Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 11 kwietnia 2025 10:39
  • Data zakończenia: 11 kwietnia 2025 10:54

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Jaki najniższy przekrój może mieć przewód ochronny w instalacji oświetleniowej, gdy jest umieszczony w tej samej osłonie co przewody robocze?

A. 2,5 mm2
B. 4 mm2
C. 10 mm2
D. 1,5 mm2
Minimalny przekrój przewodu ochronnego w obwodzie oświetleniowym, ułożonym we wspólnej osłonie z przewodami roboczymi, wynosi 1,5 mm2. Zgodnie z Polskimi Normami, takimi jak PN-IEC 60364, przewody ochronne muszą być odpowiednio wymiarowane, aby zapewnić skuteczną ochronę przed porażeniem elektrycznym. Przewód ochronny, często oznaczany jako PE (Protective Earth), ma za zadanie odprowadzenie prądu zwarciowego do ziemi w przypadku uszkodzenia izolacji innych przewodów. W praktyce oznacza to, że zastosowanie przewodu o odpowiednim przekroju jest kluczowe dla bezpieczeństwa instalacji. W przypadku oświetlenia, które często jest wykorzystywane w różnych warunkach, zachowanie tych norm jest szczególnie istotne. Warto również zwrócić uwagę, że w przypadku dłuższych odcinków przewodów lub większych obciążeń zaleca się użycie przewodów o większym przekroju, co zwiększa ich zdolność do przewodzenia prądu bez ryzyka przegrzania. Właściwe dobranie przekroju przewodu ochronnego to kluczowy element projektowania bezpiecznej instalacji elektrycznej.

Pytanie 4

Podłączenie odbiornika II klasy ochronności do gniazda z bolcem ochronnym skutkuje zadziałaniem wyłącznika różnicowoprądowego, natomiast podłączenie do innego gniazda w tym samym obwodzie nie wywołuje reakcji zabezpieczenia, a odbiornik działa normalnie. Jakiego rodzaju usterkę można stwierdzić w pierwszym gnieździe?

A. Zamieniony przewód ochronny z neutralnym
B. Uszkodzona izolacja przewodu fazowego
C. Zamieniony przewód fazowy z neutralnym
D. Odłączony przewód ochronny
Odpowiedź "Zamieniony przewód ochronny z neutralnym" jest prawidłowa, ponieważ w opisanej sytuacji, gdy odbiornik II klasy ochronności podłączony do gniazda ze stykiem ochronnym powoduje zadziałanie wyłącznika różnicowoprądowego, a w innym gniazdku na tym samym obwodzie odbiornik działa prawidłowo, wskazuje na problem z przewodami w pierwszym gnieździe. Zamiana przewodów ochronnego i neutralnego prowadzi do sytuacji, w której przewód neutralny, zamiast pełnić swoją rolę, staje się przewodem ochronnym. W rezultacie, w momencie, gdy odbiornik próbuje pobrać prąd, każdy potencjalny błąd może prowadzić do niebezpiecznego napięcia na obudowie urządzenia, co jest szczególnie niebezpieczne. Przepisy normy PN-IEC 60364 podkreślają znaczenie prawidłowego podłączenia przewodów ochronnych w celu zapewnienia bezpieczeństwa użytkowników. W praktyce, regularne przeglądy instalacji elektrycznych oraz stosowanie kolorów przewodów zgodnych z normami mogą zapobiec takim błędom. Zrozumienie funkcji każdego z przewodów oraz ich poprawne podłączenie jest kluczowe dla bezpieczeństwa i sprawności instalacji elektrycznej.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Jakiej z wymienionych czynności nie przeprowadza się w trakcie oględzin urządzenia napędowego z silnikiem elektrycznym podczas pracy?

A. Sprawdzenia szczotek i szczotkotrzymaczy
B. Sprawdzenia działania systemów chłodzenia
C. Kontroli stanu osłon elementów wirujących
D. Oceny stanu przewodów ochronnych oraz ich podłączenia
Podczas analizy działań związanych z oględzinami urządzenia napędowego z silnikiem elektrycznym, ważne jest zrozumienie, że wiele czynności może być wykonanych w czasie pracy, a inne wymagają zatrzymania silnika. Kontrola stanu osłon części wirujących, sprawdzenie działania układów chłodzenia oraz ocena stanu przewodów ochronnych i ich podłączenia to czynności, które można przeprowadzić bez konieczności zatrzymywania maszyny. Osłony mają kluczowe znaczenie w zapewnieniu bezpieczeństwa, zapobiegając kontaktowi z ruchomymi częściami silnika, co jest zgodne z zasadami BHP oraz standardami ochrony. Kontrola układów chłodzenia jest niezbędna dla zapewnienia prawidłowego funkcjonowania silników elektrycznych, ponieważ ich przegrzanie może prowadzić do awarii. Sporadyczne sprawdzanie przewodów ochronnych oraz ich podłączenia jest istotne z punktu widzenia ochrony elektrycznej, co jest podkreślone w normach PN-IEC 60364, dotyczących instalacji elektrycznych. Ignorowanie tych czynności może prowadzić do poważnych usterek technicznych lub zagrożeń dla zdrowia i życia operatorów. Wiele osób myli te aspekty, myśląc, że wszystkie kontrole można przeprowadzić wyłącznie w czasie postoju urządzenia. To błędne podejście może skutkować ignorowaniem potencjalnych zagrożeń, które mogłyby być zidentyfikowane podczas działania. Dlatego istotne jest, aby operatorzy byli dobrze przeszkoleni i świadomi, które czynności mogą być bezpiecznie wykonane w trakcie użytkowania, a które wymagają zatrzymania urządzenia.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Jaka jest wielkość prądu znamionowego, przy której działają wyzwalacze zwarciowe w wyłącznikach instalacyjnych nadprądowych typu Z?

A. 2 do 3
B. 3 do 5
C. 5 do 10
D. 10 do 20
Złudzenia związane z innymi wartościami krotności prądu znamionowego wynikają często z niepełnego zrozumienia działania wyłączników nadprądowych oraz ich zastosowania w ochronie instalacji elektrycznych. Odpowiedzi sugerujące krotności od 3 do 5, 5 do 10, czy 10 do 20 są błędne, ponieważ wyzwalacze w wyłącznikach typu Z są zaprojektowane do zadziałania w niższym zakresie krotności, co pozwala na skuteczną ochronę delikatniejszych układów przed zbyt dużym prądem. Wyzwalacze w kategoriach 5 do 10 i 10 do 20 zazwyczaj znajdziemy w wyłącznikach typu C lub D, które są przeznaczone do obwodów o wyższej tolerancji na prądy rozruchowe, takich jak obwody z silnikami dużej mocy. Nieprawidłowe podejście do wyboru odpowiednich wyłączników może prowadzić do poważnych problemów, takich jak uszkodzenia sprzętu, które mogłyby być uniknięte dzięki zastosowaniu wyłączników typu Z w odpowiednich aplikacjach. Kluczowym błędem myślowym jest zakładanie, że wyższa krotność zawsze oznacza lepszą ochronę, co jest mylące. Odpowiedni wybór wyłącznika powinien być oparty na charakterystyce obciążenia oraz wymaganiach instalacji, co jest zgodne z normami i dobrymi praktykami w projektowaniu systemów elektroenergetycznych.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Jakie zadanie dotyczy konserwacji instalacji elektrycznej?

A. Wymiana uszkodzonych źródeł światła
B. Modernizacja rozdzielnicy instalacji elektrycznej
C. Instalacja dodatkowego gniazda elektrycznego
D. Zmiana rodzaju zastosowanych przewodów
Wymiana zepsutych źródeł światła to naprawdę istotny kawałek roboty przy konserwacji instalacji elektrycznej. Chodzi o to, żeby nasze oświetlenie działało bez zarzutu i żeby użytkownicy czuli się bezpiecznie. Jak żarówki czy świetlówki się psują, to mogą zdarzyć się nieprzewidziane awarie, a czasem może być to nawet niebezpieczne i prowadzić do pożaru. Fajnie jest pamiętać o regularnej wymianie, bo to zgodne z normami, na przykład PN-EN 50110-1, które mówią, jak dbać o instalacje elektryczne. Dobrym przykładem jest to, jak trzeba kontrolować stan źródeł światła w miejscach publicznych. Ich awaria to nie tylko niewygoda, ale także może zagrażać bezpieczeństwu ludzi. A jeśli wymieniamy te źródła światła na czas, to także dbamy o efektywność energetyczną, co jest zgodne z normami ochrony środowiska.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Jaką liczbę klawiszy oraz zacisków ma tradycyjny jeden łącznik świecznikowy?

A. Dwa klawisze i cztery niezależne zaciski
B. Jeden klawisz i cztery niezależne zaciski
C. Jeden klawisz i trzy niezależne zaciski
D. Dwa klawisze i trzy niezależne zaciski
Klasyczny pojedynczy łącznik świecznikowy, znany również jako łącznik z podwójnym klawiszem, składa się z dwóch klawiszy oraz trzech niezależnych zacisków. Każdy klawisz pozwala na sterowanie oddzielnym obwodem elektrycznym, co umożliwia niezależne włączanie i wyłączanie dwóch źródeł światła lub innych urządzeń elektrycznych. Trzy zaciski są standardem w takim rozwiązaniu – dwa z nich służą do podłączenia fazy (zasilania), natomiast trzeci zacisk jest zaciskiem neutralnym lub wspólnym. Tego typu łączniki są powszechnie stosowane w instalacjach oświetleniowych, szczególnie w pomieszczeniach, gdzie chcemy kontrolować więcej niż jedno źródło światła za pomocą jednego urządzenia. Dzięki użyciu łącznika świecznikowego z dwoma klawiszami, możliwe jest oszczędzenie miejsca oraz ułatwienie dostępu do sterowania oświetleniem, co jest zgodne z nowoczesnymi standardami projektowania wnętrz oraz efektywności energetycznej.

Pytanie 19

W oprawie oświetleniowej należy wymienić uszkodzony kondensator o danych 9 µF/230 VAC/50 Hz. Dobierz dwa kondensatory spośród dostępnych i określ sposób ich połączenia w celu wymiany uszkodzonego.

Dostępne kondensatory:
10 μF/100 VAC/50 Hz
18 μF/100 VAC/50 Hz
2,0 μF/230 VAC/50 Hz
4,0 μF/230 VAC/50 Hz
4,5 μF/230 VAC/50 Hz

A. 4,5 µF i połączyć szeregowo.
B. 4,5 µF i połączyć równolegle.
C. 18 µF i połączyć szeregowo.
D. 18 µF i połączyć równolegle.
Wybór kondensatora o pojemności 4,5 µF i połączenie go szeregowo jest koncepcją, która nie spełnia wymogów wymiany uszkodzonego kondensatora. Połączenie szeregowe powoduje, że łączna pojemność kondensatorów jest mniejsza niż pojedynczej kondensatora; w przypadku dwóch kondensatorów o pojemności 4,5 µF, łączna pojemność wyniesie 2,25 µF, co jest znacznie poniżej wymaganej wartości 9 µF. Warto pamiętać, że połączenie szeregowe zwiększa napięcie pracy układu, ale nie jest odpowiednie w sytuacji, gdy potrzebujemy określonej pojemności. Inną błędną koncepcją jest dobór kondensatorów o pojemności 18 µF. Połączenie takich kondensatorów w szereg również nie przyczyni się do uzyskania wymaganej wartości pojemności; w tym przypadku łączna pojemność wyniesie 9 µF, ale napięcie robocze znacznie wzrosłoby, co stwarza ryzyko uszkodzenia wrażliwych komponentów w obwodzie. W każdej sytuacji, kluczowe jest zapewnienie odpowiedniego dopasowania zarówno pojemności, jak i napięcia pracy, aby uniknąć potencjalnych uszkodzeń urządzenia. Dlatego ważne jest, aby przy wymianie kondensatorów kierować się zarówno teorią, jak i praktycznymi aspektami ich działania w układzie elektrycznym.

Pytanie 20

Korzystając z podanego wzoru i tabeli wyznacz wartość rezystancji izolacji uzwojeń silnika w temperaturze 20 °C, jeżeli rezystancja izolacji uzwojeń tego silnika zmierzona w temperaturze 17 °C wyniosła 7,3 MΩ.

Współczynniki przeliczeniowe K20 dla rezystancji izolacji uzwojeń silników
R20 = K20·Rt
Temperatura w °C01114172023262932
Współczynnik przeliczeniowy K200,670,730,810,901,001,101,211,341,48

A. 8,20 MΩ
B. 6,40 MΩ
C. 8,11 MΩ
D. 6,57 MΩ
Odpowiedzi, które sugerują wartości rezystancji izolacji silnika inne niż 6,57 MΩ, mogą wynikać z mylnych obliczeń oraz błędnego zrozumienia procesu przeliczania rezystancji w różnych temperaturach. Na przykład, jeśli ktoś oblicza rezystancję na podstawie nieodpowiednich współczynników temperatury, może dojść do fałszywego wyniku. Wartości 8,11 MΩ oraz 8,20 MΩ są wynikiem pomylenia współczynników lub niepoprawnego zastosowania wzoru. Często występującym błędem jest ignorowanie faktu, że rezystancja izolacji maleje wraz ze wzrostem temperatury, co jest odwrotnością niektórych parametrów elektrycznych, które mogą wzrastać w takich warunkach. Zrozumienie, jak temperatura wpływa na właściwości materiałów izolacyjnych, jest kluczowe w inżynierii elektrycznej. Dlatego ważne jest, aby nie tylko znać wzory, ale także rozumieć fizyczne zjawiska zachodzące w izolacji. W praktyce, błędne przeliczenie wartości oparte na niewłaściwych danych może prowadzić do poważnych usterek lub uszkodzenia urządzeń, co podkreśla znaczenie dokładności obliczeń i znajomości standardów branżowych, takich jak IEC 60034-1, które promują odpowiednie procedury konserwacyjne i diagnostyczne w obszarze elektrotechniki.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Która z poniższych działań jest zaliczana do czynności konserwacyjnych instalacji elektrycznych w domach i obiektach użyteczności publicznej?

A. Instalacja nowych punktów świetlnych
B. Wymiana uszkodzonych gniazd wtyczkowych
C. Przesunięcie miejsc montażu opraw oświetleniowych
D. Zamiana zużytych urządzeń na nowe
Wymiana uszkodzonych gniazd wtyczkowych jest kluczowym elementem prac konserwacyjnych instalacji elektrycznych w mieszkaniach oraz budynkach użyteczności publicznej. Gniazda wtyczkowe stanowią bezpośredni punkt dostępu do energii elektrycznej, a ich uszkodzenie może prowadzić do poważnych zagrożeń, takich jak zwarcia, pożary czy porażenia prądowe. Właściwe utrzymanie gniazd wtyczkowych zgodnie z normami PN-IEC 60364 oraz PN-EN 60669 zapewnia bezpieczeństwo użytkowników i niezawodność instalacji. Wymiana uszkodzonych gniazd powinna być przeprowadzana przez wykwalifikowanych elektryków, którzy potrafią ocenić stan instalacji oraz wybrać odpowiednie komponenty do wymiany. Praktycznym przykładem jest sytuacja, gdy w wyniku uszkodzenia mechanicznego gniazdo nie działa poprawnie, co może wpływać na funkcjonalność podłączonych urządzeń. Regularne przeglądy oraz wymiana uszkodzonych części to praktyka zgodna z zasadami bezpieczeństwa i efektywności energetycznej.

Pytanie 24

Wymagana izolacja przewodów używanych w trójfazowej sieci niskiego napięcia 230/400 V powinna wynosić co najmniej

A. 450/750 V
B. 100/100 V
C. 300/500 V
D. 300/300 V
Izolacja przewodów stosowanych w sieci trójfazowej niskiego napięcia 230/400 V powinna być wykonana na poziomie co najmniej 300/500 V, co jest zgodne z obowiązującymi normami IEC 60227 oraz IEC 60502. Tego rodzaju izolacja zapewnia odpowiednią ochronę przed przebiciem i krótko-terminowymi napięciami, które mogą wystąpić w trakcie normalnej eksploatacji instalacji elektrycznej. Przykładowo, w systemach zasilania budynków komercyjnych, gdzie przewody muszą być odporne na różne warunki otoczenia, zastosowanie przewodów o klasie izolacji 300/500 V jest standardem, który zapewnia długotrwałość oraz bezpieczeństwo użytkowników. Warto również zauważyć, że wyższe klasy izolacji, takie jak 450/750 V, są stosowane w bardziej wymagających aplikacjach, jak instalacje przemysłowe, ale w przypadku typowych instalacji niskonapięciowych, klasa 300/500 V jest wystarczająca i zalecana.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Które z przedstawionych parametrów dotyczą wyłącznika silnikowego?

  • Napięcie zasilania 230 V AC
  • Styk separowany 2P
  • Zakres nastawy czasu 0,1 s ÷ 576 h
  • Rodzaje funkcji A, B, C, D
  • Ilość modułów 1
  • Stopień ochrony IP 20
  • Napięcie znamionowe łączeniowe 230/400 V AC
  • Prąd znamionowy 25 A
  • Prąd znamionowy różnicowy 100 mA
  • Stopień ochrony IP 40
  • Max. moc silnika 1,5 kW
  • Zakres nastawy wyzwalacza przeciążeniowego It = 2,5 ÷ 4 A
  • Zakres nastawy wyzwalacza zwarciowego Im = 56 A
  • Prąd znamionowy 20 A
  • Napięcie znamionowe 24 V AC
  • Konfiguracja zestyków 1 NO + 1 NC
  • Ilość modułów 1
  • Znamionowa moc przy napięciu 230 V: 4 kW
A.B.C.D.

A. C.
B. B.
C. A.
D. D.
Wybór odpowiedzi, która nie odnosi się do parametrów wyłącznika silnikowego, wskazuje na nieporozumienie dotyczące funkcji i zastosowania tego urządzenia w systemach elektrycznych. Wyłączniki silnikowe mają na celu ochronę silników przed przeciążeniem oraz zwarciem, a ich kluczowymi parametrami są maksymalna moc, prąd znamionowy oraz czas reakcji. Niezrozumienie tych podstawowych zasad może prowadzić do poważnych konsekwencji w kontekście bezpieczeństwa i efektywności instalacji elektrycznych. Nieopatrzne wybieranie wyłącznika bez znajomości jego maksymalnych parametrów może skutkować uszkodzeniem silnika, co wiąże się z kosztownymi naprawami oraz przestojami w pracy. Ponadto, brak wiedzy na temat standardów, takich jak IEC 60947-4-1, może prowadzić do zastosowania niewłaściwych rozwiązań, które nie spełniają wymogów bezpieczeństwa. Zrozumienie koncepcji dotyczących wyłączników silnikowych i ich specyfikacji jest kluczowe dla inżynierów oraz techników zajmujących się projektowaniem i utrzymywaniem infrastruktury elektrycznej. Dlatego ważne jest, aby zwracać uwagę na szczegółowe parametry techniczne przy doborze wyłącznika, aby uniknąć typowych błędów, które mogą wyniknąć z niedostatecznej wiedzy lub ignorancji branżowych standardów.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Jakie może być najczęstsze uzasadnienie nadpalenia izolacji jednego z przewodów neutralnych w listwie N rozdzielnicy w mieszkaniu?

A. Zbyt duża moc urządzenia
B. Zbyt duży przekrój uszkodzonego przewodu
C. Błędnie dobrana wartość nominalna wyłącznika nadprądowego
D. Luźne połączenie w listwie neutralnej
Źle dobrana wartość znamionowa wyłącznika nadprądowego nie jest bezpośrednią przyczyną nadpalenia izolacji przewodu neutralnego. Wyłącznik nadprądowy ma na celu ochronę instalacji przed przeciążeniem i zwarciem, a jego dobór powinien być zgodny z wymaganiami obciążeniowymi instalacji, co określa norma PN-IEC 60947. W przypadku, gdy wyłącznik jest zbyt mały, może on zadziałać przy przeciążeniu, ale nie spowoduje bezpośrednio uszkodzenia izolacji przewodu. Zbyt duży przekrój przewodu także nie prowadzi do nadpalenia izolacji; w rzeczywistości, większy przekrój przewodu oznacza mniejsze opory i mniejsze nagrzewanie. Z kolei zbyt duża moc odbiornika może prowadzić do przeciążenia, ale kluczowe jest to, że nie ma to wpływu na przewód neutralny, jeśli instalacja jest poprawnie wykonana i zabezpieczona. W praktyce, nadpalenie izolacji wynika głównie z problemów z połączeniami, a nie z parametrów przewodów czy wyłączników. Należy zatem pamiętać, że każdy komponent w instalacji elektrycznej ma swoje funkcje, a właściwe połączenia są kluczowe dla bezpieczeństwa całej instalacji.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Jaki jest najmniejszy błąd pomiaru natężenia prądu wynoszącego 30 mA, gdy używamy cyfrowego miliamperomierza z wyświetlaczem do 2 miejsc po przecinku oraz miernika o określonej dokładności?

A. ±2,5% + 1 cyfra
B. ±1,5% + 3 cyfry
C. ±1,0% + 4 cyfry
D. ±2,0% + 2 cyfry
Wybór błędnych opcji wynika często z niepełnego zrozumienia zasad działania mierników oraz błędnego interpretowania wartości procentowych i cyfr. Na przykład odpowiedzi z dokładnością ±2,0% + 2 cyfry czy ±1,5% + 3 cyfry oferują znacznie większy margines błędu, co sprawia, że ​​są mniej odpowiednie do precyzyjnych pomiarów. Przy odpowiedzi ±2,0% + 2 cyfry, maksymalny błąd wyniósłby 30 mA × 2,0% + 2 cyfry, co daje 0,6 mA + 0,02 mA, czyli 0,62 mA, a to już znacznie przekracza akceptowalny poziom dokładności w wielu zastosowaniach. Podobnie, dla ±1,5% + 3 cyfry, obliczenia prowadzą do maksymalnego błędu 0,45 mA + 0,03 mA, czyli 0,48 mA. Te wartości są niewystarczające w kontekście aplikacji, które wymagają dużej precyzji. W praktyce, większa dokładność miernika pozwala na dokładniejsze przyrządzanie obwodów elektronicznych oraz zmniejsza ryzyko wystąpienia błędów w obliczeniach związanych z analizą danych. W branży inżynieryjnej, ważne jest, aby dobierać urządzenia zgodnie z wymaganiami pomiarowymi, co przekłada się na jakość i wiarygodność wyników.

Pytanie 33

Jakim przyrządem dokonuje się pomiaru rezystancji izolacyjnej przewodu?

A. Miernik pętli zwarcia
B. Megaomomierz
C. Induktorowy miernik uziemień
D. Omomierz
Omomierz jest urządzeniem używanym do pomiaru niskich wartości rezystancji, co czyni go niewłaściwym wyborem do pomiarów izolacji przewodów. Mierzy on rezystancję w zakresie małych wartości, a jego zastosowanie w pomiarach izolacji może prowadzić do nieprawidłowych wyników. W przypadku izolacji, która powinna mieć bardzo wysoką rezystancję, omomierz może nie dostarczyć wystarczających informacji o stanie izolacji, ponieważ jego pomiar odbywa się przy znacznie niższym napięciu. Miernik pętli zwarcia jest przeznaczony do testowania impedancji pętli zwarcia w instalacjach elektrycznych, co jest całkowicie inną funkcjonalnością. Urządzenie to służy do pomiaru bezpieczeństwa, ale nie jest używane do oceny izolacji przewodów. Induktorowy miernik uziemień natomiast koncentruje się na pomiarze rezystancji uziemienia, a nie na izolacji przewodów. Błędne jest więc przypuszczenie, że jakiekolwiek z tych urządzeń mogłoby zastąpić megaomomierz w kontekście testów izolacyjnych. Użycie niewłaściwego miernika może prowadzić do błędnych diagnoz i poważnych problemów z bezpieczeństwem elektrycznym.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Jakiego urządzenia należy użyć, aby zweryfikować ciągłość przewodu podczas instalacji?

A. Omomierza
B. Watomierza
C. Amperomierza
D. Megaomomierza
Omomierz jest instrumentem pomiarowym, który służy do określania oporu elektrycznego w obwodach. Użycie omomierza do sprawdzenia ciągłości przewodów instalacyjnych jest standardową praktyką w branży elektrycznej. Narzędzie to pozwala na ocenę, czy przewody są poprawnie podłączone i czy nie ma w nich przerw, co jest kluczowe dla bezpieczeństwa i efektywności instalacji. Przykładowo, podczas montażu instalacji elektrycznej w budynkach mieszkalnych, omomierz może być użyty do testowania połączeń między różnymi elementami systemu, co zapewnia, że żadne przerwy w przewodzeniu nie zakłócą działania urządzeń. Dobrą praktyką jest również pomiar oporu izolacji, co może zapobiec potencjalnym awariom i zagrożeniom pożarowym. Warto pamiętać, że w przypadku wyniku wskazującego na wysoką wartość oporu, może to oznaczać problem z przewodem, który należy rozwiązać przed zakończeniem instalacji.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.