Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 8 kwietnia 2025 12:44
  • Data zakończenia: 8 kwietnia 2025 13:12

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaka jest sprawność ogniwa fotowoltaicznego z krzemu monokrystalicznego, które jest produkowane masowo?

A. 5 do 9%
B. 14 do 17%
C. 27 do 32%
D. 23 do 27%
Odpowiedź 14 do 17% jest prawidłowa, ponieważ sprawność ogniw fotowoltaicznych wykonanych z krzemu monokrystalicznego, produkowanych w skali masowej, zazwyczaj mieści się w tym zakresie. Krzem monokrystaliczny jest znany z wysokiej efektywności konwersji energii słonecznej na energię elektryczną, co czyni go jednym z najczęściej stosowanych materiałów w przemyśle fotowoltaicznym. Wartości sprawności w przedziale 14 do 17% są zgodne z danymi dostarczanymi przez producentów ogniw oraz różnorodne badania branżowe. Przy projektowaniu systemów fotowoltaicznych, takie ogniwa są często wybierane ze względu na ich optymalny stosunek jakości do ceny, co zapewnia efektywne wykorzystanie dostępnej powierzchni w instalacjach solarnych. Na przykład, instalacje wykorzystujące panele z krzemu monokrystalicznego są często preferowane w miastach, gdzie przestrzeń na dachach jest ograniczona. Dodatkowo, zgodnie z normami IEC 61215, ogniwa te muszą przechodzić szereg testów dotyczących ich wydajności oraz trwałości, co dodatkowo potwierdza ich jakość i niezawodność.

Pytanie 2

W trakcie corocznej kontroli systemu solarnego do ogrzewania wody należy

A. przeprowadzić regulację ustawienia kolektorów
B. uzupełnić instalację płynem solarnym
C. wykonać płukanie systemu
D. zweryfikować stan płynu solarnym
Sprawdzenie stanu płynu solarnego podczas corocznego przeglądu instalacji grzewczej jest kluczowe dla zapewnienia jej optymalnej wydajności i bezpieczeństwa. Płyn solarny pełni funkcję transportowania ciepła z kolektorów do zbiornika, a jego właściwe właściwości fizyczne są niezbędne dla efektywności całego systemu. Warto regularnie kontrolować poziom płynu, jego temperaturę oraz ewentualne zanieczyszczenia, które mogą wpływać na wydajność instalacji. Przykładowo, zbyt niski poziom płynu może prowadzić do przegrzewania się kolektorów, co w skrajnych przypadkach może uszkodzić system. Z drugiej strony, zanieczyszczenia mogą powodować osady w rurach, co ogranicza przepływ i obniża efektywność wymiany ciepła. Regularne kontrole są zgodne z najlepszymi praktykami branżowymi i pozwalają na wczesne wykrycie problemów, co z kolei redukuje koszty napraw oraz przestojów. Dbałość o stan płynu solarnego to istotny element strategii konserwacyjnej, która wspiera długowieczność i efektywność systemu. Rekomendowane jest również uzupełnianie płynu zgodnie z zaleceniami producenta, co pozwala utrzymać optymalne parametry działania instalacji.

Pytanie 3

W systemach pomp ciepła typu split czynnościom serwisowym nie podlega

A. parownik
B. obudowa pompy ciepła
C. filtr w układzie wodnym
D. tacka skroplin
Czynności konserwacyjne w pompach ciepła typu split są kluczowe dla zapewnienia ich efektywności oraz długowieczności. Filtr w układzie wodnym jest jednym z podstawowych elementów, który wymaga regularnej konserwacji, aby zapobiec zatykania układu i stratą wydajności. Zanieczyszczony filtr może prowadzić do zwiększonego zużycia energii, a także do uszkodzenia pompy, co w dłuższej perspektywie generuje dodatkowe koszty. Tacka skroplin, jako integralna część systemu, również wymaga regularnej kontroli, aby zapobiec gromadzeniu się wody, co może prowadzić do wycieków oraz rozwoju pleśni. Parownik, z kolei, jest kluczowym elementem odpowiedzialnym za wymianę ciepła, dlatego jego konserwacja jest niezbędna, by zapewnić optymalne działanie systemu. Zaniedbanie tego elementu może prowadzić do spadku wydajności i zwiększonego zużycia energii. Wiele osób błędnie zakłada, że obudowa nie wymaga uwagi, jednak to nieprawda, gdyż należy kontrolować, czy nie występują ślady korozji czy uszkodzenia mechaniczne, które mogą wpłynąć na działanie pompy. Dlatego też, nieprawidłowe podejście do konserwacji tych komponentów może prowadzić do poważnych problemów eksploatacyjnych oraz kosztów związanych z naprawami.

Pytanie 4

Turbina wiatrowa typu VAWT charakteryzuje się osią obrotu

A. kośną
B. pionową
C. poziomą
D. zmienną
Wybór odpowiedzi dotyczącej zmiennej, poziomej lub kośnej osi obrotu w kontekście turbin wiatrowych typu VAWT jest nieprawidłowy i wynika z nieporozumienia dotyczącego podstawowych zasad działania tych urządzeń. Turbiny wiatrowe z poziomą osią obrotu są typowe dla turbin HAWT, które wymagają systemów do orientacji w kierunku wiatru, co zwiększa ich złożoność i koszty. Z kolei turbiny z osią kośną nie stanowią standardowego rozwiązania w żadnej kategorii turbin wiatrowych, co sugeruje brak zrozumienia ich budowy. Oś zmienna, choć teoretycznie może odnosić się do niektórych nowatorskich projektów, nie jest stosowana w klasycznych modelach turbin VAWT, które są zaprojektowane z myślą o stabilnym, pionowym położeniu osi obrotu. Takie błędne wyobrażenia mogą wynikać z braku znajomości fundamentalnych różnic między typami turbin oraz ich zastosowaniami. Właściwe rozróżnienie między turbinami HAWT i VAWT jest kluczowe dla zrozumienia ich efektywności i zastosowań w praktyce, a także dla podejmowania decyzji o ich wdrożeniu w różnych warunkach wiatrowych.

Pytanie 5

Po zakończeniu robót, które są zakrywane, przeprowadza się odbiór

A. wstępny
B. częściowy
C. końcowy
D. ostateczny
Odpowiedź 'częściowy' jest prawidłowa, ponieważ zgodnie z praktyką budowlaną, po zakończeniu robót ulegających zakryciu należy przeprowadzić odbiór częściowy. Działanie to ma na celu zapewnienie, że poszczególne etapy prac zostały wykonane zgodnie z projektem oraz obowiązującymi normami. Odbiór częściowy umożliwia identyfikację ewentualnych błędów przed zakryciem, co jest kluczowe dla dalszych etapów budowy. Na przykład, w przypadku instalacji elektrycznych, dokonanie odbioru częściowego przed zamknięciem ścian pozwala na sprawdzenie poprawności podłączeń oraz zgodności z normami PN-IEC, co może zapobiec poważnym problemom w przyszłości. Zgodnie z definicją zawartą w przepisach prawa budowlanego, odbiór częściowy potwierdza, że dane prace są zakończone, a ich jakość jest zgodna z wymaganiami, co ma kluczowe znaczenie dla bezpieczeństwa i trwałości całej inwestycji.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Na podstawie danych producenta rur ogrzewania podłogowego zawartych w tabeli określ maksymalne ciśnienie robocze.

MaterialPE-RT/EVOH/PE-RT, PE-RT/AL/PE-RT
ŚredniceDN/OD 16, 18 mm
Ciśnienie nominalnePN 6 (bar) klasa 4, 20-60 °C
Długości handloweZwoje 200, 400 m

A. 18 barów.
B. 16 barów.
C. 4 bary.
D. 6 barów.
Odpowiedź 6 barów jest poprawna, ponieważ zgodnie z danymi producenta rur ogrzewania podłogowego, maksymalne ciśnienie robocze dla rur wykonanych z materiałów PE-RT/EVOH/PE-RT i PE-RT/AL/PE-RT wynosi PN 6, co odpowiada 6 barom. Tabela producenta wskazuje, że ciśnienie to dotyczy rur o średnicach DN/OD 16 oraz 18 mm, które mogą pracować w temperaturach od 20 do 60°C. W praktyce, przy doborze rur do systemu ogrzewania podłogowego, ważne jest, aby nie przekraczać wskazanych wartości ciśnienia roboczego, ponieważ może to prowadzić do uszkodzenia instalacji, a także obniżenia jej efektywności. Dobór odpowiedniego ciśnienia jest istotny nie tylko dla bezpieczeństwa, ale również dla zapewnienia efektywności energetycznej systemu grzewczego. W branży stosuje się różne normy, takie jak PN-EN 1264, które regulują wymagania dotyczące systemów ogrzewania podłogowego, w tym maksymalne ciśnienia robocze.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Jakie narzędzia należy zastosować do łączenia rur PE Ø 32 mm podczas instalacji poziomego kolektora, obok gratownika zewnętrznego i wewnętrznego oraz nożyc do cięcia rur?

A. kształtek zaciskowych 11/4"
B. piły metalowej
C. klucza łańcuchowego 1"
D. pilnika w kształcie trójkąta
Kształtki zaciskowe 11/4" są kluczowym elementem w montażu rur PE, zwłaszcza przy instalacji kolektorów poziomych. Te kształtki umożliwiają solidne i szczelne połączenie rur, co jest niezbędne w systemach hydraulicznych i instalacjach wodociągowych. Wykorzystanie kształtek zaciskowych pozwala na łatwe i efektywne złączenie rur, minimalizując ryzyko wycieków, które mogą prowadzić do poważnych uszkodzeń oraz kosztownych napraw. Stosowanie tych kształtek jest zgodne z normami branżowymi, które zalecają użycie komponentów kompatybilnych z materiałem rur, co w przypadku PE jest kluczowe dla zapewnienia długotrwałości i wytrzymałości instalacji. Przykładem zastosowania kształtek zaciskowych 11/4" może być ich użycie w systemach nawadniania, gdzie efektywne połączenia są niezbędne do utrzymania odpowiedniego ciśnienia i przepływu wody. Przed przystąpieniem do montażu warto również zwrócić uwagę na odpowiednie przygotowanie rur, takie jak ich odtłuszczenie oraz użycie gratownika do wygładzenia krawędzi, co dodatkowo zwiększa szczelność połączenia.

Pytanie 10

Określ przyczynę zmniejszenia ciśnienia w instalacji solarnej?

A. Uszkodzony czujnik temperatury lub problemy z jego zasilaniem
B. Osiągnięta lub przekroczona maksymalna temperatura zbiornika ustawiona na regulatorze
C. Czujnik temperatury niewłaściwie umiejscowiony po stronie gorącej absorbera
D. Przecieki na złączach, wymienniku ciepła, zaworze bezpieczeństwa lub w miejscach lutowania
Nieprawidłowości związane z konfiguracją czujnika temperatury mogą wydawać się na pierwszy rzut oka istotne dla funkcjonowania systemu solarnego, jednak nie są one główną przyczyną spadku ciśnienia. Ustawienie czujnika temperatury na gorącej stronie absorbera nie powoduje bezpośrednio obniżenia ciśnienia, ale może wpływać na niewłaściwe odczyty temperatury, co w konsekwencji może prowadzić do błędnych działań w systemie. Osiągnięcie maksymalnej temperatury zasobnika na regulatorze również nie jest bezpośrednim czynnikiem powodującym spadek ciśnienia. W rzeczywistości, przekroczenie temperatury może prowadzić do wyłączenia systemu lub aktywacji zaworu bezpieczeństwa, ale nie spowoduje to ubytku cieczy w obiegu, co jest kluczowe dla spadku ciśnienia. Uszkodzony czujnik temperatury również może prowadzić do błędnych odczytów, ale podobnie jak w przypadku powyższych przykładów, nie ma to bezpośredniego wpływu na ciśnienie, gdyż system nie traci płynu roboczego. Niezrozumienie tego aspektu może prowadzić do niewłaściwej diagnostyki i nieefektywnych napraw. Kluczowe jest skupienie się na miejscach, gdzie może dochodzić do przecieków, gdyż to one są prawdziwą przyczyną spadku ciśnienia w systemie solarnym.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Uchwyt PV bezpiecznika powinien być zamontowany na szynie DIN przy użyciu

A. kołków montażowych
B. śrub
C. zatrzasków
D. nitów
Montaż uchwytów PV bezpieczników na szynie DIN za pomocą nitów jest nieodpowiedni ze względu na brak możliwości łatwego demontażu. Nity tworzą trwałe połączenie, co w przypadku konieczności konserwacji lub wymiany elementów może prowadzić do znacznych trudności. W środowisku przemysłowym, gdzie elastyczność i adaptacja są kluczowe, takie podejście może prowadzić do nieefektywności i zwiększenia kosztów. Podobnie, użycie kołków montażowych nie jest zalecane, ponieważ również wymagają one precyzyjnego wiercenia otworów oraz dodatkowego sprzętu, co może zwiększać czas montażu i ryzyko błędów. Śruby, z drugiej strony, mogą oferować stabilność, ale ich montaż jest bardziej czasochłonny i wymaga regularnego sprawdzania dokręcenia, co w dłuższej perspektywie może prowadzić do problemów z utrzymaniem odpowiedniego połączenia. Wiele osób może myśleć, że bardziej skomplikowane metody montażu są bardziej niezawodne, jednak w praktyce to prostota i efektywność są kluczowe w nowoczesnych instalacjach elektroenergetycznych. Dlatego ważne jest, aby stosować odpowiednie metody zgodnie z zaleceniami producentów i normami branżowymi, aby zapewnić efektywność oraz bezpieczeństwo systemu.

Pytanie 13

Aby zamontować kocioł na biomasę inwestor zebrał 4 oferty i dokonał ich zestawienia. Wskaż ofertę, w której sprawność kotła jest największa.

Nominalna moc kotła kWSprawność cieplna %Zużycie paliwa kg/hMaksymalna temperatura robocza °CPojemność wodna kotła dm³
A.2387,7-88,12,685100
B.2381,8-83,52,685100
C.25902,495190
D.3090-922,48570

A. D.
B. C.
C. A.
D. B.
Wybór czegoś innego niż oferta D może wynikać z typowych błędów, jakie często popełniamy przy ocenie ofert. Często ludzie skupiają się na jednym parametrze, np. cena czy wygląd, a nie biorą pod uwagę najważniejszych wskaźników, jak sprawność kotła. W przypadku ofert A, B i C, ich sprawności są znacznie niższe, co przekłada się na więcej emitowanych spalin i większe zużycie paliwa. No i wybierając kotły z niższą sprawnością, można się narazić na wyższe koszty eksploatacji. Kiedy ludzie analizują dane techniczne, czasem źle je interpretują. Producent podaje sprawność, ale najczęściej dotyczy to optymalnych warunków pracy, a te nie zawsze są osiągalne w rzeczywistości. Oferta C, mimo że podaje 90% sprawności, nie jest lepsza od D pod względem efektywności, co ważne, jeśli myślimy o długoterminowych oszczędnościach. Pamiętajmy też o ekologii; wybierając kotły z niższą sprawnością, wpływamy negatywnie na jakość powietrza, a to już jest sprzeczne z normami ochrony środowiska.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Jakiego elementu należy użyć, aby połączyć dwie stalowe rury o tej samej średnicy z gwintem zewnętrznym?

A. odpowietrznika
B. redukcji
C. mufy
D. nypla
Użycie nypla, redukcji czy odpowietrznika w celu połączenia dwóch stalowych rur o tej samej średnicy z gwintem zewnętrznym jest mylne, gdyż każdy z tych elementów ma zupełnie inne zastosowanie. Nypl, będący prostym gwintowanym elementem, służy do wydłużania istniejącego połączenia, a nie do łączenia rur, co w przypadku rur o tej samej średnicy nie zapewnia ani stabilności, ani szczelności. Redukcja, z kolei, jest przeznaczona do zmiany średnicy rur, co czyni ją nieodpowiednią w sytuacji, gdy obie rury mają tę samą średnicę. Odpowietrznik, mający na celu eliminację powietrza z systemu, nie pełni funkcji łączącej i nie jest zaprojektowany do bezpiecznego połączenia elementów rurowych. Powszechnym błędem jest myślenie, że każdy element łączący może być użyty w dowolnym kontekście; w rzeczywistości każdy z tych elementów ma swoje specyficzne zastosowania i nie można ich stosować zamiennie. Przykładem może być sytuacja, gdy ktoś myśli, że mufa i redukcja pełnią tę samą funkcję, co prowadzi do nieodpowiednich i potencjalnie niebezpiecznych połączeń, które mogą skutkować wyciekami lub awariami systemu. Zrozumienie różnic pomiędzy tymi elementami łączeniowymi jest kluczowe dla zapewnienia bezpieczeństwa i efektywności instalacji rurowej.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

W trakcie przeglądu technicznego komponentu chłodniczego w pompie ciepła nie wykonuje się analizy

A. szczelności w obiegu roboczym
B. stanu przewodów rurowych i połączeń
C. ciśnienia wejściowego w naczyniu wzbiorczym
D. parametrów cieczy roboczej
Odpowiedź, że przegląd techniczny części chłodniczej pompy ciepła nie obejmuje kontroli ciśnienia wejściowego w naczyniu wzbiorczym, jest prawidłowa. Podczas standardowych przeglądów technicznych skupiamy się na elementach, które mają bezpośredni wpływ na wydajność i bezpieczeństwo systemu chłodzenia. Kontrola szczelności w obiegu roboczym jest kluczowa, ponieważ nieszczelności mogą prowadzić do utraty czynnika chłodniczego, co bezpośrednio wpływa na efektywność pracy pompy ciepła. Stan przewodów rurowych i połączeń również wymaga szczególnej uwagi, gdyż ich uszkodzenia mogą skutkować wyciekami lub ograniczeniem przepływu czynnika. Parametry cieczy roboczej, takie jak temperatura i ciśnienie czynnika, są krytyczne dla prawidłowego działania układu. Naczynie wzbiorcze natomiast działa na zasadzie kompensacji ciśnienia w systemie hydraulicznym, co oznacza, że jego ciśnienie nie jest bezpośrednio związane z efektywnością pracy części chłodniczej. Zrozumienie tych różnic jest kluczowe dla prawidłowej eksploatacji i konserwacji pomp ciepła.

Pytanie 19

Pompa ciepła przez 20 dni dostarczała do domu jednorodzinnego energię równą 2 040 kWh. Jaki jest wskaźnik efektywności energetycznej, jeśli średnia moc pobrana wynosi 2,5 kW?

A. 4,08
B. 1,70
C. 17,00
D. 40,80
Czasem zdarza się, że pojawiają się błędy w obliczeniach wskaźnika efektywności energetycznej pompy ciepła. Jak ktoś nie rozumie, jak właściwie obliczać COP, to może skończyć z błędnymi wynikami. Na przykład, jeśli ktoś myśli, że wystarczy podzielić dostarczoną energię przez moc pompy i zapomni o czasie, to może dojść do złych wniosków. Często myli się też jednostki energii z mocą, co może wprowadzić w błąd. Ktoś może pomylić kWh z kW, a to już problem. Żeby dobrze ocenić efektywność energetyczną, trzeba zawsze znać całkowity czas pracy i moc systemu. Warto też mieć na uwadze rzeczywiste warunki, w jakich pompa pracuje, jak temperatura zewnętrzna, bo to wszystko wpływa na efektywność. W tym pytaniu kluczem jest zrozumienie, że moc pompy ciepła (2,5 kW) przez 20 dni równa się 1 200 kWh zużycia energii, co jest istotne, żeby dobrze obliczyć COP.

Pytanie 20

Gdzie powinien być zainstalowany zawór bezpieczeństwa w zamkniętej instalacji centralnego ogrzewania?

A. w dolnej części każdego pionu oraz przed naczyniem wzbiorczym
B. bezpośrednio na kotłach lub wymiennikach ciepła w górnej części ich przestrzeni wodnej
C. przed grzejnikami zarówno na gałęzi zasilającej, jak i powrotnej
D. na przyłączach pionów do przewodów rozprowadzających
Montaż zaworu bezpieczeństwa w nieodpowiednich miejscach, takich jak przed grzejnikami, w dolnej części pionów czy na przyłączach pionów do przewodów rozprowadzających, nie spełnia podstawowych wymogów bezpieczeństwa i efektywności instalacji centralnego ogrzewania. Umieszczanie zaworu przed grzejnikami może prowadzić do zbyt późnego odcięcia nadmiaru ciśnienia, co naraża system na uszkodzenia. Ponadto, umiejscowienie zaworu w dolnej części pionów nie pozwala na efektywne usunięcie nadmiaru ciśnienia, gdyż gorąca woda ma tendencję do unikania dół, co może prowadzić do zjawisk przegrzewania w górnych częściach instalacji. Zawór bezpieczeństwa powinien być w odpowiedniej lokalizacji, aby działał w chwilach krytycznych, co jest kluczowe dla zapobiegania awariom i zagrożeniom. Montaż na przyłączach pionów również nie zapewnia wymaganego poziomu ochrony, gdyż zawór powinien być umiejscowiony jak najbliżej źródła ciepła. Standardy branżowe oraz przepisy budowlane jasno określają wymagania dotyczące lokalizacji zaworu bezpieczeństwa, podkreślając, że niewłaściwe umiejscowienie może prowadzić do katastrofalnych skutków, w tym do zniszczenia urządzeń oraz zagrożenia dla użytkowników instalacji.

Pytanie 21

Jakie jest napięcie łańcucha modułów (stringu) po jego odłączeniu od falownika?

A. napięciu pojedynczego modułu
B. sumie napięć wszystkich modułów
C. nieskończoności
D. zero
Przy analizie poszczególnych niepoprawnych odpowiedzi można zauważyć, że wybór napięcia jednego modułu sugeruje zrozumienie jedynie częściowego działania systemu. Napięcie pojedynczego modułu jest istotne, lecz nie oddaje rzeczywistej charakterystyki całego stringu. W przypadku pełnego zrozumienia, należy pamiętać, że w instalacji szeregowej, napięcia modułów łączą się, co skutkuje sumarycznym napięciem końcowym. Stwierdzenie, że napięcie wynosi nieskończoność, wskazuje na brak zrozumienia podstawowych zasad obwodów elektrycznych; w rzeczywistości napięcie nie może być nieskończone, gdyż każdy moduł ma swoje ograniczenia. Z kolei zerowe napięcie budzi wątpliwości, ponieważ odłączenie od falownika nie oznacza braku napięcia w stringu. W rzeczywistości napięcie w łańcuchu może być obecne, nawet gdy nie jest podłączone do falownika. Takie błędne myślenie może wynikać z niepełnego zrozumienia działania systemów PV oraz obliczeń elektrotechnicznych. Właściwe zrozumienie zasad działania systemów fotowoltaicznych, w tym napięcia w stringu, jest kluczowe dla efektywnego projektowania i eksploatacji instalacji.

Pytanie 22

Zasobnik na wodę użytkową w solarnej instalacji powinien być zlokalizowany

A. w pobliżu kolektora słonecznego
B. z dala od kotła c.o.
C. w połowie drogi pomiędzy kotłem a kolektorem
D. w sąsiedztwie kotła c.o.
Lokalizacja zasobnika wody użytkowej w instalacji solarnej ma kluczowe znaczenie dla efektywności całego systemu. Umieszczenie zasobnika w połowie drogi między kotłem a kolektorem, choć może wydawać się logiczne, w rzeczywistości prowadzi do znacznych strat ciepła. Straty te wynikają z dłuższej drogi transportu wody, co zwiększa czas, w którym ciepło ma szansę uciekać do otoczenia. Z kolei umiejscowienie zasobnika daleko od kotła c.o. może spowodować problemy z zasilaniem ciepłem, co negatywnie wpłynie na komfort użytkowania, zwłaszcza w okresach szczytowego zapotrzebowania na ciepłą wodę. Praktyka ta jest również niezgodna z zaleceniami dotyczącymi projektowania systemów grzewczych, które podkreślają znaczenie minimalizacji strat ciepła w instalacjach. Bliskość zasobnika do kotła pozwala na bardziej efektywne użycie energii, co jest fundamentalne w kontekście zrównoważonego rozwoju i oszczędności energii. Niezrozumienie tych zasad może prowadzić do błędnych decyzji projektowych, które w dłuższej perspektywie zwiększą koszty eksploatacji systemu grzewczego oraz ograniczą jego wydajność.

Pytanie 23

W czasie zimowym można wykorzystać odwrócony cykl cieczy roboczej w systemie solarnym do eliminacji śniegu oraz rozmrażania lodu na powierzchni kolektorów słonecznych?

A. płaskich cieczowych
B. płaskich próżniowych
C. rurowych heat-pipe
D. próżniowo-rurowych
Odpowiedzi takie jak "rurowych heat-pipe", "płaskich próżniowych" oraz "próżniowo-rurowych" nie są odpowiednie w kontekście usuwania śniegu i rozmrażania lodu z powierzchni kolektorów słonecznych. Kolektory rurowe heat-pipe działają na zupełnie innej zasadzie; ich konstrukcja opiera się na wykorzystaniu rur wypełnionych cieczą, która odparowuje i skrapla się, ale nie zapewniają one możliwości aktywnego podgrzewania powierzchni w celu usunięcia zalegających zanieczyszczeń. Dodatkowo, kolektory płaskie próżniowe charakteryzują się izolacją, która może utrudniać transfer ciepła do środowiska zewnętrznego, co czyni je mniej efektywnymi w kontekście odśnieżania. Próżniowo-rurowe systemy, mimo że oferują wysoką efektywność w zbieraniu energii słonecznej, również nie są zaprojektowane do aktywnego podgrzewania powierzchni kolektorów, co ogranicza ich funkcjonalność w zimowych warunkach. Typowym błędem myślowym jest przypuszczenie, że wszystkie typy kolektorów mogą być używane w tych samych warunkach; wybór odpowiedniego rodzaju systemu słonecznego powinien być dostosowany do specyficznych potrzeb oraz warunków lokalnych, co jest kluczowe dla zapewnienia efektywności energetycznej i trwałości instalacji.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Jakie są możliwości magazynowania biogazu?

A. zbiorniku niskociśnieniowym
B. zbiorniku wzbiorczym przepływowym
C. wymienniku ciepła
D. zbiorniku pod wysokim ciśnieniem
Zbiorniki niskociśnieniowe są odpowiednim miejscem do magazynowania biogazu, ponieważ są zaprojektowane do przechowywania gazów w warunkach niskiego ciśnienia, co zapewnia ich bezpieczeństwo i efektywność. Biogaz, składający się głównie z metanu i dwutlenku węgla, jest gazem, który podczas przechowywania pod niskim ciśnieniem nie stwarza ryzyka eksplozji, co jest istotne w kontekście bezpieczeństwa. Praktyczne zastosowanie tego typu zbiorników można zauważyć w biogazowniach, gdzie biogaz jest produkowany z odpadów organicznych i następnie gromadzony w zbiornikach niskociśnieniowych, aby mógł być wykorzystany do produkcji energii lub jako surowiec do dalszej obróbki. Ponadto, zgodnie z najlepszymi praktykami, zbiorniki te są często wyposażone w systemy pomiarowe, które umożliwiają monitorowanie ciśnienia i jakości gazu, co jest kluczowe dla efektywnego zarządzania procesami technologii biogazowej. W związku z tym, stosowanie zbiorników niskociśnieniowych w kontekście biogazu jest szeroko rekomendowane przez specjalistów branżowych oraz normy dotyczące magazynowania gazów.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

W trakcie działania systemu fotowoltaicznego na inwerterze zauważono kod błędu dotyczący zwarcia doziemnego. Jakie mogą być przyczyny tego zjawiska?

A. rozładowany akumulator
B. niedostosowanie prądowe paneli
C. uszkodzony przewód
D. zacienienie modułów
Niedopasowanie prądowe paneli, zacienienie paneli oraz rozładowany akumulator to sytuacje, które mogą wpływać na wydajność systemu fotowoltaicznego, jednak nie są bezpośrednio przyczyną zwarcia doziemnego. Niedopasowanie prądowe paneli odnosi się do różnic w parametrach elektrycznych, które mogą prowadzić do obniżonej efektywności, ale nie stwarzają zagrożenia zwarciowego. Zacienienie paneli wpływa na moc wyjściową systemu, co może powodować spadki wydajności, ale również nie prowadzi do zwarcia doziemnego. Z kolei rozładowany akumulator, choć może wpływać na działanie całego systemu, nie jest przyczyną zwarcia, lecz problemem z zasilaniem. Takie typowe błędy myślowe prowadzą do mylenia objawów z przyczynami. W rzeczywistości, zwarcie doziemne jest związane z uszkodzeniem przewodów, a nie z wydajnością poszczególnych komponentów. Właściwe zrozumienie działania instalacji fotowoltaicznej wymaga znajomości standardów bezpieczeństwa oraz zasad działania poszczególnych elementów, co pozwala na skuteczniejsze diagnozowanie problemów oraz podejmowanie właściwych działań naprawczych.

Pytanie 28

Kocioł na pellet w ciągu jednej doby wykorzystuje 20 kg paliwa. Jaki będzie całkowity koszt paliwa w przeciągu 30 dni, jeśli worek z 200 kg pelletu kosztuje 250 zł?

A. 12,50 zł
B. 37,50 zł
C. 5 000,00 zł
D. 750,00 zł
Obliczenie kosztu paliwa zużywanego przez kocioł na pellet wymaga zrozumienia kilku kluczowych aspektów. Kocioł zużywa 20 kg paliwa dziennie, co oznacza, że przez 30 dni zużyje 600 kg (20 kg/dzień * 30 dni). W celu przeliczenia kosztów, musimy najpierw ustalić, ile kosztuje 1 kg pelletu. Woreczek o wadze 200 kg kosztuje 250 zł, zatem koszt 1 kg to 250 zł / 200 kg = 1,25 zł. Następnie, mnożymy koszt 1 kg przez całkowite zużycie pelletu w ciągu miesiąca: 600 kg * 1,25 zł/kg = 750 zł. Taki proces obliczania kosztów pozwala na lepsze zarządzanie budżetem na ogrzewanie i planowanie zakupów paliwa, co jest szczególnie istotne w kontekście sezonowego użytkowania kotłów na pellet. Wiedza na temat kosztów eksploatacyjnych pozwala również na efektywniejsze podejmowanie decyzji zakupowych oraz optymalizację wydatków na energię. Stosowanie materiałów pomocniczych, jak wykresy lub kalkulatory kosztów, jest zalecane w celu łatwiejszego zrozumienia tego procesu.

Pytanie 29

W instalacji elektrycznej łączącej inwerter z urządzeniem odbierającym prąd zmienny, kolor przewodu neutralnego powinien być

A. brązowy
B. czerwony
C. niebieski
D. czarny
Odpowiedź 'niebieski' jest poprawna, ponieważ kolor niebieski jest standardowym oznaczeniem dla przewodu neutralnego w instalacjach elektrycznych zgodnie z normą IEC 60446. Przewód neutralny odgrywa kluczową rolę w systemie elektrycznym, ponieważ zapewnia drogę powrotną dla prądu, co jest niezbędne do prawidłowego funkcjonowania obwodu. W systemie zasilania prądem zmiennym, przewód neutralny łączy się z ziemią w punkcie transformacji, co pomaga w stabilizacji napięcia oraz bezpieczeństwie użytkowania. Prawidłowe oznaczenie kolorystyczne przewodów jest istotne, aby uniknąć pomyłek podczas instalacji oraz konserwacji systemów elektrycznych. Przykładowo, w instalacjach domowych, przewód neutralny jest zazwyczaj łączony z gniazdkami, co pozwala na prawidłowe funkcjonowanie urządzeń elektrycznych. Warto również zaznaczyć, że inne kolory, takie jak brązowy (faza), czarny (faza) czy czerwony (w niektórych systemach staroświeckich jako faza), nie mogą być używane jako oznaczenie przewodu neutralnego, aby uniknąć niebezpiecznych sytuacji podczas pracy z instalacją.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Podczas wymiany separatora powietrza w grupie solarnej należy go zamontować na

A. powrocie z kolektora za zaworem odcinającym
B. powrocie z kolektora przed zaworem odcinającym
C. zasilaniu kolektora przed pompą
D. zasilaniu kolektora za pompą
Montaż separatora powietrza w niewłaściwych miejscach, takich jak zasilanie kolektora przed pompą, może prowadzić do poważnych problemów z wydajnością systemu grzewczego. Umiejscowienie separatora na zasilaniu przed pompą oznacza, że woda z kolektora, która może zawierać powietrze, będzie napotykać na dodatkowy opór, co może skutkować zmniejszoną efektywnością przepływu. W takiej konfiguracji powietrze może pozostawać w instalacji, co zwiększa ryzyko awarii oraz obniża wydajność całego systemu. Podobnie, montaż separatora na powrocie z kolektora przed zaworem odcinającym jest błędem, ponieważ w sytuacji, gdy zachodzi potrzeba konserwacji, nie można odciąć przepływu wody, co uniemożliwia bezpieczne wyjęcie separatora z instalacji. Z kolei umiejscowienie separatora na zasilaniu kolektora za pompą nie jest zalecane, ponieważ może to prowadzić do problemów z usuwaniem powietrza, gdyż separator nie będzie w stanie efektywnie działać w obecności wody pod ciśnieniem. Dlatego kluczowe jest zrozumienie, że miejsce montażu separatora powietrza ma zasadnicze znaczenie dla całego systemu i powinno być zgodne z zaleceniami producentów oraz praktykami branżowymi w celu zapewnienia optymalnej wydajności oraz trwałości instalacji.

Pytanie 32

Do kotła, który spala zrębki, można za jednym razem załadować 0,5 m3 paliwa. W ciągu 24 godzin kocioł powinien być załadowany 3 razy. Jaki będzie tygodniowy koszt paliwa, jeśli jego cena za 1 m3 wynosi 50,00 zł?

A. 50,00 zł
B. 525,00 zł
C. 25,00 zł
D. 150,00 zł
Obliczenie tygodniowego kosztu paliwa jest kluczowe w kontekście zarządzania efektywnością energetyczną kotłów. W przypadku przedstawionego pytania, najpierw obliczamy, ile paliwa kocioł potrzebuje w ciągu jednego dnia. Kiedy załadujemy 0,5 m³ paliwa trzy razy dziennie, otrzymujemy 1,5 m³ dziennie. Aby przeanalizować zużycie w ciągu tygodnia, należy pomnożyć tę wartość przez 7 dni, co daje 10,5 m³. Następnie, aby obliczyć koszt, pomnożono tę ilość przez cenę jednostkową paliwa, wynoszącą 50,00 zł za 1 m³. W ten sposób uzyskujemy tygodniowy koszt paliwa wynoszący 525,00 zł. Takie obliczenia są przydatne nie tylko w kontekście zarządzania kosztami, ale również w procesach planowania budżetu i efektywności energetycznej. W branży energetycznej kluczowe jest monitorowanie zużycia paliwa oraz kosztów, co pozwala na optymalizację procesów grzewczych i podejmowania świadomych decyzji dotyczących inwestycji w efektywne źródła energii.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Aby zabezpieczyć obieg grzewczy w sytuacji, gdy ciśnienie w instalacji solarnej zbyt mocno wzrasta, co powinno się zastosować?

A. regulator temperatury
B. grupę pompową
C. zawór bezpieczeństwa
D. podgrzewacz wody
Zawór bezpieczeństwa to mega ważny element, jeśli chodzi o ochronę instalacji solarnej przed zbyt wysokim ciśnieniem. Kiedy ciśnienie w układzie wzrasta ponad dopuszczalny poziom, zawór automatycznie się otwiera, wypuszczając nadmiar wody albo pary. W ten sposób zapobiega się wszelkim awariom, co jest kluczowe dla bezpieczeństwa. Normy branżowe, takie jak PN-EN 12828, jasno mówią, jak istotne jest to zabezpieczenie w systemach grzewczych. Na przykład, w instalacji solarnej w domu, zawór bezpieczeństwa działa jak tarcza chroniąca system i ludzi w środku przed nieprzyjemnościami. A tak swoją drogą, pamiętaj, żeby regularnie sprawdzać zawory bezpieczeństwa – to nie tylko kwestia przepisów, ale też bezpieczeństwa całej instalacji.

Pytanie 38

W ciągu roku pompa ciepła funkcjonowała przez 1 950 godzin, pobierając średnio moc wynoszącą około 1,67 kW. To przekłada się na roczne zużycie energii równe 3 257 kWh, głównie w czasie nocnej taryfy. Zakładając przeciętny koszt 1 kWh na poziomie 0,30 zł, ile wyniesie roczny wydatek na ogrzewanie oraz przygotowanie CWU?

A. 585,00 zł
B. 977,10 zł
C. 4 280,00 zł
D. 1 631,75 zł
Obliczenie rocznego kosztu ogrzewania i przygotowania ciepłej wody użytkowej (CWU) przy użyciu pompy ciepła polega na pomnożeniu całkowitego zużycia energii (w kWh) przez średni koszt energii elektrycznej za 1 kWh. W tym przypadku, pompa ciepła pracowała przez 1950 godzin, przy średnim poborze mocy wynoszącym 1,67 kW, co daje roczne zużycie energii równające się 1950 godzin * 1,67 kW = 3256,5 kWh, co można zaokrąglić do 3257 kWh. Przyjmując koszt 1 kWh równy 0,30 zł, otrzymujemy całkowity koszt: 3257 kWh * 0,30 zł/kWh = 977,10 zł. Taki sposób obliczeń jest zgodny z praktykami stosowanymi w inżynierii energetycznej i pozwala na dokładne oszacowanie kosztów eksploatacyjnych systemów grzewczych. W praktyce, użytkownicy powinni uwzględnić również okresy szczytowe oraz taryfy nocne, które mogą wpływać na całkowity koszt eksploatacji. Zrozumienie tych zasad jest istotne dla racjonalnego zarządzania kosztami energii i efektywności energetycznej budynków.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Aby zapewnić jednostronny przepływ czynnika grzewczego, należy zainstalować zawór

A. czerpalny
B. spustowy
C. bezpieczeństwa
D. zwrotny
Zawór zwrotny to urządzenie stosowane w systemach hydraulicznych i grzewczych, które zapewnia przepływ czynnika grzewczego tylko w jednym kierunku, zapobiegając cofaniu się płynu. Jego działanie opiera się na zasadzie wykorzystania ciśnienia różnicowego, które otwiera zawór w kierunku przepływu, a zamyka go w przeciwnym. Zawory te są kluczowe w instalacjach grzewczych, gdzie niekontrolowany przepływ może prowadzić do strat ciepła i obniżenia efektywności systemu. Na przykład, w instalacjach centralnego ogrzewania, stosowanie zaworów zwrotnych zapewnia, że gorąca woda z kotła nie wraca do niego, co mogłoby prowadzić do uszkodzenia sprzętu oraz obniżenia komfortu grzewczego. W praktyce, zawory zwrotne są często instalowane w pobliżu kotłów oraz na zasilaniu i powrocie do grzejników, co minimalizuje ryzyko niepożądanych zjawisk. Warto także zwrócić uwagę na standardy branżowe, takie jak normy PN-EN dotyczące instalacji, które zalecają stosowanie zaworów zwrotnych w odpowiednich miejscach, aby zapewnić bezpieczeństwo i efektywność systemów grzewczych.