to Dynamic Host Configuration Protocol, jego standardowy port to 67 dla serwera i 68 dla klienta, a nie 161, który jest zarezerwowany dla SNMP (Simple Network Management Protocol). IMAP, czyli Internet Message Access Protocol, używa portu 143 lub 993 w przypadku zabezpieczonej komunikacji SSL/TLS. Wybierając błędne odpowiedzi, można doświadczyć typowych pułapek myślowych, takich jak mylenie portów przypisanych do różnych protokołów lub nieznajomość standardów RFC, które dokładnie definiują te ustawienia. Zrozumienie, które porty są przypisane do konkretnych protokołów, jest kluczowe dla prawidłowej konfiguracji sieci oraz bezpieczeństwa, a mylenie tych wartości prowadzi do problemów z komunikacją w sieci oraz zwiększa ryzyko wystąpienia luk bezpieczeństwa.

Pytanie 32

Protokół ARP (Address Resolution Protocol) pozwala na przypisanie logicznych adresów warstwy sieciowej do rzeczywistych adresów warstwy

A. aplikacji
B. fizycznej
C. łącza danych
D. transportowej
Wydaje mi się, że wybór odpowiedzi związanych z warstwami aplikacyjną, fizyczną i transportową pokazuje, że mogło dojść do pewnego nieporozumienia odnośnie tego, co robi ARP. Warstwa aplikacyjna skupia się na interakcji z użytkownikami i obsługuje różne usługi jak HTTP czy FTP, a to nie ma nic wspólnego z mapowaniem adresów w sieci. Warstwa fizyczna mówi o przesyłaniu bitów przez różne media, więc też nie pasuje do rozwiązywania adresów IP. Z kolei warstwa transportowa odpowiada za niezawodność połączeń i segmentację danych, więc również nie ma tutaj swojego miejsca. Może to wynikać z mylnego zrozumienia modelu OSI, bo każda warstwa ma swoje zadania. Kluczowy błąd to myślenie, że ARP działa na innych warstwach, podczas gdy jego miejsce jest właśnie na warstwie łącza danych. Ważne jest też, żeby zrozumieć, jak funkcjonuje sieć lokalna i jakie mechanizmy używamy do przesyłania danych, bo to jest podstawą dla wszelkich działań w sieciach komputerowych.

Pytanie 33

Który kolor żyły znajduje się w kablu skrętkowym?

A. biało - pomarańczowy
B. biało - żółty
C. biało - fioletowy
D. biało - czarny
Wszystkie pozostałe odpowiedzi zawierają kolory, które nie odpowiadają standardom TIA/EIA-568 dla kabli skrętkowych. Odpowiedzi takie jak 'biało-fioletowy', 'biało-żółty' i 'biało-czarny' mogą wprowadzać w błąd, ponieważ nie stanowią one standardowego oznaczenia dla żył sygnałowych w kablach kategorii 5e, 6 czy 6a, które są powszechnie stosowane w lokalnych sieciach komputerowych. Przykładowo, kolor fioletowy jest używany w parze żył, ale nie w tej pierwszej parze sygnałowej; zamiast tego jest to kolor przypisany do innej funkcji w kablu. Użycie koloru żółtego również nie jest standardowe w kontekście przesyłania danych w tej technologii, co może prowadzić do nieprawidłowego okablowania i problemów z transmisją danych. Kolor czarny, podobnie jak żółty, również nie znajduje zastosowania w standardowym okablowaniu skrętkowym dla sieci komputerowych. Typowym błędem myślowym jest mylenie kolorów z innymi zastosowaniami, na przykład z instalacjami elektrycznymi, gdzie te kolory mogą mieć inne znaczenie. Dlatego niezwykle istotne jest, aby przy projektowaniu sieci i podczas instalacji kabli stosować się do uznawanych standardów kolorów, co zapewnia prawidłowe funkcjonowanie infrastruktury i ułatwia jej późniejszą obsługę.

Pytanie 34

Osobom pracującym zdalnie, dostęp do serwera znajdującego się w prywatnej sieci za pośrednictwem publicznej infrastruktury, jaką jest Internet, umożliwia

A. VPN
B. Telnet
C. FTP
D. SSH
Wybór FTP, SSH czy Telnet jako odpowiedzi na pytanie o zdalny dostęp do serwera w sieci prywatnej nie jest właściwy, ponieważ te technologie mają różne zastosowania i ograniczenia. FTP, czyli File Transfer Protocol, służy głównie do przesyłania plików, ale nie zapewnia szyfrowania, co czyni go nieodpowiednim do bezpiecznego dostępu do zasobów sieciowych. W przypadku przesyłania danych wrażliwych, stosowanie FTP może prowadzić do poważnych naruszeń bezpieczeństwa. SSH (Secure Shell) to protokół, który umożliwia bezpieczne logowanie do zdalnych systemów i zarządzanie nimi. Chociaż SSH oferuje silne szyfrowanie, jego podstawowym celem jest zdalne wykonywanie poleceń, a nie zapewnienie pełnego dostępu do sieci prywatnej. Telnet, z kolei, jest protokołem znanym z braku zabezpieczeń – dane przesyłane przez Telnet są przesyłane w postaci niezaszyfrowanej, co czyni go nieodpowiednim do pracy w środowiskach, gdzie bezpieczeństwo danych ma kluczowe znaczenie. Błędem jest zakładanie, że te protokoły mogą pełnić rolę zabezpieczenia dostępu do sieci prywatnej w sposób, w jaki robi to VPN, co skutkuje narażeniem danych na ataki i utratę poufności.

Pytanie 35

Na skutek użycia polecenia ipconfig uzyskano konfigurację przedstawioną na ilustracji. Jaki jest adres IP stacji roboczej, która została poddana testom?

Ilustracja do pytania
A. 62.21.99.95
B. 192.168.0.1
C. 192.168.0.11
D. 255.255.255.0
Adres 62.21.99.95 jest adresem publicznym używanym przez serwery DNS co oznacza że nie może być przypisany do wewnętrznej stacji roboczej w sieci lokalnej zgodnie z zasadami przydzielania adresów IP. Takie adresy są zarządzane przez dostawców usług internetowych i przeznaczone do komunikacji z Internetem co oznacza że ich użycie jako adresu wewnętrznego naruszałoby standardy sieciowe. Adres 192.168.0.1 to typowy adres przypisywany bramie domyślnej w sieciach lokalnych co pozwala na kierowanie ruchu sieciowego do innych sieci w tym Internetu. Jeśli urządzenie miałoby taki adres pełniłoby rolę routera a nie stacji roboczej. Z kolei adres 255.255.255.0 wskazuje na maskę podsieci która definiuje rozmiar sieci lokalnej i nie może być używana jako adres IP urządzenia. Maska 255.255.255.0 jest standardem w sieciach IP klasy C definiującym że pierwsze trzy oktety określają adres sieci a ostatnia okteta jest przeznaczona dla urządzeń. Błędy w interpretacji funkcji każdej z tych wartości mogą prowadzić do nieprawidłowej konfiguracji sieci co z kolei może skutkować problemami z łącznością i bezpieczeństwem sieciowym. Poprawne zrozumienie i przypisanie tych wartości jest kluczowe dla stabilnego działania sieci komputerowej co jest istotnym elementem wiedzy w branży IT.

Pytanie 36

Jednym z metod ograniczenia dostępu do sieci bezprzewodowej dla osób nieuprawnionych jest

A. zmiana standardu szyfrowania z WPA na WEP
B. dezaktywacja rozgłaszania identyfikatora sieci
C. wyłączenie szyfrowania
D. zmiana kanału transmisji sygnału
Zmienianie kanału nadawania sygnału nie stanowi istotnego środka bezpieczeństwa. Choć może to minimalnie zmniejszyć zakłócenia od innych sieci, nie chroni przed nieautoryzowanym dostępem. Osoby z odpowiednim doświadczeniem mogą łatwo zidentyfikować kanał, na którym sieć nadaje. Wyłączenie szyfrowania jest jednym z najgorszych możliwych kroków, ponieważ otwiera dostęp do sieci dla każdego, kto jest w zasięgu sygnału. To podejście całkowicie pomija podstawowe zasady ochrony danych, co może prowadzić do kradzieży informacji czy złośliwych ataków. Zmiana standardu szyfrowania z WPA na WEP to także nieodpowiednia strategia – WEP jest przestarzałym standardem, który oferuje bardzo niską ochronę i jest łatwy do złamania. Użytkownicy często mylą wrażenie, że zmiana szyfrowania poprawia bezpieczeństwo, a w rzeczywistości może je znacznie osłabić. Kluczowe jest stosowanie aktualnych standardów, takich jak WPA3, aby zabezpieczyć sieci bezprzewodowe. Ignorowanie tych zasad prowadzi do powszechnych błędów, które mogą skutkować poważnymi incydentami bezpieczeństwa.

Pytanie 37

Oprogramowanie, które regularnie przerywa działanie przez pokazanie komunikatu o konieczności uiszczenia opłaty, co prowadzi do zniknięcia tego komunikatu, jest dystrybuowane na podstawie licencji

A. greenware
B. crippleware
C. careware
D. nagware
Wybór crippleware, careware lub greenware jako odpowiedzi na pytanie o oprogramowanie przerywające działanie w celu wymuszenia zapłaty jest niepoprawny z kilku powodów. Crippleware odnosi się do oprogramowania, które ma ograniczone funkcje, ale nie wymusza płatności poprzez uciążliwe przypomnienia. Oznacza to, że użytkownik może korzystać z podstawowych funkcji, jednak pełne możliwości są zablokowane. Careware to z kolei model, w którym programiści oferują oprogramowanie za darmo, ale zachęcają użytkowników do wsparcia ich pracy, często w formie darowizn lub pomocy charytatywnej, co nie ma nic wspólnego z wymuszaniem płatności poprzez przerywanie działania programu. Greenware to termin używany do opisania oprogramowania, które promuje ochronę środowiska, ale również nie odnosi się do modelu płatności. Typowym błędem myślowym jest myślenie, że wszystkie te terminy dotyczą formy wymuszenia płatności, gdyż każdy z nich odnosi się do innego modelu licencjonowania. Zrozumienie różnic między tymi pojęciami jest kluczowe dla poprawnego klasyfikowania oprogramowania w zależności od jego funkcji i sposobu dystrybucji. Aby uniknąć takich nieporozumień, warto zaznajomić się z definicjami oraz zastosowaniami poszczególnych rodzajów oprogramowania, co przyczyni się do lepszego zrozumienia rynku oprogramowania oraz możliwości, jakie oferują różne modele licencyjne.

Pytanie 38

Aby zrealizować transfer danych pomiędzy siecią w pracowni a siecią ogólnoszkolną, która ma inną adresację IP, należy zastosować

A. ruter
B. koncentrator
C. punkt dostępowy
D. przełącznik
Przełącznik, koncentrator i punkt dostępowy mają różne funkcje w architekturze sieciowej, które nie obejmują bezpośrednio wymiany danych pomiędzy sieciami o różnych adresach IP. Przełącznik działa na warstwie drugiej modelu OSI, co oznacza, że przesyła ramki na podstawie adresów MAC, a nie adresów IP. Jego zadaniem jest łączenie urządzeń w obrębie tej samej sieci lokalnej (LAN), co oznacza, że nie ma on możliwości komunikacji z innymi sieciami, które mają różne zakresy adresowe. Koncentrator, będący prostym urządzeniem do łączenia wielu urządzeń w sieci, w ogóle nie przetwarza danych, a jedynie je retransmituje, co zdecydowanie nie jest wystarczające w przypadku potrzeby wymiany danych pomiędzy różnymi sieciami. Z kolei punkt dostępowy to urządzenie, które umożliwia bezprzewodowe połączenie z siecią, ale również nie ma zdolności do routingu między różnymi adresami IP. W praktyce, osoby myślące, że te urządzenia mogą zastąpić ruter, mogą napotkać trudności w realizacji zadań związanych z integracją różnych sieci, co prowadzi do problemów z komunikacją oraz dostępem do zasobów. Kluczowe jest zrozumienie, że do wymiany danych pomiędzy różnymi sieciami niezbędny jest ruter, który wykonuje bardziej złożone operacje na poziomie adresacji IP, co jest nieosiągalne dla wspomnianych urządzeń.

Pytanie 39

Zgodnie z normą Fast Ethernet 100Base-TX, maksymalna długość kabla miedzianego UTP kategorii 5e, który łączy bezpośrednio dwa urządzenia sieciowe, wynosi

A. 1000 m
B. 150 m
C. 100 m
D. 300 m
Kiedy rozmawiamy o maksymalnej długości kabla miedzianego UTP kat. 5e w kontekście standardu Fast Ethernet 100Base-TX, to często zdarza się, że są pewne nieporozumienia co do tych długości. Odpowiedzi, które mówią o 150 m, 300 m czy nawet 1000 m, wynikają chyba z myślenia, że kable UTP mogą działać na dłuższych dystansach. Ale tak nie jest – standardy Ethernet jasno mówią, że maksymalna długość dla 100Base-TX to 100 m, żeby połączenie było stabilne i dobrej jakości. Jak długość zostanie przekroczona, to sygnał się pogarsza, co może skutkować większą ilością błędów w przesyłaniu danych. Takie błędy mogą prowadzić do odrzucania pakietów, co obniża wydajność sieci i powoduje problemy w komunikacji między urządzeniami. Dlatego podczas planowania sieci, tak ważne jest, by przestrzegać tych zasad. Wiele osób myśli, że można wydłużyć kabel i zrekompensować to lepszymi urządzeniami czy wzmacniaczami sygnału, ale to jest błędne myślenie. W rzeczywistości, żeby mieć niezawodne połączenie, trzeba trzymać się ustalonych norm i zasad, bo inaczej cała sieć może być niestabilna.

Pytanie 40

Na diagramie działania skanera, element oznaczony numerem 1 odpowiada za

Ilustracja do pytania
A. wzmacnianie sygnału elektrycznego
B. wzmacnianie sygnału optycznego
C. zamiana sygnału analogowego na sygnał cyfrowy
D. zamiana sygnału optycznego na sygnał elektryczny
Zamiana sygnału optycznego na sygnał elektryczny jest kluczowym etapem działania skanera, który umożliwia dalsze przetwarzanie zeskanowanego obrazu. Proces ten zachodzi w detektorze światła, który jest elementem przetwarzającym odbity lub przechodzący strumień świetlny na sygnał elektryczny. W skanerach wykorzystuje się najczęściej fotodiody lub matryce CCD/CMOS, które są czułe na zmiany intensywności światła. Dzięki temu skaner jest w stanie odczytać różnice w jasności i kolorze na skanowanym dokumencie. Praktycznym zastosowaniem tej technologii jest tworzenie cyfrowych kopii dokumentów, które można łatwo przechowywać, edytować i przesyłać. Precyzyjna zamiana sygnału optycznego na elektryczny jest zgodna ze standardami branżowymi i jest podstawą dla dalszych operacji, takich jak wzmacnianie sygnału czy jego digitalizacja. Wykorzystanie odpowiednich detektorów światła zapewnia wysoką jakość skanowania oraz dokładność odtwarzanych barw i szczegółów, co jest szczególnie ważne w zastosowaniach graficznych i archiwizacji dokumentów.