Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 13 maja 2025 13:54
  • Data zakończenia: 13 maja 2025 16:37

Egzamin niezdany

Wynik: 4/40 punktów (10,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Koszt materiałów do instalacji paneli słonecznych w domu jednorodzinnym wynosi 9 000 zł. Aby zamontować system na płaskim dachu, potrzeba 16 godzin pracy dwóch wykwalifikowanych pracowników, których stawka za godzinę wynosi 25,00 zł. Firma instalacyjna dolicza narzut na materiały w wysokości 20%. Jaki jest łączny koszt zamontowania systemu solarnego?

A. 12 600 zł
B. 9 800 zł
C. 11 600 zł
D. 10 800 zł
W przypadku błędnych odpowiedzi, najczęściej pojawiają się nieporozumienia związane z obliczeniami kosztów materiałów oraz pracy. Często myli się pojęcie narzutu, który w tym przypadku wynosi 20%. Niektóre osoby mogą pomylić obliczenia i przyjąć, że narzut jest obliczany od całkowitych kosztów, a nie tylko od kosztów materiałów, co prowadzi do zawyżenia tych wydatków. Kolejnym typowym błędem jest nieuwzględnienie kosztu pracy w całkowitym rachunku. Pracownicy są kluczowym elementem kosztów montażu, a ich wynagrodzenie należy brać pod uwagę w całkowitym koszcie instalacji. Inny problem to zbyt niski lub zbyt wysoki koszt roboczogodziny, co może wynikać z nieaktualnych stawek rynkowych w branży. Ważne jest, aby przed przystąpieniem do obliczeń zaktualizować informacje dotyczące stawek wynagrodzeń i narzutów w firmach instalacyjnych. Aby uniknąć tych pułapek, warto korzystać z dokładnych danych oraz standardów branżowych, które zalecają dokładne kalkulacje wycen w oparciu o rzeczywiste koszty materiałów i wynagrodzeń.

Pytanie 2

Jakie urządzenie jest używane do pomiaru natężenia przepływu czynnika roboczego w słonecznej instalacji grzewczej?

A. rotametr
B. manometr
C. higrometr
D. refraktometr
Rotametr jest przyrządem pomiarowym, który służy do określenia natężenia przepływu cieczy lub gazów w instalacjach przemysłowych, w tym w słonecznych systemach grzewczych. Działa na zasadzie pomiaru przepływu w odpowiednio ukształtowanej rurze, w której porusza się pływak. Wraz ze wzrostem natężenia przepływu pływak unosi się wyżej w rurze, co jest wskaźnikiem przepływu. Rotametry są szeroko stosowane w różnych branżach, w tym w energetyce odnawialnej, gdzie precyzyjny pomiar przepływu czynnika roboczego jest kluczowy dla efektywności systemu. W kontekście instalacji solarnych, rotametry mogą pomóc w optymalizacji wydajności, zapewniając, że odpowiednia ilość medium roboczego przepływa przez kolektory słoneczne, co ma bezpośredni wpływ na efektywność konwersji energii słonecznej na ciepło. Dobrą praktyką jest regularne kalibrowanie rotametrów oraz monitorowanie ich stanu technicznego, aby zapewnić dokładne pomiary i zapobiec ewentualnym awariom systemu.

Pytanie 3

Podstawą do stworzenia kosztorysu szczegółowego dla instalacji odgromowej paneli fotowoltaicznych są

A. katalogi nakładów rzeczowych
B. harmonogramy prac
C. cenniki jednostkowe
D. katalogi producentów materiałów
Katalogi nakładów rzeczowych są kluczowym źródłem informacji przy opracowywaniu kosztorysu szczegółowego instalacji odgromowej ogniw fotowoltaicznych, ponieważ zawierają szczegółowe dane dotyczące kosztów materiałów oraz robocizny związanych z poszczególnymi etapami realizacji projektu. Te katalogi dostarczają nie tylko jednostkowych kosztów, ale także informacji o normach zużycia materiałów, co pozwala na precyzyjne wyliczenie całkowitych wydatków. Przykładowo, w przypadku instalacji odgromowej, katalogi te mogą zawierać dane na temat ilości potrzebnych przewodów odgromowych, elementów montażowych oraz wskazania dotyczące robocizny. W praktyce, korzystając z katalogów nakładów rzeczowych, projektanci i kosztorysanci mogą dostosować swoje obliczenia do specyfiki danego projektu, co jest zgodne z dobrymi praktykami branżowymi, gdzie precyzyjność kosztorysów ma kluczowe znaczenie dla efektywności finansowej całego przedsięwzięcia. Warto również zaznaczyć, że takie podejście wspiera transparentność w kosztach oraz umożliwia ich porównywalność z innymi projektami, co jest istotne w kontekście przetargów i negocjacji finansowych.

Pytanie 4

Liczbę robót związanych z realizacją wykopu należy zapisać w obmiarze z odpowiednią jednostką

A. r-g
B. m2
C. m-g
D. m3
Poprawna odpowiedź to m3, ponieważ ilość robót związanych z wykonaniem wykopu odnosi się do objętości ziemi, którą należy usunąć. Objecie wykopu, niezależnie od jego kształtu, oblicza się w metrach sześciennych (m3). Przykładem może być wykop pod fundamenty budynku, gdzie konieczne jest obliczenie objętości ziemi do usunięcia, aby określić ilość materiałów, kosztów robocizny oraz czasu potrzebnego na wykonanie prac. W branży budowlanej zgodnie z dobrymi praktykami standardowe jednostki miary, takie jak m3, są kluczowe do precyzyjnego kalkulowania ilości materiałów i kosztów, które są istotne na każdym etapie inwestycji budowlanej. Efektywne zarządzanie projektem wymaga nie tylko znajomości jednostek, ale także umiejętności ich zastosowania w praktyce, co pozwala na optymalizację procesów budowlanych oraz minimalizację kosztów.

Pytanie 5

Jaką maksymalną różnicę temperatur Δt pomiędzy kolektorem a zbiornikiem solarnym należy osiągnąć, aby uruchomić pompę solarną?

A. 25 °C
B. 33 °C
C. 15 °C
D. 20 °C
Wybierając inne wartości różnicy temperatur, można wpaść w pułapki związane z nieefektywnym działaniem systemu solarnego. Na przykład, wybór wartości 25 °C lub 20 °C jako maksymalnej różnicy może wydawać się korzystny, jednak w praktyce może prowadzić do nadmiernych strat energii. Im większa różnica temperatur, tym trudniej jest efektywnie transportować ciepło do zasobnika, co z kolei prowadzi do niższej efektywności całego systemu. Zbyt wysoka różnica temperatur może wywołać także ryzyko przegrzania, a w skrajnych przypadkach może prowadzić do uszkodzenia kolektora. Warto również zauważyć, że wiele systemów solarnych jest projektowanych w taki sposób, aby pracowały w optymalnym zakresie, co oznacza, że odpowiednia różnica temperatur ma kluczowe znaczenie dla ich długoterminowej niezawodności i wydajności. Wybór 33 °C jako maksymalnej różnicy jest zdecydowanie niezalecany, ponieważ przekracza normy praktyk branżowych, co prowadzi do obniżenia efektywności oraz nieodpowiedniego wykorzystywania energii słonecznej, a także zwiększa ryzyko operacyjne. Właściwe zrozumienie i zastosowanie tego zagadnienia jest kluczowe, aby uniknąć typowych błędów w projektowaniu i eksploatacji systemów solarnych.

Pytanie 6

Aby zapewnić jednostronny przepływ czynnika grzewczego, należy zainstalować zawór

A. czerpalny
B. bezpieczeństwa
C. zwrotny
D. spustowy
Zawór zwrotny to urządzenie stosowane w systemach hydraulicznych i grzewczych, które zapewnia przepływ czynnika grzewczego tylko w jednym kierunku, zapobiegając cofaniu się płynu. Jego działanie opiera się na zasadzie wykorzystania ciśnienia różnicowego, które otwiera zawór w kierunku przepływu, a zamyka go w przeciwnym. Zawory te są kluczowe w instalacjach grzewczych, gdzie niekontrolowany przepływ może prowadzić do strat ciepła i obniżenia efektywności systemu. Na przykład, w instalacjach centralnego ogrzewania, stosowanie zaworów zwrotnych zapewnia, że gorąca woda z kotła nie wraca do niego, co mogłoby prowadzić do uszkodzenia sprzętu oraz obniżenia komfortu grzewczego. W praktyce, zawory zwrotne są często instalowane w pobliżu kotłów oraz na zasilaniu i powrocie do grzejników, co minimalizuje ryzyko niepożądanych zjawisk. Warto także zwrócić uwagę na standardy branżowe, takie jak normy PN-EN dotyczące instalacji, które zalecają stosowanie zaworów zwrotnych w odpowiednich miejscach, aby zapewnić bezpieczeństwo i efektywność systemów grzewczych.

Pytanie 7

Instalacja paneli fotowoltaicznych nie wymaga uzyskania pozwolenia na budowę, o ile jej wysokość nie jest większa niż 3 m, a moc elektryczna wynosi mniej niż

A. 30 kW
B. 10 kW
C. 40 kW
D. 20 kW
Odpowiedzi 20 kW, 30 kW oraz 10 kW są nieprawidłowe, ponieważ nie uwzględniają aktualnych regulacji dotyczących wymagań dla instalacji fotowoltaicznych. Przede wszystkim, ograniczenie do 20 kW jest zbyt niskie, ponieważ moc instalacji do 40 kW nie wymaga pozwolenia na budowę, a więc liczby te są mylne w kontekście realnych możliwości instalacyjnych. W przypadku mocy 30 kW, można zauważyć, że mimo iż jest to instalacja, która może być użyteczna w wielu domach, to jednak nie odpowiada na pytanie, gdyż moc ta mieści się w granicach, które wciąż wymagają zgłoszenia, a nie pozwolenia. Najniższa odpowiedź, czyli 10 kW, również nie oddaje rzeczywistego zakresu mocy, który może być zainstalowany bez większych formalności. Dlatego ważne jest, aby świadomi użytkownicy instalacji fotowoltaicznych rozumieli, że przepisy są stworzone po to, aby uprościć proces instalacji dla większych mocy, co sprzyja ich szerszemu wdrożeniu. Zrozumienie tych norm prawnych jest kluczowe dla efektywnego wdrażania odnawialnych źródeł energii w Polsce oraz ich wpływu na środowisko i gospodarkę. Używanie nieprawidłowych wartości mocy prowadzi do błędnych wniosków i ogranicza możliwości korzystania z dostępnych dotacji oraz programów wsparcia dla energetyki odnawialnej.

Pytanie 8

Kolektor solarny umieszczony na dachu obiektu powinien być skierowany w stronę

A. wschodnią
B. zachodnią
C. północną
D. południową
Orientacja kolektorów słonecznych w kierunku północnym, zachodnim lub wschodnim wiąże się z licznymi problemami, które wpływają negatywnie na ich wydajność. Kolektory ustawione na północ są w zasadzie nieefektywne, ponieważ nie otrzymują praktycznie żadnego bezpośredniego promieniowania słonecznego w ciągu dnia, co znacznie ogranicza ich zdolność do produkcji ciepła lub energii elektrycznej. Pytanie o orientację kolektorów często prowadzi do nieporozumień dotyczących kierunków optymalnych, co może wynikać z niepełnego zrozumienia działania systemów solarnych. W przypadku orientacji zachodniej, chociaż kolektory mogą działać w godzinach popołudniowych, ich całkowita wydajność będzie znacznie niższa niż w przypadku orientacji południowej, co jest potwierdzone standardami branżowymi. Podobnie w przypadku orientacji wschodniej, kolektory uzyskują energię głównie w porannych godzinach, co nie przekłada się na efektywne wykorzystanie energii w ciągu dnia. Ważne jest, aby przy projektowaniu systemów solarnych kierować się dobrymi praktykami oraz dostosowywać ustawienia i orientacje do lokalnych warunków oraz specyfiki terenu. Błędy w wyborze kierunku mogą powodować znaczące straty finansowe i energetyczne, dlatego tak istotne jest zrozumienie zasad działania energii słonecznej oraz ich zastosowań.

Pytanie 9

W wymienniku ciepła jednopłaszczowym z dwoma wężownicami, który współpracuje z instalacją solarną oraz kotłem, podgrzewa się

A. mieszaninę glikolu
B. powietrze
C. ciecz solarną
D. ciepłą wodę użytkową
Wybór mieszanki glikolowej lub płynu solarnego jako medium ogrzewanego w wymienniku ciepła może prowadzić do nieporozumień dotyczących funkcjonowania tego typu urządzeń. Mieszanka glikolowa, będąca płynem używanym w instalacjach solarnych w celu ochrony przed zamarzaniem, nie jest medium, które można bezpośrednio ogrzewać w wymienniku. Zamiast tego, jej główną rolą jest transportowanie energii cieplnej z kolektorów słonecznych do wymiennika. Ogrzewanie powietrza w kontekście tego urządzenia jest również błędnym podejściem, ponieważ jednopłaszczowe, dwuwężownicowe wymienniki ciepła są zaprojektowane z myślą o podgrzewaniu cieczy, a nie gazów. Ogrzewanie ciepłego powietrza wymagałoby zupełnie innego typu wymiennika, dostosowanego do tego celu. W przypadku, gdyby woda użytkowa nie była podgrzewana, można by spotkać się z problemem niewystarczającego zapewnienia komfortu cieplnego, co jest nieakceptowalne w nowoczesnych instalacjach grzewczych. Z tego powodu ważne jest, aby zrozumieć rolę każdego medium w systemie oraz zasady jego działania, co umożliwia prawidłowe zastosowanie technologii grzewczych zgodnie z zaleceniami branżowymi.

Pytanie 10

W którym miesiącu w Polsce średni zysk z instalacji solarnych osiąga najwyższe wartości?

A. W marcu
B. W maju
C. We wrześniu
D. W czerwcu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór czerwca jako miesiąca z największym zyskiem solarnym w Polsce opiera się na analizie danych meteorologicznych i nasłonecznienia. W czerwcu dni są najdłuższe, a ilość promieniowania słonecznego osiąga najwyższy poziom. Z tego powodu, instalacje solarne, które funkcjonują na zasadzie konwersji energii słonecznej na energię elektryczną, generują największe ilości energii w tym miesiącu. W praktyce oznacza to, że właściciele systemów solarnych mogą liczyć na największe oszczędności na rachunkach za energię oraz na szybszy zwrot z inwestycji. Długoterminowe prognozy i analizy danych pokazują, że efektywność systemów fotowoltaicznych w czerwcu może przekraczać 120% średniej rocznej produkcji energii. Warto również zwrócić uwagę na odpowiednie projektowanie i orientację paneli słonecznych, co może dodatkowo zwiększyć ich wydajność w miesiącach letnich. Zgodnie z najlepszymi praktykami, warto przeprowadzać regularne przeglądy instalacji, aby zapewnić ich optymalne działanie przez cały rok, zwłaszcza w miesiącach o największym nasłonecznieniu.

Pytanie 11

Na liście materiałów potrzebnych do realizacji instalacji fotowoltaicznej znajduje się symbol YDYt 3×2,5. Co oznacza ten symbol w kontekście rodzaju przewodu?

A. jednodrutowymi miedzianymi do realizacji instalacji elektrycznej wewnątrz budynku w tynku
B. jednodrutowymi aluminiowymi do połączenia w szereg akumulatorów
C. wielodrutowym miedzianym do realizacji instalacji elektrycznej wewnątrz budynku w tynku
D. wielodrutowymi miedzianymi do podłączenia akumulatora z regulatorem ładowania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź jest prawidłowa, ponieważ symbol YDYt 3×2,5 oznacza przewód o trzech żyłach wykonanych z miedzi, które są jednodrutowe. Przewody YDYt są szczególnie zalecane do stosowania w instalacjach elektrycznych wewnętrznych, zwłaszcza w systemach osprzętu budowlanego, gdzie umieszczane są w tynku. Użycie przewodów jednodrutowych zapewnia lepszą przewodność elektryczną i mniejsze straty energii w porównaniu do przewodów wielodrutowych, co czyni je bardziej efektywnymi w długoterminowych instalacjach. Przykładem zastosowania tego typu przewodów mogą być instalacje oświetleniowe lub gniazdka elektryczne, gdzie wymagana jest stabilność i niezawodność połączeń. Przewody YDYt są zgodne z normami PN-IEC 60228, co potwierdza ich wysoką jakość oraz bezpieczeństwo stosowania w budynkach mieszkalnych i użyteczności publicznej.

Pytanie 12

Zbyt niskie natężenie przepływu czynnika roboczego w układzie solarnym, realizowane przez pompę obiegową, może prowadzić do

A. zapowietrzenia systemu
B. zwiększenia efektywności kolektorów
C. zatrzymania pompy obiegowej
D. wzrostu temperatury czynnika roboczego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Jak widzę, jeśli przepływ czynnika roboczego w instalacji solarnej jest za mały, to czynnikiem roboczym zaczyna być problem, bo może się przegrzewać. Dzieje się tak, bo czas przebywania czynnika w kolektorze jest zbyt długi. Wtedy pompa obiegowa nie ma szans na skuteczne przetransportowanie energii cieplnej do zbiornika, co prowadzi do wzrostu temperatury czynnika ponad optymalne wartości. W dobrze działających instalacjach solarnych, które są zaprojektowane zgodnie z normami, powinno się zapewnić odpowiedni przepływ, żeby efektywnie odbierać energię ze słońca. Z mojego doświadczenia, te parametry często można znaleźć w dokumentacji projektowej, co pomaga uniknąć problemów z przegrzewaniem. I pamiętaj, że odpowiednie ustawienie i regulacja pompy obiegowej, zgodnie z tym, co mówi producent, jest kluczowa, żeby wszystko działało jak należy i żeby instalacja była efektywna.

Pytanie 13

Do kotła, który spala zrębki, można za jednym razem załadować 0,5 m3 paliwa. W ciągu 24 godzin kocioł powinien być załadowany 3 razy. Jaki będzie tygodniowy koszt paliwa, jeśli jego cena za 1 m3 wynosi 50,00 zł?

A. 50,00 zł
B. 525,00 zł
C. 25,00 zł
D. 150,00 zł

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Obliczenie tygodniowego kosztu paliwa jest kluczowe w kontekście zarządzania efektywnością energetyczną kotłów. W przypadku przedstawionego pytania, najpierw obliczamy, ile paliwa kocioł potrzebuje w ciągu jednego dnia. Kiedy załadujemy 0,5 m³ paliwa trzy razy dziennie, otrzymujemy 1,5 m³ dziennie. Aby przeanalizować zużycie w ciągu tygodnia, należy pomnożyć tę wartość przez 7 dni, co daje 10,5 m³. Następnie, aby obliczyć koszt, pomnożono tę ilość przez cenę jednostkową paliwa, wynoszącą 50,00 zł za 1 m³. W ten sposób uzyskujemy tygodniowy koszt paliwa wynoszący 525,00 zł. Takie obliczenia są przydatne nie tylko w kontekście zarządzania kosztami, ale również w procesach planowania budżetu i efektywności energetycznej. W branży energetycznej kluczowe jest monitorowanie zużycia paliwa oraz kosztów, co pozwala na optymalizację procesów grzewczych i podejmowania świadomych decyzji dotyczących inwestycji w efektywne źródła energii.

Pytanie 14

Dolnym źródłem zasilającym pompę ciepła nie może być

A. powietrze.
B. woda.
C. słońce.
D. grunt.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pompy ciepła to ciekawe urządzenia, które potrafią wykorzystywać różne źródła ciepła do ogrzewania lub chłodzenia budynków. Możemy tu mówić o gruncie, wodzie czy powietrzu jako dolnych źródłach. Słońce to na pewno energia, ale nie da się powiedzieć, że jest bezpośrednim źródłem ciepła dla pomp ciepła. Jak to działa? Generalnie, pompy ciepła transferują ciepło z jednego medium do drugiego, a w przypadku energii słonecznej, najpierw musi być zgromadzone w innym medium, jak na przykład powietrze. To właśnie to powietrze może być potem użyte przez pompę. Więc chociaż słońce ma wpływ na temperaturę powietrza i wody, to jednak sama energia solarna nie jest wykorzystywana przez te pompy. Dlatego mówi się, że odpowiedź "słońce" jest jednak niepoprawna, bo nie spełnia kryteriów dolnego źródła zgodnie z tym, jak to jest przyjęte w inżynierii.

Pytanie 15

Wskaż, w oparciu o przedstawiony fragment instrukcji, na jakiej minimum głębokości poniżej lokalnej granicy przemarzania gruntu, należy montować kolektory gruntowe.

W przypadku gruntów o niskim stopniu wilgotności (grunt suchy, piaszczysty) układy spiralne mogą powodować znaczne wychłodzenie gruntu i zamarzanie parownika w pompie ciepła, wobec czego zdecydowanie bardziej bezpieczne jest stosowanie układów płaskich lub kolektorów pionowych. Kolektory poziome, w postaci pętli rur o jednakowej długości, układa się w odległości minimum 0,5÷1,0 m od siebie, na głębokości 30÷40 cm poniżej granicy przemarzania gruntu, co w Polsce stanowi w zależności od rejonu 0,8÷1,4 m.

A. 10 cm
B. 20 cm
C. 30 cm
D. 50 cm

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to 30 cm, co wynika z zaleceń zawartych w instrukcji dotyczącej montażu kolektorów gruntowych. Kolektory te powinny być umieszczone na głębokości od 30 do 40 cm poniżej lokalnej granicy przemarzania gruntu, aby zapewnić ich prawidłowe funkcjonowanie. W Polsce granica ta wynosi od 0,8 do 1,4 m, co oznacza, że minimalna głębokość montażu kolektorów powinna wynosić 30 cm poniżej tej granicy, co zapewnia odpowiednią ochronę przed wpływem mrozu. W praktyce oznacza to, że montując kolektory, należy zwrócić uwagę na lokalne warunki geologiczne i klimatyczne, aby dostosować głębokość ich ułożenia do specyfikacji technicznych. Przykład zastosowania to instalacje systemów ogrzewania geotermalnego, gdzie odpowiednia głębokość montażu kolektorów jest kluczowa dla efektywności energetycznej budynku. Zgodnie z najlepszymi praktykami, warto również zwrócić uwagę na rozmieszczenie kolektorów, które powinno wynosić od 0,5 do 1,0 m między poszczególnymi pętlami, aby zapewnić optymalne warunki pracy systemu.

Pytanie 16

Korzystając z danych zamieszczonych w tabeli, wskaż kolektor słoneczny o najwyższej sprawności optycznej.

Rodzaj parametruKolektor 1Kolektor 2Kolektor 3Kolektor 4
Transmisyjność pokrywy przezroczystej0,920,920,860,86
Emisyjność absorbera0,050,850,120,05
Absorpcyjność absorbera0,950,850,950,04

A. Kolektor 3.
B. Kolektor 4.
C. Kolektor 1.
D. Kolektor 2.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kolektor 1 został wybrany jako ten o najwyższej sprawności optycznej, co jest wynikiem starannej analizy trzech kluczowych parametrów: transmisyjności pokrywy przezroczystej, emisyjności absorbera oraz absorpcyjności absorbera. W praktyce, wysoka transmisyjność oznacza, że większa ilość promieniowania słonecznego przenika przez pokrywę do wnętrza kolektora, co zwiększa efektywność jego działania. Emisyjność absorbera odnosi się do zdolności materiału do emitowania energii cieplnej; niski współczynnik emisyjności jest pożądany, ponieważ minimalizuje straty ciepła. Absorpcja energii słonecznej przez absorber jest kluczowa dla efektywności kolektora. Kolektor 1 osiąga najwyższe wartości w tych trzech kategoriach, co czyni go idealnym wyborem do zastosowań, takich jak ogrzewanie wody użytkowej czy wspomaganie systemów grzewczych w budynkach. W odniesieniu do standardów branżowych, takie podejście do oceny kolektorów słonecznych jest zgodne z normami IEC i ISO, które promują efektywność i zrównoważony rozwój technologii odnawialnych.

Pytanie 17

Przyczyną wydostawania się czynnika z zaworu bezpieczeństwa w systemach solarnych może być

A. niewielka objętość przeponowego naczynia wzbiorczego
B. wysoka wilgotność powietrza
C. niewystarczające stężenie płynu solarnego
D. zapowietrzenie systemu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zbyt mała objętość przeponowego naczynia wzbiorczego w instalacjach solarnych może prowadzić do nieprawidłowego działania systemu, co skutkuje wypływem czynnika chłodzącego z zaworu bezpieczeństwa. Naczynie wzbiorcze pełni kluczową rolę w kompensacji zmian objętości płynu solarnego, które są spowodowane rozszerzalnością cieplną. W przypadku niewystarczającej objętości, ciśnienie w instalacji może wzrosnąć powyżej dozwolonego poziomu, co aktywuje zawór bezpieczeństwa. Utrzymanie odpowiedniej objętości naczynia wzbiorczego jest zgodne z normą PN-EN 12828, która określa zasady projektowania i eksploatacji systemów grzewczych. Praktycznie oznacza to, że każdy projektant instalacji solarnych powinien dokładnie obliczyć wymagane parametry naczynia wzbiorczego, uwzględniając maksymalne i minimalne temperatury pracy, aby zapewnić stabilność i bezpieczeństwo całego systemu. Warto również regularnie kontrolować stan naczynia oraz jego ciśnienie, co pomoże zminimalizować ryzyko wystąpienia awarii i zapewnić efektywność energetyczną systemu.

Pytanie 18

Rury polietylenowe przeznaczone do budowy kolektora gruntowego powinny być transportowane oraz przechowywane w formie kręgów. Jaka jest maksymalna wysokość ich składowania?

A. 1,5 m
B. 1,8 m
C. 2,0 m
D. 2,2 m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 1,5 m jest prawidłowa, ponieważ zgodnie z zaleceniami dotyczącymi transportu i składowania rur polietylenowych, wysokość składowania kręgów powinna być ograniczona do 1,5 metra. Nadmierna wysokość składowania może prowadzić do deformacji rur, co z kolei wpływa na ich właściwości mechaniczne i użytkowe. Przykładem zastosowania tej zasady może być składowanie rur na placu budowy, gdzie przestrzeganie maksymalnej wysokości 1,5 m zapewnia stabilność i bezpieczeństwo. Ważne jest, aby nie tylko przestrzegać tej zasady, ale także stosować odpowiednie podpory oraz zabezpieczenia, które zapobiegają przewróceniu się kręgów. Dobre praktyki transportowe i składowe są kluczowe dla zachowania jakości materiałów, a także dla bezpieczeństwa pracowników, co podkreślają normy branżowe. Dlatego przestrzeganie wymagań dotyczących wysokości składowania powinno być integralną częścią każdego projektu budowlanego. Ponadto, warto zaznaczyć, że inne materiały budowlane mogą mieć różne wymagania, dlatego zawsze należy zapoznawać się z instrukcjami producentów oraz normami branżowymi.

Pytanie 19

Które z wymienionych typów ogniw fotowoltaicznych wyróżnia się najwyższą sprawnością?

A. Polikrystaliczne
B. Monokrystaliczne
C. a-Si
D. CdTe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ogniwa fotowoltaiczne monokrystaliczne rzeczywiście charakteryzują się najwyższą sprawnością w porównaniu do innych typów ogniw. Ich struktura krystaliczna, składająca się z jednego, ciągłego kryształu krzemu, umożliwia lepsze przewodzenie prądu, co bezpośrednio przekłada się na większą efektywność konwersji energii słonecznej na energię elektryczną. Monokrystaliczne ogniwa są w stanie osiągać sprawności rzędu 20-25%, co czyni je najbardziej popularnym wyborem w instalacjach fotowoltaicznych, szczególnie tam, gdzie przestrzeń na panele jest ograniczona. W praktyce, zastosowanie ogniw monokrystalicznych znajduje się w wielu projektach, od domów jednorodzinnych po duże farmy słoneczne, co wskazuje na ich uniwersalność i efektywność. Dodatkowo, z uwagi na ich trwałość, która może wynosić ponad 25 lat, inwestycja w te ogniwa zapewnia długoterminowe korzyści oraz zwrot kosztów. W branży energii odnawialnej monokrystaliczne ogniwa są często rekomendowane jako optymalne rozwiązanie, co potwierdzają standardy jakościowe i certyfikaty produkcyjne.

Pytanie 20

Co oznacza przewód o symbolu YDY 2×1,5?

A. płaski trójżyłowy o średnicy żyły 1,0 mm², gdzie każda żyła jest miedziana i ma formę drutu jednożyłowego
B. okrągły dwużyłowy o średnicy żyły 1,5 mm², przy czym każda żyła jest miedziana i ma postać drutu jednożyłowego
C. okrągły o średnicy żyły 3,0 mm², każda żyła miedziana w formie drutu jednożyłowego
D. o średnicy żyły 1,5 mm² w postaci linek złożonych z wielu cienkich drucików miedzianych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "okrągły dwużyłowy o przekroju żyły 1,5 mm², każda żyła miedziana w postaci drutu jednożyłowego" jest poprawna, ponieważ oznaczenie "YDY 2×1,5" dokładnie opisuje specyfikę przewodu. W tym przypadku, litera "Y" informuje o rodzaju izolacji, która jest wykonana z PVC, co jest powszechnie stosowane w przewodach elektrycznych ze względu na swoje właściwości dielektryczne oraz odporność na działanie różnych czynników atmosferycznych. Element "D" w oznaczeniu wskazuje na przewód dwużyłowy, co oznacza, że zawiera dwie żyły, co jest standardowym rozwiązaniem w instalacjach elektrycznych jedno- i trójfazowych. Przekrój "1,5 mm²" oznacza, że każda żyła ma przekrój 1,5 mm², co jest powszechnie stosowane w instalacjach o średnim obciążeniu, takich jak oświetlenie czy gniazda elektryczne. Użycie drutu jednożyłowego zamiast linki ma swoje uzasadnienie w łatwości instalacji i wygodzie w wielu zastosowaniach. W praktyce przewody YDY 2×1,5 są szeroko stosowane w budownictwie, co czyni je kluczowym elementem w projektowaniu instalacji elektrycznych według norm PN-IEC 60364.

Pytanie 21

Rozmieszczenie podłączeń urządzeń oraz armatury w instalacji ilustrują rysunki

A. lokalnych
B. przybliżonych
C. dokładnych
D. schematycznych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "schematycznych" jest prawidłowa, ponieważ schematy instalacji przedstawiają ogólny układ i połączenia pomiędzy urządzeniami w instalacjach budowlanych, takich jak instalacje elektryczne, wodociągowe czy grzewcze. Schematy te są kluczowe dla inżynierów i techników, ponieważ ułatwiają zrozumienie zasady działania systemu oraz kolejności podłączeń. W praktyce, schematyczne rysunki stosowane są podczas projektowania i instalacji, co pozwala na szybsze lokalizowanie problemów oraz planowanie serwisów. W branży budowlanej istnieją standardy, takie jak normy ISO i PN, które regulują sposób tworzenia takich schematów, co zapewnia ich jednolitość i zrozumiałość dla wszystkich użytkowników. Przykładem może być schemat instalacji elektrycznej, który ilustruje rozmieszczenie gniazdek, włączników oraz źródeł światła, co jest niezbędne do poprawnego wykonania instalacji oraz późniejszego jej użytkowania.

Pytanie 22

Możliwość ogrzewania oraz chłodzenia przy użyciu jednego urządzenia jest efektem zastosowania

A. ogniwa fotowoltaicznego typu CIGS
B. próżniowego kolektora słonecznego
C. rewersyjnej pompy ciepła
D. ogniwa wodorowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rewersyjna pompa ciepła to urządzenie, które w zależności od potrzeb użytkownika może zarówno ogrzewać, jak i chłodzić pomieszczenia. Działa na zasadzie wymiany ciepła z otoczeniem, wykorzystując cykl termodynamiczny, który pozwala na odwrócenie kierunku przepływu czynnika chłodniczego. W trybie ogrzewania, pompa ciepła pobiera ciepło z zewnątrz (nawet przy niskich temperaturach) i przekształca je, aby podnieść temperaturę w budynku. Natomiast w trybie chłodzenia, proces jest odwrotny, co pozwala na usuwanie ciepła z wnętrza budynku. Dzięki tej uniwersalności, rewersyjne pompy ciepła znajdują szerokie zastosowanie w nowoczesnym budownictwie, w tym w domach jednorodzinnych, biurach oraz obiektach przemysłowych. Standardy dotyczące efektywności energetycznej, takie jak SEER i HSPF, mają na celu oceny wydajności systemów HVAC, w tym pomp ciepła, co potwierdza ich znaczenie w zrównoważonym rozwoju. W praktyce, instalacja pompy ciepła może prowadzić do znacznego obniżenia kosztów ogrzewania i chłodzenia, a także redukcji emisji CO2, co jest zgodne z globalnymi trendami proekologicznymi.

Pytanie 23

Aby skutecznie spalić drewno, należy dobrać kocioł, który będzie w stanie wygenerować wymaganą energię po

A. dwóch załadowaniach
B. trzech załadowaniach
C. jednym załadowaniu
D. czterech załadowaniach

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór kotła do spalania drewna, który jest w stanie wytworzyć potrzebną energię po jednym załadowaniu, jest zgodny z zasadami efektywności energetycznej. Kotły przystosowane do spalania drewna powinny charakteryzować się odpowiednią mocą, aby sprostać zapotrzebowaniu na energię w sposób bezpieczny i efektywny. Przykładowo, kotły o wysokiej sprawności potrafią przetwarzać energię zawartą w drewnie na ciepło w sposób optymalny, co przekłada się na mniejsze zużycie paliwa. Ponadto, korzystanie z kotłów, które są w stanie efektywnie spalać drewno w krótkim czasie, przyczynia się do zmniejszenia emisji szkodliwych substancji do atmosfery, co jest zgodne z aktualnymi normami ekologicznymi. W praktyce oznacza to, że dobrze dobrany kocioł umożliwia użytkownikowi pełne wykorzystanie jednorazowego załadunku drewna, co jest korzystne zarówno ekonomicznie, jak i środowiskowo.

Pytanie 24

W elektrowni wodnej zainstalowany jest generator o mocy P=100 kW. Jaką częstotliwość powinno mieć napięcie, aby mogła ona współdziałać z Polskim Systemem Energetycznym?

A. 70 Hz
B. 20 Hz
C. 50 Hz
D. 80 Hz

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 50 Hz jest prawidłowa, ponieważ w Polsce, jak i w większości krajów europejskich, standardowa częstotliwość napięcia w sieci elektroenergetycznej wynosi właśnie 50 Hz. Taka częstotliwość została przyjęta jako norma w celu zapewnienia stabilności i kompatybilności systemów energetycznych. Współpraca generatorów prądu z systemem energetycznym opiera się na synchronizacji ich częstotliwości z siecią. Przykładowo, elektrownie wodne, które korzystają z turbin wodnych, muszą dostarczać energię o odpowiedniej częstotliwości, aby mogły zostać włączone do krajowej sieci. Zastosowanie generatorów o mocy 100 kW w Polsce, które muszą pracować w harmonii z innymi źródłami energii, jak elektrownie wiatrowe czy słoneczne, również potwierdza konieczność utrzymania tej standardowej częstotliwości. Takie podejście zwiększa efektywność całego systemu elektroenergetycznego oraz minimalizuje ryzyko awarii związanych z zaburzeniem synchronizacji.

Pytanie 25

Jaką funkcję pełni inwerter w systemach fotowoltaicznych?

A. ochrony akumulatorów przed całkowitym wyładowaniem
B. kontrolowania procesu ładowania akumulatorów
C. przekształcania prądu stałego na prąd przemienny
D. ochrony systemu przed przetężeniem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Inwerter w instalacjach fotowoltaicznych odgrywa kluczową rolę w konwersji prądu stałego (DC) generowanego przez panele słoneczne na prąd przemienny (AC), który jest standardem w sieciach energetycznych. Bez inwertera, energia produkowana przez system PV nie mogłaby być używana w typowych urządzeniach domowych ani wprowadzana do sieci energetycznej. Wysokiej jakości inwertery są projektowane z myślą o maksymalnej wydajności, co pozwala na optymalne wykorzystanie energii słonecznej. Na przykład, inwertery typu string są najczęściej stosowane w domowych instalacjach PV, gdzie łączą kilka paneli w jeden ciąg, zapewniając efektywną konwersję energii. Z kolei inwertery mikro, montowane bezpośrednio na panelach, mogą zwiększyć wydajność w przypadku zacienienia pojedynczych modułów. Zgodnie z normami IEC, inwertery muszą spełniać określone kryteria dotyczące wydajności i bezpieczeństwa, co zapewnia ich niezawodność w długoterminowej eksploatacji.

Pytanie 26

Izolacja przewodów elektrycznych w odcieniu żółto-zielonym określa przewody

A. neutralne
B. ochronne
C. fazowe
D. zerowe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Izolacja przewodów elektrycznych w kolorze żółto-zielonym jest standardem stosowanym w Polsce do oznaczania przewodów ochronnych. Przewody te pełnią kluczową rolę w zapewnieniu bezpieczeństwa instalacji elektrycznych, co jest zgodne z normą PN-IEC 60446. Ich głównym zadaniem jest ochrona przed porażeniem elektrycznym poprzez uziemienie metalowych części instalacji, które w normalnych warunkach nie przewodzą prądu. Przewody ochronne łączą się z systemem uziemiającym, co sprawia, że w przypadku zwarcia prąd płynie w bezpieczny sposób do ziemi, minimalizując ryzyko dla użytkowników. Przykładem zastosowania przewodów ochronnych jest ich wykorzystanie w instalacjach elektrycznych w budynkach mieszkalnych oraz w urządzeniach przemysłowych. Zgodnie z przepisami, każda instalacja elektryczna musi być wyposażona w przewody ochronne, co jest niezbędnym elementem zapewniającym bezpieczeństwo użytkowników.

Pytanie 27

Pompę obiegową należy zainstalować na rurze

A. zimnej wody użytkowej
B. cyrkulacyjnej
C. ciepłej wody użytkowej
D. bypassowej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pompę obiegową montuje się na przewodzie cyrkulacyjnym, ponieważ jej głównym zadaniem jest zapewnienie ciągłego przepływu wody w systemach grzewczych oraz ciepłej wody użytkowej. Dzięki temu woda jest równomiernie rozprowadzana, co zwiększa efektywność systemu grzewczego i minimalizuje straty energii. Przykładem zastosowania pompy cyrkulacyjnej może być instalacja centralnego ogrzewania w budynkach mieszkalnych, gdzie pompa ta umożliwia szybkie i równomierne ogrzewanie pomieszczeń. Zgodnie z normami branżowymi, oto kilka dobrych praktyk: pompa powinna być umieszczona w najniższym punkcie instalacji, aby uniknąć problemów z powietrzem w systemie, a także powinna być dobrana odpowiednio do parametrów instalacji, takich jak średnica rur czy wymagany przepływ. To zapewnia optymalną wydajność oraz długą żywotność urządzenia.

Pytanie 28

Na jakim dokumencie oferent przetargu na montaż instalacji fotowoltaicznej w budynku szkoły opiera swoją propozycję?

A. Projekt budowlany szkoły
B. Specyfikacja istotnych warunków zamówienia
C. Rachunki za energię elektryczną szkoły
D. Plan zagospodarowania przestrzennego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Specyfikacja istotnych warunków zamówienia (SIWZ) jest kluczowym dokumentem w procesie przetargowym, który szczegółowo określa wymagania dotyczące przedmiotu zamówienia, w tym wypadku montażu instalacji fotowoltaicznej. Dokument ten zawiera nie tylko opis zamówienia, ale także kryteria oceny ofert, warunki udziału w postępowaniu oraz inne istotne informacje, które są niezbędne do przygotowania oferty. Przykładowo, SIWZ może zawierać specyfikacje techniczne dotyczące parametrów instalacji, wymagane certyfikaty, oraz wymogi dotyczące dokumentacji powykonawczej. Dzięki temu, oferent ma pełną wiedzę na temat oczekiwań zamawiającego, co pozwala na składanie ofert zgodnych z wymaganiami oraz na właściwe oszacowanie kosztów. W praktyce, stosowanie SIWZ jako podstawy do opracowania oferty jest zgodne z ustawą Prawo zamówień publicznych, co zapewnia transparentność i uczciwość postępowań przetargowych.

Pytanie 29

Co oznacza symbol PE-HD na rurze?

A. polietylen o średniej gęstości
B. homopolimer polietylenu
C. polietylen o wysokiej gęstości
D. polietylen o niskiej gęstości

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oznaczenie PE-HD odnosi się do polietylenu wysokiej gęstości, który jest jednym z najczęściej stosowanych tworzyw sztucznych w branży budowlanej oraz przemysłowej. PE-HD charakteryzuje się wysoką odpornością na chemikalia, działanie wysokich temperatur oraz promieniowanie UV, co czyni go idealnym materiałem do produkcji rur wykorzystywanych w różnych systemach wodociągowych, kanalizacyjnych oraz gazowych. Dzięki swojej gęstości i strukturze, PE-HD ma również dobrą odporność na uszkodzenia mechaniczne, co jest szczególnie ważne w przypadku instalacji w trudnych warunkach. Standardy ISO 4427 oraz EN 12201 określają wymagania techniczne dla rur PE-HD, co zapewnia ich wysoką jakość oraz niezawodność. W praktyce, rury oznaczone jako PE-HD są powszechnie stosowane do transportu wody pitnej oraz ścieków, a także w systemach irygacyjnych. Warto również zauważyć, że proces recyklingu PE-HD jest stosunkowo prosty, co przyczynia się do zrównoważonego rozwoju i ochrony środowiska.

Pytanie 30

Jaką funkcję pełni zbiornik buforowy?

A. wyrównywać ciśnienie w systemie solarnym
B. przechowywać nadmiar ciepłej wody
C. przechowywać biopaliwo
D. wyrównywać ciśnienie w systemie centralnego ogrzewania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zbiornik buforowy pełni kluczową rolę w systemach ogrzewania, szczególnie w instalacjach solarnych oraz centralnego ogrzewania. Jego głównym zadaniem jest magazynowanie nadmiaru ciepłej wody, co umożliwia efektywne wykorzystanie energii, a także stabilizację pracy systemu. Przykładowo, w instalacjach solarnych, w ciągu dnia, kiedy produkcja ciepła jest wysoka, zbiornik buforowy gromadzi nadmiar ciepłej wody. Dzięki temu, w godzinach wieczornych, gdy zapotrzebowanie na ciepło wzrasta, możliwe jest wykorzystanie zgromadzonej energii, co przekłada się na oszczędności oraz efektywność energetyczną. Zgodnie z normami branżowymi, odpowiednie zaprojektowanie i umiejscowienie zbiornika buforowego pozwala na optymalizację pracy całego systemu grzewczego i zwiększa jego żywotność. W praktyce, niezależnie od typu źródła ciepła, użycie zbiornika buforowego jest standardem, który przyczynia się do bardziej zrównoważonego i ekologicznego podejścia do ogrzewania budynków.

Pytanie 31

Jakie problemy mogą powodować elektrownie wiatrowe dla fauny w ich pobliżu?

A. zakłócenia w przepływie wiatru w rejonie wiatraka
B. znaczne zmiany w mocy generowanej przez wiatrak
C. wysokość konstrukcji wiatraka
D. cienie aerodynamiczne dla pobliskich budynków

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zaburzenia przepływu wiatru na obszarze wokół wiatraka stanowią kluczowy czynnik wpływający na florę i faunę w pobliżu elektrowni wiatrowych. Zmiany w kierunku i prędkości wiatru mogą wpływać na lokalne warunki mikroklimatyczne, co z kolei utrudnia ptakom nawigację oraz ich zdolność do lotu. Ptaki, które są przyzwyczajone do określonych warunków powietrznych, mogą napotykać trudności w poruszaniu się w zmienionych warunkach, co zwiększa ryzyko kolizji z turbinami. Dodatkowo, zaburzenia przepływu wiatru mogą wpływać na rozmieszczenie roślinności, co może prowadzić do zmian w siedliskach zwierząt. Dobrą praktyką w projektowaniu farm wiatrowych jest przeprowadzanie szczegółowych badań wpływu na lokalne ekosystemy oraz stosowanie technologii, które minimalizują te zaburzenia. Przykładowo, stosowanie mniejszych turbin w obszarach o dużej bioróżnorodności może pomóc w ograniczeniu negatywnego wpływu na zwierzęta.

Pytanie 32

Aby instalacja solarna osiągnęła maksymalną wydajność cieplną w okresie letnim, kolektor słoneczny powinien być zainstalowany na

A. północnej stronie dachu pod kątem 30°
B. północnej stronie dachu pod kątem 60°
C. południowej stronie dachu pod kątem 30°
D. południowej stronie dachu pod kątem 60°

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Usytuowanie kolektora słonecznego na południowej połaci dachu w kącie nachylenia 30° jest optymalne dla maksymalizacji wydajności cieplnej instalacji solarnej w okresie letnim. Południowa ekspozycja zapewnia najlepszy dostęp do promieni słonecznych w ciągu dnia, co jest kluczowe dla generowania energii cieplnej. Kąt nachylenia 30° umożliwia efektywne wychwytywanie promieniowania słonecznego, minimalizując jednocześnie straty spowodowane odbiciem światła. Dodatkowo, taki kąt nachylenia jest zgodny z najlepszymi praktykami inżynieryjnymi, które wskazują, że dla instalacji solarnych montowanych w strefie umiarkowanej, kąt nachylenia powinien wynosić od 30° do 45°, co zwiększa efektywność absorpcji energii słonecznej. W praktyce, zastosowanie tego typu konfiguracji skutkuje wyższą temperaturą czynnika grzewczego i większą produkcją energii, co pozwala na lepsze zaspokojenie potrzeb cieplnych budynków w okresie letnim, a także na oszczędności w kosztach energii.

Pytanie 33

Jakie urządzenie stosuje się do pomiaru ciśnienia atmosferycznego oraz podciśnienia?

A. manowakuometr
B. anemometr
C. wakuometr
D. mikrometr

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Manowakuometr jest urządzeniem wykorzystywanym do pomiaru ciśnienia w systemach, gdzie konieczne jest monitorowanie zarówno nadciśnienia, jak i podciśnienia. Działa na zasadzie pomiaru różnicy ciśnień, co pozwala na dokładne określenie stanu medium w różnych aplikacjach inżynieryjnych. Przykłady zastosowania manowakuometru obejmują przemysł chemiczny, gdzie monitorowanie ciśnienia jest kluczowe dla bezpieczeństwa procesów, oraz w systemach HVAC do kontrolowania ciśnienia w kanałach wentylacyjnych. Zgodnie z normami ISO 5167, pomiary ciśnienia muszą być wykonywane z użyciem odpowiednich przyrządów, aby zapewnić ich dokładność i wiarygodność. Manowakuometry są często kalibrowane zgodnie z odpowiednimi standardami, co pozwala na uzyskanie wyników o wysokiej precyzji, co jest niezbędne w zastosowaniach wymagających ścisłych tolerancji.

Pytanie 34

Do kotła na biogaz nie można zainstalować centralnego ogrzewania z rur

A. z twardej miedzi.
B. z czarnej stali przewodowej.
C. z ocynkowanej stali.
D. z czarnej stali ze szwem.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź stalowych rur ocynkowanych jako nieodpowiednich do instalacji centralnego ogrzewania w systemach z kotłami na biogaz wynika z faktu, że ocynkowane rury, ze względu na swoją powłokę, mogą nadmiernie reagować z substancjami chemicznymi obecnymi w biogazie, co prowadzi do korozji wewnętrznej. W praktyce, najlepszym rozwiązaniem są rury wykonane z materiałów odpornych na korozję, takich jak stal nierdzewna czy rury z tworzyw sztucznych. W kontekście systemów grzewczych, ważne jest, aby materiały były zgodne z normami i zaleceniami branżowymi, jak PN-EN 12828, które wskazują na konieczność stosowania rozwiązań odpornych na działanie mediów agresywnych. Użycie rur ocynkowanych w systemach z biogazem może prowadzić do problemów z wydajnością oraz koniecznością kosztownych napraw w przyszłości.

Pytanie 35

Który element chroni zamknięty obieg hydrauliczny paneli słonecznych w przypadku zbyt wysokiego ciśnienia cieczy solarnej?

A. Regulator temperatury
B. Zawór bezpieczeństwa
C. Automatyczny odpowietrznik
D. Pompa obiegowa

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zawór bezpieczeństwa jest kluczowym elementem ochronnym w zamkniętym obiegu hydraulicznym kolektorów słonecznych, który zapobiega nadmiernemu wzrostowi ciśnienia płynu solarnego. Jego podstawowym zadaniem jest automatyczne otwieranie się w przypadku, gdy ciśnienie w systemie przekroczy ustaloną wartość graniczną. Dzięki temu zapobiega się uszkodzeniom instalacji oraz wyciekom płynu solarnego, co mogłoby prowadzić do poważnych awarii. W praktyce, zawory bezpieczeństwa są projektowane zgodnie z normami, które określają ich wydajność i niezawodność. Na przykład, w wielu systemach słonecznych stosuje się zawory bezpieczeństwa z certyfikatami, które potwierdzają ich zgodność z europejskimi normami EN 12828 oraz EN 13445, co zapewnia ich wysoką jakość i bezpieczeństwo użytkowania. Dodatkowo, regularna konserwacja i kontrola funkcjonowania zaworów bezpieczeństwa są niezbędne, aby zapewnić sprawne działanie całego systemu, co jest zgodne z najlepszymi praktykami w branży energetycznej.

Pytanie 36

Zbyt niska histereza w regulatorze systemu solarnego może skutkować

A. częstym włączaniem oraz wyłączaniem pompy
B. obniżeniem ciśnienia w instalacji
C. szybszym zużyciem płynu solarnego
D. częstym działaniem zaworu bezpieczeństwa

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ustawienie zbyt małej histerezy w sterowniku solarnym może prowadzić do częstego włączania i wyłączania pompy, co jest związane z działaniem systemu regulacji temperatury. Histereza to różnica temperatury, przy której urządzenie przełącza się z trybu pracy na inny, na przykład z ogrzewania na schładzanie. Gdy histereza jest zbyt mała, nawet niewielkie wahania temperatury mogą powodować, że pompa będzie włączać się i wyłączać zbyt często. Taki stan rzeczy może prowadzić do wzrostu zużycia energii, obniżenia efektywności systemu oraz przyspieszonego zużycia mechanicznych elementów pompy. Przykładem dobrych praktyk jest stosowanie histerezy w obrębie od 5 do 10°C w systemach solarnych, co zapewnia stabilność pracy i minimalizuje ryzyko nadmiernego obciążenia komponentów. Warto również pamiętać, że odpowiednie ustawienia histerezy mogą przyczynić się do poprawy komfortu użytkowania, eliminując niepożądane efekty, takie jak hałas związany z częstym włączaniem i wyłączaniem urządzeń.

Pytanie 37

W trakcie działania systemu fotowoltaicznego na inwerterze zauważono kod błędu dotyczący zwarcia doziemnego. Jakie mogą być przyczyny tego zjawiska?

A. niedostosowanie prądowe paneli
B. zacienienie modułów
C. uszkodzony przewód
D. rozładowany akumulator

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Uszkodzony przewód w instalacji fotowoltaicznej może prowadzić do zwarcia doziemnego, co jest poważnym problemem, mogącym zagrażać bezpieczeństwu całego systemu. Zwarcie doziemne występuje, gdy przewód fazowy styka się z ziemią lub innym uziemionym elementem, co prowadzi do niebezpiecznego wzrostu prądu. W takim przypadku inwerter wykrywa ten problem i generuje kod błędu, aby zasygnalizować potrzebę interwencji. Praktycznym przykładem może być sytuacja, w której przewód ochronny został uszkodzony w wyniku działania czynników atmosferycznych, takich jak deszcz czy intensywne nasłonecznienie, co prowadzi do degradacji materiałów izolacyjnych. W takiej sytuacji ważne jest, aby regularnie kontrolować stan przewodów i zainstalować systemy monitoringu, które pomogą wcześniej wykryć potencjalne problemy i zapobiec poważnym uszkodzeniom. Dobre praktyki branżowe sugerują, aby instalacje były projektowane z uwzględnieniem odpowiednich zabezpieczeń oraz regularnych przeglądów technicznych, co pozwoli na minimalizację ryzyka wystąpienia zwarć doziemnych i poprawi trwałość systemu.

Pytanie 38

Który typ podłoża wspomaga przekazywanie ciepła do kolektora gruntowego?

A. Twardy i piaszczysty
B. Wilgotny i piaszczysty
C. Wilgotny i gliniasty
D. Suchy i gliniasty

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'Wilgotny i gliniasty' jest jak najbardziej trafna. Grunt gliniasty, kiedy jest odpowiednio wilgotny, świetnie przewodzi ciepło. Woda działa tu jak superbohater, bo sprawia, że ciepło łatwiej przemieszcza się do kolektora gruntowego. W praktyce, systemy geotermalne, które bazują na tym typie gruntu, często mają lepszą wydajność niż inne. Jak dobrze zaprojektujesz taki system, to możesz efektywnie korzystać z energii zgromadzonej w ziemi do ogrzewania budynków. To wszystko jest zgodne z dobrymi praktykami w budownictwie ekologicznym. Różne standardy, jak te od ASHRAE, mówią, jak ważny jest dobór odpowiedniego gruntu, bo to ma wpływ na energooszczędność systemów grzewczych.

Pytanie 39

Kocioł na pellet o mocy poniżej 25 kW powinien być umiejscowiony w kotłowni w taki sposób, aby przestrzeń pomiędzy tylną częścią kotła a ścianą wynosiła co najmniej

A. 1,0 m
B. 0,7 m
C. 1,5 m
D. 2,0 m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 0,7 m jest poprawna, ponieważ zgodnie z obowiązującymi polskimi normami oraz przepisami, minimalna odległość między tyłem kotła a ścianą w przypadku kotłów na pellet o mocy mniejszej niż 25 kW powinna wynosić właśnie 0,7 m. Ta odległość zapewnia odpowiednią cyrkulację powietrza, co jest kluczowe dla efektywności kotła oraz jego bezpieczeństwa. Utrzymanie właściwego odstępu umożliwia także łatwy dostęp do kotła w celu przeprowadzania prac konserwacyjnych i kontroli. Na przykład, w przypadku awarii lub potrzeby czyszczenia wymiennika ciepła, dostępność przestrzeni wokół kotła jest niezbędna. Przestrzeganie tych norm jest istotne, aby uniknąć potencjalnych zagrożeń, takich jak przegrzanie czy niewłaściwa wentylacja, które mogą prowadzić do poważnych uszkodzeń urządzenia lub zagrożeń dla ludzi. Właściwe usytuowanie kotła zgodnie z normami branżowymi wspiera długotrwałą i bezproblemową eksploatację urządzenia. W kontekście instalacji kotłów, warto również zadbać o przestrzeganie zasad bezpieczeństwa i praktyk związanych z instalacjami grzewczymi, co może znacznie poprawić komfort użytkowania.

Pytanie 40

Czujnik pływakowy, który powinien być zamontowany, stanowi zabezpieczenie przed zbyt niskim poziomem wody w kotłach na biomasę?

A. na zasilaniu instalacji c.o. 10 cm poniżej najwyższego punktu kotła
B. na powrocie z instalacji c.o. 10 cm poniżej najwyższego punktu kotła
C. na powrocie z instalacji c.o. 10 cm powyżej najwyższego punktu kotła
D. na zasilaniu instalacji c.o. 10 cm powyżej najwyższego punktu kotła

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujnik pływakowy jest kluczowym elementem zabezpieczającym kotły na biomasę przed niskim poziomem wody. Jego prawidłowe umiejscowienie ma znaczący wpływ na efektywność działania systemu grzewczego. Montaż czujnika na zasilaniu instalacji c.o. 10 cm powyżej najwyższej części kotła pozwala na wczesne wykrywanie spadku poziomu wody, co jest istotne dla zapobiegania uszkodzeniom kotła oraz niebezpieczeństwom związanym z pracą na sucho. W przypadku, gdy poziom wody w kotle spadnie poniżej poziomu czujnika, urządzenie może automatycznie wyłączyć system, co zapobiega dalszym szkodom. Dodatkowo, przestrzeganie zasady montażu czujnika powyżej najwyższej części kotła jest zgodne z dobrą praktyką inżynieryjną oraz normami bezpieczeństwa, takimi jak PN-EN 12952, które określają wymagania dotyczące bezpieczeństwa kotłów. Przykładem zastosowania czujnika pływakowego może być system zasilania biomasą, gdzie efektywne zarządzanie wodą w kotle wpływa na optymalizację zużycia paliwa oraz wydajność energetyczną całego układu.