Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 2 maja 2025 19:42
  • Data zakończenia: 2 maja 2025 20:15

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W specyfikacji technicznej płyty głównej znajduje się zapis Supports up to Athlon XP 3000+ processor. Co to oznacza w kontekście obsługi procesorów przez tę płytę główną?

A. wszystkie o częstotliwości większej niż 3000 MHz
B. wszystkie o częstotliwości mniejszej niż 3000 MHz
C. zgodnie z mobile Athlon 64
D. nie nowsze niż Athlon XP 3000+
Wybór odpowiedzi sugerującej, że płyta główna obsługuje procesory o częstotliwości powyżej 3000 MHz jest błędny, ponieważ specyfikacja nie odnosi się do częstotliwości, lecz do konkretnego modelu procesora. Odpowiedzi te wskazują na nieporozumienie związane z rodzajem wsparcia, jakie płyta główna oferuje. Zapis 'supports up to Athlon XP 3000+' oznacza, że jest to najwyższy model, dla którego płyta została zaprojektowana, a nie sugeruje, że wszystkie procesory o wyższej częstotliwości będą funkcjonować poprawnie. Odpowiedzi dotyczące procesorów o niższej wydajności również nie są precyzyjne, gdyż nie uwzględniają specyfiki architektury procesorów z rodziny Athlon i ich kompatybilności z danym gniazdem. W praktyce, wiele osób może zakładać, że nowsze lub szybsze procesory będą działały wstecznie w starszych płytach głównych, co jest często mylne. Architektura procesorów zmieniała się na przestrzeni lat, co powodowało problemy z kompatybilnością, takie jak różnice w gniazdach (np. Socket A dla Athlon XP w porównaniu do Socket 754 dla Athlon 64). Te błędne założenia mogą prowadzić do nieudanych prób modernizacji sprzętu, co w efekcie wpływa na wydajność i stabilność systemu. Zrozumienie tych zależności jest kluczowe w kontekście budowy i modernizacji komputerów, a ignorowanie specyfikacji płyty głównej może prowadzić do poważnych problemów technicznych.

Pytanie 2

Protokół ARP (Address Resolution Protocol) służy do konwersji adresu IP na

A. adres e-mailowy
B. adres fizyczny
C. nazwa komputera
D. domenę
Wydaje mi się, że nie do końca złapałeś, jak ARP działa. To, że ARP mapuje adresy IP na adresy sprzętowe, to kluczowa informacja. Odpowiedzi dotyczące adresu e-mail, nazwy domenowej czy nazwy komputera pokazują, że nie wszystko jest jasne, bo te pojęcia są zupełnie inne. Adres e-mail to coś, co używasz w aplikacjach pocztowych, a nie w komunikacji na poziomie sieci, więc nie ma związku z tym, co robi ARP. Nazwa domenowa z kolei to część systemu DNS, który przekształca nazwy na adresy IP, ale też nie ma nic wspólnego z MAC. Co do nazwy komputera, to ona dotyczy komunikacji w wyższych warstwach, ale nie w kontekście ARP. Te nieporozumienia pokazują, jak ważne jest, by znać różne warstwy modelu OSI i protokoły, które tam funkcjonują. Często mylą się różne pojęcia, co prowadzi do niejasności. Dobrze jest zrozumieć, jak to wszystko działa, bo to kluczowa wiedza dla każdego specjalisty IT. ARP to jeden z tych podstawowych tematów, które warto znać.

Pytanie 3

Co się stanie, jeśli w systemie operacyjnym komputera zainstalowany zostanie program określany jako Trojan?

A. optymalizację działania systemu operacyjnego
B. ochronę systemu operacyjnego przed działaniem wirusów
C. wykonywanie niepożądanych działań poza kontrolą użytkownika
D. wspomaganie działania użytkownika
Ochrona systemu operacyjnego przed wirusami to ważna sprawa, ale musisz wiedzieć, że Trojany nie są zaprojektowane, żeby robić coś dobrego dla twojego systemu. Właśnie, one są stworzone po to, by wyrządzać szkody, a nie poprawiać działanie. Często ludzie mylą złośliwe oprogramowanie z narzędziami, które mają pomóc w lepszym działaniu systemu. A to nie tak, bo zainstalowanie złych programów może spowolnić wszystko, a nie przyspieszyć. I w ogóle, Trojany działają w sposób, który jest sprzeczny z tym, co zazwyczaj chce użytkownik. Ludzie często myślą, że każda aplikacja, którą mają, przynosi korzyści. Ważne jest, żeby zrozumieć, że programy takie jak Trojany mogą działać w tle i robić rzeczy, o których nie mamy pojęcia, co czyni je naprawdę niebezpiecznymi. Dlatego korzystanie z dobrego oprogramowania antywirusowego i dbanie o bezpieczeństwo to kluczowe rzeczy w walce z tymi zagrożeniami.

Pytanie 4

Zapis liczby w systemie oznaczonym jako #108 to

A. heksadecymalnym
B. oktalnym
C. binarnym
D. dziesiętnym
Wybranie innej opcji może wynikać z nieporozumienia dotyczącego różnych systemów liczbowych oraz ich oznaczeń. System oktalny, oznaczający liczby w podstawie 8, używa cyfr od 0 do 7. W związku z tym, zapis #108 mógłby sugerować, że liczba jest zapisana w systemie oktalnym, jednak w takim przypadku nie byłoby użycia znaku #, co jest jednoznacznie związane z systemem heksadecymalnym. Z kolei system binarny, który wykorzystuje jedynie dwie cyfry – 0 i 1 – również nie pasuje do tego zapisu, gdyż liczby binarne nie są zazwyczaj przedstawiane z przedrostkiem #. System dziesiętny, najbardziej powszechnie stosowany w codziennych obliczeniach, opiera się na podstawie 10 i nie wymaga oznaczeń, jak w przypadku systemów heksadecymalnych czy binarnych. Typowym błędem myślowym jest mylenie notacji oraz założeń dotyczących reprezentacji danych. Kluczowe w nauce o systemach liczbowych jest zrozumienie, że różne notacje mają swoje specyficzne zastosowania w informatyce i matematyce. Aby uniknąć pomyłek, warto zwracać uwagę na konwencje przyjęte w danym kontekście, a także zaznajomić się z typowymi zastosowaniami każdego z systemów liczbowych. W praktyce programistycznej znajomość systemów liczbowych jest niezbędna do interpretacji danych oraz efektywnego programowania w różnych językach, które często wymagają precyzyjnego posługiwania się zapisami liczbowymi.

Pytanie 5

W jakim gnieździe należy umieścić procesor INTEL CORE i3-4350- 3.60 GHz, x2/4, 4MB, 54W, HD 4600, BOX, s-1150?

Ilustracja do pytania
A. rys. D
B. rys. B
C. rys. C
D. rys. A
Wybór nieodpowiedniego gniazda dla procesora Intel Core i3-4350 może skutkować nieprawidłowym funkcjonowaniem komputera lub nawet fizycznym uszkodzeniem procesora bądź płyty głównej. Procesory te wymagają gniazda LGA 1150 co oznacza że jakiekolwiek inne gniazda takie jak LGA 1151 lub LGA 1155 nie będą kompatybilne z tym modelem. Gniazdo LGA 1150 charakteryzuje się specyficznym układem styków i mechanizmem mocującym który nie pasuje do innych rodzajów gniazd. Próba montażu w nieodpowiednim gnieździe może prowadzić do niebezpiecznych zwarć i trudności ze stabilnością systemu. Pomyłki te często wynikają z braku znajomości specyfikacji technicznych oraz z mylenia podobnie wyglądających gniazd co podkreśla znaczenie dokładnego sprawdzania dokumentacji technicznej. Świadomość poprawnego standardu gniazda jest kluczowa nie tylko dla zapobiegania uszkodzeniom ale także dla maksymalizacji wydajności systemu i wykorzystania pełnego potencjału procesora co jest szczególnie istotne w profesjonalnych zastosowaniach gdzie wymagana jest wysoka niezawodność i wydajność.

Pytanie 6

Na ilustracji ukazany jest tylny panel stacji roboczej. Strzałką wskazano port

Ilustracja do pytania
A. DisplayPort
B. USB 3.0
C. eSATA
D. HDMI
Oznaczony port na rysunku to DisplayPort który jest szeroko stosowanym złączem cyfrowym w nowoczesnych komputerach i urządzeniach multimedialnych. DisplayPort został zaprojektowany przez VESA (Video Electronics Standards Association) jako standard do przesyłania sygnałów audio i wideo z komputera do monitora. Wyróżnia się wysoką przepustowością co umożliwia przesyłanie obrazu w rozdzielczościach 4K i wyższych oraz obsługę technologii HDR. DisplayPort wspiera również przesyłanie wielokanałowego dźwięku cyfrowego co czyni go idealnym rozwiązaniem dla zaawansowanych zastosowań multimedialnych. W kontekście praktycznym DisplayPort umożliwia podłączenie wielu monitorów do jednego źródła wideo dzięki technologii Daisy Chain co jest korzystne w środowiskach pracy wymagających rozszerzonego pulpitu. Dodatkowo złącze to jest kompatybilne z innymi interfejsami takimi jak HDMI dzięki adapterom co zwiększa jego uniwersalność. Warto zauważyć że w porównaniu z innymi portami wideo DisplayPort oferuje bardziej niezawodną blokadę mechaniczną zapobiegającą przypadkowemu odłączeniu kabla co jest szczególnie ważne w środowiskach korporacyjnych. Zrozumienie funkcjonalności i zastosowań DisplayPort jest kluczowe dla specjalistów IT i inżynierów systemowych którzy muszą zapewnić optymalną jakość obrazu i dźwięku w swoich projektach.

Pytanie 7

Który z rodzajów rekordów DNS w systemach Windows Server określa alias (inną nazwę) dla rekordu A związanej z kanoniczną (rzeczywistą) nazwą hosta?

A. PTR
B. CNAME
C. NS
D. AAAA
Rekord CNAME (Canonical Name) jest kluczowym elementem w systemie DNS, który pozwala na definiowanie aliasów dla innych rekordów. Jego podstawową funkcją jest wskazywanie alternatywnej nazwy dla rekordu A, co oznacza, że zamiast wpisywać bezpośrednio adres IP, możemy użyć bardziej przyjaznej dla użytkownika nazwy. Na przykład, zamiast korzystać z adresu IP serwera aplikacji, możemy ustawić rekord CNAME, który będzie odnosił się do łatwiejszej do zapamiętania nazwy, jak 'aplikacja.example.com'. Takie podejście znacznie ułatwia zarządzanie infrastrukturą sieciową, szczególnie w sytuacjach, gdy adresy IP mogą się zmieniać. Dzięki zastosowaniu rekordu CNAME, administratorzy mogą uniknąć konieczności aktualizacji wielu wpisów DNS w przypadku zmiany adresu IP, co jest zgodne z najlepszymi praktykami w zakresie zarządzania DNS oraz pozwala na szybsze i bardziej elastyczne zarządzanie zasobami sieciowymi. Dodatkowo, rekordy CNAME mogą być wykorzystywane do kierowania ruchu do różnych usług, takich jak serwery pocztowe czy serwery FTP, co daje dużą elastyczność w konfiguracji usług sieciowych.

Pytanie 8

Podaj domyślny port używany do przesyłania poleceń (command) w serwerze FTP

A. 25
B. 110
C. 20
D. 21
Porty 25, 110 oraz 20 są często mylone z portem 21 w kontekście różnorodnych protokołów komunikacyjnych. Port 25 jest standardowo wykorzystywany przez protokół SMTP (Simple Mail Transfer Protocol), który jest odpowiedzialny za przesyłanie e-maili. W wielu przypadkach, użytkownicy mogą mylić te dwa protokoły, zwłaszcza gdy rozważają przesyłanie plików jako część procesu komunikacji. Zrozumienie różnicy między FTP a SMTP jest kluczowe, ponieważ koncentruje się na różnych zastosowaniach oraz typach przesyłanych danych. Port 110 jest zarezerwowany dla protokołu POP3 (Post Office Protocol version 3), który służy do pobierania wiadomości e-mail z serwera. Użytkownicy mogą błędnie uznać, że POP3 i FTP są wymienne, ponieważ oba dotyczą transferu danych, jednak ich funkcje i zastosowania są całkowicie różne. Port 20 jest używany do transferu danych w trybie aktywnym FTP, a nie do przekazywania poleceń. W trybie aktywnym, po połączeniu na porcie 21, serwer FTP używa portu 20 do przesyłania danych do klienta. Pomyłki dotyczące portów FTP mogą prowadzić do nieprawidłowej konfiguracji serwerów, co w konsekwencji może wpłynąć na bezpieczeństwo oraz efektywność transferu plików. Wiedza na temat właściwych portów oraz protokołów jest więc istotnym elementem dla każdego, kto zarządza sieciami lub systemami przesyłania plików.

Pytanie 9

Wypukłe kondensatory elektrolityczne w module zasilania monitora LCD mogą doprowadzić do uszkodzenia

A. przycisków umieszczonych na panelu monitora
B. inwertera oraz podświetlania matrycy
C. układu odchylania poziomego
D. przewodów sygnałowych
Uszkodzenia spowodowane spuchniętymi kondensatorami elektrolitycznymi w sekcji zasilania monitora LCD nie mają bezpośredniego wpływu na przewody sygnałowe, układ odchylania poziomego oraz przyciski na panelu monitora. Przewody sygnałowe są odpowiedzialne za przesyłanie informacji między źródłem sygnału a ekranem, a ich działanie jest niezależne od kondensatorów zasilających. Ponadto, układ odchylania poziomego, który kontroluje poziome skanowanie obrazu, również nie jest bezpośrednio związany z kondensatorami w sekcji zasilania, ponieważ jego funkcjonowanie opiera się na innych komponentach, takich jak tranzystory czy układy scalone, które nie są wrażliwe na fluktuacje napięcia w zasilaniu. Z kolei przyciski na panelu monitora są elementami interfejsu użytkownika, które, mimo że mogą być zasilane przez tę samą sekcję, nie są krytyczne dla funkcji zasilania, a ich awaria nie jest typowym skutkiem problemów z kondensatorami. Typowe błędy myślowe prowadzące do tych niepoprawnych wniosków obejmują mylenie funkcji komponentów oraz niepełne zrozumienie zależności między nimi. Dobrą praktyką jest zrozumienie całkowitego obwodu oraz interakcji między różnymi komponentami, co pozwoli na skuteczniejszą diagnostykę i naprawę. W kontekście elektryki i elektroniki warto zawsze odwoływać się do dokumentacji technicznej oraz standardów branżowych, aby uzyskać pełny obraz funkcjonowania danego urządzenia.

Pytanie 10

W systemie Linux do obserwacji aktywnych procesów wykorzystuje się polecenie

A. df
B. watch
C. ps
D. free
Polecenie 'ps' (process status) jest kluczowym narzędziem w systemach operacyjnych Unix i Linux, używanym do monitorowania bieżących procesów. Dzięki niemu można uzyskać szczegółowy wgląd w działające aplikacje, ich identyfikatory procesów (PID), status oraz zużycie zasobów. Typowe zastosowanie polecenia 'ps' obejmuje analizy wydajności systemu, diagnozowanie problemów oraz zarządzanie procesami. Na przykład, używając polecenia 'ps aux', użytkownik może zobaczyć wszelkie uruchomione procesy, ich właścicieli oraz wykorzystanie CPU i pamięci. To narzędzie jest zgodne z dobrymi praktykami, które zalecają monitorowanie stanu systemu w celu optymalizacji jego działania. Rekomendowane jest również łączenie 'ps' z innymi poleceniami, na przykład 'grep', aby filtrować interesujące nas procesy, co zdecydowanie zwiększa efektywność zarządzania systemem.

Pytanie 11

Ustalenie adresów fizycznych MAC na podstawie adresów logicznych IP jest efektem działania protokołu

A. ARP
B. HTTP
C. DNS
D. DHCP
Protokół DNS (Domain Name System) odpowiada za tłumaczenie nazw domen na adresy IP, co jest kluczowe dla lokalizowania zasobów w Internecie. W przeciwieństwie do ARP, DNS nie zajmuje się mapowaniem adresów IP na adresy MAC; jego głównym celem jest ułatwienie użytkownikom internetu dostępu do stron za pomocą nazw przyjaznych dla człowieka, zamiast skomplikowanych adresów numerycznych. Użycie DNS w kontekście pytania prowadzi do mylnego przekonania, że funkcje mapowania adresów są ze sobą powiązane, co jest błędne. Protokół HTTP (Hypertext Transfer Protocol) to protokół aplikacji, który umożliwia przesyłanie danych w sieci, szczególnie tekstów, obrazów i innych zasobów. HTTP nie ma związku z mapowaniem adresów i odpowiedzialne jest za komunikację na poziomie aplikacji, a nie na poziomie sieciowym, jak to ma miejsce w przypadku ARP. Protokół DHCP (Dynamic Host Configuration Protocol) służy do automatycznego przydzielania adresów IP urządzeniom w sieci, nie zajmuje się on jednak identyfikowaniem adresów MAC. Błędne wybranie którejkolwiek z tych opcji może wynikać z niepełnego zrozumienia ról poszczególnych protokołów w architekturze sieciowej. W praktyce każdy z tych protokołów pełni kluczową, ale odmienną rolę, a ich funkcje nie są zamienne. Zrozumienie właściwych zastosowań protokołów i ich różnic jest istotne dla skutecznego zarządzania sieciami komputerowymi.

Pytanie 12

Na załączonym rysunku przedstawiono

Ilustracja do pytania
A. lokalizator kabli
B. ściągacz do izolacji
C. nóż do terminacji
D. złączak konektorów
Lokalizator przewodów to naprawdę fajne narzędzie, które pomaga nam znaleźć i śledzić przewody w różnych instalacjach elektrycznych i telekomunikacyjnych. W zasadzie to urządzenie składa się z nadajnika, co emituje sygnał elektryczny, i odbiornika, który ten sygnał łapie wzdłuż trasy przewodu. Dzięki temu możemy szybko znaleźć przewody, które są schowane w ścianach czy pod ziemią – to naprawdę przydatne, zwłaszcza gdy przychodzi czas na naprawy czy modernizacje. Warto też dodać, że lokalizatory są nie tylko dla instalacji elektrycznych, ale i sieciowych, co jest mega ważne w różnych biurach czy fabrykach. No i nie możemy zapominać o tym, że według standardów branżowych, musimy być dokładni i bezpieczni, pracując z tymi instalacjami. Dobre praktyki mówią, że trzeba regularnie kalibrować taki sprzęt, żeby działał jak należy. Jak widzisz, znajomość obsługi lokalizatora przewodów jest niezbędna dla techników, co zajmują się elektryką, telekomunikacją czy IT. To naprawdę zwiększa efektywność i pozwala zaoszczędzić czas przy rozwiązywaniu problemów.

Pytanie 13

To narzędzie może być wykorzystane do

Ilustracja do pytania
A. mierzenia długości analizowanego kabla sieciowego
B. podgrzewania i montażu elementów elektronicznych
C. dbania o czystość drukarki
D. pomiaru napięcia w zasilaczu
Urządzenie przedstawione na zdjęciu to multimetr cęgowy który jest wykorzystywany do pomiaru różnych parametrów elektrycznych w tym napięcia prądu zmiennego i stałego. Multimetry są kluczowym narzędziem w pracy elektryków i inżynierów elektronicznych ponieważ umożliwiają dokładne pomiary niezbędne do diagnostyki i konserwacji urządzeń elektrycznych. Pomiar napięcia jest jedną z podstawowych funkcji multimetru i polega na podłączeniu sond pomiarowych do odpowiednich punktów w układzie elektrycznym. Multimetry mogą również mierzyć inne wielkości jak prąd czy opór co czyni je niezwykle wszechstronnymi. W kontekście bezpieczeństwa i zgodności z normami takimi jak IEC 61010 użytkowanie multimetru wymaga znajomości jego funkcji i właściwej obsługi. Regularna kalibracja jest również kluczowa aby zapewnić dokładność pomiarów. Multimetry cęgowe dodatkowo umożliwiają pomiar prądu bez konieczności rozłączania obwodu co zwiększa ich funkcjonalność w sytuacjach gdzie rozłączanie obwodu jest trudne lub niemożliwe. Multimetr jest więc niezbędnym narzędziem w pracy z zasilaczami i innymi urządzeniami elektrycznymi umożliwiając precyzyjne i bezpieczne pomiary napięcia.

Pytanie 14

Który z protokołów pełni rolę protokołu połączeniowego?

A. TCP
B. IP
C. UDP
D. ARP
Protokół TCP (Transmission Control Protocol) jest uznawany za protokół połączeniowy, co oznacza, że przed przesłaniem danych nawiązuje trwałe połączenie między nadawcą a odbiorcą. W przeciwieństwie do protokołów bezpołączeniowych, takich jak UDP (User Datagram Protocol), TCP zapewnia niezawodność dostarczania danych dzięki mechanizmom kontroli błędów i retransmisji. Przykładem zastosowania TCP jest protokół HTTP, który jest fundamentem działania stron internetowych. Gdy przeglądarka nawiązuje połączenie z serwerem, TCP ustala parametry połączenia, a następnie gwarantuje, że dane (np. treść strony) są dostarczane w poprawnej kolejności i bez błędów. Dzięki temu użytkownicy mogą mieć pewność, że otrzymują pełne i poprawne informacje. W standardach branżowych TCP jest często używany w aplikacjach, które wymagają wysokiej niezawodności, takich jak transfer plików (FTP) czy poczta elektroniczna (SMTP).

Pytanie 15

Adres IP urządzenia, zapisany jako sekwencja 172.16.0.1, jest przedstawiony w systemie

A. dwójkowym
B. szesnastkowym
C. ósemkowym
D. dziesiętnym
Adres IP 172.16.0.1 jest zapisany w systemie dziesiętnym, co oznacza, że każda liczba w tej sekwencji jest wyrażona w standardowym formacie dziesiętnym. Adresy IP w wersji 4 (IPv4) składają się z czterech oktetów, z których każdy jest reprezentowany jako liczba całkowita w zakresie od 0 do 255. System dziesiętny jest najczęściej używany do prezentacji adresów IP, co ułatwia ich odczyt i zapamiętanie przez użytkowników. Przykładem zastosowania adresów IP jest konfiguracja urządzeń w sieci lokalnej czy przydzielanie adresów IP przez serwery DHCP. W praktyce, standardy takie jak RFC 791 określają zasady dotyczące struktury adresów IP, w tym ich przedstawianie. Użycie systemu dziesiętnego w adresach IP jest zgodne z najlepszymi praktykami w dziedzinie inżynierii sieciowej, zapewniając przejrzystość i ułatwiając diagnostykę problemów sieciowych.

Pytanie 16

Aby użytkownicy lokalnej sieci mogli korzystać z przeglądarek do odwiedzania stron WWW za pomocą protokołów HTTP i HTTPS, brama internetowa musi umożliwiać ruch na portach

A. 80 i 443
B. 80 i 434
C. 90 i 434
D. 90 i 443
Odpowiedź 80 i 443 jest prawidłowa, ponieważ port 80 jest standardowym portem dla protokołu HTTP, a port 443 dla HTTPS. Kiedy użytkownik przegląda stronę internetową, jego przeglądarka wysyła żądanie do serwera, a serwer odpowiada, przesyłając dane na określonym porcie. Port 80 obsługuje komunikację niezabezpieczoną, podczas gdy port 443 obsługuje komunikację szyfrowaną, co zapewnia bezpieczeństwo danych przesyłanych między użytkownikiem a serwerem. Zastosowanie tych portów jest zgodne z normami IANA, które zarządzają listą portów oraz przypisaniami protokołów. Przykładowo, podczas zakupu online lub logowania do konta bankowego, przeglądarka używa portu 443, aby zabezpieczyć komunikację, co zapobiega przechwytywaniu danych przez nieautoryzowane osoby. W praktyce, aby zapewnić prawidłowe funkcjonowanie stron internetowych, administratorzy sieci muszą skonfigurować bramy lub zapory ogniowe, aby umożliwić ruch na tych portach, co jest kluczowe dla zaawansowanych operacji sieciowych oraz bezpieczeństwa.

Pytanie 17

Jaki adres IP w formacie dziesiętnym odpowiada adresowi IP 10101010.00001111.10100000.11111100 zapisanym w formacie binarnym?

A. 171.15.159.252
B. 171.14.159.252
C. 170.14.160.252
D. 170.15.160.252
Adres IP zapisany w systemie binarnym 10101010.00001111.10100000.11111100 można przekształcić na system dziesiętny poprzez konwersję każdej z czterech oktetów. W pierwszym oktetach mamy 10101010, co odpowiada 128 + 32 + 8 + 2 = 170. Drugi oktet, 00001111, to 0 + 0 + 0 + 8 + 4 + 2 + 1 = 15. Trzeci oktet, 10100000, daje 128 + 0 + 0 + 0 = 160. Ostatni oktet, 11111100, to 128 + 64 + 32 + 16 + 8 + 4 = 252. Zatem pełny adres IP w systemie dziesiętnym to 170.15.160.252. Adresy IP są kluczowe w komunikacji sieciowej, a ich poprawna konwersja jest niezbędna w zarządzaniu sieciami. W praktyce, w sytuacjach takich jak konfiguracja routerów czy firewalli, znajomość konwersji adresów IP pozwala na skuteczniejsze zarządzanie, lepsze zabezpieczenie sieci oraz efektywniejsze planowanie zasobów.

Pytanie 18

Jakim sposobem zapisuje się dane na nośnikach BD-R?

A. poprzez zastosowanie lasera niebieskiego
B. z wykorzystaniem lasera czerwonego
C. przy użyciu światła UV
D. dzięki głowicy magnetycznej
Wybór odpowiedzi związanych z innymi technologiami zapisu, jak światło UV, głowica magnetyczna czy laser czerwony, wynika z nieporozumienia dotyczącego technologii wykorzystywanych w różnych typach nośników danych. Światło UV jest wykorzystywane w technologii zapisu na niektórych rodzajach płyt optycznych, takich jak płyty CD-RW, ale nie jest to metoda stosowana w dyskach Blu-ray. Głowice magnetyczne są z kolei charakterystyczne dla dysków twardych i nie mają zastosowania w technologii optycznej. Natomiast laser czerwony, który operuje na długości fali około 650 nm, jest używany w tradycyjnych napędach DVD oraz CD, jednak nie jest wystarczająco precyzyjny, aby umożliwić zapis na dyskach BD-R o dużej gęstości. Te nieporozumienia mogą wynikać z braku zrozumienia różnic pomiędzy technologiami optycznymi a magnetycznymi, a także z mylnego założenia, że wszystkie nośniki optyczne działają na podobnej zasadzie. W dzisiejszych czasach, gdy ilość danych do przechowywania rośnie, kluczowe jest stosowanie odpowiednich technologii dostosowanych do specyficznych potrzeb, co podkreśla znaczenie zastosowania lasera niebieskiego w dyskach BD-R.

Pytanie 19

Na schemacie przedstawiono podstawowe informacje dotyczące ustawień karty sieciowej. Do jakiej klasy należy adres IP przypisany do tej karty?

Ilustracja do pytania
A. Klasa C
B. Klasa B
C. Klasa D
D. Klasa A
Adres IP 192.168.56.1 należy do klasy C co wynika z jego pierwszego oktetu który mieści się w zakresie od 192 do 223 Adresy klasy C są szeroko stosowane w małych sieciach lokalnych ze względu na możliwość posiadania do 254 hostów w jednej podsieci co jest idealne dla wielu przedsiębiorstw i organizacji o umiarkowanej wielkości Klasa C jest częścią standardowego modelu klasowego IP opracowanego w celu uproszczenia rozdzielania adresów IP Przez wyznaczenie większej liczby adresów sieciowych z mniejszą liczbą hostów Klasa C odpowiada na potrzeby mniejszych sieci co jest korzystne dla firm które nie potrzebują dużego zakresu adresów IP Dodatkowo adresy z puli 192.168.x.x są częścią zarezerwowanej przestrzeni adresowej dla sieci prywatnych co oznacza że nie są routowane w Internecie Zgodność z tym standardem zapewnia stosowanie odpowiednich praktyk zarządzania adresacją IP oraz bezpieczeństwa sieciowego dzięki czemu sieci prywatne mogą być bezpiecznie używane bez ryzyka kolizji z publicznymi adresami IP

Pytanie 20

Jak określa się typ licencji, który pozwala na pełne korzystanie z programu, lecz można go uruchomić tylko przez ograniczoną, niewielką liczbę razy od momentu instalacji?

A. Adware
B. Donationware
C. Box
D. Trialware
Trialware to rodzaj licencji, która pozwala na używanie oprogramowania przez określony czas lub do momentu osiągnięcia ograniczonej liczby uruchomień. Jest to często stosowane w kontekście oprogramowania, które ma na celu zachęcenie użytkowników do zakupu pełnej wersji po okresie próbnej. Przykładem mogą być programy antywirusowe, które oferują pełną funkcjonalność przez 30 dni, po czym wymagają zakupu licencji, aby kontynuować korzystanie. W praktyce, trialware pozwala użytkownikowi na przetestowanie funkcji programu przed podjęciem decyzji o inwestycji. W branży oprogramowania, ta strategia marketingowa jest uznawana za standard, ponieważ daje użytkownikom możliwość oceny jakości produktu bez pełnego zobowiązania finansowego. Warto zwrócić uwagę na różne implementacje trialware, które mogą różnić się długością okresu próbnego oraz liczbą możliwych uruchomień, co powinno być jasno określone w umowie licencyjnej. Dobrą praktyką jest również oferowanie użytkownikom wsparcia technicznego podczas okresu próbnego, co może zwiększyć szanse na konwersję na płatny model.

Pytanie 21

Które stwierdzenie odnoszące się do ruterów jest prawdziwe?

A. Działają w warstwie łącza danych
B. Działają w warstwie transportowej
C. Podejmują decyzje o przesyłaniu danych na podstawie adresów IP
D. Podejmują decyzje o przesyłaniu danych na podstawie adresów MAC
Ruterzy są urządzeniami, które pełnią kluczową rolę w przesyłaniu danych w sieciach komputerowych, ale ich działanie nie jest związane z warstwą transportową ani z warstwą łącza danych, jak sugerują niepoprawne odpowiedzi. Warstwa transportowa, zgodnie z modelem OSI, obejmuje protokoły takie jak TCP i UDP, które odpowiedzialne są za zapewnienie niezawodności transmisji danych oraz zarządzanie przepływem. Rutery nie podejmują decyzji w tej warstwie, lecz koncentrują się na warstwie sieciowej, gdzie operują na adresach IP. Z kolei warstwa łącza danych, obejmująca protokoły takie jak Ethernet, zajmuje się przesyłaniem danych w obrębie pojedynczej sieci lokalnej. Odpowiedzi koncentrujące się na adresach MAC są mylące, ponieważ rutery nie wykorzystują tych adresów, które są używane głównie w ramach lokalnych sieci do komunikacji między urządzeniami. Ruterzy działają w oparciu o protokoły routingu, które operują na wyższej warstwie adresowania, co jest niezbędne do efektywnego kierowania pakietów przez różne sieci. Typowym błędem myślowym jest mieszanie funkcji różnych warstw modelu OSI, co prowadzi do nieporozumień na temat roli ruterów. Aby poprawnie zrozumieć działanie sieci komputerowych, ważne jest, aby mieć na uwadze, jak różne warstwy komunikują się ze sobą oraz jakie protokoły są odpowiedzialne za konkretne zadania.

Pytanie 22

Liczbie 16 bitowej 0011110010101110 wyrażonej w systemie binarnym odpowiada w systemie szesnastkowym liczba

A. 3CBE
B. 3DAE
C. 3CAE
D. 3DFE
Liczba 16-bitowa 0011110010101110 zapisana w systemie dwójkowym odpowiada liczbie szesnastkowej 3CAE. Aby przeliczyć liczbę z systemu binarnego na szesnastkowy, możemy podzielić dane na grupy po cztery bity, co jest standardową praktyką, ponieważ każda cyfra szesnastkowa odpowiada czterem bitom. W tym przypadku mamy: 0011 (3), 1100 (C), 1010 (A), 1110 (E). Tak więc 0011 1100 1010 1110 daje nam 3CAE w systemie szesnastkowym. Umiejętność konwersji liczb między systemami liczbowymi jest niezwykle ważna w dziedzinie informatyki i programowania, szczególnie w kontekście niskopoziomowego programowania, obliczeń w systemach wbudowanych oraz przy pracy z protokołami sieciowymi. Przykładowo, w programowaniu w języku C, często korzysta się z konwersji między tymi systemami przy manipulacji danymi w pamięci. Wiedza na temat systemów liczbowych jest również istotna w zakresie kryptografii oraz analizy danych, gdzie precyzyjna reprezentacja wartości jest kluczowa.

Pytanie 23

Obniżenie ilości jedynek w masce pozwala na zaadresowanie

A. mniejszej liczby sieci i mniejszej liczby urządzeń
B. większej liczby sieci i większej liczby urządzeń
C. mniejszej liczby sieci i większej liczby urządzeń
D. większej liczby sieci i mniejszej liczby urządzeń
Rozumienie, jak modyfikacja maski podsieci wpływa na liczbę dostępnych adresów IP, jest bardzo istotne. Kiedy zwiększamy liczbę jedynek w masce, to w rzeczywistości ograniczamy liczbę dostępnych adresów w sieci, co sprawia, że możemy obsłużyć tylko kilka urządzeń. Niektórzy mogą myśleć, że więcej jedynek=więcej sieci, ale tak nie jest. Mniejsza liczba jedynek w masce to większa liczba adresów dla konkretnej podsieci, ale nie zwiększa liczby sieci. Na przykład w masce /24 mamy 256 adresów, ale już w masce /25 (255.255.255.128), która ma więcej jedynek, liczba dostępnych adresów dla urządzeń spada, co może być frustracją w dużych sieciach. Doświadczeni administratorzy dobrze znają te zasady i stosują subnetting zgodnie z potrzebami swojej sieci, bo nieprzemyślane zmiany mogą narobić niezłych kłopotów.

Pytanie 24

Najkrótszy czas dostępu charakteryzuje się

A. pamięć USB
B. dysk twardy
C. pamięć cache procesora
D. pamięć RAM
Pamięć cache procesora jest najszybszym typem pamięci używanym w systemach komputerowych. Jej główną funkcją jest przechowywanie danych i instrukcji, które są najczęściej używane przez procesor, co znacząco zwiększa wydajność systemu. Cache jest ulokowana w pobliżu rdzenia procesora, co umożliwia błyskawiczny dostęp do danych, znacznie szybszy niż w przypadku pamięci RAM. Zastosowanie pamięci cache minimalizuje opóźnienia związane z odczytem danych z pamięci głównej, co jest kluczowym aspektem w wielu zastosowaniach, takich jak obliczenia naukowe, gry komputerowe czy przetwarzanie grafiki. W praktyce nowoczesne procesory posiadają wielopoziomową architekturę pamięci cache (L1, L2, L3), gdzie L1 jest najszybsza, ale też najmniejsza, a L3 jest większa, ale nieco wolniejsza. Wydajność systemu, zwłaszcza w aplikacjach wymagających dużej mocy obliczeniowej, w dużej mierze zależy od efektywności pamięci cache, co czyni ją kluczowym elementem projektowania architektury komputerowej.

Pytanie 25

W metodzie dostępu do medium CSMA/CD (Carrier Sense Multiple Access with Collision Detection) stacja planująca rozpoczęcie transmisji sprawdza, czy w sieci ma miejsce ruch, a następnie

A. po zauważeniu ruchu w sieci czeka, aż medium stanie się dostępne
B. czeka na żeton pozwalający na rozpoczęcie nadawania
C. wysyła prośbę o rozpoczęcie transmisji
D. oczekuje na przydzielenie priorytetu transmisji przez koncentrator
W metodzie CSMA/CD, kiedy stacja zamierza rozpocząć nadawanie, kluczowym etapem jest nasłuch na obecność sygnału w sieci. Gdy stacja wykryje ruch, musi czekać, aż nośnik będzie wolny. To podejście zapobiega kolizjom, które mogą wystąpić, gdy więcej niż jedna stacja podejmuje próbę nadawania jednocześnie. Czekanie na wolny nośnik jest istotne, ponieważ w przeciwnym razie dane mogą zostać usunięte lub zniekształcone, co wymagałoby ponownego nadawania, prowadząc do obniżenia efektywności sieci. Przykładem zastosowania tej zasady jest tradycyjna sieć Ethernet, gdzie kolizje są sygnalizowane przez specjalny sygnał zwrotny, a stacje muszą ponownie spróbować nadawania po losowym czasie. W praktyce, stosowanie CSMA/CD w sieciach lokalnych jest zgodne z normą IEEE 802.3, która definiuje ramy dla Ethernetu. Przestrzeganie tego wzorca działania jest kluczowe dla utrzymania płynności transmisji danych i minimalizacji opóźnień w komunikacji.

Pytanie 26

Jakim poleceniem w systemie Linux można utworzyć nowych użytkowników?

A. net user
B. usermod
C. useradd
D. usersadd
Polecenie 'useradd' jest podstawowym narzędziem w systemach Linux do zakupu nowych użytkowników. Umożliwia ono administratorom systemu tworzenie kont użytkowników z określonymi atrybutami, takimi jak nazwa użytkownika, hasło, katalog domowy oraz powiązane grupy. W przeciwieństwie do 'usersadd', które jest literówką, 'useradd' jest standardowym poleceniem zgodnym z normami UNIX. Przykładowa komenda, aby dodać nowego użytkownika o nazwie 'janek', to 'sudo useradd janek'. Można także określić dodatkowe opcje, takie jak '-m' do utworzenia katalogu domowego lub '-s' do zdefiniowania domyślnej powłoki użytkownika. Dobre praktyki sugerują stosowanie opcji '-e' do ustalenia daty wygaśnięcia konta oraz '-G' do przypisania użytkownika do dodatkowych grup. Dzięki takim funkcjom, 'useradd' jest niezwykle elastycznym narzędziem, które pozwala na skuteczne zarządzanie użytkownikami w systemie. Zrozumienie jego działania jest kluczowe dla administracyjnych zadań w systemie Linux.

Pytanie 27

Jaka jest maksymalna ilość pamięci RAM w GB, do której może uzyskać dostęp 32-bitowa wersja systemu Windows?

A. 12GB
B. 4GB
C. 2GB
D. 8GB
32-bitowe wersje systemów operacyjnych, takich jak Windows, mają ograniczenia wynikające z architektury procesora. W przypadku 32-bitowego systemu maksymalna ilość adresowalnej pamięci RAM wynosi 4GB. Jednakże, ze względu na zarezerwowane przestrzenie adresowe dla systemu operacyjnego oraz sterowników, w praktyce użytkownicy mogą uzyskać dostęp do około 3.2GB do 3.5GB pamięci. Ograniczenie to wynika z faktu, że część przestrzeni adresowej jest wykorzystywana do zarządzania innymi zasobami systemowymi. W sytuacjach, gdy aplikacje wymagają więcej pamięci, korzysta się z systemów 64-bitowych, które mogą obsługiwać znacznie większe ilości RAM, co jest kluczowe w zastosowaniach wymagających intensywnej obróbki danych, takich jak wirtualizacja, edycja wideo czy zaawansowane obliczenia naukowe. W związku z rosnącymi wymaganiami oprogramowania, przejście na architekturę 64-bitową stało się standardem w branży, co pozwala na efektywniejsze wykorzystanie zasobów komputerowych.

Pytanie 28

Wskaż sygnał, który wskazuje na uszkodzenie karty graficznej w komputerze z BIOS POST od firmy AWARD?

A. 1 długi, 5 krótkich
B. 1 długi, 1 krótki
C. 1 długi, 2 krótkie
D. 1 długi, 9 krótkich
Wszystkie pozostałe odpowiedzi są błędne i wynikają z nieporozumienia dotyczącego sygnałów dźwiękowych generowanych przez BIOS POST firmy AWARD. Odpowiedź "1 długi, 1 krótki" sugeruje, że problem dotyczy jednego z podstawowych komponentów komputera, jak na przykład pamięć RAM, co nie jest zgodne z rzeczywistością w kontekście problemów z kartą graficzną. Z kolei odpowiedzi "1 długi, 5 krótkich" oraz "1 długi, 9 krótkich" mogą być mylnie interpretowane jako wskazanie na inne, rzadziej występujące błędy, które nie są związane z kartą graficzną. Typowe błędy myślowe w tym przypadku wynikają z mylenia sygnalizacji błędów z różnych komponentów systemu, co prowadzi do nieprawidłowych wniosków. Istotne jest, aby zrozumieć, że różne usterki w systemie mogą generować różne wzory sygnałów dźwiękowych, a niektóre z nich mogą być podobne do siebie, co wymaga od użytkownika znajomości dokumentacji oraz schematów kodów błędów. Zachęca się do korzystania z zasobów edukacyjnych oraz dokumentacji technicznej dostarczonej przez producentów, aby unikać nieporozumień podczas diagnozowania problemów sprzętowych.

Pytanie 29

Jakie urządzenie sieciowe powinno zastąpić koncentrator, aby podzielić sieć LAN na cztery odrębne domeny kolizji?

A. Switch'em
B. Routerem
C. Regeneratorem
D. Wszystkie
Wybierając most, regenerator czy przełącznik, można napotkać fundamentalne nieporozumienia dotyczące funkcji tych urządzeń w kontekście segmentacji sieci. Mosty działają na poziomie warstwy drugiej modelu OSI i służą do łączenia dwóch lub więcej segmentów LAN, co pozwala na ich współpracę, ale nie rozdziela domen kolizji. Przełączniki, choć bardziej zaawansowane od mostów, działają na tym samym poziomie i również nie oddzielają domen kolizji, lecz jedynie minimalizują ich występowanie poprzez stworzenie dedykowanych kanałów komunikacji dla poszczególnych urządzeń w obrębie tej samej sieci. Regeneratory z kolei są używane do wzmocnienia sygnału w sieciach, co nie ma nic wspólnego z zarządzaniem domenami kolizji. Użytkownicy często mylą funkcje tych urządzeń, zakładając, że mogą one efektywnie podzielić sieć na mniejsze jednostki. Prawidłowe zrozumienie różnic między tymi technologiami jest kluczowe dla prawidłowego projektowania i zarządzania sieciami komputerowymi. Rutery, w przeciwieństwie do tych urządzeń, operują na wyższym poziomie i są w stanie nie tylko podzielić sieć na różne domeny kolizji, ale także zarządzać ruchem między różnymi sieciami, co czyni je niezbędnym narzędziem w architekturze nowoczesnych sieci.

Pytanie 30

Ramka danych przesyłanych z komputera PC1 do serwera www znajduje się pomiędzy ruterem R1 a ruterem R2 (punkt A). Jakie adresy są w niej zawarte?

Ilustracja do pytania
A. Źródłowy adres IP rutera R1, docelowy adres IP rutera R2, adres źródłowy MAC komputera PC1, adres docelowy MAC serwera
B. Źródłowy adres IP komputera PC1, docelowy adres IP serwera, adres źródłowy MAC rutera R1, adres docelowy MAC rutera R2
C. Źródłowy adres IP komputera PC1, docelowy adres IP serwera, adres źródłowy MAC komputera PC1, adres docelowy MAC serwera
D. Źródłowy adres IP komputera PC1, docelowy adres rutera R2, adres źródłowy MAC komputera PC1, adres docelowy MAC serwera
W przypadku wysyłania danych z komputera PC1 do serwera WWW, ramka, która przemieszcza się między ruterami R1 i R2, zawiera specyficzne informacje. Adres IP źródłowy to adres komputera PC1, ponieważ to on inicjuje połączenie. Adres IP docelowy to adres serwera WWW, gdyż dane mają ostatecznie dotrzeć do tego urządzenia. Na poziomie warstwy łącza danych protokołu Ethernet adresy MAC ulegają zmianie przy każdym przejściu przez ruter. Dlatego adres źródłowy MAC pochodzi od rutera R1, przez który ramka właśnie przeszła, a adres docelowy MAC to adres rutera R2, do którego ramka zmierza przed dalszym przekazywaniem. Takie zachowanie jest zgodne ze standardem IEEE 802.3 i zasadą trasowania w sieciach IP, gdzie adresy MAC są wykorzystywane do komunikacji w sieciach lokalnych, a adresy IP do komunikacji między sieciami. W praktyce, znajomość tego mechanizmu jest kluczowa dla zrozumienia, jak dane są przekazywane w sieciach złożonych z wielu segmentów i urządzeń sieciowych.

Pytanie 31

Liczba 10101110110(2) w systemie szesnastkowym przedstawia się jako

A. 536
B. A76
C. AE6
D. 576
Liczba 10101110110(2) to liczba zapisana w systemie binarnym, która po konwersji do systemu dziesiętnego wynosi 1426. Aby ją przekształcić na system szesnastkowy, dzielimy ją na grupy po cztery bity, zaczynając od prawej strony. Przekształcając 10101110110(2) do postaci 0001 0101 1110 110(2), otrzymujemy 1 5 E 6, co w systemie szesnastkowym zapisuje się jako 576. W praktyce umiejętność konwersji między systemami liczbowymi jest kluczowa w programowaniu, inżynierii komputerowej oraz w elektronice, gdzie często wykorzystuje się systemy binarne i szesnastkowe. Zrozumienie tej konwersji jest również istotne w kontekście formatowania danych w programach, takich jak CSS czy HTML, gdzie kolory często są określane w formacie szesnastkowym. Ponadto, w wielu standardach komunikacyjnych i protokołach, takich jak TCP/IP, właściwe przedstawienie danych w różnych systemach liczbowych jest niezbędne do zapewnienia efektywnej komunikacji.

Pytanie 32

W trakcie instalacji systemu Windows, zaraz po rozpoczęciu instalacji w trybie graficznym, istnieje możliwość otwarcia Wiersza poleceń (konsoli) za pomocą kombinacji klawiszy

A. ALT + F4
B. CTRL + SHIFT
C. CTRL + Z
D. SHIFT + F10
Kombinacje klawiszy, takie jak CTRL + Z, ALT + F4, czy CTRL + SHIFT, nie są odpowiednie dla uruchamiania Wiersza poleceń w kontekście instalacji systemu Windows. Na przykład, CTRL + Z jest używane głównie w aplikacjach do cofania ostatnich czynności, co nie ma zastosowania w kontekście instalacji. Z kolei ALT + F4 jest powszechnie stosowane do zamykania aktywnego okna, co w sytuacji instalacji mogłoby prowadzić do niezamierzonego przerwania procesu, co w konsekwencji może skutkować uszkodzeniem instalacji systemu. Z kolei CTRL + SHIFT nie posiada związku z otwieraniem dodatkowych narzędzi w instalatorze Windows. Te odpowiedzi pokazują typowe błędy myślowe, takie jak przypisywanie niewłaściwych funkcji do znanych skrótów klawiszowych lub brak zrozumienia, w jakim kontekście należy ich używać. Te pomyłki mogą prowadzić do frustracji podczas instalacji, zwłaszcza gdy użytkownicy oczekują szybkiego dostępu do narzędzi diagnostycznych. Dlatego ważne jest, aby zrozumieć, jakie skróty są dostępne i w jaki sposób mogą one ułatwić zarządzanie systemem operacyjnym w różnych fazach jego funkcjonowania.

Pytanie 33

Która z usług na serwerze Windows umożliwi użytkownikom końcowym sieci zaprezentowanej na ilustracji dostęp do Internetu?

Ilustracja do pytania
A. Usługa LDS
B. Usługa drukowania
C. Usługa rutingu
D. Usługa udostępniania
Usługa rutingu jest kluczowym elementem umożliwiającym urządzeniom w sieci lokalnej dostęp do Internetu poprzez przekierowywanie pakietów sieciowych pomiędzy różnymi segmentami sieci. Na serwerach Windows funkcja rutingu jest realizowana poprzez rolę Routing and Remote Access Services (RRAS). Umożliwia ona nie tylko tradycyjny routing, ale także implementację funkcji takich jak NAT (Network Address Translation), co jest niezbędne w przypadku, gdy sieć lokalna korzysta z adresów IP prywatnych. Dzięki NAT, adresy IP prywatne mogą być translokowane na publiczne, co umożliwia komunikację z Internetem. W praktyce, aby skonfigurować serwer do pełnienia roli routera, należy zainstalować usługę RRAS i odpowiednio skonfigurować tablice routingu oraz reguły NAT. Dobrym przykładem zastosowania jest mała firma, gdzie serwer z zainstalowanym RRAS pozwala wszystkim komputerom w sieci lokalnej na dostęp do Internetu, jednocześnie zabezpieczając sieć poprzez kontrolowanie przepływu pakietów i filtrowanie ruchu, zgodnie z najlepszymi praktykami bezpieczeństwa sieciowego.

Pytanie 34

Po podłączeniu działającej klawiatury do któregokolwiek z portów USB nie ma możliwości wyboru awaryjnego trybu uruchamiania systemu Windows. Jednakże, klawiatura funkcjonuje prawidłowo po uruchomieniu systemu w standardowym trybie. Co to sugeruje?

A. uszkodzone porty USB
B. niepoprawne ustawienia BIOS-u
C. uszkodzony zasilacz
D. uszkodzony kontroler klawiatury
Niepoprawne ustawienia BIOS-u mogą być przyczyną problemów z rozpoznawaniem urządzeń peryferyjnych, takich jak klawiatura, w trybie awaryjnym systemu Windows. Ustawienia BIOS-u odpowiadają za inicjalizację sprzętu przed załadowaniem systemu operacyjnego. Jeśli opcje dotyczące USB lub klawiatury są nieprawidłowo skonfigurowane, to system nie będzie w stanie zidentyfikować klawiatury w trybie awaryjnym. Przykładowo, opcja związana z włączeniem wsparcia dla USB może być wyłączona, co skutkuje brakiem możliwości używania klawiatury w trakcie uruchamiania. W praktyce, aby rozwiązać ten problem, użytkownik powinien wejść do BIOS-u (zazwyczaj przy pomocy klawisza DEL, F2 lub F10 tuż po włączeniu komputera) i sprawdzić, czy ustawienia dotyczące USB są aktywne. W zależności od płyty głównej, może być również konieczne włączenie opcji „Legacy USB Support”, która umożliwia wykrycie starszych urządzeń USB. Dbanie o poprawne ustawienia BIOS-u jest kluczowe, aby zapewnić prawidłowe działanie systemu operacyjnego w różnych trybach.

Pytanie 35

Jakim środkiem należy oczyścić wnętrze obudowy drukarki fotograficznej z kurzu?

A. sprężonego powietrza w pojemniku z wydłużoną rurką
B. opaski antystatycznej
C. szczotki z twardym włosiem
D. środka smarującego
Sprężone powietrze w pojemniku z wydłużoną rurką to najlepszy sposób na usunięcie kurzu z wnętrza obudowy drukarki fotograficznej. Użycie takiego sprzętu pozwala na precyzyjne skierowanie strumienia powietrza w trudno dostępne miejsca, co jest istotne, ponieważ kurz gromadzi się w miejscach, gdzie inne narzędzia mogą nie dotrzeć. Przykładowo, w przypadku zjawiska zwanego 'cieniem optycznym', kurz może zakłócać działanie czujników i mechanizmów wewnętrznych, co prowadzi do pogorszenia jakości wydruku. Zgodnie z zaleceniami producentów sprzętu, regularne czyszczenie za pomocą sprężonego powietrza może znacznie wydłużyć żywotność urządzenia oraz poprawić jego wydajność. Ważne jest również, aby używać sprężonego powietrza w odpowiednim ciśnieniu, aby nie uszkodzić delikatnych komponentów. Warto również pamiętać o stosowaniu środka odtłuszczającego przed czyszczeniem, aby zminimalizować osady, które mogą się gromadzić w trakcie użytkowania.

Pytanie 36

W dokumentacji technicznej wydajność głośnika połączonego z komputerem wyraża się w jednostce:

A. kHz
B. J
C. dB
D. W
W dokumentacji technicznej, efektywność głośnika, znana też jako moc akustyczna, podawana jest w decybelach (dB). To taka logarytmiczna miara, która pokazuje, jak głośno gra głośnik w stosunku do jakiegoś poziomu odniesienia. Na przykład, jeśli głośnik ma 90 dB, to znaczy, że jest dwa razy głośniejszy od tego, który ma 87 dB. Używanie dB jest super, bo w sumie ułatwia zrozumienie, jak ludzkie ucho postrzega głośność, która działa w inny sposób niż mogłoby się wydawać. W branży, jak w normach IEC 60268, ustala się jak to wszystko mierzyć i podawać efektywność głośników, a decybele są właśnie tą jednostką, która się używa. Warto też wiedzieć, że w świecie audiofilów, głośniki z wyższą efektywnością (w dB) potrzebują mniej mocy, żeby osiągnąć podobny poziom głośności, co sprawia, że są bardziej praktyczne, zarówno w domach, jak i w profesjonalnych zastosowaniach.

Pytanie 37

W serwerach warto korzystać z dysków, które obsługują tryb Hot plugging, ponieważ

A. można podłączyć i odłączyć dysk przy włączonym zasilaniu serwera
B. prędkość zapisu rośnie do 250 MB/s
C. czas odczytu zwiększa się trzykrotnie w porównaniu do trybu Cable select
D. pojemność dysku wzrasta dzięki automatycznej kompresji danych
Odpowiedź, że w serwerach warto stosować dyski obsługujące tryb Hot plugging, ponieważ możliwe jest podłączenie oraz odłączenie dysku przy włączonym zasilaniu serwera, jest całkowicie trafna. Hot plugging to technologia, która pozwala na wymianę komponentów systemowych bez konieczności wyłączania całego systemu, co jest kluczowe w środowiskach, gdzie dostępność i ciągłość działania są priorytetem. Przykładowo, w centrach danych serwery często muszą być utrzymywane w trybie operacyjnym przez 24 godziny na dobę, co sprawia, że możliwości Hot plugging są niezwykle wartościowe. Dzięki tej technologii można szybko wymieniać uszkodzone dyski lub dodawać nowe, zwiększając pojemność systemu bez przestojów. Warto również zauważyć, że standardy takie jak SAS (Serial Attached SCSI) i SATA (Serial ATA) wprowadziły wsparcie dla Hot plugging, co przyczyniło się do ich popularności w zastosowaniach serwerowych. Dobrą praktyką jest regularne monitorowanie stanu dysków i przygotowanie się na ich wymianę, co umożliwia szybkie działanie w przypadku awarii.

Pytanie 38

W systemach operacyjnych z rodziny Windows odpowiednikiem programu fsck z systemu Linux jest aplikacja

A. icacls
B. erase
C. tasklist
D. chkdsk
'chkdsk' to rzeczywiście to, czego szukałeś. To narzędzie w Windows sprawdza dyski twarde i naprawia różne błędy. W sumie, można je porównać do 'fsck' w Linuxie, bo oba zajmują się sprawdzaniem systemu plików i naprawą uszkodzeń. To przydatna sprawa, zwłaszcza jak system ma problemy z czytaniem danych albo coś się psuje podczas pracy na plikach. Żeby użyć 'chkdsk', wystarczy otworzyć wiersz poleceń jako administrator i wpisać 'chkdsk C:', gdzie 'C' to litera dysku do sprawdzenia. Fajnie jest też robić to regularnie, szczególnie po awarii lub intensywnym użytkowaniu, żeby mieć pewność, że wszystko działa jak należy i że nasze dane są bezpieczne. Warto też wiedzieć, że 'chkdsk' można ustawić, żeby działał automatycznie przy starcie systemu, co pomaga w naprawie problemów jeszcze zanim użytkownik zdąży coś zrobić na problematycznym dysku.

Pytanie 39

Jak wygląda liczba 257 w systemie dziesiętnym?

A. 1 0000 0001 w systemie binarnym
B. FF w systemie szesnastkowym
C. F0 w systemie szesnastkowym
D. 1000 0000 w systemie binarnym
Odpowiedź 1 0000 0001 dwójkowo jest poprawna, ponieważ liczba 257 w systemie dziesiętnym jest równa liczbie 1 0000 0001 w systemie dwójkowym. Przekształcenie liczby dziesiętnej na system dwójkowy polega na wyznaczeniu wartości poszczególnych bitów. W przypadku liczby 257, zaczynamy od największej potęgi dwójki, która mieści się w tej liczbie, czyli 2^8 = 256, a następnie dodajemy 1 (2^0 = 1). W rezultacie otrzymujemy zapis: 1 (256) + 0 (128) + 0 (64) + 0 (32) + 0 (16) + 0 (8) + 0 (4) + 1 (2) + 1 (1), co daje nam ostatecznie 1 0000 0001. Praktyczne zastosowanie tej wiedzy można zauważyć w programowaniu oraz inżynierii komputerowej, gdzie konwersja między systemami liczbowymi jest często wymagana do efektywnego przetwarzania danych. Wiedza ta jest zgodna z ogólnymi standardami reprezentacji danych w systemach komputerowych, co czyni ją istotnym elementem w pracy programisty czy specjalisty IT.

Pytanie 40

Aby uporządkować dane pliku na dysku twardym, zapisane w klastrach, które nie sąsiadują ze sobą, tak aby znajdowały się w sąsiadujących klastrach, należy przeprowadzić

A. defragmentację dysku
B. program chkdsk
C. oczyszczanie dysku
D. program scandisk
Defragmentacja dysku to proces, który reorganizuje dane na dysku twardym w taki sposób, aby pliki zajmowały sąsiadujące ze sobą klastrów, co znacząco zwiększa wydajność systemu. W miarę jak pliki są tworzone, modyfikowane i usuwane, mogą one być zapisywane w różnych, niesąsiadujących ze sobą lokalizacjach. To prowadzi do fragmentacji, co z kolei powoduje, że głowica dysku musi przemieszczać się w różne miejsca, aby odczytać pełny plik. Defragmentacja eliminuje ten problem, co skutkuje szybszym dostępem do danych. Przykładowo, regularne przeprowadzanie defragmentacji na komputerach z systemem Windows, zwłaszcza na dyskach HDD, może poprawić czas ładowania aplikacji i systemu operacyjnego, jak również zwiększyć ogólną responsywność laptopa lub komputera stacjonarnego. Warto pamiętać, że w przypadku dysków SSD defragmentacja nie jest zalecana z powodu innej architektury działania, która nie wymaga reorganizacji danych w celu poprawy wydajności. Zamiast tego, w SSD stosuje się technologię TRIM, która zarządza danymi w inny sposób.