Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 31 maja 2025 14:16
  • Data zakończenia: 31 maja 2025 14:24

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Ciecze wykorzystywane do chłodzenia silników spalinowych to mieszaniny wody i

A. alkoholu metylowego
B. olejów
C. alkoholu etylowego
D. glikolu etylowego
Zastosowanie olejów oraz alkoholi metylowego i etylowego w cieczy chłodzącej to nie najlepszy pomysł, i to z kilku powodów. Oleje, chociaż mają dobre właściwości smarne, nie radzą sobie w niskich temperaturach i kiepsko przewodzą ciepło, więc do chłodzenia silników się nie nadają. Kluczowe dla silnika jest, żeby ciecz skutecznie odprowadzała ciepło, a oleje tego po prostu nie zrobią wystarczająco dobrze. Do tego mogą jeszcze zatykać układ chłodzenia, co prowadzi do przegrzewania. Jeśli chodzi o alkohole, to mają one niższą temperaturę zamarzania niż glikol, ale są bardziej lotne, co może powodować parowanie i korozję elementów silnika. Poza tym, te alkohole mogą tworzyć osady, co też nie jest fajne, bo mogą zatkać kanały chłodzenia. W praktyce, używanie tych substancji zamiast glikolu etylowego zwiększa ryzyko uszkodzeń silnika i obniża jego wydajność. Najlepiej kierować się sprawdzonymi normami, które wskazują na glikol etylowy w odpowiednich proporcjach z wodą.

Pytanie 2

Jak wykonuje się pomiar wysokości krzywki wałka rozrządu?

A. mikromierzem do pomiarów wewnętrznych
B. szczelinomierzem
C. suwmiarką noniuszową
D. głębokościomierzem
Pomiar wysokości krzywki wałka rozrządu za pomocą suwmiarki noniuszowej jest najlepszą metodą, ponieważ ten przyrząd pomiarowy pozwala na uzyskanie dokładnych wartości z zachowaniem wysokiej precyzji. Suwmiarka noniuszowa, znana z możliwości pomiaru w zakresie milimetra i submilimetra, jest idealna do tego zadania, gdyż umożliwia pomiar zarówno zewnętrzny, jak i wewnętrzny oraz głębokości. W przypadku pomiarów wysokości krzywki, suwmiarka noniuszowa pozwala na bezpośrednie odczytanie wartości, co jest kluczowe dla zachowania odpowiednich tolerancji. Dobrym przykładem zastosowania tej metody jest przeprowadzanie pomiarów wysokości krzywek w silnikach, co ma kluczowe znaczenie dla prawidłowego działania układu rozrządu. W standardach branżowych, takich jak ISO 6743, podkreśla się znaczenie precyzyjnych pomiarów w inżynierii mechanicznej, co czyni użycie suwmiarki noniuszowej najlepszym wyborem.

Pytanie 3

Co oznacza oznaczenie TWI umieszczone na oponie?

A. dostosowanie opony do sezonu zimowego
B. przeznaczenie opony do pojazdu terenowego
C. typ materiału użytego do produkcji bieżnika
D. graniczne zużycie bieżnika
Oznaczenie TWI (Tread Wear Indicator) na oponie jest kluczowym wskaźnikiem informującym kierowców o granicznym zużyciu bieżnika. W momencie, gdy bieżnik opony osiągnie poziom wskazany przez TWI, oznacza to, iż opona jest zużyta do minimum dopuszczalnego poziomu, co może negatywnie wpływać na bezpieczeństwo jazdy. Praktyczne zastosowanie TWI polega na regularnym monitorowaniu stanu opon, co jest kluczowe dla zapewnienia optymalnej przyczepności, zwłaszcza w trudnych warunkach drogowych. Warto pamiętać, że minimalna głębokość bieżnika, zgodna z europejskimi normami, wynosi 1,6 mm, jednak zaleca się wymianę opon już przy głębokości 3 mm, aby uniknąć potencjalnych zagrożeń. Właściwe zarządzanie zużyciem opon nie tylko zwiększa bezpieczeństwo, ale także przyczynia się do dłuższej żywotności pojazdu i zmniejszenia kosztów eksploatacyjnych.

Pytanie 4

Jaką metodą realizuje się planowanie głowicy?

A. frezowania
B. honowania
C. toczenia
D. rozwiercania
Wybór niewłaściwych metod obróbczych, takich jak honowanie, rozwiercanie czy toczenie, często wynika z niepełnego zrozumienia specyfiki procesów obróbczych. Honowanie jest techniką, która służy głównie do poprawy jakości powierzchni w otworach cylindrycznych oraz do osiągania wysokiej precyzji wymiarowej, a nie do formowania kształtów głowic. Używane zazwyczaj na końcowym etapie obróbki, honowanie ma na celu eliminację mikrouszkodzeń i zapewnienie idealnego wykończenia, co czyni tę metodę nieodpowiednią w kontekście planowania głowicy, gdzie wymagana jest głównie obróbka kształtowa. Rozwiercanie z kolei to proces przeznaczony do zwiększania średnicy otworów w obrabianych materiałach, co nie jest kluczowym elementem w produkcji głowic, gdzie bardziej istotne jest kształtowanie ich konturów. Toczenie, mimo że jest skuteczną metodą obróbczo-formującą, także nie nadaje się do precyzyjnego planowania głowic, zwłaszcza w kontekście ich złożonej geometrii. Zrozumienie, które procesy obróbcze są właściwe do danego zastosowania, jest kluczowe w projektowaniu i produkcji, a wybór odpowiedniej metody ma bezpośredni wpływ na jakość oraz efektywność produkcji. W przemyśle stosuje się różne standardy, takie jak ISO 9001, które podkreślają znaczenie odpowiedniego doboru technologii obróbczej w odniesieniu do specyfiki produkcji.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Jaki jest całkowity wydatek związany z wymianą oleju silnikowego, jeśli jego ilość w silniku wynosi 3,5 litra, cena za litr wynosi 21 zł, a koszt filtra oleju to 65 zł? Prace zajmują 30 minut, a stawka za godzinę roboczą to 120 zł?

A. 138,50 zł
B. 146,00 zł
C. 258,50 zł
D. 198,50 zł
Aby obliczyć całkowity koszt wymiany oleju silnikowego, należy uwzględnić kilka istotnych elementów. Po pierwsze, ilość oleju w silniku wynosi 3,5 litra, a cena za litr wynosi 21 zł. Dlatego koszt samego oleju wynosi 3,5 litra * 21 zł/litr = 73,5 zł. Po drugie, koszt filtra oleju wynosi 65 zł. Następnie należy uwzględnić koszt robocizny. Wymiana oleju trwa 30 minut, co przekłada się na 0,5 godziny. Stawka za roboczogodzinę wynosi 120 zł, więc koszt robocizny wynosi 0,5 godziny * 120 zł/godzina = 60 zł. Sumując wszystkie te koszty: 73,5 zł (olej) + 65 zł (filtr) + 60 zł (robocizna) = 198,5 zł. Takie podejście do wyceny usługi jest zgodne z dobrymi praktykami w branży motoryzacyjnej, gdzie dokładne oszacowanie kosztów jest kluczowe dla przejrzystości i zaufania klientów.

Pytanie 7

Podczas testu po naprawie pojazdu zauważono samoczynny wzrost poziomu oleju w układzie smarowania silnika. Co może być przyczyną tej sytuacji?

A. uszkodzenie uszczelki pod głowicą
B. uszkodzenie pompy olejowej
C. zużycie czopów wału korbowego
D. nadmierne zabrudzenie filtra oleju
No więc, przyczyny wzrostu poziomu oleju w silniku mogą być niejasne i łatwo się w tym pogubić. Ale wiesz, uszkodzenie czopów wału korbowego, mimo że może prowadzić do problemów z silnikiem, nie ma bezpośredniego związku z podnoszeniem się poziomu oleju. Zużycie czopów czasem sprawia, że silnik działa mniej efektywnie albo olej zaczyna wyciekać, ale to nie powoduje jego wzrostu. A jeśli pompa olejowa jest uszkodzona, to zwykle ciśnienie oleju spada, więc też nie ma to związku z samoczynnym wzrostem. Dodatkowo, brudny filtr oleju może zakłócać obieg oleju, ale nie sprawi, że olej nagle będzie więcej. Często źle się interpretuje problemy związane z układem smarowania, bo brakuje wiedzy o tym, jak to działa. Ważne jest, żeby zrozumieć, że wzrost poziomu oleju zazwyczaj jest spowodowany przedostawaniem się innych płynów, na przykład płynu chłodzącego, co często oznacza, że uszczelka pod głowicą jest w złym stanie. Dobra diagnostyka oraz znajomość budowy silników mogą pomóc w rozwiązywaniu problemów i oszczędzeniu pieniędzy na naprawach w przyszłości.

Pytanie 8

Pomiar grubości zębów kół zębatych można zrealizować przy użyciu

A. mikrometru
B. suwmiarki modułowej
C. głębokościomierza
D. średnicówki czujnikowej
Suwmiarka modułowa to narzędzie pomiarowe, które jest szczególnie przydatne do precyzyjnego pomiaru grubości zębów kół zębatych. Dzięki swojej konstrukcji, suwmiarka modułowa pozwala na dokładne pomiary z zastosowaniem odpowiednich przystawek, co zapewnia dużą precyzję i powtarzalność wyników. W praktyce inżynieryjnej, pomiar grubości zębów kół zębatych jest kluczowy dla zapewnienia ich prawidłowego działania i trwałości. Użycie suwmiarki modułowej, zgodnie z normami ISO 2768-1, zapewnia, że pomiary są wykonane z zachowaniem odpowiednich tolerancji. Dodatkowo, suwmiarki modułowe często mają możliwość kalibracji, co umożliwia dostosowanie ich do specyficznych wymagań pomiarowych w danym zastosowaniu. Przykładowo, w przemyśle motoryzacyjnym, precyzyjne pomiary zębów w kołach zębatych przekładni są kluczowe dla ich efektywności i minimalizacji hałasu.

Pytanie 9

Jak wyraża się moc silnika spalinowego?

A. kW
B. kWh
C. MPa
D. Nm
Moc silnika spalinowego podawana w kilowatach (kW) jest standardowym sposobem określania wydajności silników, co ma znaczenie zarówno w przemyśle motoryzacyjnym, jak i w aplikacjach przemysłowych. Moc wyrażona w kW odnosi się do ilości energii, jaką silnik jest w stanie wygenerować w jednostce czasu. Przykładowo, silnik samochodu osobowego o mocy 100 kW będzie w stanie wytworzyć 100 kilowatogodzin energii w ciągu jednej godziny pracy. Ponadto, moc jest kluczowym parametrem w kontekście przepisów dotyczących emisji spalin oraz regulacji dotyczących efektywności energetycznej. W praktyce, moc silnika ma bezpośredni wpływ na osiągi pojazdu, jego zdolność do przyspieszania oraz na efektywność paliwową. Zgodnie z normami ISO 14396, moc silnika spalinowego powinna być mierzona w sposób, który uwzględnia warunki testowe, co zapewnia porównywalność wyników między różnymi producentami i modelami. Dlatego też, wiedza na temat jednostki kW jest istotna dla inżynierów, techników oraz użytkowników, którzy chcą dokonywać świadomych wyborów dotyczących technologii silnikowej.

Pytanie 10

Do rozmontowania kolumny Mc Phersona potrzebny jest ściągacz

A. sprężyn zaworowych.
B. sprężyn układu zawieszenia.
C. sprężyn szczęk hamulcowych.
D. łożysk.
Odpowiedź "sprężyn układu zawieszenia" jest poprawna, ponieważ demontaż kolumny McPhersona wiąże się z koniecznością usunięcia sprężyn, które są kluczowym elementem tego typu zawieszenia. Kolumna McPhersona jest popularnym rozwiązaniem w nowoczesnych pojazdach, wykorzystującym połączenie amortyzatora i sprężyny w jednej konstrukcji. Do demontażu sprężyn układu zawieszenia niezbędne jest zastosowanie odpowiedniego ściągacza sprężyn, który umożliwia bezpieczne i skuteczne usunięcie sprężyny z kolumny. W praktyce, przed przystąpieniem do demontażu, należy podnieść pojazd, zabezpieczyć go stabilnie, a następnie zdemontować koło, aby uzyskać dostęp do kolumny. Użycie ściągacza sprężyn jest niezbędne, aby uniknąć ryzyka uszkodzenia elementów zawieszenia, a także zapewnić bezpieczeństwo podczas pracy. Warto również pamiętać o dokładnym sprawdzeniu stanu pozostałych elementów zawieszenia oraz ich wymianie, jeśli tego wymaga sytuacja. Zgodność z zaleceniami producenta oraz odpowiednie narzędzia są kluczowe w prawidłowym przeprowadzeniu tej operacji.

Pytanie 11

Podczas próby olejowej, kiedy mierzono ciśnienie sprężania w silniku z zapłonem iskrowym, zaobserwowano wzrost ciśnienia w cylindrze o 0,4 MPa w porównaniu do pomiaru bez oleju. Najbardziej prawdopodobnym zakresem uszkodzeń silnika jest nieszczelność

A. zaworu dolotowego
B. zaworu wylotowego
C. uszczelki pod głowicą
D. układu tłok-cylinder
Wzrost ciśnienia sprężania o 0,4 MPa w czasie pomiaru olejowego wskazuje na problemy z nieszczelnością w układzie tłok-cylinder. Olej wprowadzany do cylindra działa jako uszczelniacz, co tymczasowo poprawia ciśnienie, a jego wzrost sugeruje, że uszczelki lub same tłoki mają trudności z właściwym sealowaniem. W praktyce, nieszczelności w układzie tłok-cylinder są częstym problemem w silnikach spalinowych i mogą prowadzić do znacznych strat mocy oraz zwiększonego zużycia paliwa. W standardach diagnostyki silników, takie objawy są często łączone z testami kompresji i próby olejowe są jedną z metod weryfikacji stanu silnika. Warto regularnie monitorować stan układu tłok-cylinder, aby zapobiec poważniejszym uszkodzeniom. Dobre praktyki obejmują również zastosowanie odpowiednich olejów silnikowych oraz regularną kontrolę stanu uszczelek i tłoków, co może znacznie przedłużyć żywotność silnika.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Urządzenie służące do analizy silnika, przy użyciu metody określania ciśnienia sprężania, funkcjonuje na podstawie zmiany odczytów w zależności od wartości

A. ciśnienia w cylindrze
B. kąta wyprzedzenia zapłonu
C. kąta zwarcia styków przerywacza
D. podciśnienia w cylindrze
Odpowiedzi, które wskazują na podciśnienie w cylindrze, kąt wyprzedzenia zapłonu oraz kąt zwarcia styków przerywacza, nie są odpowiednie w kontekście przyrządów do diagnostyki silnika. Podciśnienie w cylindrze, mimo że jest ważnym parametrem w niektórych aspektach działania silnika, nie jest bezpośrednio odpowiedzialne za ocenę ciśnienia sprężania. W rzeczywistości, podciśnienie jest bardziej związane z procesem zasysania mieszanki paliwowo-powietrznej przez silnik, a jego pomiar jest używany w innych kontekstach, na przykład do regulacji mieszanki. Z kolei kąt wyprzedzenia zapłonu jest istotny dla precyzyjnego momentu zapłonu mieszanki paliwowej w cylindrze, co wpływa na efektywność spalania, ale nie bezpośrednio na pomiar ciśnienia sprężania. Kąt zwarcia styków przerywacza dotyczy klasycznych układów zapłonowych, ale również nie ma związku z pomiarem ciśnienia sprężania. Osoby mylące te pojęcia mogą myśleć, że różne aspekty funkcjonowania silnika są ze sobą ściśle powiązane, jednak każdy z tych parametrów ma swoją specyfikę i znaczenie w diagnostyce. W praktyce, nieprawidłowe zrozumienie tych elementów może prowadzić do błędnych diagnoz i decyzji serwisowych, co w dłuższej perspektywie wpływa na efektywność i trwałość silnika.

Pytanie 14

Typowe tarcze hamulcowe są produkowane

A. z żeliwa białego
B. z żeliwa szarego
C. ze stali stopowej
D. ze stali niestopowej
Wybór odpowiedzi związanych z żeliwem białym, stalą stopową oraz stalą niestopową nie jest uzasadniony w kontekście klasycznych tarcz hamulcowych. Żeliwo białe, ze względu na swoją twardość, nie jest odpowiednie w zastosowaniach hamulcowych, ponieważ wykazuje niską odporność na uderzenia i małą zdolność do rozpraszania ciepła. Takie materiałowe właściwości mogą prowadzić do szybkiego zużycia tarcz oraz zwiększonego ryzyka pęknięć pod wpływem wysokich temperatur. W przypadku stali stopowej, chociaż może oferować lepsze właściwości mechaniczne w niektórych zastosowaniach, jej produkcja jest droższa, a także może być mniej efektywna w redukcji wagi pojazdów. Stale niestopowe z kolei, mimo że są łatwiejsze w obróbce, nie dysponują odpowiednią odpornością na wysokie temperatury i mają tendencję do deformacji pod dużym obciążeniem. W kontekście dobrych praktyk inżynieryjnych, wybór materiałów do produkcji tarcz hamulcowych powinien opierać się na ich zdolności do pracy w krytycznych warunkach, co jasno wskazuje na preferencje dla żeliwa szarego, spełniającego wszelkie wymagania dotyczące bezpieczeństwa i niezawodności.

Pytanie 15

Energia mechaniczna w silnikach cieplnych funkcjonujących prawidłowo nie powstaje w wyniku procesu spalania

A. gazu ziemnego
B. oleju silnikowego
C. benzyny
D. oleju napędowego
Olej silnikowy jest substancją, która nie jest bezpośrednio używana do wytwarzania energii mechanicznej w silnikach cieplnych. Jego podstawowym zadaniem jest smarowanie ruchomych części silnika, co zapobiega ich zużyciu oraz przegrzewaniu. W silnikach cieplnych, takich jak silniki spalinowe, energia mechaniczna jest uzyskiwana zazwyczaj w wyniku spalania paliw, takich jak benzyna, olej napędowy czy gaz ziemny. Proces ten polega na przekształceniu energii chemicznej zawartej w paliwie na energię cieplną, która następnie wywołuje ruch tłoków. Olej silnikowy, choć niezwykle ważny dla prawidłowego funkcjonowania silnika, nie ma roli w tym procesie konwersji energii. Zrozumienie roli oleju silnikowego w systemie smarowania podkreśla znaczenie jego regularnej wymiany oraz stosowania olejów o odpowiednich parametrach, co jest zgodne z zaleceniami producentów pojazdów. Dbałość o układ smarowania przyczynia się do wydłużenia trwałości silnika oraz optymalizacji jego pracy.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Jakie jest zadanie cewki zapłonowej?

A. generowanie iskry zapłonowej
B. ochrona przed przepięciem
C. produkcja wysokiego natężenia prądu
D. wytwarzanie wysokiego napięcia
Nieprawidłowe formułowanie odpowiedzi prowadzi do nieporozumień dotyczących działania cewki zapłonowej. Może pojawić się mylne przekonanie, że cewka zapłonowa wytwarza jedynie iskry zapłonowe. W rzeczywistości iskra jest efektem końcowym procesu indukcji napięcia, a nie bezpośrednim zadaniem cewki. Istotne jest rozróżnienie między pojęciem wysokiego napięcia a wysokiego natężenia prądu, które są często mylone. Cewka zapłonowa generuje wysokie napięcie, a nie wysokie natężenie prądu, co jest kluczowe dla prawidłowego funkcjonowania układu zapłonowego. Ponadto, cewka nie pełni funkcji zabezpieczających przed przepięciem, gdyż jej głównym celem jest dostarczenie energii do zapłonu, a nie ochrona systemu przed nadmiarowym napięciem. Właściwe zrozumienie zasad działania cewki zapłonowej jest kluczowe dla diagnostyki i naprawy układów zapłonowych, co w praktyce oznacza, że technicy muszą umieć rozpoznać, jak i dlaczego cewka wytwarza wysokie napięcie oraz jakie są implikacje dla pracy silnika. Ignorowanie tych faktów może prowadzić do błędnych diagnoz i niewłaściwych napraw, co w konsekwencji wpływa na wydajność i żywotność silnika.

Pytanie 18

Maksymalna dopuszczalna zawartość CO (tlenku węgla) w spalinach dla silników benzynowych wyprodukowanych po 2004 roku, w czasie biegu jałowego, nie powinna być większa niż

A. 3,5% objętości spalin
B. 1,5% objętości spalin
C. 0,3% objętości spalin
D. 2,5% objętości spalin
Wybór odpowiedzi innych niż 0,3% objętości spalin wskazuje na brak zrozumienia norm emisji zanieczyszczeń oraz regulacji dotyczących silników spalinowych. Na przykład, podanie wartości 1,5% lub 2,5% nie tylko przekracza aktualne normy, ale także nie uwzględnia technologii, które zostały wprowadzone do silników po 2004 roku. Silniki współczesne są wyposażone w zaawansowane systemy oczyszczania spalin, które skutecznie redukują emisję tlenku węgla do poziomów znacznie poniżej 0,3%. Również warto zauważyć, że normy emisji takich jak Euro 5, które zaczęły obowiązywać od 2009 roku, wymuszają dalsze ograniczenie emisji dla nowych pojazdów. Wybierając wartości 3,5% lub inne, można wskazać na typowe błędy myślowe, takie jak mylenie biegu jałowego z innymi warunkami pracy silnika. W rzeczywistości na biegu jałowym emisja powinna być monitorowana w bardzo kontrolowanych warunkach, a wartości przekraczające 0,3% stanowią poważne naruszenie przepisów, które mogą skutkować koniecznością przeprowadzenia naprawy lub modyfikacji układu wydechowego. Należy pamiętać, że zrozumienie tych norm jest kluczowe dla wszystkich, którzy pracują w branży motoryzacyjnej oraz zajmują się diagnostyką silników.

Pytanie 19

Jakim przyrządem wykonujemy pomiar ciśnienia powietrza w oponach?

A. areometrem
B. pasametrem
C. wakuometrem
D. manometrem
Prawidłowa odpowiedź to manometr, który jest urządzeniem pomiarowym przeznaczonym do pomiaru ciśnienia. W kontekście ogumienia pojazdów, manometr pozwala na dokładne określenie ciśnienia powietrza w oponach, co jest kluczowe dla bezpieczeństwa jazdy oraz efektywności paliwowej. Odpowiednie ciśnienie w oponach zapewnia lepszą przyczepność, zmniejsza zużycie paliwa oraz obniża ryzyko uszkodzenia opon. Standardy dotyczące ciśnienia w oponach są określone przez producentów pojazdów i mogą różnić się w zależności od modelu oraz obciążenia. Regularne sprawdzanie ciśnienia za pomocą manometru to dobra praktyka, która powinna być wykonywana co najmniej raz w miesiącu oraz przed dłuższymi podróżami. Warto także pamiętać, że ciśnienie w oponach należy sprawdzać na zimno, czyli przed rozpoczęciem jazdy, aby uzyskać najbardziej dokładny wynik pomiaru.

Pytanie 20

Aby dokręcić śruby głowicy silnika z odpowiednim momentem, jaki narzędzie powinno być użyte?

A. klucza dynamometrycznego
B. wkrętaka udarowego
C. klucza pneumatycznego
D. klucza oczkowego
Klucz dynamometryczny jest narzędziem, które umożliwia dokręcenie śrub z precyzyjnie określonym momentem obrotowym. Użycie klucza dynamometrycznego jest standardową praktyką w branży motoryzacyjnej i mechanicznej, szczególnie w kontekście montażu głowicy silnika, gdzie zbyt słabe lub zbyt mocne dokręcenie może prowadzić do poważnych uszkodzeń silnika. Klucz ten działa na zasadzie wskazania użytkownikowi, kiedy osiągnięto pożądany moment obrotowy, co jest niezwykle ważne, aby zapewnić równomierne i odpowiednie napięcie w śrubach. Na przykład, w przypadku silników współczesnych samochodów, producenci często podają specyfikacje dotyczące momentu dokręcania dla głowicy silnika, które należy dokładnie przestrzegać, aby uniknąć problemów z uszczelką lub pęknięciami. Stosując klucz dynamometryczny, mechanik może także uniknąć nadmiernego naprężenia, które mogłoby prowadzić do uszkodzenia gwintów, co może skutkować kosztownymi naprawami. Klucz dynamometryczny jest zatem niezastąpiony w każdej profesjonalnej warsztatowej praktyce.

Pytanie 21

Ile kresek znajduje się na noniuszu suwmiarki, która ma dokładność 0,05 mm?

A. 10 kresek
B. 40 kresek
C. 20 kresek
D. 50 kresek
Odpowiedź 20 kresek jest prawidłowa, ponieważ suwmiarka mikrometryczna z dokładnością 0,05 mm zazwyczaj ma noniusz podzielony na 20 kresek. Każda kreska na noniuszu odpowiada 0,05 mm, co sprawia, że cała skala noniusza pokrywa zakres 1 mm. Dzięki temu, suwmiarka pozwala na precyzyjne pomiary z dokładnością do 0,05 mm, co jest niezwykle przydatne w różnych zastosowaniach inżynieryjnych, mechanicznych i precyzyjnych. Na przykład w przemyśle motoryzacyjnym, gdzie dokładność pomiarów jest kluczowa dla zapewnienia jakości komponentów, użycie suwmiarki o takiej dokładności pozwala na kontrolę wymiarów elementów z bardzo małymi tolerancjami. Dobrą praktyką jest regularne kalibrowanie narzędzi pomiarowych oraz znajomość technik pomiarowych, aby uniknąć błędów i uzyskać wiarygodne wyniki pomiarów. Warto również zwrócić uwagę na to, że im większa liczba kresek na noniuszu, tym większa dokładność pomiaru, co jest kluczowe w precyzyjnej obróbce materiałów.

Pytanie 22

Jaką funkcję pełni termostat w silniku spalinowym?

A. chłodzenia powietrza
B. dopalania paliwa
C. regulowania obiegu cieczy chłodzącej
D. wtrysku paliwa
Termostat w silniku spalinowym odgrywa kluczową rolę w regulacji obiegu cieczy chłodzącej, co jest niezbędne dla utrzymania optymalnej temperatury pracy silnika. W momencie, gdy silnik jest zimny, termostat pozostaje zamknięty, co pozwala na szybkie nagrzewanie się płynu chłodzącego. Gdy temperatura osiągnie ustawioną wartość, termostat otwiera się, umożliwiając przepływ cieczy chłodzącej przez chłodnicę, co zapobiega przegrzewaniu silnika. Przykładowo, w nowoczesnych silnikach stosuje się termostaty z elektroniczną kontrolą, które mogą dostosować otwarcie w zależności od warunków pracy silnika, co prowadzi do większej efektywności paliwowej i zmniejszenia emisji spalin. Ponadto, właściwe działanie termostatu wpływa na żywotność silnika oraz jego osiągi, co jest zgodne z najlepszymi praktykami inżynieryjnymi w branży motoryzacyjnej.

Pytanie 23

Do jakiego celu służy synchronizator używany w skrzyni biegów?

A. ochrona załączonego biegu przed rozłączeniem
B. modyfikacja prędkości kół napędowych
C. wyrównanie prędkości obrotowych załączanych elementów
D. ograniczenie momentu obrotowego przekazywanego na koła
Synchronizator w skrzyni biegów odgrywa kluczową rolę w zapewnieniu płynności zmiany biegów przez wyrównanie prędkości obrotowych załączanych elementów, co pozwala na ich bezproblemowe połączenie. W momencie zmiany biegu, synchronizator synchronizuje prędkości obrotowe wałka napędowego i koła zębatego, eliminując ryzyko uszkodzenia elementów skrzyni biegów oraz zwiększając komfort jazdy. Przykładami zastosowania są manualne skrzynie biegów w samochodach osobowych, gdzie kierowca zmienia biegi, a synchronizatory zapewniają, że nie występują zgrzyty ani inne nieprzyjemne dźwięki związane z niewłaściwym połączeniem. Rozwiązania te oparte są na standardach inżynierii mechanicznej, które podkreślają znaczenie precyzyjnego dopasowania elementów mechanicznych oraz poprawnego doboru materiałów. W praktyce, odpowiednio zaprojektowane synchronizatory zmniejszają zużycie elementów układu napędowego, co przekłada się na dłuższą żywotność pojazdu oraz niższe koszty eksploatacji.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Jakie narzędzie jest wykorzystywane do właściwego ustawienia kąta wyprzedzenia zapłonu w silniku ZI?

A. oscyloskopu.
B. suwmiarki.
C. urządzenia diagnostycznego.
D. lampy stroboskopowej.
Lampa stroboskopowa jest kluczowym narzędziem wykorzystywanym do precyzyjnego ustawiania kąta wyprzedzenia zapłonu w silnikach ZI. Działa na zasadzie emitowania błysków światła w określonym rytmie, co pozwala mechanikowi na obserwację pozycji znaku zapłonu na kole zamachowym silnika w czasie rzeczywistym. Dzięki temu można dostosować kąt wyprzedzenia zapłonu, co jest niezbędne dla optymalnej pracy silnika, jego wydajności oraz osiągów. Ustawienie to ma bezpośredni wpływ na spalanie mieszanki paliwowo-powietrznej, co z kolei wpływa na moc silnika oraz emisję spalin. W warsztatach stosuje się lampy stroboskopowe zgodnie z normami i standardami branżowymi, co zapewnia nie tylko dokładność pomiarów, ale także bezpieczeństwo pracy. W praktyce mechanik ustawia silnik na określone obroty, a następnie przy pomocy lampy stroboskopowej kontroluje kąty zapłonu, co pozwala na precyzyjne dostosowanie jego parametrów.

Pytanie 26

Kiedy prędkość obrotowa silnika wzrasta w wyniku nagłego wciśnięcia pedału gazu, prędkość samochodu rośnie w sposób nieproporcjonalny. Taki symptom w pojeździe z mechaniczną skrzynią biegów może sugerować uszkodzenie

A. mechanizmu różnicowego
B. skrzyni biegów
C. przekładni głównej
D. sprzęgła
Odpowiedź dotycząca uszkodzenia sprzęgła jest prawidłowa, ponieważ w przypadku gwałtownego naciśnięcia pedału gazu, jeśli sprzęgło nie działa prawidłowo, nie jest w stanie przekazać mocy z silnika na skrzynię biegów. Sprzęgło ma kluczowe zadanie w synchronizacji obrotów silnika z obrotami kół, co umożliwia płynne przyspieszanie pojazdu. Gdy sprzęgło jest uszkodzone, może dochodzić do poślizgu, co oznacza, że silnik zwiększa obroty, ale nie przekłada się to na proporcjonalny wzrost prędkości pojazdu. Przykładem może być sytuacja, gdy kierowca czuje, że silnik „kręci się” na wysokich obrotach, ale samochód nie przyspiesza w oczekiwany sposób. W takich przypadkach zaleca się natychmiastowe zbadanie stanu sprzęgła, aby uniknąć dalszych uszkodzeń. W praktyce, dobrym standardem jest regularne kontrolowanie stanu elementów układu napędowego, co może zapobiec poważnym awariom i kosztownym naprawom.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Podczas przeglądu okresowego pojazdu samochodowego z silnikiem ZS wykonano czynności ujęte w tabeli. Jaki był koszt wykonania tej usługi, bez materiałów, jeżeli cena roboczogodziny w zakładzie wynosi 80 zł brutto.

Lp.CzynnośćCzas wykonania
w godzinach
1.Wymiana przegubu kulowego napędowego z osłoną gumową1,6
2.Wymiana 1 szt. końcówki drążka kierowniczego0,5

A. 146 zł
B. 200 zł
C. 186 zł
D. 168 zł
Wszystkie niepoprawne odpowiedzi wynikają z błędnych obliczeń lub nieporozumień dotyczących zasad kalkulacji kosztów robocizny. W przypadku podanych opcji, można zauważyć, że odpowiedzi takie jak 186 zł, 146 zł czy 200 zł nie uwzględniają prawidłowego czasu pracy oraz stawki. Na przykład, przyjmując błędne założenie co do czasu potrzebnego na wykonanie usługi, można dojść do niepoprawnych wniosków, takich jak 186 zł, co mogłoby sugerować uwzględnienie zbyt dużej liczby roboczogodzin lub niepoprawną stawkę. Odpowiedzi, które sugerują 146 zł lub 200 zł, mogą wynikać z dodania lub odjęcia niewłaściwych wartości, co prowadzi do nieporozumień w zakresie kalkulacji. Kluczowym błędem jest nieprzestrzeganie standardów obliczeń, które opierają się na prostych zasadach matematycznych. Dobrą praktyką jest zawsze weryfikować każdą wartość, zanim zostanie wprowadzona do końcowego obliczenia, co pozwala uniknąć typowych błędów myślowych. Poprawne obliczenie kosztów robocizny jest istotne nie tylko dla właścicieli zakładów, ale również dla klientów, którzy pragną zrozumieć, za co płacą. Dlatego warto zwracać uwagę na dokładność i rzetelność przy tworzeniu wycen usług.

Pytanie 29

Nadmierny luz pierścieni w gniazdach tłoka silnika spalinowego może prowadzić do

A. wzrostu ciśnienia sprężania
B. spadku stopnia sprężania
C. wzrostu zużycia paliwa
D. wzrostu zużycia oleju silnikowego
Nadmierny luz pierścieni w rowkach tłoka silnika spalinowego ma istotny wpływ na wydajność silnika oraz jego trwałość. Zwiększone zużycie oleju silnikowego jest bezpośrednim konsekwencją tego zjawiska. Pierścienie tłokowe mają za zadanie nie tylko uszczelniać komorę spalania, ale także regulować ilość oleju, który smaruje ściany cylindrów. Przy nadmiernym luzie pierścieni, olej może łatwiej przedostawać się do komory spalania, co prowadzi do jego spalania. To zjawisko może skutkować zwiększonym zużyciem oleju, co z kolei oznacza częstsze uzupełnianie oleju oraz może prowadzić do większego zanieczyszczenia spalin. Zgodnie z dobrymi praktykami branżowymi, regularna kontrola luzu pierścieni oraz ich stanu powinna być częścią rutynowej konserwacji silnika. Przykładem może być kontrola luzu pierścieni w silnikach wysokoprężnych, gdzie normalne zużycie oleju jest kluczowe dla efektywności i ekologiczności działania jednostki napędowej. Właściwe utrzymanie luzu pierścieni jest także rekomendowane przez wiele producentów silników, jako sposób na zapewnienie optymalnej pracy silnika.

Pytanie 30

Jaki łączny koszt będzie naprawy głowicy silnika, jeśli wymienione zostały 2 zawory dolotowe w cenie 27 zł za sztukę oraz 2 zawory wylotowe po 25 zł za sztukę? Czas dostarczenia jednego zaworu wynosi 20 minut, a stawka za roboczogodzinę to 90 zł?

A. 204 zł
B. 124 zł
C. 224 zł
D. 154 zł
Aby obliczyć całkowity koszt naprawy głowicy silnika, musimy uwzględnić zarówno koszty części zamiennych, jak i czas pracy mechanika. W tej sytuacji wymieniono 2 zawory dolotowe w cenie 27 zł za sztukę oraz 2 zawory wylotowe po 25 zł za sztukę. Obliczamy koszty części: (2 x 27 zł) + (2 x 25 zł) = 54 zł + 50 zł = 104 zł. Następnie obliczamy czas potrzebny na dostarczenie zaworów. Każdy zawór wymaga 20 minut, więc dla 4 zaworów potrzebujemy 80 minut. Przeliczając to na godziny, otrzymujemy 1,33 godziny (80 minut / 60 minut). Koszt robocizny wynosi 90 zł za godzinę, więc całkowity koszt robocizny to 90 zł x 1,33 godziny = 119,7 zł. Łącząc te wartości, otrzymujemy 104 zł + 119,7 zł = 223,7 zł, co zaokrągla się do 224 zł. Zastosowanie tego typu obliczeń jest istotne w branży motoryzacyjnej, aby właściwie wyceniać usługi oraz planować budżet na ewentualne naprawy.

Pytanie 31

W silniku spalinowym z tłokiem luz zaworowy jest

A. zbędny, ponieważ prowadzi jedynie do szybszego zużycia elementów układu rozrządu
B. konieczny aby zapobiec kolizji zaworu z denkiem tłoka
C. niedopuszczalny, ponieważ powoduje wzrost ilości świeżego ładunku w cylindrze
D. konieczny w celu zrekompensowania rozszerzalności temperaturowej części układu rozrządu
Odpowiedź wskazująca, że luz zaworowy jest niezbędny w celu kompensacji rozszerzalności temperaturowej elementów układu rozrządu jest prawidłowa. Luz zaworowy odgrywa kluczową rolę w prawidłowym działaniu silników tłokowych, ponieważ różne materiały używane w układzie rozrządu mają różne współczynniki rozszerzalności cieplnej. W miarę nagrzewania się silnika, elementy te mogą się rozszerzać, co prowadzi do zmiany ich wymiarów. Bez odpowiedniego luzu, zawory mogą nie zamykać się prawidłowo, co może skutkować utratą ciśnienia kompresji, a w najgorszym przypadku kolizją między zaworem a tłokiem. W praktyce, regulacja luzu zaworowego jest standardową procedurą serwisową, która pozwala na zachowanie optymalnej wydajności silnika oraz jego trwałości. Wzmianka o luzie odnosi się również do standardów branżowych, które zalecają określone wartości luzu w zależności od typu silnika, co zapewnia długotrwałe i niezawodne działanie jednostki napędowej.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Najczęściej tarcze hamulcowe produkowane są z

A. stopu miedzi
B. żeliwa
C. aluminiowych stopów
D. stali
No, tarcze hamulcowe najczęściej robi się z żeliwa, bo ma ono super właściwości. Chodzi o to, że żeliwo świetnie przewodzi ciepło, co jest mega ważne podczas hamowania. Dzięki temu ciepło się rozprasza i mniejsze jest ryzyko, że coś nam się przegrzeje. Właśnie to sprawia, że hamowanie jest naprawdę skuteczne. Poza tym, żeliwo jest twarde i odporne na zużycie, więc tarcze z niego są trwałe i długo nam posłużą. W praktyce, wszyscy stosują żeliwne tarcze w osobówkach i ciężarówkach, a ich produkcja trzyma się norm ISO 9001, co oznacza, że są zazwyczaj dobrej jakości. Oczywiście w sportowych autach używa się też tarcz kompozytowych, ale w zwykłych pojazdach żeliwo wciąż rządzi.

Pytanie 35

Gdzie jest zamocowany czujnik spalania stukowego?

A. na kolektorze wydechowym
B. na misce olejowej
C. na bloku silnika
D. w głowicy
Zamocowanie czujnika spalania stukowego w innych lokalizacjach, takich jak miska olejowa, głowica czy kolektor wydechowy, może prowadzić do poważnych problemów w wykrywaniu detonacji. Miska olejowa, będąca częścią smarowania silnika, nie jest miejscem, gdzie mogłyby być efektywnie monitorowane drgania generowane przez spalanie. Umieszczony tam czujnik mógłby nie tylko nie rejestrować istotnych sygnałów, ale także być narażony na wpływ wibracji wynikających z ruchu tłoków, co wprowadzałoby dodatkowy szum i mogłoby prowadzić do fałszywych odczytów. Głowica silnika, choć może wydawać się odpowiednim miejscem, jest narażona na wysokie temperatury i ciśnienia, które mogą wpływać na żywotność czujnika oraz jego dokładność. Z kolei montaż czujnika na kolektorze wydechowym również nie jest rekomendowany, ponieważ w tym miejscu występują drgania o innym charakterze, które mogą być mylnie interpretowane przez czujnik, prowadząc do nieprawidłowych korekt w procesie spalania. Takie pomyłki w lokalizacji czujnika są typowymi błędami myślowymi, które wynikają z niezrozumienia funkcji tego elementu w kontekście całego systemu zarządzania silnikiem. Kluczowe jest zrozumienie, że precyzyjne lokalizowanie czujników jest nie tylko sprawą techniczną, ale również kluczowym elementem we wdrażaniu efektywnych rozwiązań w inżynierii motoryzacyjnej.

Pytanie 36

Czas wymiany uszczelki podgłowicowej w silniku wynosi 2,3 rbg, a całkowity koszt części zamiennych to 339,00 zł netto. Jaki jest całkowity koszt brutto naprawy (VAT 23%), przy założeniu, że cena za 1 rbg to 70,00 zł netto?

A. 595,00 zł
B. 600,00 zł
C. 500,00 zł
D. 615,00 zł
Obliczanie całkowitego kosztu naprawy silnika wymaga precyzyjnego uwzględnienia zarówno kosztów pracy, jak i części zamiennych. W przypadku błędnych odpowiedzi, które nie uwzględniają zarówno stawki za roboczogodzinę, jak i VAT, pojawiają się podstawowe błędy koncepcyjne. Na przykład, niektóre odpowiedzi mogą ignorować konieczność dodawania VAT do całkowitego kosztu netto. Przyjęcie, że koszt pracy jest stały, a następnie nie uwzględnienie VAT, prowadzi do zaniżenia całkowitych kosztów naprawy. Ważne jest również, aby zrozumieć, że każde zlecenie naprawy powinno być dokładnie kalkulowane na podstawie rzetelnych danych, co jest zgodne z najlepszymi praktykami w branży. Dobre praktyki obejmują dokładne przeliczanie godzin pracy oraz materiałów, a także transparentność w stosunku do klienta, co pozwala na uniknięcie nieporozumień. Zrozumienie pełnego procesu kosztorysowania, w tym wpływu VAT na cenę końcową usługi, jest kluczowe dla efektywnego zarządzania finansami w warsztatach. Ignorowanie tych elementów może prowadzić do nie tylko błędnych ocen kosztów, ale także do utraty zaufania klientów oraz nieefektywności operacyjnej.

Pytanie 37

Jaki jest podstawowy cel regulacji geometrii zawieszenia?

A. Zapewnienie stabilności prowadzenia pojazdu
B. Zwiększenie mocy silnika
C. Poprawa wyglądu pojazdu
D. Zmniejszenie zużycia paliwa
Podstawowym celem regulacji geometrii zawieszenia jest zapewnienie stabilności prowadzenia pojazdu. Geometria zawieszenia odnosi się do ustawienia kątów kół w stosunku do siebie i do nawierzchni drogi. Prawidłowe ustawienie kątów, takich jak zbieżność, kąt pochylenia kół czy wyprzedzenie osi sworznia zwrotnicy, ma kluczowy wpływ na stabilność pojazdu podczas jazdy. Kiedy kąty te są prawidłowo ustawione, pojazd prowadzi się pewniej, zmniejsza się jego podatność na niekontrolowane zmiany toru jazdy oraz poprawia reakcję na ruchy kierownicy. Nieodpowiednia geometria może prowadzić do niestabilnego zachowania pojazdu, co jest szczególnie niebezpieczne przy dużych prędkościach. Z mojego doświadczenia wynika, że regularna kontrola i regulacja geometrii zawieszenia jest jedną z najważniejszych czynności serwisowych, które mają bezpośredni wpływ na bezpieczeństwo na drodze. Zapewnienie stabilności prowadzenia pojazdu to nie tylko kwestia komfortu, ale przede wszystkim bezpieczeństwa kierowcy i pasażerów. Dlatego warto zwracać uwagę na to, by geometria zawieszenia była zawsze odpowiednio wyregulowana.

Pytanie 38

Przekroczenie dopuszczalnego przebiegu lub okresu użytkowania paska zębatego w systemie rozrządu może prowadzić do

A. uszkodzenia rolki napinacza paska rozrządu
B. przyspieszonego zużycia koła napędzanego rozrządu
C. przeskoczenia paska rozrządu na kole i zmiany faz rozrządu
D. przyspieszonego zużycia koła napędowego rozrządu
Odpowiedzi sugerujące przyśpieszone zużycie koła napędowego lub koła napędzanego rozrządu są mylne, ponieważ nie uwzględniają kluczowych aspektów działania systemu rozrządu. Koło napędowe rozrządu pełni funkcję napędu paska, jednak jego zużycie nie jest bezpośrednio związane z przekroczeniem limitu eksploatacji paska. Przyspieszone zużycie tych elementów może wystąpić w wyniku innych problemów, takich jak niewłaściwa regulacja lub uszkodzenie paska, ale nie jest to bezpośredni skutek przekroczenia norm. Uszkodzenie rolki napinacza paska rozrządu również nie jest efektem braku wymiany paska, lecz raczej wynikiem jego nieprawidłowego działania spowodowanego brakiem smarowania lub zużyciem materiału. Typowym błędem jest zakładanie, że wszystkie elementy układu napędowego rozrządu mogą działać niezależnie od stanu paska, co prowadzi do zaniedbywania regularnych przeglądów. W rzeczywistości wszystkie te komponenty współpracują ze sobą i ich kondycja jest ze sobą powiązana. Dobre praktyki branżowe wskazują na regularne serwisowanie oraz wymianę paska w zalecanych interwałach czasowych, co zapobiega nie tylko uszkodzeniom mechanicznym, ale również wydłuża żywotność całego układu rozrządu.

Pytanie 39

Jakiego oleju używa się do smarowania przekładni głównej, który ma symbol

A. GL5 SAE 75W90
B. L-DAA
C. SG/CC SAE 10W/40
D. DOT-4
Wybór olejów oznaczonych L-DAA, SG/CC SAE 10W/40 oraz DOT-4 do smarowania przekładni głównych jest niewłaściwy z kilku powodów. Olej L-DAA to olej hydrauliczny, który nie spełnia wymagań dotyczących smarowania przekładni, ponieważ jest zaprojektowany głównie do zastosowań hydraulicznych, a nie do obciążeń i warunków pracy, jakie panują w przekładniach. Z kolei olej SG/CC SAE 10W/40 jest przeznaczony głównie do silników spalinowych i nie ma właściwości wymaganych do pracy w układach przekładniowych. Jego formuła nie jest dostosowana do ochrony przed dużymi obciążeniami, co może prowadzić do nadmiernego zużycia elementów. DOT-4 to z kolei płyn hamulcowy, który jest zupełnie innym rodzajem płynu i nie jest przeznaczony do smarowania. Płyny hamulcowe mają zupełnie inne właściwości chemiczne i fizyczne, co sprawia, że ich użycie w przekładniach jest niebezpieczne i może prowadzić do poważnych uszkodzeń. Powszechnym błędem jest mylenie różnych specyfikacji olejów oraz ich zastosowań, co może wynikać z braku znajomości norm i standardów branżowych. Użycie niewłaściwego oleju może prowadzić do awarii układów, co z kolei wiąże się z kosztownymi naprawami oraz obniżeniem bezpieczeństwa pojazdu.

Pytanie 40

Na szczelność przestrzeni roboczej cylindrów nie oddziałuje

A. szczelność połączenia bloku cylindra z głowicą
B. szczelność przylegania zaworów
C. luz tłok-pierścienie-cylinder
D. szczelność układu wylotowego
Szczelność układu wylotowego rzeczywiście nie ma wpływu na szczelność przestrzeni roboczej cylindrów. Układ wylotowy odpowiada za odprowadzanie spalin z silnika, a jego szczelność dotyczy jedynie utrzymania ciśnienia i kontroli emisji. Z punktu widzenia pracy silnika, szczelność cylindrów jest bezpośrednio związana z zjawiskami zachodzącymi wewnątrz samego cylindra, takimi jak luz tłok-pierścienie-cylinder czy szczelność zaworów. Dobre praktyki w zakresie konserwacji silnika wymagają regularnego sprawdzania stanu pierścieni tłokowych, co pozwala na utrzymanie odpowiedniego ciśnienia sprężania. Przykładem zastosowania tej wiedzy jest wymiana uszkodzonych pierścieni tłokowych w silniku, co znacznie poprawia jego osiągi i efektywność paliwową. W sytuacji, gdy układ wylotowy jest nieszczelny, może to prowadzić do zwiększenia emisji spalin, ale nie wpłynie to bezpośrednio na ciśnienie robocze w cylindrze.