Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 27 maja 2025 22:36
  • Data zakończenia: 27 maja 2025 22:58

Egzamin zdany!

Wynik: 34/40 punktów (85,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W skład odnawialnych źródeł energii wchodzą

A. energia geotermalna, energia biomasy, biogaz
B. węgiel kamienny, węgiel brunatny, gaz ziemny
C. energia geotermalna, energia słoneczna, węgiel
D. energia wiatru, energia wody, ropa naftowa
Odpowiedź wskazująca na energię geotermalną, energię biomasy oraz biogaz jako odnawialne źródła energii jest prawidłowa, ponieważ wszystkie te źródła są zdolne do regeneracji w krótkim czasie i nie prowadzą do wyczerpywania zasobów naturalnych. Energia geotermalna wykorzystuje ciepło z wnętrza Ziemi, co sprawia, że jest to jeden z najbardziej stabilnych i niezawodnych źródeł energii. Można ją wykorzystać do ogrzewania budynków oraz do produkcji energii elektrycznej. Energia biomasy, z kolei, jest pozyskiwana z materiałów organicznych, takich jak odpady rolnicze czy drewno, co pozwala na zamianę odpadów w wartościowe źródło energii, przyczyniając się jednocześnie do zrównoważonego rozwoju. Biogaz, wytwarzany z fermentacji organicznych odpadów, może być wykorzystywany jako paliwo do silników czy do produkcji energii elektrycznej. Dobre praktyki branżowe promują rozwój technologii związanych z tymi źródłami, aby zwiększyć efektywność i zmniejszyć emisję gazów cieplarnianych. Te odnawialne źródła energii mają ogromny potencjał w ramach strategii zrównoważonego rozwoju i walki ze zmianami klimatycznymi.

Pytanie 2

Gdzie oraz w jaki sposób należy zainstalować jednostkę zewnętrzną powietrznej pompy ciepła?

A. W odległości co najmniej 0,3 m od ściany budynku, z wyrzutem powietrza skierowanym w stronę ściany
B. W odległości co najmniej 0,3 m od ściany budynku, z czerpnią powietrza skierowaną w stronę ściany
C. Bezpośrednio przy zewnętrznej ścianie budynku, z wyrzutem powietrza skierowanym w stronę ściany
D. Bezpośrednio przy zewnętrznej ścianie budynku, z czerpnią powietrza skierowaną w stronę ściany
Umiejscowienie jednostki zewnętrznej powietrznej pompy ciepła w pobliżu ściany budynku może wydawać się praktycznym rozwiązaniem, jednak w rzeczywistości rodzi szereg problemów, które mogą negatywnie wpłynąć na efektywność działania systemu. Zamontowanie urządzenia bezpośrednio przy ścianie, z czerpnią powietrza skierowaną do ściany, stwarza ryzyko ograniczenia swobodnego przepływu powietrza, co może prowadzić do obniżenia wydajności pompy. Zmniejszona cyrkulacja powietrza skutkuje nieefektywnym poborem energii, co w dłuższej perspektywie może prowadzić do wyższych kosztów eksploatacyjnych. Ponadto, skierowanie czerpni powietrza do ściany naraża jednostkę na bezpośrednie działanie wiatru, co może powodować wahania wydajności oraz dodatkowe obciążenia mechaniczne. Warto także zauważyć, że takie umiejscowienie utrudnia odprowadzanie skroplin, co zwiększa ryzyko ich zamarzania na elewacji budynku i może prowadzić do uszkodzeń strukturalnych. Stosowanie się do najlepszych praktyk i norm branżowych, jak zachowanie minimalnej odległości od ścian, jest kluczowe dla zapewnienia długotrwałej i efektywnej pracy pompy ciepła.

Pytanie 3

Kogenerator w trakcie spalania np. biogazu wytwarza energię

A. elektryczną i cieplną
B. wyłącznie energię cieplną
C. jedynie mechaniczną
D. tylko energię elektryczną
Kogenerator, znany również jako jednostka skojarzonej produkcji energii (CHP), jest urządzeniem, które jednocześnie produkuje energię elektryczną oraz cieplną podczas procesu spalania paliw, takich jak biogaz. Biogaz, będący odnawialnym źródłem energii, jest wykorzystywany w kogeneratorach ze względu na swoją niską emisję szkodliwych substancji oraz możliwość efektywnego przetwarzania odpadów organicznych. Kogeneratory działają na zasadzie wykorzystania ciepła odpadowego, które normalnie byłoby tracone w tradycyjnych systemach produkcji energii. Dzięki temu, uzyskują one wyższą efektywność energetyczną, często przekraczającą 80%. Przykładem zastosowania kogeneratorów jest wykorzystanie w zakładach przemysłowych, które potrzebują zarówno prądu, jak i ciepła do procesów produkcyjnych. Tego rodzaju systemy przyczyniają się do obniżenia kosztów energetycznych oraz zmniejszenia śladu węglowego, co jest zgodne z trendami zrównoważonego rozwoju i najlepszymi praktykami w zarządzaniu energią.

Pytanie 4

Za montaż urządzeń z zakresu energetyki odnawialnej oraz realizację dostaw zgodnych z projektem odpowiada

A. użytkownik
B. projektant
C. kierownik budowy
D. inwestor
Kierownik budowy odgrywa kluczową rolę w procesie montażu urządzeń energetyki odnawialnej, ponieważ to on odpowiada za koordynację wszystkich działań na placu budowy. Dobrze zorganizowane i zgodne z projektem dostawy są niezbędne do prawidłowego przebiegu robót. Kierownik budowy ma za zadanie nadzorować realizację prac montażowych, zapewniając, że wszelkie urządzenia są instalowane zgodnie z obowiązującymi normami oraz wytycznymi projektowymi. Na przykład, w przypadku instalacji paneli fotowoltaicznych, kierownik budowy musi zadbać o odpowiednie przygotowanie miejsca montażu, sprawdzenie zgodności z projektem oraz zapewnienie, że wszystkie niezbędne materiały i urządzenia dotrą na czas. Przykłady dobrych praktyk obejmują regularne spotkania z zespołem projektowym oraz dostawcami, co pozwala na bieżąco monitorować postęp prac i ewentualnie wprowadzać niezbędne korekty. Dzięki takim działaniom kierownik budowy minimalizuje ryzyko opóźnień oraz błędów, które mogą wpłynąć na efektywność instalacji.

Pytanie 5

Ocena właściwości glikolu polega na ustaleniu wartości pH. Glikol powinien być niezwłocznie wymieniony, jeśli jego odczyn spadnie poniżej

A. pH 10
B. pH 11
C. pH 9
D. pH 7
Odpowiedź pH 7 jest prawidłowa, ponieważ wartość ta oznacza neutralne pH, które jest kluczowe dla zachowania właściwości glikolu. W przemyśle chemicznym oraz podczas obiegu wody w systemach grzewczych i chłodniczych, pH na poziomie 7 wskazuje na brak nadmiernej kwasowości lub zasadowości, co zapewnia optymalne warunki dla pracy wielu komponentów. Spadek wartości pH poniżej 7 może prowadzić do korozji metali i osadzania się niepożądanych substancji, co negatywnie wpływa na efektywność systemu oraz jego żywotność. Ponadto, wiele systemów, takich jak kotły, wymaga regulacji chemii wody, w tym pH, aby uniknąć uszkodzeń. Dlatego ważne jest, aby regularnie monitorować pH glikolu i w razie potrzeby go wymienić, aby zapewnić długoterminową niezawodność systemów, w których jest używany. W branży często stosuje się testy pH jako standardową praktykę konserwacyjną.

Pytanie 6

Pod jakim kątem powinny być ustawione na stałe kolektory słoneczne, aby zapewnić im optymalne nasłonecznienie przez cały rok?

A. 60 - 70 stopni
B. 45 - 50 stopni
C. 75 - 80 stopni
D. 30 - 40 stopni
Ustawienie kolektorów słonecznych pod kątem 45-50 stopni jest uznawane za optymalne dla ich efektywności w ciągu całego roku. Taki kąt zapewnia najlepszą ekspozycję na promieniowanie słoneczne, zarówno w okresie letnim, gdy słońce jest wyżej na niebie, jak i w zimie, kiedy znajduje się niżej. Poziom naświetlenia kolektorów jest kluczowy dla ich wydajności - odpowiedni kąt pozwala na maksymalne wykorzystanie energii słonecznej, co przekłada się na większą produkcję energii. W praktyce, wiele instalacji systemów solarnych na terenie Polski i innych krajów o podobnym klimacie stosuje właśnie ten kąt, aby zminimalizować straty związane z nieodpowiednim ustawieniem. Ponadto, zalecenia te są zgodne z wytycznymi branżowymi, które uwzględniają różne lokalizacje geograficzne oraz zmiany kątów padania promieni słonecznych w ciągu roku. Dobór odpowiedniego kąta nachylenia jest zatem kluczowym elementem projektowania systemów solarnych, wpływającym na ich efektywność i rentowność.

Pytanie 7

Klient, który pragnie jednocześnie uzyskiwać energię elektryczną oraz ciepło z odnawialnych źródeł, powinien rozważyć użycie

A. kolektora rurowego próżniowego
B. pompy ciepła multi-split
C. kolektora słonecznego hybrydowego
D. kotła dwufunkcyjnego
Kolektor słoneczny hybrydowy to urządzenie, które łączy funkcje produkcji energii elektrycznej oraz ciepła w jeden system. Dzięki zastosowaniu nowoczesnych technologii, takich jak ogniwa fotowoltaiczne i kolektory cieplne, możliwe jest jednoczesne pozyskiwanie obu form energii z promieniowania słonecznego. W praktyce oznacza to, że użytkownik może zaspokoić zarówno potrzeby grzewcze, jak i elektryczne budynku, co przekłada się na zwiększenie efektywności energetycznej. Przykładem zastosowania mogą być domy jednorodzinne, które chcą być mniej zależne od tradycyjnych źródeł energii oraz obniżyć koszty eksploatacji. Dodatkowo, integracja systemu hybrydowego z istniejącymi instalacjami OZE, jak pompy ciepła czy systemy zarządzania energią, pozwala na jeszcze lepszą optymalizację zużycia energii. Zgodnie z aktualnymi standardami budownictwa energooszczędnego, takie rozwiązania są rekomendowane jako część strategii zrównoważonego rozwoju i dążenia do neutralności węglowej.

Pytanie 8

Zbudowanie fundamentów oraz wieży dla małej elektrowni wiatrowej o wysokości 10 metrów

A. wymaga zgłoszenia budowlanego
B. wymaga pozwolenia na budowę
C. może być realizowane po poinformowaniu sąsiadów
D. może być realizowane bez uzgodnień
Budowa fundamentu i wieży małej elektrowni wiatrowej o wysokości 10 metrów rzeczywiście wymaga pozwolenia na budowę. Zgodnie z polskim prawem budowlanym, każda inwestycja budowlana, która wpływa na środowisko zmieniając jego charakter, musi być odpowiednio zgłoszona i zatwierdzona. Elektrownie wiatrowe, choć niewielkie, są uznawane za obiekty mogące wpływać na otoczenie, a ich budowa wymaga wnikliwej analizy pod kątem wpływu na lokalne ekosystemy, krajobraz oraz sąsiedztwo. W praktyce, uzyskanie pozwolenia na budowę wiąże się z przygotowaniem odpowiedniej dokumentacji, która powinna zawierać projekt budowlany, analizy oddziaływania na środowisko oraz ewentualne konsultacje z sąsiadami. Dobre praktyki wskazują, że przed rozpoczęciem inwestycji warto przeprowadzić również konsultacje społeczne, aby uzyskać akceptację lokalnej społeczności. Zrozumienie wymogów prawnych jest kluczowe dla efektywnego zarządzania projektem budowlanym.

Pytanie 9

Zbyt niska histereza w regulatorze systemu solarnego może skutkować

A. obniżeniem ciśnienia w instalacji
B. szybszym zużyciem płynu solarnego
C. częstym działaniem zaworu bezpieczeństwa
D. częstym włączaniem oraz wyłączaniem pompy
Ustawienie zbyt małej histerezy w sterowniku solarnym może prowadzić do częstego włączania i wyłączania pompy, co jest związane z działaniem systemu regulacji temperatury. Histereza to różnica temperatury, przy której urządzenie przełącza się z trybu pracy na inny, na przykład z ogrzewania na schładzanie. Gdy histereza jest zbyt mała, nawet niewielkie wahania temperatury mogą powodować, że pompa będzie włączać się i wyłączać zbyt często. Taki stan rzeczy może prowadzić do wzrostu zużycia energii, obniżenia efektywności systemu oraz przyspieszonego zużycia mechanicznych elementów pompy. Przykładem dobrych praktyk jest stosowanie histerezy w obrębie od 5 do 10°C w systemach solarnych, co zapewnia stabilność pracy i minimalizuje ryzyko nadmiernego obciążenia komponentów. Warto również pamiętać, że odpowiednie ustawienia histerezy mogą przyczynić się do poprawy komfortu użytkowania, eliminując niepożądane efekty, takie jak hałas związany z częstym włączaniem i wyłączaniem urządzeń.

Pytanie 10

Instalacja kolektora próżniowego na płaskim podłożu zaczyna się od zamontowania

A. rur próżniowych do kolektora zbiorczego
B. kolektora zbiorczego do stelaża
C. konstrukcji stelaża
D. rury zasilającej i powrotnej do stelaża kolektora
Rozpoczęcie montażu kolektora próżniowego od rur próżniowych do kolektora zbiorczego, kolektora zbiorczego do stelaża czy rury zasilającej i powrotnej do stelaża kolektora jest podejściem błędnym, ponieważ ignoruje fundamentalną zasadę budowy każdej instalacji. Kolektor próżniowy jest elementem, który wymaga solidnego wsparcia, a więc podstawą jest najpierw skonstruowanie stelaża, który zapewni mu stabilność. Bez właściwej konstrukcji stelaża, wszystkie inne elementy instalacji mogą nie działać prawidłowo, co prowadzi do nieefektywności systemu. W rzeczywistości, próba zamontowania rur lub kolektorów zanim stelaż jest gotowy może skutkować uszkodzeniem delikatnych elementów systemu, co wiąże się z dodatkowymi kosztami i czasem potrzebnym na naprawy. W praktyce, wiele osób popełnia ten błąd z braku zrozumienia, jak ważne jest zapewnienie odpowiedniego fundamentu dla systemu grzewczego. Odpowiednie podejście zgodne z najlepszymi praktykami wymaga najpierw zaprojektowania i zbudowania stelaża, aby wszystkie późniejsze elementy mogły być do niego prawidłowo przymocowane, co znacząco zwiększy ich trwałość i efektywność działania.

Pytanie 11

Zbyt wysokie natężenie przepływu medium w instalacji słonecznego ogrzewania

A. będzie skutkować szybszym zużywaniem się płynu solarnego
B. spowoduje zwiększenie oporów przepływu płynu solarnego
C. spowoduje obniżenie ciśnienia w systemie
D. spowoduje częstsze uruchamianie zaworu bezpieczeństwa
Ustawienie zbyt dużego natężenia przepływu czynnika w słonecznej instalacji grzewczej prowadzi do wzrostu oporów przepływu płynu solarnego. Zjawisko to można wyjaśnić na podstawie zasad dynamiki płynów, gdzie przy wyższej prędkości przepływu czynnika, jego tarcie o ścianki rur oraz inne elementy instalacji rośnie, co skutkuje zwiększonym oporem. W praktyce oznacza to, że system będzie musiał pracować ciężej, aby pokonać te opory, co może prowadzić do wyższych kosztów energii oraz szybszego zużycia komponentów. Z tego powodu kluczowe jest odpowiednie dobieranie przepływów w systemach solarnych, aby zapewnić efektywność energetyczną. W praktycznym zastosowaniu, osoby projektujące takie systemy powinny stosować się do norm i wytycznych, takich jak EN 12976 (systemy solarne) oraz klasyfikacji hydraulicznych, aby zapewnić optymalne działanie instalacji. Dobrą praktyką jest także monitorowanie i regulacja natężenia przepływu, aby dostosować je do zmieniających się warunków eksploatacyjnych.

Pytanie 12

Jaką wartość ma maksymalny współczynnik przenikania ciepła (Uc max) dla zewnętrznych ścian nowych obiektów budowlanych od 01.01.2017 roku przy t1 >= 16°C?

A. 0,20 W/m2∙K
B. 0,28 W/m2∙K
C. 0,23 W/m2∙K
D. 0,25 W/m2∙K
Wartości współczynnika przenikania ciepła dla ścian zewnętrznych nowych budynków są ściśle regulowane przez normy budowlane, a ich nieprzestrzeganie może prowadzić do wielu negatywnych konsekwencji. Odpowiedzi 0,28 W/m2∙K, 0,20 W/m2∙K oraz 0,25 W/m2∙K nie spełniają wymagań nałożonych przez aktualne regulacje. Wskazywanie na wyższe wartości, takie jak 0,28 W/m2∙K, może sugerować mylne przekonanie, że budynki mogą być mniej energooszczędne, co stoi w sprzeczności z obowiązującymi trendami w budownictwie, które kładą duży nacisk na zrównoważony rozwój i efektywność energetyczną. Natomiast niższe wartości, jak 0,20 W/m2∙K, mogą być mylnie interpretowane jako bardziej korzystne, ale w rzeczywistości nie są one zgodne z wymaganiami dla nowych budynków. W kontekście budownictwa, odpowiednie wartości współczynnika Uc są kluczowe, ponieważ wpływają na komfort cieplny, efektywność energetyczną oraz koszty eksploatacji budynków. W praktyce, projektanci i inżynierowie powinni starannie dobierać materiały izolacyjne i technologie budowlane, aby nie tylko spełniać normy, ale także zapewnić długoterminowe oszczędności i zrównoważony rozwój. Nieprzestrzeganie tych zasad prowadzi do nieefektywności energetycznej oraz wyższych rachunków za energię, co jest szczególnie istotne w kontekście rosnących cen energii oraz globalnych działań na rzecz ochrony środowiska.

Pytanie 13

Które z wymienionych typów ogniw fotowoltaicznych wyróżnia się najwyższą sprawnością?

A. Monokrystaliczne
B. Polikrystaliczne
C. CdTe
D. a-Si
Ogniwa fotowoltaiczne monokrystaliczne rzeczywiście charakteryzują się najwyższą sprawnością w porównaniu do innych typów ogniw. Ich struktura krystaliczna, składająca się z jednego, ciągłego kryształu krzemu, umożliwia lepsze przewodzenie prądu, co bezpośrednio przekłada się na większą efektywność konwersji energii słonecznej na energię elektryczną. Monokrystaliczne ogniwa są w stanie osiągać sprawności rzędu 20-25%, co czyni je najbardziej popularnym wyborem w instalacjach fotowoltaicznych, szczególnie tam, gdzie przestrzeń na panele jest ograniczona. W praktyce, zastosowanie ogniw monokrystalicznych znajduje się w wielu projektach, od domów jednorodzinnych po duże farmy słoneczne, co wskazuje na ich uniwersalność i efektywność. Dodatkowo, z uwagi na ich trwałość, która może wynosić ponad 25 lat, inwestycja w te ogniwa zapewnia długoterminowe korzyści oraz zwrot kosztów. W branży energii odnawialnej monokrystaliczne ogniwa są często rekomendowane jako optymalne rozwiązanie, co potwierdzają standardy jakościowe i certyfikaty produkcyjne.

Pytanie 14

Czerpnia oraz wyrzutnia to składniki instalacji

A. wentylacji
B. gruntowej pompy ciepła
C. hydroelektrowni
D. geotermalnej
Czerpnia i wyrzutnia to kluczowe elementy systemu wentylacji, które odpowiadają za wymianę powietrza w budynkach. Czerpnia, jako element pobierający świeże powietrze z otoczenia, pozwala na dostarczenie do wnętrza budynku powietrza, które jest niezbędne do utrzymania odpowiedniej jakości atmosfery wewnętrznej. W praktyce czerpnie często umieszcza się w lokalizacjach, gdzie powietrze jest mniej zanieczyszczone, co przekłada się na lepsze parametry jakościowe. Wyrzutnia natomiast odpowiada za odprowadzanie zużytego powietrza na zewnątrz, co jest kluczowe dla utrzymania poboru świeżego powietrza oraz zapobiegania gromadzeniu się zanieczyszczeń wewnątrz budynku. Standardy branżowe, takie jak PN-EN 13779, podkreślają znaczenie właściwego projektowania i rozmieszczenia tych elementów, aby zapewnić efektywność energetyczną oraz komfort użytkowników. W praktyce, przy projektowaniu systemów wentylacyjnych, istotne jest również uwzględnienie lokalnych przepisów budowlanych oraz zasady ekologicznego podejścia, co może obejmować wykorzystanie naturalnych źródeł wentylacji.

Pytanie 15

Aby transportować elementy siłowni wiatrowych w Polsce, konieczne jest uzyskanie zgody od GDDKiA. Jaki jest maksymalny dozwolony nacisk na jedną oś napędową pojazdu przewożącego ładunek?

A. 11,5 t
B. 9,5 t
C. 10,5 t
D. 12,5 t
Wybór odpowiedzi 12,5 t, 10,5 t, czy 9,5 t jest wynikiem nieporozumienia dotyczącego regulacji dotyczących transportu ładunków wielkogabarytowych w Polsce. Maksymalny dopuszczalny nacisk na jedną oś napędową pojazdu określony na 12,5 t jest stosunkowo rzadko spotykany i dotyczy standardowych pojazdów ciężarowych w ruchu drogowym. W kontekście transportu elementów siłowni wiatrowych, które mają większe wymiary i wagę, obowiązują specjalne przepisy. Wybór 10,5 t lub 9,5 t również nie uwzględnia aktualnych norm, które definiują maksymalne obciążenia osi w kontekście transportu nadgabarytowego. Typowe błędy myślowe obejmują mylenie standardowych nacisków osi dla pojazdów transportowych z obciążeniem specyficznym dla ładunków wielkogabarytowych. Alternatywne odpowiedzi mogą wynikać z mylnego założenia, że ogólne przepisy dotyczące transportu ciężarowego są wystarczające dla wszelkich form przewozu. W praktyce, przy planowaniu transportu komponentów siłowni wiatrowych, istotne jest konsultowanie się z odpowiednimi regulacjami prawnymi i normami, aby uniknąć problemów z przepisami oraz zapewnić bezpieczeństwo zarówno przewożonym ładunkom, jak i infrastrukturze drogowej.

Pytanie 16

Określ przyczynę zmniejszenia ciśnienia w instalacji solarnej?

A. Osiągnięta lub przekroczona maksymalna temperatura zbiornika ustawiona na regulatorze
B. Przecieki na złączach, wymienniku ciepła, zaworze bezpieczeństwa lub w miejscach lutowania
C. Uszkodzony czujnik temperatury lub problemy z jego zasilaniem
D. Czujnik temperatury niewłaściwie umiejscowiony po stronie gorącej absorbera
Przecieki w systemie solarnym mogą prowadzić do znacznego spadku ciśnienia, co wpływa na efektywność całej instalacji. W przypadku nieszczelności w miejscach takich jak śrubunki, wymiennik ciepła czy zawór bezpieczeństwa, woda może wydostawać się z systemu, co prowadzi do obniżenia ciśnienia roboczego. Zgodnie z normami branżowymi, takie jak EN 12976, które dotyczą systemów solarnych, zabezpieczenie przed przeciekami jest kluczowe dla zapewnienia ich efektywności i bezpieczeństwa. W praktyce, regularne przeglądy i konserwacja systemów solarowych powinny obejmować kontrolę tych elementów, aby nie dopuścić do poważniejszych uszkodzeń. Przykładowo, w przypadku stwierdzenia nieszczelności, konieczne może być wymienienie uszczelek lub dokonanie napraw w miejscach lutowania, co przywróci optymalne ciśnienie w systemie i zapewni jego prawidłowe funkcjonowanie. Dobrą praktyką jest również stosowanie materiałów wysokiej jakości oraz odpowiednich technik montażu, co minimalizuje ryzyko powstawania przecieków.

Pytanie 17

Osoba inwestująca w system fotowoltaiczny, który ma zapewnić energię elektryczną dla domu jednorodzinnego i umożliwić sprzedaż nadwyżki prądu do sieci energetycznej, powinna dysponować

A. akumulatorem, inwerterem, licznikiem energii elektrycznej wyprodukowanej, licznikiem energii zużytej, panelami fotowoltaicznymi
B. odbiornikiem energii, akumulatorem, licznikiem energii elektrycznej wyprodukowanej, licznikiem energii zużytej, panelami fotowoltaicznymi
C. odbiornikiem energii, akumulatorem, inwerterem, kontrolerem ładowania, licznikiem energii elektrycznej wyprodukowanej, licznikiem energii zużytej, panelami fotowoltaicznymi
D. akumulatorem, inwerterem, kontrolerem ładowania, licznikiem energii elektrycznej wyprodukowanej, panelami fotowoltaicznymi
Wszystkie alternatywne odpowiedzi zawierają elementy, które są niezbędne do funkcjonowania systemu fotowoltaicznego, jednak żaden z tych zestawów nie obejmuje pełnego zakresu komponentów wymaganych do efektywnego działania. Odpowiedź bez odbiornika energii, na przykład, nie uwzględnia kluczowego elementu, który wykorzystuje energię elektryczną produkowaną przez system. Bez odbiornika, nawet najlepiej skonstruowany system będzie nieefektywny, ponieważ nie będzie miał miejsca na wykorzystanie wytwarzanej energii. Brak akumulatora w innych odpowiedziach oznacza rezygnację z możliwości magazynowania energii, co jest istotne dla zapewnienia ciągłości zasilania w godzinach, kiedy produkcja energii jest niska, co również wpływa na rentowność całego systemu. Inwerter i kontroler ładowania są kluczowe dla przekształcania energii oraz zarządzania nią, a ich pominięcie może prowadzić do zniszczenia systemu lub znacznych strat w efektywności. Liczniki energii, zarówno produkowanej, jak i zużytej, są niezbędne do monitorowania efektywności systemu oraz rozliczeń z dostawcami energii. Zaniechanie ich stosowania może powodować problemy w identyfikacji wydajności systemu i utrudniać zarządzanie energią. Generalnie, skuteczne zintegrowanie wszystkich komponentów jest kluczowe dla efektywności i rentowności systemu fotowoltaicznego.

Pytanie 18

Jakie rury są najbardziej odpowiednie do wykonania instalacji ogrzewania podłogowego?

A. PEX-AL-PEX
B. miedziane
C. PP-HD
D. stalowe
Rury PEX-AL-PEX to jeden z najlepszych wyborów do budowy instalacji ogrzewania podłogowego. PEX-AL-PEX to rura wielowarstwowa, która łączy w sobie zalety polietylenu (PEX) i aluminium. Warstwa aluminiowa zapewnia wysoką odporność na wysokie ciśnienia oraz wzmocnienie strukturalne, co minimalizuje ryzyko pęknięć i deformacji. Dodatkowo, rury te charakteryzują się doskonałymi właściwościami termicznymi, co wpływa na efektywność ogrzewania podłogowego. Dzięki ich elastyczności łatwo je układać, co pozwala na łatwe dostosowanie do kształtu pomieszczeń. PEX-AL-PEX jest również odporny na korozję, co zwiększa trwałość instalacji. W praktyce, rury te są szeroko stosowane w nowoczesnych systemach grzewczych, spełniając wymagania norm europejskich oraz krajowych, takich jak PN-EN 1264. Dzięki tym właściwościom, rury PEX-AL-PEX są preferowane w instalacjach, gdzie niezawodność i efektywność są kluczowe.

Pytanie 19

Jakie jest zadanie krat wlotowych w hydroelektrowni?

A. obniżenie poziomu wody w turbinie
B. zabezpieczenie turbiny przed zanieczyszczeniami
C. zatrzymanie przepływu wody do turbiny
D. kontrola strumienia wody wpływającego do turbiny
Kraty wlotowe w elektrowni wodnej pełnią kluczową rolę w ochronie turbiny przed zanieczyszczeniami, które mogą wpływać na jej wydajność i trwałość. Te urządzenia filtracyjne zatrzymują różnego rodzaju zanieczyszczenia, takie jak piasek, liście czy inne obiekty, które mogłyby uszkodzić wirnik turbiny lub obniżyć jej efektywność. Ochrona turbiny przed zanieczyszczeniami jest zgodna z najlepszymi praktykami w branży hydroenergetycznej, gdzie dbałość o komponenty systemów energetycznych ma kluczowe znaczenie dla ich długowieczności. W praktyce, skuteczna filtracja wlotowa pozwala na minimalizację kosztów konserwacji oraz zwiększenie niezawodności operacyjnej elektrowni. Warto zauważyć, że stosowanie krat wlotowych jest standardem w projektowaniu elektrowni, co jest podkreślone w dokumentach technicznych i normach branżowych, takich jak normy ISO dotyczące efektywności energetycznej oraz ochrony środowiska. Dzięki odpowiednim kratkom wlotowym, elektrownie są w stanie działać z maksymalną wydajnością, co przekłada się na wyższą produkcję energii oraz mniejsze straty eksploatacyjne.

Pytanie 20

Według norm dotyczących poprawnego instalowania kolektora gruntowego poziomego, należy go umieścić

A. pod miejscem parkingowym
B. na obszarze zurbanizowanym
C. pod konstrukcją budynku
D. na terenie niepodlegającym zabudowie
Kolektor gruntowy poziomy powinien być montowany na obszarze wolnym od zabudowań ze względu na optymalizację wydajności systemu oraz ograniczenie zakłóceń w jego pracy. Takie usytuowanie pozwala na efektywne wykorzystanie energii geotermalnej, gdyż nie ma przeszkód, które mogłyby ograniczać dostęp do ciepła zgromadzonego w gruncie. W praktyce, umieszczając kolektor w otwartym terenie, operatorzy systemów grzewczych mogą zapewnić lepszy obieg powietrza oraz możliwość łatwiejszego dostępu do urządzeń w przypadku ewentualnych napraw lub konserwacji. Ponadto, zgodnie z wytycznymi branżowymi, zaleca się, aby instalacje gruntowe były oddalone od budynków oraz innych obiektów, co pozwala uniknąć potencjalnych problemów związanych z oddziaływaniem cieplnym na strukturę budynku. Dobre praktyki wskazują również, że powinno się unikać zasiągania zgody na prowadzenie prac instalacyjnych w obszarach mocno zabudowanych, gdzie możliwości montażu są ograniczone oraz może występować ryzyko uszkodzenia infrastruktury.

Pytanie 21

Dokumentem dołączonym do propozycji sprzedaży sprzętu systemów odnawialnych źródeł energii, w którym znajdują się specyfikacje techniczne, zasady instalacji, diagramy montażowe oraz warunki użytkowania, są

A. katalogi ofertowe
B. projekty architektoniczne
C. potwierdzone protokoły odbiorcze montażu urządzeń
D. standardy
Katalogi ofertowe stanowią kluczowy element dokumentacji związanej z ofertą sprzedaży urządzeń systemów energetyki odnawialnej. Zawierają one nie tylko szczegółowe dane techniczne dotyczące oferowanych urządzeń, ale także informacje na temat warunków montażu, schematów montażowych oraz warunków eksploatacji. Dzięki temu inwestorzy i wykonawcy mogą dokładnie ocenić, czy dany produkt spełnia ich wymagania i jakie są oczekiwania dotyczące jego instalacji oraz użytkowania. W praktyce katalogi ofertowe są często wykorzystywane na etapie przygotowania projektu, pomagając w doborze odpowiednich urządzeń do konkretnego zastosowania, zgodnie z obowiązującymi normami i przepisami. Przykładowo, w katalogach mogą być zawarte informacje o efektywności energetycznej, co jest istotne przy ocenie zgodności z normami unijnymi, takimi jak dyrektywa w sprawie efektywności energetycznej. Dobrą praktyką w branży jest również aktualizowanie katalogów zgodnie z nowymi technologiami, co umożliwia inwestorom korzystanie z najnowszych rozwiązań na rynku.

Pytanie 22

Umiejscowienie kolektorów gruntowych należy realizować

A. na obszarze pokrytym drzewami liściastymi
B. na obszarze pokrytym drzewami iglastymi
C. na obszarze osłoniętym wysokimi krzewami
D. na obszarze nieosłoniętym przez budynki, drzewa i krzewy
Dobra odpowiedź! Ustawienie kolektorów gruntowych w miejscach, gdzie nie ma żadnych przeszkód, jak budynki czy drzewa, jest mega ważne dla działania systemów geotermalnych. Te kolektory czerpią ciepło z ziemi i ich wydajność mocno zależy od tego, jak dużo słońca do nich dociera oraz jak dobrze krąży powietrze wokół nich. Jak są osłonięte, to ciepło może być trudniej dostępne, a system mniej efektywny. Dla przykładu, w domach jednorodzinnych, jak kolektory są w odpowiednim miejscu, są w stanie super wspierać ogrzewanie, co przekłada się na niższe rachunki. W branży geotermalnej działamy według zasad, które mówią, żeby stawiać kolektory tam, gdzie słońce grzeje najlepiej, a otoczenie nie przeszkadza. Taki sposób działania jest zgodny z zaleceniami branżowymi, które kierują się maksymalizowaniem efektywności energetycznej systemów.

Pytanie 23

Pompa ciepła jest wyposażona w sprężarkę o mocy elektrycznej P = 3 kW. Jaką ilość energii z sieci pobierze sprężarka w ciągu roku (365 dni), jeśli codziennie, systematycznie, pompa pracuje przez 4 godziny?

A. 3650 kWh
B. 1095 kWh
C. 1460 kWh
D. 4380 kWh
Wybrana odpowiedź 4380 kWh jest poprawna, ponieważ obliczamy roczne zużycie energii przez sprężarkę, uwzględniając zarówno moc urządzenia, jak i czas jego pracy. Sprężarka o mocy elektrycznej 3 kW działa przez 4 godziny dziennie, co daje dzienne zużycie energii wynoszące 3 kW * 4 h = 12 kWh. Następnie, mnożąc to przez liczbę dni w roku (365), otrzymujemy 12 kWh * 365 = 4380 kWh. Tego rodzaju kalkulacje są kluczowe w branży HVAC, gdzie efektywność energetyczna jest priorytetem. Znajomość zużycia energii pozwala na optymalizację kosztów eksploatacyjnych oraz wprowadzenie środków oszczędnościowych, co jest szczególnie ważne w kontekście rosnących cen energii. W praktyce, dobrą praktyką jest monitorowanie zużycia energii urządzeń takich jak pompy ciepła, co można osiągnąć za pomocą systemów zarządzania energią, które umożliwiają wykrywanie nieefektywności i wprowadzanie ulepszeń.

Pytanie 24

Podczas przewozu pompy ciepła należy wziąć pod uwagę szczególną podatność tego urządzenia na

A. niskie temperatury
B. wilgotność powietrza
C. działanie promieni słonecznych
D. nachylenia
Pompy ciepła to dość skomplikowane urządzenia, które niestety są dość wrażliwe na różne przechylenia, zwłaszcza podczas transportu. Wynika to z ich konstrukcji oraz użytych części, jak sprężarki, parowniki czy skraplacze. Jak coś pójdzie nie tak w transporcie, to te elementy mogą się po prostu uszkodzić. Na przykład, jeśli sprężarka będzie w złym kącie, to może być problem z jej smarowaniem, co sprawi, że szybciej się zużyje. W branży trzeba naprawdę uważać na standardy transportu, zwłaszcza te normy ISO 9001, które mówią, jak prawidłowo pakować i przewozić takie wrażliwe sprzęty. Dlatego podczas transportu pomp ciepła warto trzymać się wskazówek producenta, które często mówią o tym, jak bardzo można je nachylać i jakie metody zabezpieczenia stosować, żeby wszystko było w porządku.

Pytanie 25

Hurtownia zajmująca się instalacjami nabywa pompy obiegowe od producenta w cenie 100,00 zł za sztukę, a następnie sprzedaje je, dodając do ceny marżę w wysokości 10% oraz podatek VAT (według stawki 23%). Jaka będzie cena sprzedaży jednej pompy obiegowej?

A. 110,33 zł
B. 135,30 zł
C. 110,00 zł
D. 123,00 zł
Odpowiedź, którą zaznaczyłeś, to 135,30 zł. Hurtownia kupuje pompy obiegowe za 100 zł za sztukę i potem sprzedaje je z dodatkową marżą 10%. Jak to liczymy? Mnożymy cenę zakupu przez 10%, co daje nam 10 zł. Jak dodamy to do 100 zł, to wychodzi 110 zł jako cena sprzedaży netto. Potem musimy dodać VAT, który w naszym kraju wynosi 23%. Z tego wynika, że VAT na 110 zł to 25,30 zł. Gdy dodamy ten podatek, dostaniemy cenę brutto równą 135,30 zł. Widzisz, to jest ważne, żeby dobrze liczyć ceny w handlu. Gdy nie uwzględnimy marży i VAT-u, możemy mieć spore problemy z cenami i rentownością. Ważne, żeby wszystkie te elementy uwzględniać w obliczeniach.

Pytanie 26

Jeśli prędkość wiatru zwiększyła się dwukrotnie, to turbina wiatrowa będzie mogła wygenerować

A. cztery razy więcej energii
B. szesnaście razy więcej energii
C. dwa razy więcej energii
D. osiem razy więcej energii
Odpowiedź "osiem razy więcej energii" jest prawidłowa, ponieważ moc generowana przez turbinę wiatrową jest proporcjonalna do sześcianu prędkości wiatru. Zgodnie z równaniem moc = 1/2 * gęstość powietrza * powierzchnia wirnika * prędkość^3, zauważamy, że podwajając prędkość wiatru (2v), moc staje się (1/2 * gęstość powietrza * powierzchnia wirnika * (2v)^3), co sprowadza się do 8 * (1/2 * gęstość powietrza * powierzchnia wirnika * v^3). W praktyce oznacza to, że nawet niewielkie zmiany w prędkości wiatru mogą znacząco wpłynąć na generowaną moc. To zjawisko jest kluczowe w projektowaniu i eksploatacji turbin wiatrowych, co potwierdzają liczne badania i dane operacyjne, które pokazują, że optymalizacja ustawienia turbin względem kierunku i siły wiatru może przynieść znaczne korzyści w zakresie efektywności energetycznej. Dlatego też, znajomość tych zależności jest istotna dla inżynierów i specjalistów pracujących w branży energetyki odnawialnej.

Pytanie 27

Jakich informacji nie jest konieczne zawarcie w "Księdze obmiaru" przy instalacji ogniwa fotowoltaicznego?

A. Typu urządzeń
B. Kubatury pomieszczenia
C. Jednostki pomiarowej
D. Liczby zainstalowanych urządzeń
Książka obmiaru dla montażu ogniwa fotowoltaicznego jest dokumentem, który ma za zadanie szczegółowe zarejestrowanie informacji dotyczących zamontowanych urządzeń oraz ich parametrów technicznych. W kontekście tej książki, informacje dotyczące ilości zamontowanych urządzeń, rodzaju urządzeń oraz jednostek miary są kluczowe. Ilość zamontowanych paneli fotowoltaicznych oraz ich rodzaj (np. monokrystaliczne, polikrystaliczne) mają bezpośredni wpływ na efektywność systemu oraz jego zgodność z przyjętymi normami. Jednostki miary są istotne do precyzyjnego określenia wydajności, mocy oraz rozmiarów komponentów instalacji. Natomiast kubatura pomieszczenia, w którym znajdują się urządzenia, nie jest informacją niezbędną w kontekście księgi obmiaru, ponieważ nie ma bezpośredniego wpływu na funkcjonowanie paneli fotowoltaicznych. Przykładowo, w przypadku montażu paneli na dachu, kubatura pomieszczenia nie ma znaczenia dla samej wydajności instalacji. Zgodnie z najlepszymi praktykami branżowymi, Książka obmiaru powinna być starannie prowadzona, aby zapewnić zgodność z wymaganiami prawnymi oraz normami jakości.

Pytanie 28

W jakim dokumencie określone są ilości materiałów potrzebnych do przeprowadzenia prac montażowych?

A. RNK
B. KNR
C. RMS
D. NNR
KNR, czyli Katalog Nakładów Rzeczowych, jest kluczowym dokumentem wykorzystywanym przy kosztorysowaniu robót budowlanych. Zawiera szczegółowe dane dotyczące nakładów rzeczowych, które są niezbędne do wykonania różnych rodzajów robót montażowych. KNR dostarcza informacji na temat ilości materiałów, robocizny oraz sprzętu potrzebnych do realizacji projektów budowlanych. Przykładowo, przy planowaniu montażu instalacji elektrycznych, KNR pozwala na precyzyjne określenie, jakiego rodzaju kable, złącza czy inne akcesoria będą wymagane, co umożliwia dokładne oszacowanie kosztów. Korzystanie z KNR jest zgodne z najlepszymi praktykami w branży budowlanej, gdyż upraszcza proces planowania i minimalizuje ryzyko powstawania błędów w kosztorysach. Dodatkowo, KNR jest elastycznym narzędziem, które można dostosowywać do specyficznych warunków lokalnych oraz potrzeb projektu, co czyni go niezwykle wartościowym narzędziem w rękach kosztorysantów i inżynierów budowlanych.

Pytanie 29

W trakcie transportu kolektory słoneczne powinny być chronione przed uszkodzeniami mechanicznymi?

A. obudową stalową i kołkami świadkami
B. folią ochronną i kołkami świadkami
C. folią ochronną i obudową drewnianą
D. obudową drewnianą i taśmą bitumiczną
Folia ochronna oraz drewniana obudowa to genialne rozwiązanie, żeby dobrze zabezpieczyć kolektory słoneczne podczas transportu. Folia świetnie chroni delikatne elementy przed różnymi rysami, kurzem i innymi brudami, które mogą się przydarzyć w drodze. Z kolei drewniana obudowa, to już coś solidniejszego, co świetnie ochroni kolektory przed mechanicznymi uderzeniami i zapewni stabilność w trakcie przewozu. Takie podejście jest zgodne z tym, co mówi branża, bo stosowanie odpowiednich materiałów ochronnych naprawdę zmniejsza ryzyko uszkodzenia sprzętu. W praktyce niektóre firmy zajmujące się instalacją kolektorów słonecznych korzystają z takich rozwiązań, co pozwala im utrzymać jakość i ograniczyć reklamacje. Dobrze zabezpieczone kolektory to też lepsza reputacja firmy w oczach klientów, a to w dłuższym czasie przekłada się na sukces biznesowy.

Pytanie 30

Turbina wiatrowa typu VAWT charakteryzuje się osią obrotu

A. poziomą
B. zmienną
C. kośną
D. pionową
Turbina wiatrowa typu VAWT (Vertical Axis Wind Turbine) jest zaprojektowana w taki sposób, aby jej oś obrotu była pionowa. Taki układ konstrukcyjny ma kilka istotnych zalet, które czynią go atrakcyjnym rozwiązaniem w zastosowaniach wiatrowych. Przede wszystkim, pionowa oś obrotu pozwala na efektywniejsze wykorzystywanie wiatru z różnych kierunków, co jest szczególnie ważne w obszarach, gdzie kierunek wiatru jest zmienny. Dodatkowo, turbiny VAWT są mniej wrażliwe na turbulencje, co zwiększa ich wydajność w warunkach miejskich. Można je instalować w miejscach o ograniczonej przestrzeni, a ich konstrukcja zwykle nie wymaga skomplikowanych systemów kierowania, jak ma to miejsce w turbinach HAWT (Horizontal Axis Wind Turbines). Przykłady zastosowania turbin typu VAWT obejmują instalacje na dachach budynków oraz w parkach wiatrowych w miastach, gdzie tradycyjne turbiny mogą być mniej efektywne.

Pytanie 31

Dla zapewnienia maksymalnej rocznej wydajności instalacji c.w.u. w Polsce, kąt nachylenia kolektorów słonecznych powinien znajdować się w zakresie

A. 10° ÷ 30°
B. 30° ÷ 50°
C. 70° ÷ 90°
D. 50° ÷ 70°
Odpowiedź 30° ÷ 50° jest prawidłowa, ponieważ optymalne nachylenie kolektorów słonecznych w Polsce powinno być dostosowane do średniej szerokości geograficznej kraju, co sprzyja maksymalnej efektywności całorocznej instalacji ciepłej wody użytkowej (c.w.u.). W tym zakresie nachylenia kolektory mogą najlepiej zbierać energię słoneczną, przede wszystkim w miesiącach zimowych, kiedy słońce znajduje się nisko na niebie. Praktyczne przykłady zastosowania tego nachylenia można zaobserwować w standardowych instalacjach solarnych, które są projektowane zgodnie z normą PN-EN 12975 dotyczącą kolektorów słonecznych. Przy zastosowaniu nachylenia w tym zakresie, użytkownicy mogą osiągnąć znaczne oszczędności na kosztach energii, co jest zgodne z zasadami zrównoważonego rozwoju oraz efektywności energetycznej, promowanymi przez wiele organizacji zajmujących się odnawialnymi źródłami energii. Warto również zaznaczyć, że eksperci zalecają regularne monitorowanie wydajności instalacji oraz dostosowywanie nachylenia w zależności od lokalnych warunków klimatycznych oraz zmieniających się pór roku.

Pytanie 32

Pompę solarną należy zainstalować na rurze

A. zasilającym
B. bezpieczeństwa
C. powrotnym
D. napełniającym
Prawidłową odpowiedzią jest montaż pompy solarnej na przewodzie powrotnym, co jest zgodne z zasadami efektywności systemów grzewczych opartych na energii słonecznej. W układach solarnych, przewód powrotny to ten, który transportuje schłodzoną ciecz z wymiennika ciepła z powrotem do kolektorów słonecznych. Montując pompę na tym przewodzie, zapewniamy jej optymalne warunki pracy, co zwiększa efektywność całego systemu. Pompa wspomaga krążenie płynu roboczego, co pozwala na efektywne pobieranie ciepła zgromadzonego w kolektorach. W praktyce, takie rozwiązanie pozwala na szybsze osiągnięcie pożądanej temperatury w układzie i minimalizuje ryzyko przegrzewania się cieczy. Zgodnie z normami branżowymi, takimi jak EN 12975, należy stosować odpowiednie komponenty i techniki montażowe, aby zapewnić długoterminową i niezawodną pracę systemów solarnych, a lokalizacja pompy na przewodzie powrotnym jest jednym z kluczowych elementów tych standardów.

Pytanie 33

Który typ kotła pozwala na odzyskanie ciepła z pary wodnej obecnej w spalinach?

A. Odzyskowy
B. Przepływowy
C. Nadkrytyczny
D. Kondensacyjny
Wybór innych typów kotłów w kontekście odzyskiwania ciepła pary wodnej może prowadzić do mylnych koncepcji dotyczących ich działania i zastosowania. Kocioł odzyskowy, choć również skierowany na poprawę efektywności, nie jest zaprojektowany do kondensacji pary wodnej, lecz do odzyskiwania ciepła z różnych procesów przemysłowych, co nie zawsze wiąże się z wykorzystaniem spalin. Kocioł przepływowy, z kolei, ma na celu podgrzewanie wody w czasie rzeczywistym, bez magazynowania, co sprawia, że jego struktura i zasady działania nie przewidują odzyskiwania ciepła spalin. W przypadku kotłów nadkrytycznych, ich działanie opiera się na pracy przy wysokim ciśnieniu, co ogranicza możliwości kondensacji pary wodnej i tym samym odzysku energii cieplnej. Typowe błędy myślowe związane z wyborem niewłaściwego kotła mogą wynikać z niewłaściwego zrozumienia procesu kondensacji oraz korzyści, jakie niesie ze sobą efektywne wykorzystanie energii zawartej w spalinach. Zrozumienie podstawowych zasad działania tych różnych typów kotłów oraz ich zastosowania w praktyce jest kluczowe dla wyboru odpowiedniego systemu grzewczego, który odpowiada specyficznym potrzebom użytkownika.

Pytanie 34

W celu stworzenia kosztorysu dla inwestora, jakie narzędzia są wykorzystywane?

A. protokół odbioru końcowego
B. katalogi nakładów rzeczowych
C. dziennik budowy
D. protokół odbioru częściowego
Katalogi nakładów rzeczowych są fundamentalnym narzędziem stosowanym w procesie opracowywania kosztorysów inwestorskich. Zawierają one szczegółowe informacje na temat ilości i kosztów materiałów oraz robót budowlanych, co pozwala na precyzyjne oszacowanie całkowitych wydatków związanych z realizacją projektu. Przykładowo, w katalogach można znaleźć stawki kosztów dla różnych rodzajów robót, takich jak wykopy, fundamenty czy prace wykończeniowe, co pozwala na ich bezpośrednie zastosowanie w kosztorysie. W praktyce, korzystanie z katalogów zmniejsza ryzyko błędów w obliczeniach, ponieważ są one oparte na rzeczywistych danych z rynku budowlanego. Ponadto, stosowanie katalogów nakładów rzeczowych jest zalecane przez standardy branżowe, takie jak Zasadnicze Zasady Kosztorysowania (ZKZ), co czyni je niezbędnym elementem profesjonalnego kosztorysowania. Warto również zaznaczyć, że katalogi te mogą być dostosowane do specyfiki danego projektu, co zwiększa ich użyteczność.

Pytanie 35

Podczas rocznego przeglądu zaleca się przeprowadzanie inspekcji stanu płynu solarnego. Który z parametrów płynu solarnego nie podlega ocenie?

A. Gęstość
B. Zapach
C. Ilość
D. Barwa
Zapach płynu solarnego nie jest standardowym parametrem, który podlega ocenie podczas corocznego przeglądu. Kluczowe aspekty, które są monitorowane, to barwa, gęstość oraz ilość płynu, ponieważ mają one bezpośredni wpływ na wydajność systemu solarnego. Barwa płynu może wskazywać na jego czystość, natomiast gęstość jest istotna dla oceny jego właściwości termicznych. Ilość płynu jest również kluczowa, ponieważ niewłaściwy poziom może prowadzić do nieprawidłowego działania systemu. Regularne sprawdzanie tych parametrów jest zgodne z praktykami branżowymi, które zalecają również wymianę płynu co kilka lat, w zależności od jego jakości. Wiedza na temat tych parametrów pozwala na bieżąco monitorować stan systemu solarnego, co przyczynia się do jego dłuższej żywotności i efektywności energetycznej.

Pytanie 36

Jakiego rodzaju instalację PV należy zbudować, aby móc sprzedawać energię elektryczną do sieci energetycznej?

A. On-grid
B. Off-grid
C. Autonomiczną
D. Wyspową
Odpowiedź 'On-grid' jest prawidłowa, ponieważ instalacje fotowoltaiczne typu on-grid są zaprojektowane do współpracy z siecią elektroenergetyczną. W przypadku tego typu instalacji, panele słoneczne generują energię elektryczną, która jest wykorzystywana do zasilania budynku, a nadwyżka energii może być odsprzedawana do sieci. Przykładem zastosowania instalacji on-grid jest dom jednorodzinny, który produkuje więcej energii, niż zużywa, i sprzedaje nadwyżki energii lokalnemu operatorowi sieci. Takie rozwiązanie sprzyja efektywności energetycznej i obniżeniu kosztów eksploatacyjnych. W Polsce, zgodnie z Ustawą o OZE, właściciele instalacji on-grid mają prawo do odsprzedaży energii, co jest regulowane przez system net-billingu, gdzie nadwyżki energii są rozliczane na korzystnych warunkach. Standardy instalacji on-grid obejmują również konieczność zastosowania inwerterów sieciowych, które przekształcają prąd stały wytworzony przez panele na prąd zmienny, odpowiedni do wprowadzenia do sieci.

Pytanie 37

Podczas instalowania systemu fotowoltaicznego stosuje się złączki, które zapewniają całkowitą hermetyczność oraz zapobiegają niewłaściwemu podłączeniu biegunów paneli słonecznych do akumulatora

A. WAGO
B. MPX
C. HDMI
D. MC4
Złączki MC4 są standardem w instalacjach fotowoltaicznych, służącym do łączenia paneli słonecznych z systemem zasilania. Dzięki swojej konstrukcji, złączki te zapewniają pełną hermetyczność, co jest kluczowe w kontekście ochrony przed wilgocią i zanieczyszczeniami. W praktyce oznacza to, że stosując złączki MC4, minimalizuje się ryzyko wystąpienia korozji oraz uszkodzeń, które mogą prowadzić do obniżenia wydajności systemu. Dodatkowo, złączki te wyposażone są w mechanizm blokujący, który uniemożliwia przypadkowe rozłączenie połączenia, co jest niezwykle istotne oraz zapewnia bezpieczeństwo w eksploatacji. Zgodnie z normami IEC 62109 oraz IEC 61730, przy wyborze komponentów do instalacji fotowoltaicznych, należy kierować się ich niezawodnością i odpornością na ekstremalne warunki atmosferyczne, co złączki MC4 z pewnością spełniają. Dlatego są one powszechnie stosowane zarówno w instalacjach domowych, jak i komercyjnych, co potwierdza ich skuteczność i popularność w branży.

Pytanie 38

Jakie urządzenie jest używane do pomiaru natężenia przepływu czynnika roboczego w słonecznej instalacji grzewczej?

A. rotametr
B. refraktometr
C. manometr
D. higrometr
Rotametr jest przyrządem pomiarowym, który służy do określenia natężenia przepływu cieczy lub gazów w instalacjach przemysłowych, w tym w słonecznych systemach grzewczych. Działa na zasadzie pomiaru przepływu w odpowiednio ukształtowanej rurze, w której porusza się pływak. Wraz ze wzrostem natężenia przepływu pływak unosi się wyżej w rurze, co jest wskaźnikiem przepływu. Rotametry są szeroko stosowane w różnych branżach, w tym w energetyce odnawialnej, gdzie precyzyjny pomiar przepływu czynnika roboczego jest kluczowy dla efektywności systemu. W kontekście instalacji solarnych, rotametry mogą pomóc w optymalizacji wydajności, zapewniając, że odpowiednia ilość medium roboczego przepływa przez kolektory słoneczne, co ma bezpośredni wpływ na efektywność konwersji energii słonecznej na ciepło. Dobrą praktyką jest regularne kalibrowanie rotametrów oraz monitorowanie ich stanu technicznego, aby zapewnić dokładne pomiary i zapobiec ewentualnym awariom systemu.

Pytanie 39

Aby zredukować wahania wskazań rotametru w jednostce pompującej w instalacji solarnej, należy wykonać

A. regulację pompy obiegowej
B. zwiększenie ciśnienia w układzie solarnym
C. zmniejszenie ciśnienia w układzie solarnym
D. odpowietrzenie instalacji
Odpowiedź 'odpowietrzenie instalacji' jest prawidłowa, ponieważ wahania wskazań rotametru w instalacji solarnej mogą być spowodowane obecnością powietrza w systemie. Kiedy w układzie hydraulicznym znajduje się powietrze, może to prowadzić do zmniejszenia efektywności przepływu cieczy, co z kolei przekłada się na niestabilne wskazania rotametru. Odpowietrzenie instalacji, czyli usunięcie zbędnych pęcherzyków powietrza, przywraca poprawny przepływ wody, co stabilizuje działanie rotametru. W praktyce, aby skutecznie odpowietrzyć instalację, należy zlokalizować i otworzyć odpowietrzniki, które znajdują się w najwyższych punktach systemu. Dobre praktyki branżowe zalecają regularne sprawdzanie stanu odpowietrzników, aby zapewnić ich sprawność oraz unikać problemów związanych z gromadzeniem się powietrza. Zgodnie z normami dotyczącymi instalacji solarnych, odpowiednie odpowietrzenie systemu jest kluczowe dla zapewnienia jego efektywności energetycznej oraz długowieczności.

Pytanie 40

Podstawą do stworzenia kosztorysu szczegółowego dla instalacji odgromowej paneli fotowoltaicznych są

A. katalogi producentów materiałów
B. harmonogramy prac
C. cenniki jednostkowe
D. katalogi nakładów rzeczowych
Katalogi nakładów rzeczowych są kluczowym źródłem informacji przy opracowywaniu kosztorysu szczegółowego instalacji odgromowej ogniw fotowoltaicznych, ponieważ zawierają szczegółowe dane dotyczące kosztów materiałów oraz robocizny związanych z poszczególnymi etapami realizacji projektu. Te katalogi dostarczają nie tylko jednostkowych kosztów, ale także informacji o normach zużycia materiałów, co pozwala na precyzyjne wyliczenie całkowitych wydatków. Przykładowo, w przypadku instalacji odgromowej, katalogi te mogą zawierać dane na temat ilości potrzebnych przewodów odgromowych, elementów montażowych oraz wskazania dotyczące robocizny. W praktyce, korzystając z katalogów nakładów rzeczowych, projektanci i kosztorysanci mogą dostosować swoje obliczenia do specyfiki danego projektu, co jest zgodne z dobrymi praktykami branżowymi, gdzie precyzyjność kosztorysów ma kluczowe znaczenie dla efektywności finansowej całego przedsięwzięcia. Warto również zaznaczyć, że takie podejście wspiera transparentność w kosztach oraz umożliwia ich porównywalność z innymi projektami, co jest istotne w kontekście przetargów i negocjacji finansowych.