Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 31 maja 2025 14:35
  • Data zakończenia: 31 maja 2025 14:43

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Ile par kabli w standardzie 100Base-TX jest używanych do transmisji danych w obie strony?

A. 1 para
B. 3 pary
C. 2 pary
D. 4 pary
W standardzie 100Base-TX, który jest częścią rodziny standardów Fast Ethernet, do transmisji danych wykorzystywane są dwie pary przewodów. Jedna para służy do transmisji danych w kierunku jednym, a druga para do odbioru danych w kierunku przeciwnym. Dzięki temu możliwe jest osiągnięcie pełnodupleksowej komunikacji, co oznacza, że dane mogą być przesyłane jednocześnie w obu kierunkach. Taki sposób wykorzystania przewodów umożliwia efektywne wykorzystanie dostępnej szerokości pasma i zwiększa wydajność sieci. W praktyce, zastosowanie dwóch par przewodów jest zgodne z normami IEEE 802.3, co zapewnia kompatybilność z innymi urządzeniami wykorzystującymi ten standard. Warto również zauważyć, że Fast Ethernet jest powszechnie wykorzystywany w lokalnych sieciach komputerowych (LAN), co czyni tę wiedzę istotną dla profesjonalistów zajmujących się budową i zarządzaniem infrastrukturą sieciową.

Pytanie 2

Jakie polecenie diagnostyczne powinno się użyć, aby uzyskać informacje na temat tego, czy miejsce docelowe odpowiada oraz po jakim czasie nastąpiła odpowiedź?

A. nbtstat
B. ping
C. ipcconfig
D. route
Odpowiedzią, która prawidłowo odpowiada na pytanie o diagnostykę połączeń sieciowych, jest polecenie 'ping'. Jest to narzędzie, które służy do testowania dostępności hostów w sieci poprzez wysyłanie pakietów ICMP Echo Request i oczekiwanie na ICMP Echo Reply. Dzięki temu administratorzy sieci mogą ocenić, czy dane miejsce docelowe jest osiągalne, oraz zmierzyć czas, jaki zajmuje przesłanie pakietów i otrzymanie odpowiedzi, co jest istotnym wskaźnikiem opóźnienia w transmisji (latency). Przykładowo, wykonując polecenie 'ping www.example.com', uzyskujemy informacje o czasie odpowiedzi i ewentualnych utraconych pakietach, co pozwala na wstępną ocenę jakości połączenia. Jest to standardowa praktyka w diagnostyce sieci, stosowana przez specjalistów IT do szybkiej identyfikacji problemów z połączeniem i monitorowania stanu sieci. Warto także dodać, że narzędzie 'ping' jest dostępne w praktycznie wszystkich systemach operacyjnych, co czyni je uniwersalnym i niezbędnym narzędziem w codziennej pracy administratorów sieci.

Pytanie 3

Jaką konfigurację sieciową powinien mieć komputer, który jest częścią tej samej sieci LAN co komputer z adresem 10.8.1.10/24?

A. 10.8.0.101 i 255.255.255.0
B. 10.8.0.101 i 255.255.0.0
C. 10.8.1.101 i 255.255.255.0
D. 10.8.1.101 i 255.255.0.0
Adres IP 10.8.1.101 z maską podsieci 255.255.255.0 znajduje się w tej samej sieci LAN co adres 10.8.1.10. W przypadku maski 255.255.255.0 (znanej również jako /24), adresy IP w zakresie 10.8.1.1 do 10.8.1.254 są dostępne dla urządzeń w tej samej podsieci. Adres 10.8.1.10 jest jednym z tych adresów, więc każdy adres w tym zakresie, w tym 10.8.1.101, może komunikować się z nim bez potrzeby użycia routera. Zastosowanie odpowiedniej maski podsieci jest kluczowe w projektowaniu sieci LAN, ponieważ pozwala na efektywne zarządzanie adresacją IP oraz izolację ruchu między różnymi grupami urządzeń. Przy ustawieniu maski 255.255.255.0, wszystkie urządzenia w tej samej podsieci mogą się wzajemnie wykrywać i wymieniać dane bez dodatkowych ustawień. To podejście jest zgodne z najlepszymi praktykami w zakresie projektowania sieci, które zalecają wykorzystanie odpowiednich masek podsieci do organizacji i zarządzania ruchem sieciowym.

Pytanie 4

Na zdjęciu widać płytę główną komputera. Strzałka wskazuje na

Ilustracja do pytania
A. łącze do dysku IDE
B. gniazdo zasilające do płyty ATX
C. łącze do dysku SCSI
D. gniazdo zasilające do płyty AT
Gniazdo zasilania ATX na płycie głównej to kluczowy element nowoczesnych komputerów osobistych. Zostało zaprojektowane do dostarczania zasilania do różnych komponentów płyty głównej w sposób wydajny i zrównoważony. Standard ATX, który jest obecnie najczęściej używany w komputerach stacjonarnych, zapewnia nie tylko zasilanie, ale również zarządzanie energią, co pozwala na bardziej efektywne działanie systemu. Gniazdo ATX charakteryzuje się specyficznym kształtem i liczbą pinów, zwykle 20 lub 24, co pozwala na podłączenie zasilacza komputerowego. Dzięki temu standardowi użytkownicy mogą łatwo wymieniać komponenty sprzętowe, gdyż zachowuje on kompatybilność przez wiele generacji komponentów. Warto zauważyć, że gniazdo ATX obsługuje funkcje takie jak Power Good Signal, które zapewniają prawidłowe uruchomienie komputera tylko przy odpowiednich poziomach napięcia. Standard ATX jest także podstawą dla zaawansowanych funkcji zarządzania energią, takich jak tryby uśpienia i hibernacji, które przyczyniają się do oszczędności energii i ochrony środowiska. Wybór tego gniazda jako odpowiedzi wskazuje na zrozumienie nowoczesnych standardów zasilania w architekturze komputerowej.

Pytanie 5

Jakie są poszczególne elementy adresu globalnego IPv6 typu unicast pokazane na ilustracji?

IPv6
123
48 bitów16 bitów64 bity

A. 1 - globalny prefiks 2 - identyfikator interfejsu 3 - identyfikator podsieci
B. 1 - identyfikator interfejsu 2 - globalny prefiks 3 - identyfikator podsieci
C. 1 - globalny prefiks 2 - identyfikator podsieci 3 - identyfikator interfejsu
D. 1 - identyfikator podsieci 2 - globalny prefiks 3 - identyfikator interfejsu
Nieprawidłowe odpowiedzi wynikają często z błędnego rozumienia struktury adresu IPv6. Wariant zakładający pierwszeństwo identyfikatora interfejsu przed globalnym prefiksem ignoruje fakt że adresacja IPv6 ma zapewniać unikalność w skali globalnej co wymaga odpowiedniego prefiksu na początku adresu. Błąd polegający na zamianie miejscami identyfikatora interfejsu i podsieci wynika z nieprawidłowego pojmowania segmentacji sieciowej. Identyfikator podsieci jest kluczowy dla organizacji wewnętrznej sieci co pozwala na logiczne podzielenie przestrzeni adresowej na mniejsze części. Traktowanie globalnego prefiksu jako końcowego elementu struktury adresu uniemożliwia prawidłowe routowanie w sieci globalnej co jest podstawową funkcją globalnego prefiksu. Typowym błędem w analizie adresacji IPv6 jest skupienie się jedynie na aspektach lokalnej organizacji sieci bez uwzględnienia globalnych potrzeb związanych z unikalnością i routowaniem. W kontekście dynamicznie rozwijających się standardów sieciowych umiejętność rozpoznania prawidłowej struktury adresu jest niezbędna dla efektywnego zarządzania zasobami sieciowymi i utrzymania wysokiej jakości usług sieciowych. Zrozumienie tych elementów jest kluczowe dla projektantów i administratorów sieci w kontekście wdrożenia nowoczesnych architektur sieciowych.

Pytanie 6

Grupa, w której członkom można nadawać uprawnienia jedynie w obrębie tej samej domeny, co domena nadrzędna lokalnej grupy domeny, nosi nazwę grupa

A. globalna
B. lokalna domeny
C. lokalna komputera
D. uniwersalna
Grupa lokalna domeny to typ grupy, której członkowie i uprawnienia są ograniczone do danej domeny. Oznacza to, że możesz przypisywać uprawnienia tylko w kontekście tej samej domeny, co jest zgodne z modelami zarządzania tożsamością i dostępem. Kluczowym zastosowaniem grup lokalnych domeny jest możliwość zarządzania dostępem do zasobów w sieci, co jest istotne w środowiskach korporacyjnych. Na przykład, jeśli masz zasoby, takie jak foldery lub drukarki, które powinny być dostępne tylko dla użytkowników tej samej domeny, wykorzystanie grup lokalnych domeny jest odpowiednim rozwiązaniem. Stosując grupy lokalne, administracja może łatwiej kontrolować dostęp do tych zasobów, co zwiększa bezpieczeństwo i efektywność zarządzania. W praktyce, grupy lokalne są często wykorzystywane w połączeniu z kontrolą dostępu opartą na rolach (RBAC), co pozwala na bardziej granularne zarządzanie uprawnieniami, zgodne z najlepszymi praktykami w zakresie bezpieczeństwa IT.

Pytanie 7

W systemie Linux przypisano uprawnienia do katalogu w formie ciągu znaków rwx--x--x. Jaką wartość liczbową te uprawnienia reprezentują?

A. 711
B. 777
C. 543
D. 621
Odpowiedź 711 jest poprawna, ponieważ prawa dostępu do folderu w systemie Linux są reprezentowane przez trzy grupy trzech znaków: rwx, --x oraz --x. Każda z grup oznacza prawa dla właściciela, grupy oraz innych użytkowników. Wartości numeryczne przypisane do tych praw są następujące: 'r' (read - odczyt) ma wartość 4, 'w' (write - zapis) ma wartość 2, a 'x' (execute - wykonanie) ma wartość 1. Zatem, dla właściciela, który ma pełne prawa (rwx), obliczamy 4+2+1, co daje 7. Dla grupy oraz innych użytkowników, którzy mają tylko prawo do wykonania (x), obliczamy 0+0+1, co daje 1. Łącząc te wartości, mamy 711. Ustalanie praw dostępu jest kluczowym elementem bezpieczeństwa w systemach Unix/Linux i jest zgodne z zasadami zarządzania dostępem. Przykładowo, jeśli folder zawiera skrypty, umożliwiając wykonanie ich tylko przez właściciela, zminimalizujemy ryzyko nieautoryzowanego dostępu.

Pytanie 8

Obecnie pamięci podręczne drugiego poziomu procesora (ang. "L-2 cache") są zbudowane z układów pamięci

A. SRAM
B. DRAM
C. EEPROM
D. ROM
Odpowiedzi ROM, DRAM i EEPROM nie są prawidłowe w kontekście pamięci podręcznych drugiego poziomu. ROM (Read-Only Memory) to pamięć, która jest przeznaczona głównie do przechowywania stałych danych, takich jak oprogramowanie układowe. Ze względu na swoją naturę, ROM nie jest odpowiedni do dynamicznego przechowywania danych, które często się zmieniają w trakcie pracy procesora. Z kolei DRAM (Dynamic Random-Access Memory) jest wykorzystywana głównie jako pamięć główna w systemach komputerowych, a nie w pamięciach cache. DRAM wymaga ciągłego odświeżania, co wprowadza dodatkowe opóźnienia, które są nieakceptowalne w kontekście pamięci podręcznej, gdzie kluczowe jest szybkie dostarczanie danych do procesora. Zastosowanie EEPROM (Electrically Erasable Programmable Read-Only Memory) również nie jest właściwe, ponieważ ta technologia jest przeznaczona do przechowywania danych, które muszą być programowane i kasowane elektrycznie, co czyni ją zbyt wolną dla pamięci cache. Typowy błąd myślowy prowadzący do wyboru błędnych odpowiedzi to mylenie różnych typów pamięci ze względu na ich przeznaczenie i charakterystykę działania. Stosowanie pamięci RAM w kontekście pamięci podręcznej powinno być oparte na zrozumieniu wymagań dotyczących szybkości, opóźnień i efektywności energetycznej, co podkreśla znaczenie wyboru SRAM w tej roli.

Pytanie 9

Początkowe znaki heksadecymalne adresu IPv6 przeznaczonego do link-local to

A. FE80
B. 2000
C. FF30
D. 3000
Adresy IPv6 typu link-local to coś, co musisz znać, jeśli chcesz ogarnąć temat lokalnych sieci. Służą one do komunikacji w obrębie tej samej sieci i są naprawdę kluczowe dla działania protokołu IPv6. Zaczynają się od prefiksu FE80::/10, co oznacza, że pierwsze dziesięć bitów to 1111 1110 10, a reszta dotyczy konkretnego interfejsu na urządzeniu. W praktyce, każdy interfejs, który obsługuje IPv6, dostaje swój unikalny adres link-local. Dzięki temu, urządzenia mogą się ze sobą dogadywać, nie potrzebując routera. Wiele technologii, jak autokonfiguracja adresów IPv6 (SLAAC) czy protokół Neighbor Discovery Protocol (NDP), korzysta z tych adresów, żeby wykrywać sąsiednie hosty i rozwiązywać adresy. Zrozumienie link-local jest naprawdę ważne, zwłaszcza teraz, kiedy IPv6 zaczyna być coraz bardziej powszechne w sieciach.

Pytanie 10

Aby zapewnić użytkownikom Active Directory możliwość logowania oraz dostęp do zasobów tej usługi w sytuacji awarii kontrolera domeny, co należy zrobić?

A. zainstalować drugi kontroler domeny
B. udostępnić wszystkim użytkownikom kontakt do Help Desk
C. skopiować wszystkie zasoby sieci na każdy komputer w domenie
D. przenieść wszystkich użytkowników do grupy administratorzy
Zainstalowanie drugiego kontrolera domeny jest kluczową praktyką w zapewnieniu ciągłości działania systemu Active Directory. Kontrolery domeny pełnią rolę centralnych punktów autoryzacji i zarządzania użytkownikami oraz zasobami w sieci. W przypadku awarii jednego z kontrolerów, drugi może przejąć jego funkcje, co minimalizuje ryzyko przestoju i zapewnia nieprzerwaną dostępność usług dla użytkowników. Implementacja co najmniej dwóch kontrolerów domeny jest zgodna z najlepszymi praktykami w obszarze zarządzania infrastrukturą IT oraz zapewnia dodatkowe zabezpieczenia przed utratą danych. Przykładem może być sytuacja, w której jeden kontroler ulega uszkodzeniu z powodu awarii sprzętowej lub problemów z oprogramowaniem. Drugi kontroler przejmuje automatycznie jego funkcje, co pozwala użytkownikom na dalsze logowanie się i dostęp do zasobów bez zakłóceń. Warto również zainwestować w replikację między kontrolerami, co pozwala na aktualizację informacji o użytkownikach i grupach w czasie rzeczywistym, zwiększając odporność infrastruktury na awarie.

Pytanie 11

Który poziom macierzy RAID zapisuje dane jednocześnie na wielu dyskach jako jedno urządzenie?

A. RAID 3
B. RAID 0
C. RAID 1
D. RAID 2
RAID 0 to poziom macierzy, który wykonuje stripe'owanie danych, co oznacza, że dzieli dane na mniejsze fragmenty i zapisuje je równolegle na dwóch lub więcej dyskach. Dzięki temu możliwe jest osiągnięcie znacznego przyspieszenia operacji odczytu i zapisu, ponieważ system działa jak jedno logiczne urządzenie. RAID 0 nie zapewnia jednak redundancji, co oznacza, że w przypadku awarii jednego z dysków, wszystkie dane są tracone. Jest to rozwiązanie często stosowane w sytuacjach, gdzie wydajność jest kluczowa, na przykład w serwerach plików, stacjach roboczych do obróbki wideo czy podczas gier komputerowych, gdzie szybki dostęp do danych ma zasadnicze znaczenie. W kontekście standardów branżowych, RAID 0 jest często wybierany w zastosowaniach, które nie wymagają wysokiej niezawodności, ale kładą duży nacisk na szybkość operacji. Warto również pamiętać, że przed zastosowaniem RAID 0 należy wdrożyć odpowiednie procedury backupowe, aby zminimalizować ryzyko utraty danych.

Pytanie 12

W jakim gnieździe należy umieścić procesor INTEL CORE i3-4350- 3.60 GHz, x2/4, 4MB, 54W, HD 4600, BOX, s-1150?

Ilustracja do pytania
A. rys. D
B. rys. C
C. rys. B
D. rys. A
Wybór nieodpowiedniego gniazda dla procesora Intel Core i3-4350 może skutkować nieprawidłowym funkcjonowaniem komputera lub nawet fizycznym uszkodzeniem procesora bądź płyty głównej. Procesory te wymagają gniazda LGA 1150 co oznacza że jakiekolwiek inne gniazda takie jak LGA 1151 lub LGA 1155 nie będą kompatybilne z tym modelem. Gniazdo LGA 1150 charakteryzuje się specyficznym układem styków i mechanizmem mocującym który nie pasuje do innych rodzajów gniazd. Próba montażu w nieodpowiednim gnieździe może prowadzić do niebezpiecznych zwarć i trudności ze stabilnością systemu. Pomyłki te często wynikają z braku znajomości specyfikacji technicznych oraz z mylenia podobnie wyglądających gniazd co podkreśla znaczenie dokładnego sprawdzania dokumentacji technicznej. Świadomość poprawnego standardu gniazda jest kluczowa nie tylko dla zapobiegania uszkodzeniom ale także dla maksymalizacji wydajności systemu i wykorzystania pełnego potencjału procesora co jest szczególnie istotne w profesjonalnych zastosowaniach gdzie wymagana jest wysoka niezawodność i wydajność.

Pytanie 13

Jakie zastosowanie ma przedstawione narzędzie?

Ilustracja do pytania
A. podgrzania i zamontowania elementu elektronicznego
B. sprawdzenia długości badanego kabla sieciowego
C. pomiar wartości napięcia w zasilaczu
D. utrzymania drukarki w czystości
To narzędzie, które widzisz na zdjęciu, to multimetr cęgowy, ale nie nadaje się do czyszczenia drukarek. Czyszczenie wymaga specjalnych środków i narzędzi, jak miękkie ściereczki czy sprężone powietrze, które dobrze usuwają kurz z wnętrza. Jak próbujesz użyć multimetru do tego, to ryzykujesz jego uszkodzeniem i może drukarka też na tym ucierpieć. No i nie używa się go do podgrzewania czy montażu elementów elektronicznych – do takich rzeczy są lutownice, które podgrzewają elementy do odpowiedniej temperatury, żeby je przylutować do PCBa. Jak pomylisz te narzędzia, to możesz uszkodzić wrażliwe komponenty i potem będzie problem z precyzyjnym montażem. Kiedy sprawdzasz długość kabla sieciowego, lepszym wyborem jest miernik długości albo tester kabli. Takie urządzenia dokładnie określają długość i stan kabla, co jest kluczowe w sieci. Multimetr cęgowy nie ma funkcji do takich pomiarów, więc to nie jest dobry wybór. Ważne, żeby znać zastosowanie narzędzi, bo to pozwala pracować efektywnie i unikać błędów. Jak masz wątpliwości, to zawsze dobrze jest przeczytać dokumentację techniczną, żeby wiedzieć jak bezpiecznie używać sprzętu.

Pytanie 14

Jaki protokół wykorzystuje usługa VPN do hermetyzacji pakietów IP w publicznej sieci?

A. PPTP
B. SMTP
C. SNMP
D. HTTP
HTTP, czyli Hypertext Transfer Protocol, jest protokołem wykorzystywanym głównie do przesyłania dokumentów w Internecie, takich jak strony internetowe. Choć jest fundamentalnym protokołem dla funkcjonowania World Wide Web, nie ma zastosowania w kontekście VPN, ponieważ nie oferuje mechanizmów zabezpieczających przesyłanie danych ani nie tworzy tuneli dla pakietów IP. Właściwe zrozumienie roli HTTP w architekturze sieciowej jest istotne, ponieważ może prowadzić do mylnych wniosków dotyczących bezpieczeństwa danych przesyłanych przez Internet. Z kolei SMTP, czyli Simple Mail Transfer Protocol, jest protokołem używanym do przesyłania wiadomości e-mail. Jego struktura nie obejmuje mechanizmów zabezpieczających dane w taki sposób, aby mogły być one przesyłane w bezpieczny sposób przez publiczne sieci, co również czyni go nieodpowiednim do zastosowania w usługach VPN. SNMP, czyli Simple Network Management Protocol, jest używany do zarządzania urządzeniami w sieciach IP, ale nie ma nic wspólnego z zabezpieczaniem danych ani tworzeniem tuneli. Zrozumienie różnicy pomiędzy tymi protokołami a PPTP jest kluczowe dla skutecznego zarządzania bezpieczeństwem w sieciach. Często pojawiają się błędne założenia, że wszystkie protokoły komunikacyjne mogą pełnić funkcje zabezpieczające, co prowadzi do poważnych luk w zabezpieczeniach, gdy niewłaściwe protokoły są stosowane do ochrony wrażliwych danych.

Pytanie 15

Metoda przekazywania tokena (ang. token) jest wykorzystywana w strukturze

A. magistrali
B. kraty
C. gwiazdy
D. pierścienia
Technika przekazywania żetonu, znana również jako token passing, jest kluczowym elementem topologii pierścienia. W tej topologii wszystkie urządzenia sieciowe są połączone w zamknięty pierścień, co oznacza, że dane przemieszczają się w jednym kierunku od jednego urządzenia do drugiego. Przekazywanie żetonu polega na tym, że tylko urządzenie, które posiada token (żeton), ma prawo do wysyłania danych. Taki mechanizm zapobiega kolizjom, które mogą wystąpić, gdy dwa lub więcej urządzeń próbuje przesłać dane jednocześnie. Przykładem zastosowania tej techniki jest protokół Token Ring, który był szeroko stosowany w latach 80. i 90. XX wieku. Chociaż obecnie jego popularność maleje na rzecz szybszych i bardziej elastycznych technologii, takich jak Ethernet, znajomość tej koncepcji jest nadal ważna, szczególnie w kontekście projektowania i analizy sieci. W artykułach dotyczących standardów IEEE 802.5 można znaleźć szczegółowe informacje na temat implementacji tego rozwiązania, które zapewniało stabilność i przewidywalność w ruchu sieciowym.

Pytanie 16

Na załączonym zdjęciu znajduje się

Ilustracja do pytania
A. opaska do mocowania przewodów komputerowych
B. opaska uciskowa
C. opaska antystatyczna
D. bezprzewodowy transmiter klawiatury
Opaska antystatyczna to kluczowe narzędzie w ochronie delikatnych komponentów elektronicznych przed uszkodzeniem spowodowanym wyładowaniami elektrostatycznymi (ESD). Tego typu opaska wykonana jest z materiałów przewodzących, które odprowadzają ładunki elektrostatyczne z ciała użytkownika do uziemienia, co zapobiega ich nagromadzeniu. Praktyczne zastosowanie opaski antystatycznej jest nieodzowne w serwisowaniu komputerów czy montażu układów scalonych, gdzie nawet niewielki ładunek elektrostatyczny może uszkodzić komponenty o dużej czułości. Według standardów branżowych, takich jak IEC 61340, stosowanie opasek antystatycznych jest częścią systemu ochrony ESD, który obejmuje również m.in. maty antystatyczne czy uziemione obuwie. Przed użyciem opaski, należy upewnić się, że jest dobrze połączona z ziemią, co można zrealizować poprzez podłączenie jej do odpowiedniego punktu uziemienia. Opaski te są powszechnie używane w centrach serwisowych i fabrykach elektroniki, co podkreśla ich znaczenie w profesjonalnym środowisku pracy z elektroniką. Dbałość o właściwe stosowanie opasek antystatycznych jest zatem nie tylko dobrą praktyką, ale i wymogiem w wielu miejscach pracy związanych z elektroniką.

Pytanie 17

Po zainstalowaniu systemu Linux, użytkownik pragnie skonfigurować kartę sieciową poprzez wprowadzenie ustawień dotyczących sieci. Jakie działanie należy podjąć, aby to osiągnąć?

A. /etc/profile
B. /etc/shadow
C. /etc/resolv.configuration
D. /etc/network/interfaces
Poprawna odpowiedź to /etc/network/interfaces, ponieważ jest to główny plik konfiguracyjny używany w wielu dystrybucjach systemu Linux do zarządzania ustawieniami sieciowymi. W tym pliku użytkownik może definiować różne interfejsy sieciowe, przypisywać im adresy IP, maski podsieci oraz inne istotne parametry, takie jak brama domyślna i serwery DNS. Na przykład, aby skonfigurować interfejs eth0 z adresem IP 192.168.1.10, użytkownik wpisze: 'iface eth0 inet static' oraz 'address 192.168.1.10'. Warto zaznaczyć, że w zależności od wybranej dystrybucji, dostępne są różne narzędzia do edytowania tego pliku, takie jak nano czy vim. Praktyczna znajomość edycji pliku /etc/network/interfaces jest kluczowa dla administratorów systemu, którzy muszą zarządzać połączeniami sieciowymi w sposób wydajny i zgodny z najlepszymi praktykami branżowymi. Użytkowanie tego pliku wpisuje się w standardy konfiguracji systemów Unix/Linux, co czyni go niezbędnym narzędziem do zrozumienia i zarządzania infrastrukturą sieciową.

Pytanie 18

W sieciach bezprzewodowych Ad-Hoc (Independent Basic Service Set) wykorzystywana jest fizyczna struktura

A. pierścienia
B. magistrali
C. siatki
D. gwiazdy
W analizie sieci bezprzewodowych Ad-Hoc, ważne jest zrozumienie, jak różne topologie wpływają na działanie sieci. Topologia pierścienia, choć interesująca w kontekście tradycyjnych sieci przewodowych, nie jest efektywna w przypadku sieci bezprzewodowych Ad-Hoc. W topologii pierścienia każde urządzenie jest połączone z dwoma sąsiadami, co w sytuacjach zaników sygnału lub awarii jednego z węzłów, prowadzi do problemów z komunikacją w całej sieci. Podobnie, topologia magistrali, gdzie wszystkie urządzenia są podłączone do jednego kabla, nie jest odpowiednia dla sieci Ad-Hoc. Tego rodzaju architektura nie wspiera elastyczności i mobilności, które są kluczowe dla takich rozwiązań. Topologia gwiazdy, z kolei, wymaga centralnego punktu dostępowego, co stoi w sprzeczności z ideą Ad-Hoc, która opiera się na bezpośredniej komunikacji między urządzeniami. Użytkownicy mogą mylić dostępność w takich sieciach z ich strukturą, co prowadzi do błędnych wniosków. Kluczowym błędem jest założenie, że tradycyjne modele topologii mogą być bezpośrednio stosowane w dynamicznych sieciach bezprzewodowych, co prowadzi do nieefektywności w projektowaniu i implementacji systemów sieciowych.

Pytanie 19

Analiza danych wyświetlonych przez program umożliwia stwierdzenie, że

Ilustracja do pytania
A. partycja rozszerzona zajmuje 24,79 GiB
B. jeden dysk twardy został podzielony na sześć partycji podstawowych
C. zamontowano trzy dyski twarde oznaczone jako sda1, sda2 oraz sda3
D. partycja wymiany ma pojemność 2 GiB
Odpowiedź dotycząca partycji wymiany o wielkości 2 GiB jest poprawna ponieważ analiza danych przedstawionych na zrzucie ekranu wyraźnie wskazuje sekcję oznaczoną jako linux-swap o rozmiarze 2 GiB. Partycja wymiany jest wykorzystywana przez system operacyjny Linux do zarządzania pamięcią wirtualną co jest kluczowe dla wydajności systemu szczególnie w sytuacjach dużego obciążenia pamięci RAM. Swap zapewnia dodatkową przestrzeń na dysku twardym którą system może używać jako rozszerzenie pamięci RAM co jest szczególnie przydatne w systemach o ograniczonej ilości pamięci fizycznej. Dobre praktyki branżowe sugerują aby rozmiar partycji wymiany był przynajmniej równy wielkości zainstalowanej pamięci RAM chociaż może się różnić w zależności od specyficznych potrzeb użytkownika i konfiguracji systemu. Korzystanie z partycji wymiany jest standardową praktyką w administracji systemami operacyjnymi opartymi na Linuxie co pozwala na stabilne działanie systemu nawet przy intensywnym użytkowaniu aplikacji wymagających dużej ilości pamięci.

Pytanie 20

Okablowanie pionowe w systemie strukturalnym łączy się

A. w pośrednim punkcie rozdziału z gniazdem abonenckim
B. w głównym punkcie rozdziału z pośrednimi punktami rozdziału
C. w gnieździe abonenckim
D. w głównym punkcie rozdziału z gniazdem abonenckim
Okablowanie pionowe w sieciach strukturalnych powinno łączyć różne punkty w sieci, ale widać, że nie do końca to rozumiesz. Połączenie w gnieździe abonenckim nie wystarczy, bo one są tylko końcowymi punktami dla użytkowników, a nie miejscem do zarządzania sygnałem. Gdy mówimy o połączeniu głównego punktu z gniazdem abonenckim, zapominasz o pośrednich punktach, które są naprawdę potrzebne do rozkładu sygnału w większych sieciach. Nie bierzesz też pod uwagę standardów, które mówią, że trzeba mieć te pośrednie punkty, co może prowadzić do problemów z wydajnością. Jak dla mnie, trzeba zrozumieć rolę głównego punktu i pośrednich punktów, żeby mieć skuteczną sieć. Projektując takie sieci, warto trzymać się standardów, żeby uniknąć kłopotów z wydajnością.

Pytanie 21

Skrypt o nazwie wykonaj w systemie Linux zawiera: echo -n "To jest pewien parametr " echo $? Wykonanie poleceń znajdujących się w pliku spowoduje wyświetlenie podanego tekstu oraz

A. numeru procesu, który był ostatnio uruchomiony w tle
B. listy wszystkich parametrów
C. numeru procesu aktualnie działającej powłoki
D. stanu ostatniego wykonanego polecenia
Wybór odpowiedzi, która odnosi się do numeru procesu ostatnio wykonywanego w tle, jest niepoprawny, ponieważ '$?' nie zwraca tej informacji. W systemie Linux, aby uzyskać identyfikator procesu (PID) ostatnio wykonywanego polecenia w tle, należałoby użyć '$!', które zwraca PID ostatniego procesu uruchomionego w tle. Podobnie, odpowiedź wskazująca na numer procesu aktualnie wykonywanej powłoki jest myląca, ponieważ powłoka nie zwraca swojego własnego PID przez '$?'. Również pojęcie listy wszystkich parametrów jest dalekie od rzeczywistości, gdyż '$?' nie ma związku z parametrami przekazywanymi do skryptu czy funkcji. Zrozumienie tych podstawowych różnic jest kluczowe, gdyż błędne użycie zmiennych powłokowych może prowadzić do nieefektywnych skryptów i trudności w ich debugowaniu. W kontekście pisania skryptów, ważne jest, aby precyzyjnie rozumieć, co dany symbol oznacza i jakie informacje można z jego użyciem uzyskać. Często programiści początkujący mylą te zmienne, co prowadzi do nieporozumień i błędów w logicznej konstrukcji skryptów. Warto również zapoznać się z dokumentacją, aby lepiej zrozumieć, jak działają polecenia w powłoce bash i jakie mają zastosowanie w praktyce.

Pytanie 22

Jaka jest maksymalna liczba komputerów, które mogą być zaadresowane w podsieci z adresem 192.168.1.0/25?

A. 510
B. 254
C. 126
D. 62
Odpowiedź 126 jest poprawna, ponieważ w podsieci o adresie 192.168.1.0/25 mamy do czynienia z maską sieciową, która umożliwia podział adresów IP na mniejsze grupy. Maska /25 oznacza, że pierwsze 25 bitów jest używane do identyfikacji sieci, co pozostawia 7 bitów na adresowanie urządzeń w tej podsieci. W praktyce oznacza to, że liczba dostępnych adresów do przypisania urządzeniom oblicza się według wzoru 2^n - 2, gdzie n to liczba bitów przeznaczonych na adresowanie hostów. W tym przypadku 2^7 - 2 = 128 - 2 = 126. Odejmujemy 2, ponieważ jeden adres jest zarezerwowany dla adresu sieci (192.168.1.0) a drugi dla adresu rozgłoszeniowego (192.168.1.127). Taki podział jest kluczowy w projektowaniu i zarządzaniu sieciami, ponieważ pozwala na efektywne wykorzystanie dostępnych adresów IP oraz organizację ruchu sieciowego. W praktyce ten rodzaj podsieci często wykorzystuje się w małych lub średnich firmach, gdzie liczba urządzeń nie przekracza 126. Umożliwia to efektywne zarządzanie zasobami oraz minimalizuje ryzyko konfliktów adresów IP, co jest zgodne z zasadami dobrej praktyki w inżynierii sieciowej.

Pytanie 23

Oblicz całkowity koszt za realizację poniższych czynności serwisowych, przy założeniu, że stawka za jedną roboczogodzinę wynosi 120,00 zł netto, a podatek VAT wynosi 23%.

LPZrealizowane czynności serwisoweIlość roboczogodzin
1.Diagnozowanie usterki0,2
2.Wymiana zasilacza0,5
3.Przygotowanie drukarki do eksploatacji0,6
4.Konserwacja urządzenia drukującego1,0
5.Sprawdzanie po zakończeniu naprawy0,2

A. 480,00 zł
B. 231,00 zł
C. 300,00 zł
D. 369,00 zł
Jedną z najczęstszych pomyłek podczas obliczania kosztów serwisowych jest pomijanie różnych elementów składających się na całkowity koszt. Często zdarza się, że osoby przystępujące do obliczeń koncentrują się jedynie na stawce roboczogodziny, nie uwzględniając pełnej liczby roboczogodzin. Przykładowo, w sytuacji, gdy błędnie zsumuje się roboczogodziny, można dojść do nieprawidłowych wyników, takich jak 300,00 zł czy 480,00 zł, które pomijają rzeczywisty koszt pracy. Ponadto, niektórzy mogą nie zdawać sobie sprawy, że do kosztu netto należy doliczyć podatek VAT, co również prowadzi do błędnych obliczeń. Użytkownicy mogą mylnie przyjmować, iż koszt brutto jest równy kosztowi netto, co jest fundamentalnym błędem w finansach. Zrozumienie mechanizmu naliczania VAT oraz poprawne zsumowanie roboczogodzin to kluczowe umiejętności, które są istotne w kontekście zarządzania budżetem i kosztami serwisowymi. Wobec tego, ignorowanie tych elementów może prowadzić do poważnych błędów finansowych, które w rezultacie mogą negatywnie wpłynąć na wyniki przedsiębiorstwa oraz jego relacje z klientami. Dlatego zawsze należy podchodzić do takich obliczeń z należytą starannością oraz litością dla szczegółów.

Pytanie 24

Jakiego parametru wymaga konfiguracja serwera DHCP?

A. Czas trwania dzierżawy adresu MAC
B. Poziom zabezpieczeń IPSec (ang. Internet Protocol Security)
C. Czas trwania dzierżawy adresu IP
D. Adres MAC karty sieciowej serwera DHCP
Czas dzierżawy adresu IP to dosyć ważna rzecz, jeśli chodzi o ustawienia serwera DHCP. To właśnie ten czas mówi, jak długo urządzenie może korzystać z przydzielonego adresu IP w sieci. Kiedy klient DHCP łączy się, serwer daje mu IP na określony czas. Jak ten czas się skończy, adres może wrócić do puli. Na przykład, gdy dzierżawa wynosi 24 godziny, trzeba ją odnowić przed upływem tego czasu, żeby nie stracić adresu. Dobrze dobrany czas dzierżawy jest szczególnie istotny w sieciach z dużym ruchem, jak w biurach czy uczelniach, gdzie urządzeń ciągle przybywa i ubywa. Odpowiednia długość dzierżawy pomaga optymalnie zarządzać adresami IP i zapewnia ich dostępność dla nowych urządzeń. To wszystko jest zgodne z dobrymi praktykami w zarządzaniu siecią oraz z normami przydziału adresów IP, jak na przykład RFC 2131.

Pytanie 25

Jakim adresem IPv6 charakteryzuje się autokonfiguracja łącza?

A. FE80::/10
B. FF00::/8
C. 2000::/3
D. ::/128
Wybór niewłaściwych adresów IPv6, takich jak 2000::/3, FF00::/8 oraz ::/128, wynika z niepełnego zrozumienia zasad klasyfikacji adresów w systemie IPv6 oraz ich zastosowań. Adres 2000::/3 jest przykładem adresu unicast, który jest używany do routingu globalnego, a nie do autokonfiguracji lokalnej. Adresy te są przeznaczone dla urządzeń wymagających publicznego dostępu w Internecie. Użycie 2000::/3 w kontekście autokonfiguracji łącza jest błędne, ponieważ te adresy nie są lokalne i wymagają interwencji w postaci routera. Adres FF00::/8 to zakres adresów multicast, który służy do przesyłania danych do wielu odbiorców jednocześnie, jednak nie jest on używany do autokonfiguracji. W końcu, adres ::/128 reprezentuje pojedynczy adres unicast, ale nie zawiera on prefiksu lokalnego potrzebnego do autokonfiguracji łącza. Adresowanie IPv6 wymaga zrozumienia zasad lokalnego i globalnego zakresu adresów, co jest kluczowe w efektywnym projektowaniu i zarządzaniu sieciami. Niezrozumienie tych koncepcji prowadzi do typowych błędów przy definiowaniu oraz wdrażaniu adresów w sieciach IPv6.

Pytanie 26

Plik zajmuje 2KB. Jakie to jest?

A. 2000 bitów
B. 16384 bity
C. 16000 bitów
D. 2048 bitów
Odpowiedź '16384 bity' jest poprawna, ponieważ plik o rozmiarze 2KB odpowiada 2048 bajtom. Zgodnie z zasadami konwersji jednostek w informatyce, 1 bajt składa się z 8 bitów. W związku z tym, aby obliczyć liczbę bitów w 2KB, należy wykonać następujące obliczenia: 2048 bajtów x 8 bitów/bajt = 16384 bity. W praktyce, zrozumienie tych konwersji jest istotne w kontekście projektowania systemów komputerowych, zarządzania pamięcią oraz optymalizacji wydajności. W branży technologicznej, standardy takie jak IEC 60027-2 i ISO/IEC 80000-13 zapewniają jasne wytyczne dotyczące jednostek miary stosowanych w obliczeniach informatycznych. Znajomość tych zasad pozwala na efektywniejsze zarządzanie danymi, co jest kluczowe w erze big data i chmur obliczeniowych, gdzie precyzyjne obliczenia mają ogromne znaczenie.

Pytanie 27

Z powodu uszkodzenia kabla typu skrętka utracono dostęp między przełącznikiem a stacją roboczą. Który instrument pomiarowy powinno się wykorzystać, aby zidentyfikować i naprawić problem bez wymiany całego kabla?

A. Analizator widma
B. Multimetr
C. Miernik mocy
D. Reflektometr TDR
Reflektometr TDR (Time Domain Reflectometer) to specjalistyczne urządzenie, które służy do lokalizacji uszkodzeń w kablach, takich jak skrętka. Działa ono na zasadzie wysyłania impulsu elektrycznego wzdłuż kabla, a następnie analizowania sygnału odbitego. Dzięki temu można dokładnie określić miejsce, w którym wystąpiła przerwa lub uszkodzenie, co pozwala na precyzyjne i efektywne naprawy bez konieczności wymiany całego kabla. Przykładem zastosowania reflektometru TDR może być sytuacja, gdy w biurze występują problemy z połączeniem sieciowym. Używając TDR, technik szybko zidentyfikuje, na jakiej długości kabla znajduje się problem, co znacznie skraca czas naprawy. W branżowych standardach, takich jak ISO/IEC 11801, podkreśla się znaczenie stosowania narzędzi, które minimalizują przestoje w działaniu sieci, a reflektometr TDR jest jednym z kluczowych urządzeń, które wspierają te działania.

Pytanie 28

Norma TIA/EIA-568-B.2 definiuje parametry specyfikacji transmisyjnej

A. fal radiowych
B. kabli UTP
C. kabli koncentrycznych
D. światłowodów
Norma TIA/EIA-568-B.2 definiuje wymagania dotyczące kabli UTP (Unshielded Twisted Pair), które są powszechnie stosowane w sieciach lokalnych (LAN). Standard ten określa zarówno parametry transmisyjne, jak i wymagania dotyczące instalacji kabli UTP, co jest kluczowe dla zapewnienia wysokiej jakości sygnału oraz minimalizacji zakłóceń. Na przykład, kable UTP są używane w instalacjach Ethernet, gdzie poprawna jakość transmisji jest niezbędna dla efektywności komunikacji. W praktyce, przy projektowaniu sieci komputerowych, inżynierowie muszą przestrzegać tych norm, aby zapewnić niezawodność połączeń. Kable UTP dostępne są w różnych kategoriach (np. Cat5e, Cat6, Cat6a), co przekłada się na różne możliwości przesyłania danych. Zrozumienie tych norm jest istotne, aby projektować wydajne i zgodne z wymaganiami systemy transmisyjne, a także aby móc skutecznie diagnozować i rozwiązywać potencjalne problemy w sieci.

Pytanie 29

Jaką metodę stosuje się do dostępu do medium transmisyjnego z wykrywaniem kolizji w sieciach LAN?

A. NetBEUI
B. CSMA/CD
C. WINS
D. IPX/SPX
WINS (Windows Internet Name Service) to usługa, która umożliwia rozwiązywanie nazw NetBIOS do adresów IP w sieciach Windows. Nie ma jednak związku z metodą dostępu do medium transmisyjnego. WINS działa na wyższych warstwach modelu OSI i nie zajmuje się zarządzaniem dostępem do medium. IPX/SPX (Internetwork Packet Exchange/Sequenced Packet Exchange) to protokół stworzony dla sieci Novell, który również nie dotyczy dostępu do medium transmisyjnego, lecz jest to zestaw protokołów komunikacyjnych, który był wykorzystywany głównie w sieciach lokalnych do komunikacji między urządzeniami. NetBEUI (NetBIOS Extended User Interface) to również protokół komunikacyjny, który jest używany w sieciach lokalnych, ale nie obsługuje mechanizmów detekcji kolizji. Protokół ten jest zoptymalizowany do pracy w małych sieciach i nie nadaje się do skalowalnych rozwiązań, ponieważ nie jest routowalny. W konsekwencji, wybór WINS, IPX/SPX, czy NetBEUI jako metod dostępu do medium transmisyjnego jest błędny, ponieważ żaden z wymienionych protokołów nie wykorzystuje technologii detekcji kolizji do efektywnego zarządzania dostępem do medium, co jest kluczowe w sieciach LAN.

Pytanie 30

Jakie informacje można uzyskać za pomocą polecenia uname -s w systemie Linux?

A. stanu aktywnych interfejsów sieciowych.
B. wolnego miejsca na dyskach twardych.
C. nazwa jądra systemu operacyjnego.
D. ilości dostępnej pamięci.
Polecenie uname -s w systemie Linux pokazuje nam nazwę jądra. To jakby szybki sposób na dowiedzenie się, z jakiego rdzenia korzysta nasz system. Używa się go często wśród administratorów, żeby wiedzieć, jakie jądro jest zainstalowane, co jest ważne przy aktualizacjach, czy przy instalowaniu nowych programów. Z mojego doświadczenia, czasami warto sprawdzić, jakie jądro mamy, bo to może wpłynąć na to, czy nowy sterownik działa, czy nie. Regularne sprawdzanie wersji jądra to dobry pomysł, żeby utrzymać system stabilnym i bezpiecznym. Zresztą, różne wersje jądra mogą różnie reagować na sprzęt, a to z kolei wpływa na wydajność całego systemu.

Pytanie 31

Na ilustracji ukazany jest komunikat systemowy. Jakie kroki powinien podjąć użytkownik, aby naprawić błąd?

Ilustracja do pytania
A. Podłączyć monitor do złącza HDMI
B. Zainstalować sterownik do Karty HD Graphics
C. Odświeżyć okno Menedżera urządzeń
D. Zainstalować sterownik do karty graficznej
Zainstalowanie sterownika do karty graficznej jest kluczowe, ponieważ urządzenia komputerowe, takie jak karty graficzne, wymagają odpowiednich sterowników do prawidłowego działania. Sterownik to oprogramowanie, które umożliwia komunikację między systemem operacyjnym a sprzętem. Gdy system operacyjny nie posiada odpowiednich sterowników, nie jest w stanie w pełni wykorzystać możliwości sprzętu, co może prowadzić do problemów z wydajnością czy błędami w działaniu. Zainstalowanie najnowszego sterownika od producenta karty graficznej pozwoli na optymalizację jej działania, zapewniając poprawne wyświetlanie grafiki oraz wsparcie dla zaawansowanych funkcji, takich jak akceleracja sprzętowa. Dodatkowo, aktualizacja sterowników jest zgodna z dobrymi praktykami w zarządzaniu IT i zwiększa bezpieczeństwo systemu, gdyż nowoczesne sterowniki często zawierają poprawki zabezpieczeń. Warto regularnie sprawdzać dostępność nowych wersji sterowników i instalować je, aby uniknąć potencjalnych konfliktów systemowych i poprawić stabilność komputera.

Pytanie 32

Awaria drukarki igłowej może być spowodowana uszkodzeniem

A. termorezystora.
B. elektrody ładującej.
C. dyszy.
D. elektromagnesu.
Zaznaczenie elektromagnesu jako przyczyny problemów z drukarką igłową to strzał w dziesiątkę. Elektromagnesy są naprawdę istotne, bo to dzięki nim igły w drukarce mogą się poruszać w odpowiednich kierunkach. Wiesz, drukarki igłowe działają tak, że igły uderzają w taśmę, żeby przenieść obraz na papier. Jak elektromagnesy się psują, to mogą być kłopoty z nadrukiem, a nawet mogą nie drukować wcale. W praktyce, znajomość tych komponentów to klucz do szybkiej diagnozy problemów. Regularne serwisowanie i wymiana zużytych elementów to coś, co każdy powinien robić, żeby dbać o swoje urządzenie. Jeśli już coś się zepsuje, najlepiej zadzwonić do serwisu, bo oni wiedzą, jak to naprawić. Z mojego doświadczenia, zrozumienie tych mechanizmów bardzo ułatwia życie, a także minimalizuje przestoje w pracy.

Pytanie 33

Impulsator pozwala na diagnozowanie uszkodzonych układów logicznych komputera między innymi poprzez

A. sprawdzenie stanu wyjściowego układu
B. kalibrację mierzonych parametrów elektrycznych
C. analizę stanów logicznych obwodów cyfrowych
D. wprowadzenie na wejście układu stanu wysokiego
Odczytanie stanu wyjściowego układu nie jest funkcją impulsatora, lecz jest zadaniem narzędzi pomiarowych, takich jak multimetru lub oscyloskopu. Te urządzenia pozwalają na bezpośredni pomiar napięcia na wyjściu układów logicznych, jednak nie są skonstruowane do wprowadzania sygnałów na wejście. Podawanie na wejście układu stanu wysokiego jest kluczowe dla testów, ale samo odczytanie stanu wyjściowego nie dostarcza informacji o wydajności układu w reakcji na zmiany sygnałów. Kalibracja mierzonych wielkości elektrycznych dotyczy raczej precyzyjnych pomiarów parametrów elektrycznych, a nie testowania logiki układów. Kalibracja jest procesem dostosowywania urządzenia pomiarowego, by uzyskać dokładne wyniki, ale nie ma związku z bezpośrednim testowaniem układów logicznych. Badanie stanów logicznych obwodów cyfrowych jest ogólnym określeniem działań związanych z analizą, lecz nie odnosi się bezpośrednio do funkcji impulsatora. Typowym błędem jest mylenie funkcji testowania z pomiarem, co prowadzi do nieprawidłowych wniosków dotyczących zastosowania impulsatorów. W rzeczywistości, impulsator koncentruje się na wprowadzaniu sygnałów, a nie na pasywnym obserwowaniu wyjść układów.

Pytanie 34

Podczas pracy z bazami danych, jakiego rodzaju operację wykonuje polecenie "SELECT"?

A. Aktualizowanie danych
B. Wybieranie danych
C. Usuwanie danych
D. Tworzenie tabel
Polecenie "SELECT" w języku SQL jest używane do wybierania danych z jednej lub więcej tabel w bazie danych. Jest to jedno z najczęściej używanych poleceń w SQL, ponieważ pozwala na przeszukiwanie i wyświetlanie danych bez ich modyfikacji. Dzięki "SELECT", możemy określić, które kolumny chcemy zobaczyć, a także zastosować różne filtry i sortowanie, aby uzyskać dokładnie te dane, które nas interesują. Na przykład, jeśli mamy tabelę klientów, możemy użyć "SELECT", aby wyświetlić tylko imiona i nazwiska klientów, którzy mieszkają w określonym mieście. To polecenie jest podstawą do tworzenia raportów i analiz danych, ponieważ pozwala na łatwe i szybkie przeglądanie informacji przechowywanych w bazie danych. W praktyce, "SELECT" można łączyć z innymi klauzulami, takimi jak "WHERE", "ORDER BY" czy "GROUP BY", co daje ogromne możliwości w zakresie manipulowania danymi w celu uzyskania konkretnych wyników. Jest to zgodne z dobrymi praktykami w branży, gdzie analiza danych jest kluczowym elementem zarządzania informacjami.

Pytanie 35

Brak danych dotyczących parzystości liczby lub znaku rezultatu operacji w ALU może sugerować usterki w funkcjonowaniu

A. tablicy rozkazów
B. rejestru flagowego
C. pamięci cache
D. wskaźnika stosu
Rejestr flagowy odgrywa kluczową rolę w procesorze, ponieważ przechowuje informacje o stanie ostatnio wykonanych operacji arytmetycznych i logicznych. Flagi w tym rejestrze, takie jak flaga parzystości (PF) i flaga znaku (SF), informują program o wynikach obliczeń. Brak informacji o parzystości lub znaku wyniku wskazuje na problemy z rejestrem flagowym, co może prowadzić do niewłaściwego wykonania kolejnych operacji. Na przykład, w przypadku arytmetyki, jeśli program nie jest w stanie zidentyfikować, czy wynik jest parzysty, może to prowadzić do błędnych decyzji w algorytmach, które oczekują określonego rodzaju danych. Dobre praktyki programistyczne obejmują regularne sprawdzanie stanu flag w rejestrze przed podejmowaniem decyzji w kodzie, co pozwala na uniknięcie nieprzewidzianych błędów oraz zapewnienie stabilności i poprawności działania aplikacji. W kontekście architektury komputerowej, efektywne zarządzanie rejestrem flagowym jest fundamentalne dla optymalizacji wydajności procesora, zwłaszcza w zastosowaniach wymagających intensywnych obliczeń, takich jak obliczenia naukowe czy przetwarzanie sygnałów.

Pytanie 36

Na stabilność wyświetlanego obrazu w monitorach CRT istotny wpływ ma

A. Odwzorowanie barw
B. Częstotliwość odświeżania
C. Czas reakcji
D. Wieloczęstotliwość
Częstotliwość odświeżania to bardzo ważny parametr, jeśli chodzi o stabilność obrazu w monitorach CRT. To właściwie mówi nam, jak często ekran jest odświeżany w ciągu sekundy. Im wyższa ta liczba, tym mniejsze ryzyko migotania, co może męczyć nasze oczy. Z mojego doświadczenia, warto zwrócić uwagę na to, że standardowe częstotliwości to zazwyczaj między 60 a 120 Hz, a niektóre monitory potrafią wyciągnąć nawet 180 Hz! Jeśli planujesz grać w gry albo pracować z grafiką przez dłuższy czas, lepiej wybrać monitor z wyższą częstotliwością. Fajnie jest też dostosować częstotliwość do tego, co właściwie robisz na komputerze, bo wtedy obraz będzie wyglądał lepiej, a oczy mniej się zmęczą. No i pamiętaj, niektóre karty graficzne mogą działać z różnymi częstotliwościami w zależności od rozdzielczości, więc przy konfiguracji monitora warto to mieć na uwadze.

Pytanie 37

Program do diagnostyki komputera pokazał komunikat NIC ERROR. Co oznacza ten komunikat w kontekście uszkodzenia karty?

A. wideo
B. graficznej
C. sieciowej
D. dźwiękowej
Komunikat NIC ERROR wskazuje na problem z kartą sieciową (Network Interface Card), co jest kluczowym elementem umożliwiającym komunikację komputera z innymi urządzeniami w sieci. Karta sieciowa odpowiada za przesyłanie danych pomiędzy komputerem a siecią lokalną lub Internetem. W przypadku awarii karty sieciowej, komputer może stracić zdolność do łączenia się z siecią, co jest niezwykle istotne w obecnych czasach, gdzie wiele operacji zależy od dostępu do Internetu. Diagnostyka w przypadku błędu NIC może obejmować sprawdzenie połączeń kablowych, zaktualizowanie sterowników, a także testowanie karty w innym porcie lub na innym komputerze. W praktyce warto również skorzystać z narzędzi do diagnostyki sieci, takich jak ping czy traceroute, aby zlokalizować źródło problemu. Znajomość oznaczeń błędów związanych z kartą sieciową jest niezbędna dla osób pracujących w IT, ponieważ pozwala na szybsze i skuteczniejsze diagnozowanie i rozwiązywanie problemów z łącznością sieciową.

Pytanie 38

W jakiej logicznej topologii funkcjonuje sieć Ethernet?

A. siatki i gwiazdy
B. rozgłaszania
C. siatkowej
D. pierścieniowej i liniowej
Topologia pierścieniowa i liniowa to nie jest coś, co spotkasz w sieciach Ethernet. W pierścieniowej urządzenia tworzą zamknięty krąg i dane płyną w jednym kierunku przez wszystkie urządzenia. To rozwiązanie może się czasem przydać, ale nie pasuje do Ethernecie. Z kolei topologia liniowa, chociaż czasem może być mylona z rozgłaszaniem, nie przynosi takich korzyści, bo mogą wystąpić kolizje i wydajność spadnie, zwłaszcza w dużych sieciach. Zwróć uwagę, że siatka i gwiazda to też nie najlepsze porównania w kontekście EtherNetu. Siatka, gdzie każde urządzenie łączy się z wieloma innymi, zwiększa niezawodność, ale to nie jest typowy model dla standardowego EtherNetu. Gwiazda, choć popularna w sieciach lokalnych, też nie oddaje istoty działania EtherNeta w kontekście rozgłaszania. Kluczowe jest, żeby zrozumieć, że te alternatywy nie tylko nie odpowiadają na pytanie, ale mogą też prowadzić do nieporozumień w projektowaniu i zarządzaniu sieciami, co jest ważne dla efektywności i niezawodności komunikacji w nowoczesnych systemach IT.

Pytanie 39

Jaki typ pamięci powinien być umieszczony na płycie głównej komputera w miejscu, które wskazuje strzałka?

Ilustracja do pytania
A. SIMM
B. SO-DIMM DDR2
C. SD-RAM DDR3
D. FLASH
SD-RAM DDR3 jest typem pamięci używanym w nowoczesnych komputerach osobistych i serwerach. Charakterystyczną cechą pamięci DDR3 jest szybsza prędkość przesyłania danych w porównaniu do jej poprzednich wersji, jak DDR2. DDR3 oferuje większe przepustowości i mniejsze zużycie energii, co czyni ją bardziej efektywną energetycznie. Pamięci DDR3 zazwyczaj pracują przy napięciu 1,5V, co jest niższe od DDR2, które pracuje przy 1,8V, co przekłada się na mniejsze zużycie energii i mniejsze wydzielanie ciepła. Dzięki temu, DDR3 jest idealnym wyborem do systemów, które wymagają wysokiej wydajności oraz stabilności. W praktyce, DDR3 jest stosowane w komputerach przeznaczonych do zadań takich jak przetwarzanie grafiki, gry komputerowe, czy też przy obróbce multimediów. Standardy takie jak JEDEC określają parametry techniczne i zgodność modułów DDR3, zapewniając, że każdy moduł spełnia określone wymagania jakości i wydajności. Wybór DDR3 dla miejsca wskazanego strzałką na płycie głównej jest właściwy, ponieważ sloty te są zaprojektowane specjalnie dla tego typu pamięci, zapewniając ich prawidłowe działanie i optymalną wydajność.

Pytanie 40

Na przedstawionym rysunku widoczna jest karta rozszerzeń z systemem chłodzenia

Ilustracja do pytania
A. aktywne
B. symetryczne
C. wymuszone
D. pasywne
Pasywne chłodzenie odnosi się do metody odprowadzania ciepła z komponentów elektronicznych bez użycia wentylatorów lub innych mechanicznych elementów chłodzących. Zamiast tego, wykorzystuje się naturalne właściwości przewodzenia i konwekcji ciepła poprzez zastosowanie radiatorów. Radiator to metalowy element o dużej powierzchni, często wykonany z aluminium lub miedzi, który odprowadza ciepło z układu elektronicznego do otoczenia. Dzięki swojej strukturze i materiałowi, radiator efektywnie rozprasza ciepło, co jest kluczowe dla zapewnienia stabilnej pracy urządzeń takich jak karty graficzne. Pasywne chłodzenie jest szczególnie cenne w systemach, gdzie hałas jest czynnikiem krytycznym, jak w serwerach typu HTPC (Home Theater PC) czy systemach komputerowych używanych w bibliotece lub biurze. W porównaniu do aktywnego chłodzenia, systemy pasywne są mniej podatne na awarie mechaniczne, ponieważ nie zawierają ruchomych części. Istnieją również korzyści związane z niższym zużyciem energii i dłuższą żywotnością urządzeń. Jednakże, pasywne chłodzenie może być mniej efektywne w przypadku bardzo wysokich temperatur, dlatego jest stosowane tam, gdzie generowanie ciepła jest umiarkowane. W związku z tym, dobór odpowiedniego systemu chłodzenia powinien uwzględniać bilans między wydajnością a wymaganiami dotyczącymi ciszy czy niezawodności.