Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 3 czerwca 2025 14:55
  • Data zakończenia: 3 czerwca 2025 15:08

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

System centralnego ogrzewania z pompą ciepła, która wykorzystuje ciepło z gruntu jako jedyne źródło ciepła, określa się mianem układu

A. ambiwalentnym
B. kombinowanym
C. monowalentnym
D. biwalentnym
Instalacja centralnego ogrzewania z pompą ciepła, która korzysta wyłącznie z energii geotermalnej, nazywana jest układem monowalentnym. Oznacza to, że system ten jako jedyne źródło ciepła zaspokaja potrzeby grzewcze budynku, co jest szczególnie korzystne w kontekście efektywności energetycznej. W takich systemach pompa ciepła pozyskuje ciepło z gruntu, co pozwala na wykorzystanie odnawialnych źródeł energii. Przykłady zastosowania to domy jednorodzinne, które mogą korzystać z gruntowych wymienników ciepła, jak kolektory poziome czy pionowe sondy geotermalne. Warto zaznaczyć, że projektowanie i instalacja takich systemów powinny opierać się na normach, takich jak PN-EN 14511, które regulują klasyfikację pomp ciepła oraz ich wydajność. W praktyce, układy monowalentne mogą wykazywać wysoką efektywność i przyczyniać się do znacznych oszczędności energii oraz redukcji emisji CO2, co jest zgodne z nowoczesnymi trendami w budownictwie ekologicznym.

Pytanie 2

Aby chronić linię napowietrzną przed skutkami wyładowań atmosferycznych, jakie zabezpieczenie powinno być zastosowane?

A. wyłącznik nadprądowy
B. bezpieczniki mocy
C. wyłącznik różnicowoprądowy
D. ogranicznik przepięciowy
Ogranicznik przepięciowy jest kluczowym elementem zabezpieczeń stosowanych w liniach napowietrznych, mającym na celu ochronę infrastruktury elektrycznej przed skutkami wyładowań atmosferycznych. Działa on poprzez ograniczenie napięcia, które może pojawić się w wyniku skoków napięcia spowodowanych wyładowaniami atmosferycznymi, co pozwala na ochronę urządzeń elektrycznych przed uszkodzeniem. Przykładem zastosowania ograniczników przepięciowych są instalacje elektroenergetyczne, w których są one montowane w pobliżu transformatorów oraz przy wejściu do budynków, aby zminimalizować ryzyko uszkodzenia sprzętu. Zgodnie z normami IEC 61643-11, które określają wymagania dla ochronników przepięciowych, ich dobór powinien być dokładnie przemyślany, uwzględniając maksymalne napięcia robocze oraz energię, którą mogą pochłonąć. Należy również pamiętać, że ograniczniki przepięciowe powinny być regularnie sprawdzane i wymieniane w przypadku uszkodzenia, aby zapewnić ciągłość ochrony. Stosowanie ich w instalacjach elektrycznych jest uznawane za dobrą praktykę, ponieważ zapobiega kosztownym naprawom oraz przestojom związanym z awariami sprzętu. Właściwe zabezpieczenie infrastruktury elektrycznej przed wyładowaniami atmosferycznymi jest kluczowe dla bezpieczeństwa i niezawodności systemów energetycznych.

Pytanie 3

Gdy prędkość wiatru zwiększy się dwukrotnie, to energia wiatru wzrośnie

A. dwukrotnie
B. ośmiokrotnie
C. czterokrotnie
D. dziesięciokrotnie
Odpowiedź, że energia wiatru wzrasta ośmiokrotnie, jest poprawna, ponieważ energia kinetyczna ruchu wiatru jest proporcjonalna do kwadratu prędkości wiatru. Wzór na energię kinetyczną wyraża się jako E = 0,5 * m * v², gdzie 'E' to energia, 'm' to masa powietrza, a 'v' to prędkość. Gdy prędkość wiatru wzrasta dwukrotnie, to energia wzrasta zgodnie z równaniem: E' = 0,5 * m * (2v)² = 0,5 * m * 4v² = 4 * (0,5 * m * v²) = 4E. Jednakże, gdy bierzemy pod uwagę, że ruch powietrza ma nie tylko składową poziomą, ale również wpływa na siłę wiatru, która jest kluczowa w kontekście turbin wiatrowych, to w rzeczywistości wzrost ośmiokrotny jest związany z innymi parametrami, takimi jak gęstość powietrza i efektywność turbiny. Taka wiedza jest niezbędna w projektowaniu systemów energetycznych opartych na energii wiatrowej, co jest kluczowe w kontekście zrównoważonego rozwoju i osiągania celów odnawialnych źródeł energii.

Pytanie 4

W przypadku, gdy źródłem ciepła są wody gruntowe lub powierzchniowe, a temperatura może być niższa od zera, którą z pomp ciepła należy zastosować?

A. woda - woda
B. grunt - woda
C. powietrze - woda
D. solanka - woda
Zastosowanie pomp ciepła typu grunt - woda, powietrze - woda lub woda - woda w kontekście pobierania ciepła z wód gruntowych lub powierzchniowych, szczególnie w warunkach niskotemperaturowych, jest niewłaściwe, ponieważ każda z tych opcji ma istotne ograniczenia. Pompy grunt - woda są optymalne w sytuacji, gdy ciepło pozyskiwane jest z gruntu, a nie z wód, co sprawia, że ich efektywność w kontekście wód gruntowych jest ograniczona. Z kolei pompy powietrze - woda działają na zasadzie pozyskiwania ciepła z powietrza, co w warunkach mroźnych może prowadzić do znacznych spadków wydajności i wymaga często dodatkowego źródła ciepła, co jest nieefektywne energetycznie. W przypadku pomp woda - woda, chociaż mogą one pobierać ciepło z wód gruntowych, ich zastosowanie może być problematyczne w obszarach, gdzie temperatura wód może przekraczać zera lub w przypadku, gdy następuje zamarzanie. Tak więc, pomimo że wszystkie te typy pomp mają swoje zastosowania, to nie są one najbardziej efektywne ani praktyczne w kontekście pozyskiwania ciepła w warunkach niskotemperaturowych z wód gruntowych czy powierzchniowych. Kluczowym błędem myślowym jest brak uwzględnienia specyfiki medium, z którego ciepło ma być pozyskiwane, co prowadzi do nieodpowiedniego doboru technologii grzewczych.

Pytanie 5

Pompa ciepła jest wyposażona w sprężarkę o mocy elektrycznej P = 3 kW. Jaką ilość energii z sieci pobierze sprężarka w ciągu roku (365 dni), jeśli codziennie, systematycznie, pompa pracuje przez 4 godziny?

A. 1460 kWh
B. 3650 kWh
C. 1095 kWh
D. 4380 kWh
Wybór odpowiedzi, która nie jest równa 4380 kWh, może wynikać z kilku błędnych założeń dotyczących obliczeń związanych z zużyciem energii. Kluczowym błędem jest niewłaściwe zrozumienie jednostek i koncepcji energii. Niektórzy mogą błędnie obliczać dzienne zużycie, nie uwzględniając czasu pracy sprężarki przez 4 godziny, co prowadzi do pominięcia istotnego aspektu. Na przykład, jeśli ktoś obliczy moc na rok, myśląc o stałym poborze mocy przez całą dobę, zamiast skupić się na rzeczywistym czasie pracy, może dojść do nieprawidłowych wniosków. Ponadto, typowym błędem jest zignorowanie faktu, że roczne zużycie energii nie jest tylko prostym mnożeniem mocy przez liczbę dni; trzeba uwzględnić rzeczywisty czas działania urządzenia. Aby skutecznie obliczać zużycie energii, ważne jest zrozumienie, że powinniśmy zawsze analizować zarówno moc, czas pracy, jak i warunki pracy urządzenia. Nadmierne uproszczenie tego procesu bez staranności może prowadzić do znacznych różnic w oszacowaniach, co w praktyce może skutkować nieprawidłowym planowaniem kosztów i nieefektywnym zarządzaniem energią.

Pytanie 6

Podaj aktualną wartość współczynnika przewodzenia ciepła dla zewnętrznej ściany pomieszczenia, gdzie temperatura wynosi 20°C, zgodnie z rozporządzeniem dotyczącym warunków technicznych, jakim powinny odpowiadać budynki oraz ich lokalizacja?

A. Min. 0,25 W/m2K
B. Min. 0,3 W/m2K
C. Maks. 0,25 W/m2K
D. Maks. 0,5 W/m2K
Odpowiedź "Maks. 0,25 W/m2K" jest prawidłowa, ponieważ według aktualnych przepisów zawartych w rozporządzeniu w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie, maksymalna wartość współczynnika przenikania ciepła (U) dla ścian zewnętrznych wynosi właśnie 0,25 W/m2K. Przestrzeganie tych norm jest kluczowe dla zapewnienia odpowiedniej efektywności energetycznej budynków, co ma znaczenie nie tylko dla komfortu mieszkańców, ale również dla ochrony środowiska. W praktyce oznacza to, że przy projektowaniu budynków warto stosować materiały o dobrych właściwościach izolacyjnych, takie jak styropian czy wełna mineralna, aby nie przekroczyć tego limitu. Właściwy dobór materiałów i technologii budowlanych przyczynia się do zmniejszenia strat ciepła, co z kolei prowadzi do niższych kosztów ogrzewania i mniejszej emisji gazów cieplarnianych. To podejście jest zgodne z zasadami zrównoważonego rozwoju oraz polityką energetyczną Unii Europejskiej, która dąży do zwiększenia efektywności energetycznej budynków.

Pytanie 7

Na jakim dokumencie oferent przetargu na montaż instalacji fotowoltaicznej w budynku szkoły opiera swoją propozycję?

A. Plan zagospodarowania przestrzennego
B. Rachunki za energię elektryczną szkoły
C. Specyfikacja istotnych warunków zamówienia
D. Projekt budowlany szkoły
Specyfikacja istotnych warunków zamówienia (SIWZ) jest kluczowym dokumentem w procesie przetargowym, który szczegółowo określa wymagania dotyczące przedmiotu zamówienia, w tym wypadku montażu instalacji fotowoltaicznej. Dokument ten zawiera nie tylko opis zamówienia, ale także kryteria oceny ofert, warunki udziału w postępowaniu oraz inne istotne informacje, które są niezbędne do przygotowania oferty. Przykładowo, SIWZ może zawierać specyfikacje techniczne dotyczące parametrów instalacji, wymagane certyfikaty, oraz wymogi dotyczące dokumentacji powykonawczej. Dzięki temu, oferent ma pełną wiedzę na temat oczekiwań zamawiającego, co pozwala na składanie ofert zgodnych z wymaganiami oraz na właściwe oszacowanie kosztów. W praktyce, stosowanie SIWZ jako podstawy do opracowania oferty jest zgodne z ustawą Prawo zamówień publicznych, co zapewnia transparentność i uczciwość postępowań przetargowych.

Pytanie 8

Jaką objętość może uzupełnić solarna stacja napełniająca, działająca z efektywnością 3 dm3/s, w ciągu dwóch godzin?

A. 32,40 m3
B. 21,60 m3
C. 6,00 m3
D. 10,80 m3
Poprawna odpowiedź to 21,60 m³, co można obliczyć w sposób następujący: stacja napełniająca ma wydajność 3 dm³/s. Aby obliczyć, ile wody stacja może napełnić w ciągu dwóch godzin, najpierw przeliczamy czas na sekundy. Dwa godziny to 2 × 60 minut × 60 sekund = 7200 sekund. Następnie obliczamy całkowitą objętość wody, mnożąc wydajność przez czas: 3 dm³/s × 7200 s = 21600 dm³. Przy przeliczeniu jednostek z dm³ na m³ (1 m³ = 1000 dm³) otrzymujemy 21,60 m³. W praktyce taki kalkulator objętości jest niezwykle przydatny przy projektowaniu systemów nawadniających, instalacji wodociągowych czy też w kontekście zarządzania zasobami wodnymi, gdzie precyzyjne obliczenia mają kluczowe znaczenie dla efektywności i oszczędności. Wiedza o wydajności systemów napełniających jest również istotna w regulacjach dotyczących ochrony środowiska oraz zasobów wodnych.

Pytanie 9

Jakie kształtki należy wykorzystać do wykonania rozłącznych połączeń rur AluPex w systemie podłogowym zintegrowanym z pompą ciepła?

A. zgrzewanie
B. skręcanie
C. zaciskanie
D. klejenie
Skręcanie jest właściwą metodą łączenia rur AluPex w instalacjach podłogowych, zwłaszcza w systemach współpracujących z pompami ciepła. Ta technika pozwala na uzyskanie szczelnych połączeń, które są niezbędne w instalacjach hydraulicznych z niskim ciśnieniem roboczym. W przypadku rur AluPex, które charakteryzują się warstwą aluminium, połączenia skręcane zapewniają doskonałą wytrzymałość mechaniczną i odporność na zmiany temperatury. W praktyce, skręcanie polega na użyciu specjalnych złączek, które są montowane za pomocą klucza, co zapewnia pewność i trwałość połączenia. Zastosowanie tej metody jest zgodne z normami branżowymi, takimi jak PN-EN 12001, które kładą nacisk na bezpieczeństwo i efektywność instalacji. Warto również zaznaczyć, że prawidłowe skręcanie złączek minimalizuje ryzyko wystąpienia przecieków i zwiększa żywotność całego systemu grzewczego.

Pytanie 10

Zestaw paneli fotowoltaicznych składa się z dwóch paneli fotowoltaicznych, regulatora ładowania oraz dwóch akumulatorów 12 V każdy. Aby zasilać tym zestawem urządzenia o napięciu znamionowym 12 V DC, należy podłączyć

A. akumulatory szeregowo
B. panele równolegle
C. akumulatory równolegle
D. panele szeregowo
Poprawna odpowiedź to akumulatory połączone równolegle, co umożliwia uzyskanie niezmiennego napięcia 12 V przy zwiększonej pojemności. Takie połączenie pozwala na zachowanie napięcia każdego z akumulatorów na poziomie 12 V, co jest kluczowe dla urządzeń zasilanych tym napięciem. W praktyce, łącząc akumulatory równolegle, sumujemy ich pojemności, co zwiększa czas pracy zestawu fotowoltaicznego, a jednocześnie nie zmienia napięcia wyjściowego. Na przykład, dwa akumulatory 12 V o pojemności 100 Ah po połączeniu równolegle dadzą 12 V i 200 Ah, co oznacza, że urządzenia mogą być zasilane przez dłuższy czas. Tego rodzaju połączenie jest zgodne z najlepszymi praktykami w dziedzinie energii odnawialnej, zapewniając stabilność zasilania oraz dłuższą żywotność akumulatorów. Równoległe połączenie akumulatorów jest powszechnie stosowane w systemach solarnych, co pozwala na efektywniejsze zarządzanie energią oraz minimalizowanie ryzyka nadmiernego rozładowania jednego z akumulatorów.

Pytanie 11

W standardowych warunkach temperaturowych i ciśnieniowych (STC) do uzyskania mocy nominalnej systemu na poziomie 1 kWp potrzebna będzie powierzchnia 1 m2 modułu, który cechuje się teoretyczną efektywnością wynoszącą 100%. Przeciętna efektywność paneli krystalicznych dostępnych na rynku wynosi około 14%. Dlatego, aby stworzyć farmę fotowoltaiczną o mocy 1 MWp z paneli o tej efektywności nominalnej, całkowita powierzchnia powinna wynosić w przybliżeniu

A. 4 tys. m2
B. 10 tys. m2
C. 7 tys. m2
D. 14 tys. m2
Aby uzyskać moc nominalną 1 MWp za pomocą paneli fotowoltaicznych o sprawności 14%, należy obliczyć powierzchnię potrzebną do ich zainstalowania. Moc nominalna systemu na poziomie 1 kWp wymaga 1 m² modułu o 100% sprawności. Przy sprawności 14% jeden panel o mocy 1 kWp potrzebuje 1 m²/0,14, co daje około 7,14 m² na 1 kWp. Zatem na uzyskanie 1 MWp potrzebujemy 1000 kWp * 7,14 m²/kWp, co daje 7142 m², co można zaokrąglić do 7000 m². To obliczenie jest zgodne z praktykami w branży fotowoltaicznej, które uwzględniają efektywność modułów i ich rozmieszczenie. W praktyce, podczas projektowania farmy fotowoltaicznej, należy również uwzględnić strefy dostępu, unikanie cieniowania oraz odpowiednie ułożenie paneli, co może wpływać na rzeczywistą powierzchnię zajmowaną przez instalację. Dobrze zaprojektowana farma uwzględnia te czynniki, co prowadzi do optymalizacji produkcji energii elektrycznej.

Pytanie 12

Zbyt niska histereza w regulatorze systemu solarnego może skutkować

A. obniżeniem ciśnienia w instalacji
B. częstym włączaniem oraz wyłączaniem pompy
C. częstym działaniem zaworu bezpieczeństwa
D. szybszym zużyciem płynu solarnego
Ustawienie zbyt małej histerezy w sterowniku solarnym może prowadzić do częstego włączania i wyłączania pompy, co jest związane z działaniem systemu regulacji temperatury. Histereza to różnica temperatury, przy której urządzenie przełącza się z trybu pracy na inny, na przykład z ogrzewania na schładzanie. Gdy histereza jest zbyt mała, nawet niewielkie wahania temperatury mogą powodować, że pompa będzie włączać się i wyłączać zbyt często. Taki stan rzeczy może prowadzić do wzrostu zużycia energii, obniżenia efektywności systemu oraz przyspieszonego zużycia mechanicznych elementów pompy. Przykładem dobrych praktyk jest stosowanie histerezy w obrębie od 5 do 10°C w systemach solarnych, co zapewnia stabilność pracy i minimalizuje ryzyko nadmiernego obciążenia komponentów. Warto również pamiętać, że odpowiednie ustawienia histerezy mogą przyczynić się do poprawy komfortu użytkowania, eliminując niepożądane efekty, takie jak hałas związany z częstym włączaniem i wyłączaniem urządzeń.

Pytanie 13

Największy współczynnik przewodzenia ciepła w systemach grzewczych posiada

A. PEX/AL/PEX
B. polibutylen
C. stal
D. miedź
Miedź jest materiałem o najwyższym współczynniku przewodności cieplnej spośród wymienionych opcji, co sprawia, że jest idealnym wyborem w instalacjach grzewczych. Jej przewodność cieplna wynosi około 401 W/(m·K), co jest znacząco wyższe niż w przypadku polibutylenu, stali czy PEX/AL/PEX. Dzięki tej właściwości, miedź szybko i efektywnie przekazuje ciepło, co przekłada się na lepszą wydajność systemów grzewczych. W praktyce, zastosowanie rur miedzianych w instalacjach CO (centralnego ogrzewania) pozwala na szybsze osiągnięcie pożądanej temperatury w pomieszczeniach, co jest kluczowe w kontekście komfortu użytkowników oraz oszczędności energetycznych. Miedź jest również odporna na korozję, co sprawia, że ma długą żywotność, a jej zastosowanie jest zgodne z normami branżowymi, takimi jak PN-EN 1057, regulującymi właściwości rur miedzianych. Dodatkowo, miedź posiada dobre właściwości mechaniczne, co czyni ją atrakcyjnym wyborem w różnych warunkach eksploatacyjnych.

Pytanie 14

W trakcie instalacji płaskich kolektorów słonecznych w słoneczny dzień należy je osłonić, aby zabezpieczyć

A. monterów przed oparzeniami
B. kolektory przed zniszczeniem w wyniku upadku
C. przezroczyste pokrywy przed zanieczyszczeniem
D. pokrycie dachu przed odkształceniami termicznymi
Podstawowe zrozumienie zagrożeń związanych z montażem kolektorów słonecznych jest kluczowe, aby uniknąć niebezpieczeństw wynikających z niewłaściwych praktyk. Przykrycie kolektorów w celu ochrony pokrycia dachowego przed naprężeniami termicznymi jest mylnym podejściem, ponieważ kolektory są projektowane z myślą o pracy w różnych warunkach atmosferycznych, a ich doświadczalne rozprężanie i kurczenie się nie wpływa negatywnie na dach. Dodatkowo, chociaż ochrona kolektorów przed uszkodzeniem w wyniku upadku jest ważna, to nie jest to bezpośrednio związane z ich działaniem w trakcie montażu. Właściwe zabezpieczenie sprzętu powinno być realizowane poprzez stosowanie stabilnych konstrukcji oraz stosowanie platform roboczych. Ochrona pokryw przezroczystych przed zapyleniem, mimo że może być istotnym czynnikiem w kontekście efektywności kolektorów, nie odpowiada na kluczowe zagadnienie bezpieczeństwa monterów. Typowym błędem jest zatem koncentrowanie się na ochronie sprzętu, podczas gdy głównym celem powinno być zapewnienie bezpieczeństwa osobom pracującym. Właściwe praktyki montażowe, jak ochronne przykrycia w odpowiednich warunkach, są niezbędne, aby zminimalizować ryzyko związane z pracą w intensywnym słońcu.

Pytanie 15

Kto tworzy plan budowy domu pasywnego?

A. Kierownik budowy
B. Instalator systemów solarnych
C. Przedsiębiorca
D. Inspektor z działu budownictwa
Wybierając inspektora wydziału budownictwa jako osobę odpowiedzialną za tworzenie harmonogramu budowy domu pasywnego, to nie jest dobry wybór. Inspektor w zasadzie zajmuje się nadzorowaniem zgodności z przepisami budowlanymi i kontrolą jakości wykonania, a nie planowaniem prac. Zazwyczaj to inwestor podejmuje decyzje dotyczące finansów i ogólnych założeń, ale on też nie robi harmonogramu. Jego rola to raczej zlecanie etapów budowy, a szczegóły organizacyjne to już zadanie kierownika budowy. Monter instalacji solarnej z kolei nie ma za dużo do powiedzenia, jeśli chodzi o harmonogram budowy, bo jego zadanie to realizacja konkretnej części projektu. Ważne jest, aby zrozumieć, że każda z tych osób ma inną rolę i odpowiedzialność za harmonogram powinna leżeć na kierowniku budowy, bo to on ma wiedzę i umiejętności do ogarnięcia całego procesu budowlanego. Zrozumienie tych ról jest istotne, by uniknąć zamieszania i błędów na budowie, bo to może prowadzić do opóźnień czy dodatkowych kosztów.

Pytanie 16

Po zakończeniu robót, które są ukryte, należy przeprowadzić odbiór

A. inwestorskiego
B. częściowego
C. końcowego
D. gwarancyjnego
Odbiór częściowy robót budowlanych, które mają być zakryte, jest kluczowym etapem w procesie budowlanym. W tym momencie weryfikowane są wszystkie elementy, które nie będą później dostępne do inspekcji, takie jak instalacje elektryczne, hydrauliczne czy strukturalne. Właściwe przeprowadzenie odbioru częściowego umożliwia potwierdzenie zgodności z projektem budowlanym, przepisami prawa budowlanego oraz normami technicznymi. Przykładowo, przed zamknięciem ścian należy upewnić się, że instalacje są odpowiednio zainstalowane, co zapobiega problemom w przyszłości, takim jak przecieki wody czy awarie elektryczne. Praktyka ta jest zgodna z zasadą „najpierw odbiór, później zakrycie”, co ma na celu minimalizację ryzyka związanych z ukrywaniem defektów. Warto również zaznaczyć, że taki odbiór powinien być dokumentowany, aby zapewnić jasność i przejrzystość w przypadku późniejszych roszczeń gwarancyjnych.

Pytanie 17

Podczas przewozu pompy ciepła szczególnie ważne jest, aby zwrócić uwagę na jej wrażliwość na

A. wilgotność powietrza
B. promienie słoneczne
C. przechylania
D. niską temperaturę
Podczas transportu pompy ciepła szczególnie istotne jest unikanie ich przechylania, ponieważ te urządzenia są wrażliwe na zmiany pozycji, które mogą prowadzić do uszkodzenia ich wewnętrznych komponentów. Przechylanie pompy ciepła może powodować przesunięcia lub uszkodzenia sprężarki, wymienników ciepła oraz systemu chłodzenia. W praktyce, zaleca się transport pompy w pozycji pionowej, aby zminimalizować ryzyko takich uszkodzeń. Warto również pamiętać, że podczas załadunku i rozładunku urządzenia, należy stosować odpowiednie uchwyty i podpory, aby zapewnić stabilność. Dobre praktyki w branży dotyczące transportu pomp ciepła obejmują również stosowanie specjalistycznych opakowań, które amortyzują wstrząsy i drgania. W przypadku transportu na dłuższych dystansach, warto również monitorować warunki atmosferyczne, aby zapewnić, że urządzenie nie jest narażone na niekorzystne czynniki zewnętrzne, ale kluczowe pozostaje zachowanie odpowiedniej pozycji podczas transportu.

Pytanie 18

W skład odnawialnych źródeł energii wchodzą

A. energia wiatru, energia wody, ropa naftowa
B. energia geotermalna, energia biomasy, biogaz
C. węgiel kamienny, węgiel brunatny, gaz ziemny
D. energia geotermalna, energia słoneczna, węgiel
Odpowiedź wskazująca na energię geotermalną, energię biomasy oraz biogaz jako odnawialne źródła energii jest prawidłowa, ponieważ wszystkie te źródła są zdolne do regeneracji w krótkim czasie i nie prowadzą do wyczerpywania zasobów naturalnych. Energia geotermalna wykorzystuje ciepło z wnętrza Ziemi, co sprawia, że jest to jeden z najbardziej stabilnych i niezawodnych źródeł energii. Można ją wykorzystać do ogrzewania budynków oraz do produkcji energii elektrycznej. Energia biomasy, z kolei, jest pozyskiwana z materiałów organicznych, takich jak odpady rolnicze czy drewno, co pozwala na zamianę odpadów w wartościowe źródło energii, przyczyniając się jednocześnie do zrównoważonego rozwoju. Biogaz, wytwarzany z fermentacji organicznych odpadów, może być wykorzystywany jako paliwo do silników czy do produkcji energii elektrycznej. Dobre praktyki branżowe promują rozwój technologii związanych z tymi źródłami, aby zwiększyć efektywność i zmniejszyć emisję gazów cieplarnianych. Te odnawialne źródła energii mają ogromny potencjał w ramach strategii zrównoważonego rozwoju i walki ze zmianami klimatycznymi.

Pytanie 19

Zgodnie z obowiązującymi regulacjami, jaka powinna być minimalna odległość między budynkiem mieszkalnym a elektrownią wiatrową, której maksymalna wysokość wieży razem z promieniem skrzydeł wynosi 150 m?

A. 1500 m
B. 2000 m
C. 500 m
D. 1000 m
Odległość elektrowni wiatrowej od budynków mieszkalnych, która wynosi 1500 m, jest zgodna z przepisami, które mają na celu ochronę zdrowia ludzi i polepszenie komfortu życia. Wysokie wieże i duże skrzydła generują hałas i mogą powodować cieniowanie, co wpływa na mieszkańców. Taka odległość została ustalona na podstawie badań, które pokazują, jak elektrownie wiatrowe oddziałują na pobliską zabudowę, a zasady dobrego sąsiedztwa mówią, że im dalej od budynków, tym mniejsze ryzyko negatywnych skutków. W krajach jak Niemcy czy Dania, gdzie elektrownie wiatrowe są szeroko stosowane, wprowadzone regulacje dotyczące tych odległości pomogły w akceptacji energii odnawialnej. Trzeba też pamiętać, że każda lokalizacja musi brać pod uwagę specyfikę terenu, co może wpłynąć na decyzje dotyczące ustawienia turbin.

Pytanie 20

Aby zainstalować instalację fotowoltaiczną, wymagany jest zakup inwertera o mocy 17 kVA według projektu, którego koszt wynosi 5900 zł. Koszty materiałów pomocniczych stanowią 2,5% wydatków na zakup, co daje wartość

A. 1475,00 zł
B. 1,48 zł
C. 147,5 zł
D. 14,75 zł
Odpowiedź 147,5 zł jest jak najbardziej właściwa. Koszty materiałów pomocniczych obliczamy jako procent od całkowitych kosztów zakupu inwertera. Tu mamy inwerter za 5900 zł, a materiały pomocnicze to 2,5% tej kwoty. Wychodzi to w prosty sposób: 5900 zł pomnożone przez 0,025, co daje nam 147,5 zł. To ważne, żeby tak dokładnie analizować, bo w planowaniu inwestycji w instalacje fotowoltaiczne nie chcemy się za bardzo zdziwić przy wydatkach. W branży energii odnawialnej precyzyjne liczby pozwalają lepiej zarządzać budżetem i przewidywać, co nas czeka w przyszłości. Dobrym zwyczajem jest zawsze pamiętać o dodatkowych kosztach, takich jak materiały pomocnicze, ponieważ one mogą znacząco wpłynąć na cały koszt inwestycji, zwłaszcza w większych projektach solarnych. Dzięki temu lepiej podejmujemy decyzje o finansowaniu i możemy przewidzieć, czy inwestycja będzie opłacalna.

Pytanie 21

Jak należy podłączyć instalację solarną do wymiennika ciepła?

A. do górnej wężownicy wymiennika
B. do dolnej wężownicy wymiennika
C. szeregowo do górnej i dolnej wężownicy wymiennika
D. równolegle do górnej i dolnej wężownicy wymiennika
Podłączenie instalacji solarnej do górnej wężownicy wymiennika ciepła to zły pomysł, bo może prowadzić do wielu problemów z efektywnością systemu. Górna wężownica zazwyczaj odbiera już podgrzaną wodę z dolnej części, więc woda w górnej ma wyższą temperaturę, co sprawia, że ciepła woda z kolektorów może mieć trudności z jej dogrzaniem. Jeśli jeszcze równolegle podłączysz dwa węże, to może być bałagan z rozdzielaniem strumienia ciepła. Poza tym, taka konfiguracja może powodować stagnację ciepłej wody w górnej części wymiennika. Z mojego doświadczenia wynika, że niechciane straty energii to coś, czego można uniknąć, dlatego warto wiedzieć, jak prawidłowo podłączyć te wężownice, aby móc maksymalnie wykorzystać energię słoneczną.

Pytanie 22

Kolor izolacji przewodu łączącego regulator ładowania z dodatnim biegunem akumulatora powinien być

A. czarny
B. brązowy
C. czerwony
D. niebieski
Izolacja przewodu łączącego regulator ładowania z dodatnim zaciskiem akumulatora powinna być w kolorze czerwonym, co jest zgodne z szeroko przyjętymi standardami w branży motoryzacyjnej oraz elektroinstalacyjnej. Kolor czerwony zazwyczaj oznacza przewody zasilające lub dodatnie, co ma na celu ułatwienie identyfikacji i eliminację błędów podczas instalacji. Przykładem dobrych praktyk może być instalacja w systemach fotowoltaicznych, gdzie przewody dodatnie są również oznaczone kolorem czerwonym, co ułatwia ich odróżnienie od przewodów ujemnych, zazwyczaj czarnych. W ten sposób zwiększa się bezpieczeństwo użytkowania, minimalizując ryzyko zwarcia czy błędnego podłączenia. Warto również pamiętać, że zgodnie z normami IEC (International Electrotechnical Commission), stosowanie odpowiednich kolorów dla przewodów zasilających jest istotnym elementem nie tylko dla bezpieczeństwa, ale także dla ułatwienia diagnostyki i serwisowania systemów elektrycznych.

Pytanie 23

Jaki materiał jest najczęściej używany do wytwarzania ogniw fotowoltaicznych?

A. Krzem
B. Miedź
C. Aluminium
D. Stal
Krzem jest najczęściej wykorzystywanym materiałem do produkcji fotoogniw, co wynika z jego unikalnych właściwości półprzewodnikowych. W procesie fotowoltaicznym krzem absorbuje energię świetlną i przekształca ją w energię elektryczną dzięki zjawisku fotowoltaicznemu. Krzem krystaliczny, a także amorficzny, są powszechnie stosowane w ogniwach solarnych. W przypadku krzemu krystalicznego, jego struktura krystaliczna zapewnia wysoką wydajność konwersji energii, co czyni go preferowanym wyborem dla paneli solarnych stosowanych w instalacjach domowych oraz przemysłowych. Ponadto, produkcja ogniw krzemowych jest dobrze rozwinięta, co obniża koszty produkcji i umożliwia masową produkcję. W branży stosowane są standardy, takie jak IEC 61215 i IEC 61730, które dotyczą wydajności oraz bezpieczeństwa fotoogniw. Właściwości krzemu, takie jak łatwość w obróbce oraz stabilność chemiczna, sprawiają, że cały czas pozostaje on kluczowym materiałem w rozwijającym się sektorze energii odnawialnej.

Pytanie 24

Jak określa się rurę łączącą najwyżej usytuowaną część systemu wodnego kotła c.o. na drewno kawałkowe z przestrzenią powietrzną otwartego naczynia wzbiorczego?

A. Przelewowa
B. Odpowietrzająca
C. Bezpieczeństwa
D. Informacyjna
Wybór opcji sygnalizacyjnej, przelewowej lub odpowietrzającej sugeruje pewne nieporozumienia dotyczące funkcji poszczególnych elementów w systemach grzewczych. Rura sygnalizacyjna nie jest elementem, który odprowadza nadmiar wody lub pary, lecz służy do monitorowania poziomu wody lub ciśnienia w systemie, co ma znaczenie dla bezpieczeństwa, ale nie jest jej bezpośrednią funkcją. Przelewowa rura, stosowana w niektórych systemach, ma za zadanie odprowadzać nadmiar cieczy, ale nie jest dedykowana do ochrony przed nadmiernym ciśnieniem, jak rura bezpieczeństwa. Z kolei odpowietrzająca rura ma na celu usunięcie powietrza z systemu, co jest istotne dla jego prawidłowego działania, ale także nie pełni funkcji zabezpieczającej. Mylące może być myślenie, że każde połączenie w systemie grzewczym ma tę samą rolę, co prowadzi do błędów w zakresie projektowania i eksploatacji. Fundamentalną kwestią jest zrozumienie, że każdy z tych elementów ma unikalną funkcję i zastosowanie, co jest kluczowe dla bezpieczeństwa oraz efektywności systemu. Właściwe dobranie rodzaju rury w zależności od jej przeznaczenia ma kluczowe znaczenie dla niezawodności i bezpieczeństwa całej instalacji grzewczej.

Pytanie 25

Do kotła, który spala zrębki, jednorazowo można włożyć 0,5 m3 paliwa. W ciągu jednej doby kocioł powinien być załadowany 3 razy. Jaki będzie koszt paliwa na tydzień, jeśli średnia cena jednostkowa wynosi 50,00 zł za 1 m3?

A. 25,00 zł
B. 150,00 zł
C. 525,00 zł
D. 50,00 zł
Zrozumienie kosztów operacyjnych w kontekście użycia kotłów na biomasę, takich jak kotły spalające zrębki, jest kluczowe dla optymalizacji wydatków. Liczne odpowiedzi sugerują błędne obliczenia, które wynikają z niezrozumienia zasad proporcjonalności oraz jednostek miary. Na przykład, odpowiedzi sugerujące kwoty 50,00 zł lub 25,00 zł wydają się wynikać z nieprawidłowego zrozumienia, jak często należy napełniać kocioł. Nie można przyjąć, że całkowity koszt to cena jednostkowa pomnożona przez pojedynczy załadunek, co prowadzi do rażąco zaniżonych wyników. Ponadto, kwota 150,00 zł wynika z błędnych założeń dotyczących dziennego zużycia paliwa, które nie uwzględniają wymogu trzykrotnego załadunku. Tego typu błędy myślowe mogą prowadzić do poważnych problemów z planowaniem budżetu, a w konsekwencji do nieefektywnego zarządzania zasobami w firmach energetycznych. Aby poprawnie obliczyć tygodniowe koszty, należy dokładnie przeanalizować zarówno dzienne zużycie jak i ilość dni w tygodniu, a także umiejętnie zastosować odpowiednie mnożniki. Takie analizy są fundamentalne w przemyśle, gdzie efektywność kosztowa ma bezpośredni wpływ na konkurencyjność i stabilność finansową przedsiębiorstw.

Pytanie 26

Jakiego rodzaju złączkę powinno się zastosować do łączenia paneli słonecznych?

A. MC4
B. URI
C. WAGO
D. UDW2
Złączki MC4 są standardem w branży fotowoltaicznej, a ich zastosowanie w łączeniu paneli słonecznych jest powszechnie uznawane za najlepszą praktykę. Wyróżniają się one wysoką odpornością na warunki atmosferyczne oraz łatwością montażu, co czyni je idealnym rozwiązaniem dla instalacji PV. Złączki te są zaprojektowane tak, aby zapewnić szczelne i bezpieczne połączenia, co minimalizuje ryzyko korozji i utraty wydajności systemu. Dzięki zastosowaniu złączek MC4, można osiągnąć wysoką wydajność energetyczną oraz długoterminową niezawodność instalacji. Przykładem ich zastosowania jest łączenie modułów w systemach grid-tied, gdzie istotne jest, aby połączenia były stabilne i odporne na działanie promieni UV oraz niskich temperatur. Dodatkowo, złącza MC4 są kompatybilne z szeroką gamą produktów na rynku, co zwiększa ich uniwersalność i ułatwia integrację z innymi komponentami systemu fotowoltaicznego. Używanie złączek MC4 jest zgodne z normami międzynarodowymi, takimi jak IEC 62852, co dodatkowo potwierdza ich wysoką jakość i bezpieczeństwo.

Pytanie 27

Który z przewodów ma oznaczenie ALY?

A. Miedziany, z żyłą jednodrutową i izolacją polwinitową
B. Aluminiowy, z żyłą jednodrutową i izolacją polietylenową
C. Miedziany, z żyłą wielodrutową i izolacją polietylenową
D. Aluminiowy, z żyłą wielodrutową i izolacją polwinitową
Analizując pozostałe odpowiedzi, można zauważyć, że są one związane z przewodami miedzianymi oraz niewłaściwym oznaczeniem materiału i konstrukcji. Przewody miedziane, jak w przypadku pierwszej i trzeciej odpowiedzi, nie są oznaczane jako ALY, gdyż prefiks 'AL' wskazuje na aluminium. Miedź, mimo swoich wielu zalet, takich jak doskonała przewodność elektryczna i odporność na korozję, nie jest wykorzystywana w przewodach oznaczonych tym symbolem. Ponadto, miedź jest znacznie droższa w produkcji, co czyni ją mniej preferowanym materiałem w kontekście ekonomicznym dla dużych instalacji. W odpowiedzi czwartej, wskazano na przewód aluminiowy z żyłą jednodrutową, co również jest błędne. Przewody ALY są projektowane z myślą o żyłach wielodrutowych, co zwiększa ich elastyczność i ułatwia instalację. W przypadku zagadnień dotyczących wyboru odpowiednich przewodów, kluczowe jest zrozumienie, że konstrukcja oraz materiał mają bezpośredni wpływ na ich zastosowanie. Pomijanie tych aspektów prowadzi do wyborów, które mogą nie spełniać wymagań technicznych określonych w normach, co z kolei może skutkować awariami, stratami energetycznymi czy nawet zagrożeniem dla bezpieczeństwa użytkowników.

Pytanie 28

Montaż paneli słonecznych na płaskim dachu został zrealizowany przez jednego instalatora oraz dwóch asystentów. Wartość stawki instalatora wynosi 50,00 zł za każdą godzinę pracy, a stawka asystenta to 20,00 zł. Jaką łączną wartość robocizny można oszacować, jeśli całkowity czas pracy wynosi 8 godzin?

A. 560,00 zł
B. 720,00 zł
C. 960,00 zł
D. 90,00 zł
Kosztorysowa wartość robocizny wynosi 720,00 zł, co wynika z obliczenia całkowitych kosztów pracy instalatora i pomocników przy montażu kolektorów słonecznych. Instalator, którego stawka wynosi 50,00 zł za roboczogodzinę, pracował przez 8 godzin, co daje 400,00 zł (50,00 zł x 8 h). Dodatkowo, dwóch pomocników, zarabiających po 20,00 zł za roboczogodzinę, pracowało również przez 8 godzin. Każdy pomocnik zarobił 160,00 zł (20,00 zł x 8 h), więc dla dwóch pomocników łączny koszt wynosi 320,00 zł (160,00 zł x 2). Suma kosztów wynosi zatem 400,00 zł (instalator) + 320,00 zł (pomocnicy) = 720,00 zł. Taki sposób obliczania kosztów robocizny jest standardem w branży budowlanej i instalacyjnej, gdzie ważne jest uwzględnienie różnorodnych stawek wynagrodzenia oraz czasu pracy wszystkich zaangażowanych pracowników.

Pytanie 29

Z jakiego rodzaju materiału można zrealizować instalację łączącą kolektory słoneczne z zasobnikiem na ciepłą wodę użytkową?

A. Poliamid.
B. Polietylen.
C. Polipropylen.
D. Stal stopowa.
Stal stopowa jest materiałem o wyjątkowych właściwościach mechanicznych i chemicznych, co czyni ją idealnym wyborem do budowy instalacji łączącej kolektory słoneczne z zasobnikiem ciepłej wody użytkowej. Stal stopowa charakteryzuje się wysoką wytrzymałością na ciśnienie oraz korozję, co jest kluczowe w przypadku systemów, które muszą znosić zmienne warunki atmosferyczne oraz wysokie temperatury. Dodatkowo, stal stopowa ma dobrą przewodność cieplną, co wspomaga efektywność wymiany ciepła w instalacji. W praktyce, instalacje wykonane ze stali stopowej są często stosowane w dużych systemach solarnych, gdzie niezawodność i trwałość są kluczowe. Stal stopowa spełnia również wymagania norm takich jak EN 10088, co zapewnia jej wysoką jakość. Ponadto, zastosowanie stalowych rur w instalacjach solarnych jest zgodne z dobrymi praktykami inżynieryjnymi, które zalecają materiały o wysokiej odporności na deformacje i zmęczenie, co minimalizuje ryzyko awarii.

Pytanie 30

Jeśli kolektor słoneczny o powierzchni 2 m2 przy nasłonecznieniu wynoszącym 1 000 W/m2 oddał do systemu 1 400 W energii cieplnej, to jaka jest sprawność urządzenia?

A. 60%
B. 70%
C. 50%
D. 80%
Aby obliczyć sprawność kolektora fototermicznego, należy zastosować wzór: sprawność = (przekazane ciepło / moc napromieniowania) x 100%. W tym przypadku moc napromieniowania wynosi 1 000 W/m2, a powierzchnia kolektora to 2 m2, co daje łączną moc napromieniowania równą 2 000 W (1 000 W/m2 * 2 m2). Kolektor przekazał do instalacji 1 400 W ciepła, więc sprawność wynosi: (1 400 W / 2 000 W) x 100% = 70%. Taka efektywność jest istotna w kontekście projektowania systemów solarnych, ponieważ wyższa sprawność oznacza lepsze wykorzystanie energii słonecznej i niższe koszty eksploatacji. W praktyce, projektanci instalacji solarnych dążą do osiągnięcia jak najwyższej sprawności, aby zminimalizować powierzchnię potrzebną do uzyskania wymaganej ilości energii. Przykładem może być zastosowanie różnych rodzajów powłok absorbujących oraz systemów optymalizacji kątów nachylenia kolektorów, co pozwala na lepsze zbieranie promieniowania słonecznego.

Pytanie 31

Korzystając z danych zamieszczonych w tabeli, wskaż kolektor słoneczny o najwyższej sprawności optycznej.

Rodzaj parametruKolektor 1Kolektor 2Kolektor 3Kolektor 4
Transmisyjność pokrywy przezroczystej0,920,920,860,86
Emisyjność absorbera0,050,850,120,05
Absorpcyjność absorbera0,950,850,950,04

A. Kolektor 1.
B. Kolektor 3.
C. Kolektor 2.
D. Kolektor 4.
Kolektor 1 został wybrany jako ten o najwyższej sprawności optycznej, co jest wynikiem starannej analizy trzech kluczowych parametrów: transmisyjności pokrywy przezroczystej, emisyjności absorbera oraz absorpcyjności absorbera. W praktyce, wysoka transmisyjność oznacza, że większa ilość promieniowania słonecznego przenika przez pokrywę do wnętrza kolektora, co zwiększa efektywność jego działania. Emisyjność absorbera odnosi się do zdolności materiału do emitowania energii cieplnej; niski współczynnik emisyjności jest pożądany, ponieważ minimalizuje straty ciepła. Absorpcja energii słonecznej przez absorber jest kluczowa dla efektywności kolektora. Kolektor 1 osiąga najwyższe wartości w tych trzech kategoriach, co czyni go idealnym wyborem do zastosowań, takich jak ogrzewanie wody użytkowej czy wspomaganie systemów grzewczych w budynkach. W odniesieniu do standardów branżowych, takie podejście do oceny kolektorów słonecznych jest zgodne z normami IEC i ISO, które promują efektywność i zrównoważony rozwój technologii odnawialnych.

Pytanie 32

Wartość robót przewidywana przez inwestora jest ustalana w kosztorysie

A. inwestorskim
B. zamiennym
C. powykonawczym
D. ofertowym
Odpowiedzi 'ofertowym', 'zamiennym' oraz 'powykonawczym' są nieprawidłowe, ponieważ każde z tych pojęć odnosi się do innych etapów i celów w procesie kosztorysowania. Kosztorys ofertowy jest przygotowywany przez wykonawców w celu przedstawienia swojej oferty na realizację robót. Zawiera on szczegółowe wyliczenia, jednak jego celem jest przede wszystkim zdobycie zlecenia, a nie przewidywanie kosztów z perspektywy inwestora. Kosztorys zamienny dotyczy zmian w projekcie lub kosztorysie, które mogą wynikać z konieczności wprowadzenia korekt w trakcie realizacji inwestycji. Nie jest to dokument, który przewiduje koszty na etapie planowania, lecz raczej narzędzie do zarządzania kosztami, gdy zachodzi potrzeba dostosowania się do zmienionych warunków. Kosztorys powykonawczy z kolei sporządzany jest po zakończeniu robót budowlanych i służy do podsumowania rzeczywistych kosztów inwestycji. Zamiast przewidywać wydatki, ten dokument analizuje faktyczne koszty, co czyni go narzędziem retrospektywnym. Wybór jednego z tych rodzajów kosztorysów zamiast kosztorysu inwestorskiego wskazuje na błędne zrozumienie etapu planowania inwestycji oraz roli, jaką odgrywa każdy z tych dokumentów w cyklu życia projektu budowlanego.

Pytanie 33

Jak należy przechowywać kolektory słoneczne?

A. pod wiatą, umieszczone szybą w dół
B. pod wiatą, umieszczone szybą do góry
C. w zamkniętych pomieszczeniach, umieszczone szybą do góry
D. w zamkniętych pomieszczeniach, umieszczone szybą w dół
Kolektory słoneczne fajnie jest przechowywać w zamkniętych pomieszczeniach, w pozycji szybą do góry. Dzięki temu są mniej narażone na działanie różnych warunków atmosferycznych i uszkodzenia. Jak się je trzyma w suchym i wentylowanym miejscu, to zmniejsza się ryzyko kondensacji i korozji, co jest bardzo ważne, bo wilgoć może zniszczyć te urządzenia. Ułożenie szybą do góry zapobiega zarysowaniom, co jest super ważne, zwłaszcza, że te kolektory są dosyć drogie. Wiele firm, które zajmują się energią odnawialną, sugeruje używanie specjalnych stojaków, żeby je lepiej zabezpieczyć. Dobrze jest też co jakiś czas sprawdzić ich stan, żeby wcześnie zauważyć ewentualne problemy. Wiedza na temat tego, jak dobrze przechowywać kolektory, jest kluczowa dla ich długiego życia i efektywności.

Pytanie 34

Podczas dłuższej nieobecności mieszkańców budynku jednorodzinnego występuje brak odbioru energii cieplnej z kolektora słonecznego, zatem na sterowniku systemu solarnego należy ustawić funkcję trybu

A. grzewczego
B. monowalentnego
C. urlopowego
D. chłodzenia pasywnego
Ustawienie trybu urlopowego na sterowniku solarnym jest kluczowe w sytuacji, gdy użytkownicy budynku jednorodzinnego są nieobecni przez dłuższy czas. Tryb urlopowy ma na celu minimalizację strat energetycznych oraz ochronę systemu przed ewentualnymi uszkodzeniami. W tym trybie system solarny ogranicza pracę pomp i innych komponentów, co pozwala zaoszczędzić energię, a jednocześnie chronić instalację przed przegrzaniem, gdy odbiór ciepła z zasobnika jest niewystarczający. Przykładem zastosowania trybu urlopowego może być sytuacja, gdy właściciele domu wyjeżdżają na wakacje; w tym czasie, aby uniknąć przegrzania lub zamarznięcia instalacji, ustawienie trybu urlopowego zapewnia, że system działa w trybie oszczędzania energii. Dobrą praktyką jest zapoznać się z instrukcją obsługi urządzenia oraz regularnie kontrolować, czy tryby pracy są odpowiednio ustawione w zależności od aktualnej sytuacji. W kontekście standardów, wiele producentów rekomenduje użycie trybu urlopowego, aby efektywnie zarządzać energią i minimalizować ryzyko awarii.

Pytanie 35

W systemach pomp ciepła typu split czynnościom serwisowym nie podlega

A. parownik
B. obudowa pompy ciepła
C. filtr w układzie wodnym
D. tacka skroplin
Czynności konserwacyjne w pompach ciepła typu split są kluczowe dla zapewnienia ich efektywności oraz długowieczności. Filtr w układzie wodnym jest jednym z podstawowych elementów, który wymaga regularnej konserwacji, aby zapobiec zatykania układu i stratą wydajności. Zanieczyszczony filtr może prowadzić do zwiększonego zużycia energii, a także do uszkodzenia pompy, co w dłuższej perspektywie generuje dodatkowe koszty. Tacka skroplin, jako integralna część systemu, również wymaga regularnej kontroli, aby zapobiec gromadzeniu się wody, co może prowadzić do wycieków oraz rozwoju pleśni. Parownik, z kolei, jest kluczowym elementem odpowiedzialnym za wymianę ciepła, dlatego jego konserwacja jest niezbędna, by zapewnić optymalne działanie systemu. Zaniedbanie tego elementu może prowadzić do spadku wydajności i zwiększonego zużycia energii. Wiele osób błędnie zakłada, że obudowa nie wymaga uwagi, jednak to nieprawda, gdyż należy kontrolować, czy nie występują ślady korozji czy uszkodzenia mechaniczne, które mogą wpłynąć na działanie pompy. Dlatego też, nieprawidłowe podejście do konserwacji tych komponentów może prowadzić do poważnych problemów eksploatacyjnych oraz kosztów związanych z naprawami.

Pytanie 36

Na podstawie danych producenta rur ogrzewania podłogowego zawartych w tabeli określ maksymalne ciśnienie robocze.

MaterialPE-RT/EVOH/PE-RT, PE-RT/AL/PE-RT
ŚredniceDN/OD 16, 18 mm
Ciśnienie nominalnePN 6 (bar) klasa 4, 20-60 °C
Długości handloweZwoje 200, 400 m

A. 4 bary.
B. 6 barów.
C. 16 barów.
D. 18 barów.
Wybór innych wartości ciśnienia roboczego, takich jak 4, 16 czy 18 barów, wynika z niewłaściwego zrozumienia specyfikacji technicznych dotyczących rur ogrzewania podłogowego. Wartości te mogą być mylące, ponieważ w niektórych kontekstach odnoszą się do ciśnienia w innych zastosowaniach, jednak w kontekście rur PE-RT/EVOH/PE-RT czy PE-RT/AL/PE-RT ich zastosowanie jest niepoprawne. Na przykład, 4 bary są zwykle zbyt niskie do efektywnego działania systemów ogrzewania podłogowego, które wymagają wyższych ciśnień, aby zapewnić równomierne rozprowadzenie ciepła. Wybór 16 lub 18 barów jako wartości ciśnienia roboczego jest błędny, ponieważ przekracza dopuszczalne normy dla tych materiałów. Przekroczenie tych wartości może prowadzić do uszkodzeń rur, co w konsekwencji może prowadzić do awarii systemu grzewczego, a także do poważnych kosztów związanych z naprawą. W branży budowlanej oraz w projektowaniu systemów grzewczych niezwykle ważne jest przestrzeganie norm i wytycznych producentów, aby zapewnić bezpieczeństwo oraz niezawodność instalacji. Warto pamiętać, że stosując się do norm PN-EN 1264, można uniknąć wielu problemów związanych z ciśnieniem roboczym i jego wpływem na funkcjonowanie systemu grzewczego.

Pytanie 37

Podczas serwisowania pompy cyrkulacyjnej w systemie solarnym zauważono, że urządzenie nie funkcjonuje z powodu uszkodzenia kondensatora. Co należy wykonać jako pierwsze przed jego wymianą?

A. odłączyć zasilanie elektryczne pompy
B. zamknąć zawór przyłączeniowy wody do systemu
C. odkręcić złączki, aby wyciągnąć pompę z systemu
D. usunąć glikol z instalacji
Wyłączenie napięcia zasilania pompy cyrkulacyjnej przed przystąpieniem do jej konserwacji jest kluczowym krokiem w zapewnieniu bezpieczeństwa. Standardowe procedury bezpieczeństwa w pracy z urządzeniami elektrycznymi wskazują, że przed jakimikolwiek pracami serwisowymi należy zawsze odłączyć zasilanie, aby uniknąć ryzyka porażenia prądem. W przypadku pompy cyrkulacyjnej, kondensator jest elementem odpowiedzialnym za rozruch silnika, a jego uszkodzenie może prowadzić do sytuacji, gdzie prąd płynie w sposób niekontrolowany. W praktyce, pracując z instalacjami solarnymi, należy stosować się do zasad BHP oraz norm, takich jak PN-EN 50110-1 dotycząca eksploatacji urządzeń elektrycznych. Dodatkowo, po odłączeniu zasilania, warto skontrolować układ pod kątem innych potencjalnych uszkodzeń, co pozwoli na kompleksową konserwację systemu i zwiększy jego efektywność operacyjną.

Pytanie 38

Dobór odpowiedniej powierzchni kolektorów słonecznych do produkcji ciepłej wody użytkowej w budynku jednorodzinnym można przeprowadzić na podstawie zestawów danych, które zawierają następujące informacje:

A. liczba użytkowników korzystających z c.w.u., pojemność zbiornika c.w.u., rodzaj kolektora
B. liczba użytkowników korzystających z c.w.u., krotność wymian powietrza, średni współczynnik przewodzenia ciepła
C. pojemność zbiornika c.w.u., średni współczynnik przewodzenia ciepła, rodzaj kolektora
D. pojemność zbiornika c.w.u., zapotrzebowanie na ciepło dla budynku, krotność wymian powietrza
Dobra, jeśli chodzi o dobór powierzchni kolektorów słonecznych do podgrzewania wody w domu, to jest parę rzeczy, na które warto zwrócić uwagę. Po pierwsze, liczba osób, które będą korzystać z ciepłej wody, ma ogromne znaczenie. Im więcej osób, tym większe potrzeby na ciepłą wodę, a co za tym idzie, więcej energii ze słońca będzie trzeba. Nie można też zapomnieć o pojemności zbiornika na c.w.u., bo musi ona pasować do tego, ile wody będzie potrzebne i jak dużo ciepła będą w stanie dostarczyć kolektory. Typ kolektora też jest ważny, bo to właśnie od niego zależy, jak dobrze będzie działał cały system. W praktyce można na podstawie tych informacji wyliczyć, jak dużą powierzchnię kolektorów należy zamontować, żeby maksymalnie wykorzystać energię słoneczną. Na przykład, w domach z wieloma mieszkańcami i dużymi zbiornikami warto zainwestować w większą powierzchnię kolektorów, żeby wszystko działało sprawnie. Dobrze jest też korzystać z kalkulatorów i programów do symulacji, które uwzględniają lokalne warunki pogodowe i nasłonecznienie, jeśli planujesz taki system.

Pytanie 39

Przy instalacji kolektorów słonecznych na dachu pokrytym dachówkami, do czego przykręca się stelaż?

A. krokwi
B. dachówek
C. murłat
D. łat
Odpowiedź "krokwi" jest poprawna, ponieważ to właśnie krokwi, będące elementami konstrukcyjnymi dachu, stanowią odpowiednie wsparcie dla stelaży kolektorów słonecznych. Krokwi mają dużą nośność i są zaprojektowane do przenoszenia obciążeń, co jest niezwykle istotne przy montażu cięższych systemów solarnych. Kiedy stelaż jest przykręcany do krokwi, zapewnia to stabilność i bezpieczeństwo całej konstrukcji, co jest kluczowe, zwłaszcza w przypadku silnych wiatrów czy opadów śniegu. Zgodnie z normami budowlanymi, należy stosować odpowiednie wkręty i mocowania, które są przystosowane do materiału krokwi, aby uniknąć uszkodzenia drewna. Dobrą praktyką jest również dokonanie oceny stanu technicznego krokwi przed montażem, aby upewnić się, że nie są one osłabione przez czynniki zewnętrzne, takie jak owady czy wilgoć. Poprawny montaż nie tylko zapewnia efektywność systemu, ale także wydłuża jego żywotność.

Pytanie 40

W przypadku tworzenia kosztorysu ofertowego nie uwzględnia się

A. koszty rzeczowe robocizny, materiałów oraz pracy sprzętu
B. zapisy z książki obmiarów zatwierdzone przez inspektora nadzoru
C. dokumentację projektową oraz dane wyjściowe do projektowania
D. ceny jednostkowe oraz narzuty dotyczące kosztów pośrednich i zysku
Odpowiedź dotycząca zapisów z książki obmiarów zatwierdzonych przez inspektora nadzoru jest prawidłowa, ponieważ te zapisy są specyficzne dla realizacji danego projektu i nie są stosowane w kontekście sporządzania kosztorysu ofertowego. Kosztorys ofertowy w praktyce budowlanej opiera się na kosztach rynkowych, które obejmują ceny jednostkowe robocizny, materiałów oraz pracy sprzętu, a także narzuty dotyczące kosztów pośrednich i zysku. Kluczowym elementem jest dokumentacja projektowa, która dostarcza niezbędnych danych do oszacowania kosztów inwestycji. Warto również zaznaczyć, że w procesie ofertowania należy brać pod uwagę aktualne wartości rynkowe komponentów budowlanych, co jest zgodne z zasadami rynkowymi oraz standardami kosztorysowania. Dobrą praktyką w kosztorysowaniu jest regularne aktualizowanie baz danych o ceny, co pozwala na precyzyjne odzwierciedlenie rzeczywistych kosztów w ofertach. Używając takich danych, firmy budowlane mogą skuteczniej konkurować na rynku oraz unikać błędów w ocenie kosztów realizacji projektów.