Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 15 kwietnia 2025 17:41
  • Data zakończenia: 15 kwietnia 2025 18:14

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Aktualną miarę na linii pomiarowej, podczas pomiaru szczegółów metodą ortogonalną, określamy mianem

A. odciętą
B. rzędnej
C. podpórką
D. czołówką
Wybór odpowiedzi takich jak 'rzędna', 'czołówka' czy 'podpórka' może wynikać z nieporozumienia w terminologii stosowanej w geodezji. Rzędna odnosi się do wysokości punktu względem umownej płaszczyzny odniesienia, co oznacza, że nie jest bezpośrednio związana z pomiarami ortogonalnymi, lecz dotyczy pomiarów w pionie. Czołówka, z kolei, często używana jest w kontekście geodezyjnego osprzętu pomiarowego, a nie jako miara bieżąca, co prowadzi do mylnego zastosowania tego terminu w kontekście pytania. Podpórka natomiast jest terminem, który nie odnosi się do pomiarów, ale do wsparcia konstrukcyjnego. Typowym błędem myślowym jest przenoszenie terminologii z jednego obszaru zastosowań na drugi, co powoduje zamieszanie i niewłaściwe interpretacje. Kluczowe jest zrozumienie, że w geodezji precyzyjne definiowanie terminów ma fundamentalne znaczenie dla prawidłowego przeprowadzania pomiarów i ich interpretacji. Dlatego warto zwrócić uwagę na właściwe zrozumienie terminów, aby unikać błędów w analizie danych pomiarowych.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Który z błędów instrumentalnych teodolitu <u><strong>nie jest usuwany</strong></u> podczas pomiaru kąta w dwóch różnych położeniach lunety?

A. Inklinacja
B. Kolimacja
C. Miejsca zera
D. Libelli rurkowej
Błędy kolimacji, inklinacji oraz miejsca zera to typowe problemy związane z precyzją pomiarów teodolitowych, które można zredukować poprzez odpowiednie metody, takie jak pomiar kąta w dwóch położeniach lunety. Kolimacja odnosi się do błędu wynikającego z niewłaściwego ustawienia osi optycznej lunety, co można skorygować przez zrównoważenie pomiarów w różnych pozycjach lunety, co pozwala na uzyskanie dokładnych wyników. Inklinacja dotyczy błędów związanych z nachyleniem lunety, które również można kompensować przez odpowiednie ustawienia podczas pomiarów. Z kolei miejsce zera to punkt, w którym rozpoczynamy pomiary, i jego błąd można zniwelować przez dodatkowe wskazania kątów w różnych pozycjach. Dążenie do eliminacji tych błędów często prowadzi do mylnego przekonania o ich bezbłędnym pomiarze, gdyż ich wpływ na wyniki może być znaczny. Dlatego ważne jest, aby geodeci stosowali najlepsze praktyki, takie jak wielokrotne pomiary i odpowiednie kalibracje, aby zredukować błędy i zwiększyć precyzję swoich prac. W kontekście teodolitu, każde pomiarowe zaniedbanie, szczególnie w zakresie kolimacji, inklinacji i miejsca zera, powinno być traktowane bardzo poważnie, aby uniknąć systematycznych błędów w pomiarach.

Pytanie 4

Geodezyjne pomiary sytuacyjne w terenie <u><strong>nie mogą być</strong></u> realizowane za pomocą metod

A. wcięć kątowych, liniowych i kątowo-liniowych.
B. ortogonalną (domiarów prostokątnych).
C. skaningu laserowego.
D. biegunowej.
Skaning laserowy to naprawdę fajna technika pomiarowa. Działa na zasadzie zbierania danych za pomocą skanera laserowego, co sprawia, że jest bardzo efektywna, zwłaszcza w geodezyjnych pomiarach terenowych. Choć nie jest to typowa metoda, to pozwala na zbieranie ogromnej ilości punktów danych w krótkim czasie. Dzięki temu możemy stworzyć bardzo szczegółowy model 3D terenu. W projektach budowlanych to może być super przydatne, bo pozwala szybko i dokładnie dokumentować istniejące budynki czy inne obiekty. To jest mega ważne, gdy planujemy coś nowego. Ważne jest, aby pamiętać, że skanowanie laserowe powinno być robione w odpowiednich warunkach, a wyniki warto sprawdzić tradycyjnymi metodami, żeby mieć pewność co do jakości tych danych.

Pytanie 5

Południkiem osiowym w odwzorowaniu Gaussa-Krügera dla układu współrzędnych PL-2000 jest południk

A. 19°
B. 22°
C. 21°
D. 20°
Odpowiedź 21° jest poprawna, ponieważ w układzie współrzędnych PL-2000 południkiem osiowym odwzorowania Gaussa-Krügera dla strefy, w której mieści się Polska, jest właśnie południk 21°. Układ PL-2000 jest oparty na odwzorowaniu Gaussa-Krügera, które jest używane do precyzyjnego odwzorowywania powierzchni ziemi na płaszczyznach. Południki osiowe są kluczowe, ponieważ definiują strefy odwzorowań, co jest istotne w kontekście dokładności geodezyjnej oraz kartograficznej. Użycie południka 21° pozwala na minimalizację zniekształceń w obszarze, co jest przydatne w praktyce, na przykład w geodezji czy podczas tworzenia map topograficznych. Dobór odpowiednich południków jest zgodny z normami, takimi jak PN-EN ISO 19111, które określają zasady klasyfikacji i odwzorowań strefowych. Wiedza na temat południków osiowych jest kluczowa dla profesjonalistów zajmujących się kartografią i geodezją, ponieważ wpływa na jakość i dokładność realizowanych projektów.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Ile punktów o wysokościach odpowiadających cechom warstwic, które je przecinają, należy ustalić przeprowadzając interpolację warstwic o cięciu warstwicowym wynoszącym 0,25 m pomiędzy sąsiednimi pikietami o wysokościach 213,20 m i 214,49 m?

A. 2 punkty
B. 5 punktów
C. 4 punkty
D. 3 punkty
Twoja odpowiedź jest na pewno ok! Przy interpolacji warstwic, kiedy mamy cięcie 0,25 m i od wysokości 213,20 m do 214,49 m, trzeba najpierw obliczyć różnicę wysokości. Wychodzi 1,29 m. Jak podzielisz to przez 0,25 m, dostaniesz prawie 5,16. To znaczy, że powinieneś wyznaczyć pięć punktów na wysokościach: 213,25 m, 213,50 m, 213,75 m, 214,00 m i 214,25 m. Ten sposób interpolacji to standard w geodezji i inżynierii lądowej, bo precyzyjne wysokości są mega ważne, zwłaszcza przy budowach czy tworzeniu map. Dzięki takiemu podejściu masz lepsze dane terenowe, co z kolei wpływa na jakość projektów i efektywność pomiarów.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Wykonano pomiar kąta: w pierwszym położeniu lunety KP = 299,8850<sup>g</sup> oraz w drugim położeniu lunety KL = 100,1130<sup>g</sup>. Oblicz wartość m<sub>o</sub>

A. -0,0010g
B. -0,0020g
C. +0,0010g
D. +0,0020g
Wybór odpowiedzi innych niż -0,0010g często wynika z nieporozumienia dotyczącego właściwego obliczania różnicy kątów, a także z niewłaściwego zrozumienia konwencji stosowanych w geodezji. Często błędne podejścia opierają się na pomyłkach przy odejmowaniu wartości kątowych, gdzie zamiast prawidłowego obliczenia różnicy, użytkownicy mogą mylnie utożsamiać wartości bez uwzględnienia ich kontekstu. Na przykład, obliczenia takie jak -0,0020g lub +0,0010g pojawiają się, gdy ktoś niepoprawnie interpretuje wzory lub wprowadza nieprawidłowe założenia dotyczące kierunku pomiaru. Dodatkowo, w geodezyjnych odczytach, ważne jest, aby pamiętać o kierunku pomiaru i standardowych korekcjach, które mogą wpłynąć na ostateczne wyniki. Użytkownicy mogą również nie dostrzegać, że pomiary kątowe są relatywne, a ich interpretacja wymaga uwzględnienia pełnego obiegu kątowego, co prowadzi do typowych błędów przy zliczaniu kątów przekraczających 360 stopni. Ostatecznie, kluczowe jest, aby przy obliczeniach kątów stosować zasady obowiązujące w danym kontekście geodezyjnym, co pozwala na dokładne i zgodne z normami wyniki.

Pytanie 14

Wyznacz wysokość reperu końcowego H<sub>K</sub>, jeśli wysokość reperu początkowego wynosi H<sub>P</sub> = 325,000 m, różnica wysokości na badanym odcinku wynosi Ah<sub>P-K</sub> = 2500 mm, a poprawka ma wartość v<sub>∆h</sub> = -10 mm?

A. HK = 327,510 m
B. HK = 327,490 m
C. HK = 322,510 m
D. HK = 322,490 m
Wielu użytkowników może popełnić błąd podczas obliczania wysokości reperu końcowego, myląc się w dodawaniu lub odejmowaniu wartości różnicy wysokości oraz poprawki. Obliczenia takie jak wysokość H<sub>K</sub> powinny uwzględniać wszystkie elementy, w tym wysokość początkową H<sub>P</sub>, różnicę wysokości Ah<sub>P-K</sub> oraz poprawkę v<sub>∆h</sub>. Błędne odpowiedzi mogą wynikać z niepoprawnego przeliczenia jednostek miar – zmiana milimetrów na metry musi być dokładna, ponieważ 2,500 mm to 2,500 m, a nie 2.5 m. Ponadto, błąd taki jak nieuwzględnienie znaku poprawki (-10 mm) powoduje przesunięcie końcowego wyniku. Innym typowym błędem jest ignorowanie kontekstu pomiarowego; w geodezji, staranność w podejściu do pomiarów ma kluczowe znaczenie dla późniejszych analiz i weryfikacji wyników. Dlatego też, aby uniknąć takich pomyłek, kluczowa jest znajomość i praktyka stosowania wzorów oraz zasad geodezyjnych, które pomagają w dokładnym i bezbłędnym przeprowadzaniu obliczeń.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Jakiego przyrządu powinno się użyć do dokładnego naniesienia ramki sekcyjnej oraz siatki kwadratów w procesie tworzenia mapy analogowej?

A. Nanośnika biegunowego
B. Nanośnika prostokątnego
C. Współrzędnika
D. Koordynatografu
Koordynatograf to kluczowe narzędzie wykorzystywane w procesie opracowywania map analogowych, które pozwala na precyzyjne nanoszenie ramki sekcyjnej oraz siatki kwadratów. Jego konstrukcja umożliwia bardzo dokładne określenie współrzędnych punktów na mapie, co jest niezbędne w geodezji oraz kartografii. Koordynatograf działa poprzez system krzyżujących się linii, które są dostosowywane do odpowiednich jednostek miar. Dzięki temu użytkownik może precyzyjnie umiejscawiać elementy mapy w odpowiednich miejscach, co wpływa na dokładność i jakość końcowego produktu. Przykładem zastosowania koordynatografu może być opracowywanie planów zagospodarowania przestrzennego, gdzie każdy detal musi być dokładnie odwzorowany. W praktyce, wykorzystując koordynatograf, można zapewnić zgodność z międzynarodowymi standardami kartograficznymi, co jest niezwykle istotne w profesjonalnych pracach związanych z tworzeniem map.

Pytanie 19

W związku z wymaganiami precyzyjności pomiaru, szczegóły terenowe klasyfikowane są w trzy

A. kategorie
B. klasy
C. rodzaje
D. grupy
Podział szczegółów terenowych na grupy jest podstawowym elementem w organizacji i analizie danych terenowych, co jest kluczowe w geodezji oraz naukach przyrodniczych. Grupy te są definiowane na podstawie cech takich jak dokładność, typ terenu czy zastosowanie. W praktyce, klasyfikacja szczegółów terenowych na grupy umożliwia inżynierom i geodetom skuteczne planowanie pomiarów i analizę wyników. Na przykład, w geodezji inżynieryjnej, szczegóły mogą być podzielone na grupy w zależności od ich wpływu na projekt budowlany, co pozwala na optymalizację kosztów i czasu realizacji. W standardach geodezyjnych, takich jak normy ISO, podkreślana jest konieczność precyzyjnego określenia grup w celu zapewnienia jednolitości w zbieraniu i interpretacji danych, co jest niezbędne dla uzyskania wiarygodnych wyników.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Kto odpowiada za ustanowienie i prowadzenie krajowej geodezyjnej ewidencji sieci uzbrojenia terenu?

A. geodeta uprawniony
B. główny geodeta kraju
C. starosta
D. wojewoda
Główny geodeta kraju jest organem odpowiedzialnym za zakładanie i prowadzenie Krajowej geodezyjnej ewidencji sieci uzbrojenia terenu, co wynika z regulacji zawartych w Ustawie z dnia 17 maja 1989 r. - Prawo geodezyjne i kartograficzne. Jego zadaniem jest nadzór nad działalnością geodezyjną w kraju, w tym zapewnienie odpowiedniej jakości danych geodezyjnych oraz ich zgodności z obowiązującymi normami i standardami. W praktyce, główny geodeta kraju koordynuje prace związane z ewidencją infrastruktury, co jest kluczowe dla planowania przestrzennego oraz zarządzania zasobami naturalnymi. Działania te mają na celu utrzymanie aktualnej bazy danych, która jest podstawą podejmowania decyzji administracyjnych oraz inwestycyjnych. Umożliwia to również efektywne zarządzanie sieciami uzbrojenia terenu, co jest istotne w kontekście rozwoju infrastruktury i ochrony środowiska.

Pytanie 22

Który z błędów instrumentalnych teodolitu nie jest usuwany podczas pomiaru kąta w dwóch pozycjach lunety?

A. Położenie zera
B. Kolidacja
C. Libella rurkowa
D. Inklinacja
Libella rurkowa jest elementem teodolitu, który odpowiada za poziomowanie instrumentu. W przypadku błędu instrumentalnego związanego z libellą rurkową, jego eliminacja nie jest możliwa poprzez pomiar kątów w dwóch położeniach lunety. Działa to w ten sposób, że błędy wynikające z nieprawidłowego ustawienia poziomu nie mogą być skorygowane przez zmianę pozycji pomiarowej, ponieważ poziom jest określany niezależnie od orientacji lunety. W praktyce oznacza to, że jeśli libella jest źle skalibrowana, to błędy będą się powtarzać niezależnie od tego, jak często zmieniamy pozycję lunety. Dlatego tak ważne jest regularne sprawdzanie i kalibracja libelli rurkowej przed rozpoczęciem pomiarów. W standardach takich jak norma ISO 17123-1 określono procedury kalibracyjne, które powinny być przestrzegane, aby zapewnić dokładność pomiarów. Użycie teodolitu, w tym jego libelli, w geodezji, budownictwie czy inżynierii lądowej wymaga staranności, aby uniknąć błędów, które mogą prowadzić do poważnych konsekwencji w planowaniu i realizacji projektów budowlanych.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Godło mapy 6.115.27.25.3.4 w systemie współrzędnych PL-2000 reprezentuje mapę w skali

A. 1:1000
B. 1:2000
C. 1:5000
D. 1:500
Wybór odpowiedzi 1:5000 jako właściwej w kontekście godła mapy 6.115.27.25.3.4 w układzie współrzędnych PL-2000 jest zgodny z powszechnie przyjętymi standardami kartograficznymi. Mapa w skali 1:5000 oznacza, że jeden jednostkowy pomiar na mapie odpowiada 5000 jednostkom w rzeczywistości. Tego rodzaju skala jest często stosowana w planowaniu przestrzennym oraz w dokumentacji budowlanej, co czyni ją niezwykle użyteczną w praktyce. Na przykład, w planowaniu urbanistycznym, mapy w skali 1:5000 pozwalają na dokładną analizę terenu, co jest kluczowe dla projektowania infrastruktury i oceny wpływu na środowisko. Ponadto, w Polsce standardy kartograficzne wskazują, że skale takie jak 1:5000 są odpowiednie dla oznaczania szczegółowych informacji, takich jak granice działek, lokalizacja budynków czy infrastruktura drogowa. Dlatego wiedza na temat skal mapy i ich zastosowania jest niezbędna dla profesjonalistów w dziedzinie geodezji, architektury i planowania przestrzennego.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

W jakim zakrescie znajduje się wartość azymutu boku AB, jeżeli różnice współrzędnych pomiędzy punktem początkowym a końcowym boku AB są takie, że ΔX<sub>AB</sub> &lt; 0 oraz ΔY<sub>AB</sub> &lt; 0?

A. 200300g
B. 0100g
C. 300400g
D. 100200g
Azymut boku AB, w którym różnice współrzędnych ΔX<sub>AB</sub> i ΔY<sub>AB</sub> są ujemne, wskazuje na kierunek południowo-zachodni. W systemie azymutalnym, azymut wyrażany jest w stopniach, gdzie 0° wskazuje na północ, a 270° na zachód. Ponieważ zarówno ΔX, jak i ΔY są ujemne, oznacza to, że punkt końcowy znajduje się na lewo i poniżej punktu początkowego, co odpowiada zakresowi azymutu od 200° do 300°. Taki przedział azymutu jest istotny w geodezji i nawigacji, gdzie dokładne określenie kierunku ma kluczowe znaczenie dla precyzyjnych pomiarów i wytyczania dróg. Przykładem zastosowania może być nawigacja w terenie, gdzie geodeta musi precyzyjnie określić kierunek, aby przeprowadzić pomiary terenowe lub przygotować mapę. Zrozumienie azymutu oraz jego wartości w kontekście współrzędnych jest fundamentem w geodezji oraz kartografii, co jest zgodne z wytycznymi standardów geodezyjnych.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

W bazie danych dotyczącej obiektów topograficznych BDOT500 opisano sieć kanalizacyjną sanitarną oznaczeniami ksX300. Jakie jest źródło danych dotyczących lokalizacji tej sieci?

A. pochodzi z materiałów nieaktualnych
B. pochodzi z materiałów archiwalnych
C. jest nieokreślone
D. jest trudne do ustalenia
Odpowiedź "jest nieokreślone" jest prawidłowa, ponieważ w kontekście danych o sieci kanalizacyjnej sanitarnej w bazie BDOT500 brak jest jednoznacznych informacji na temat źródła pochodzenia tych danych. W praktyce, w przypadku sieci inżynieryjnych, takich jak kanalizacja, istotne jest, aby dane były zaktualizowane oraz pochodziły z wiarygodnych źródeł, co często jest trudne do ustalenia w obiektach archiwalnych czy nieaktualnych. Właściwe podejście do zarządzania danymi topograficznymi wymaga weryfikacji ich pochodzenia oraz aktualności, co jest zgodne z dobrymi praktykami w infrastrukturze. Na przykład, w przypadku projektowania nowych instalacji sanitarnych, kluczowe jest posiadanie precyzyjnych i aktualnych danych, aby uniknąć kolizji z istniejącą infrastrukturą. Przykłady zastosowań takich jak GIS (Geographic Information Systems) polegają na zintegrowaniu danych o sieciach z danymi demograficznymi i przestrzennymi, co pozwala na lepsze planowanie i zarządzanie zasobami.

Pytanie 30

Aby ustanowić osnowę pomiarową, należy przeprowadzić terenowy wywiad na podstawie mapy

A. zasadniczą
B. przeglądową
C. topograficzną
D. klasyfikacyjną
Osnowa pomiarowa jest kluczowym elementem w geodezji, a jej zakładanie wymaga precyzyjnej dokumentacji i analizy terenu. Mapa zasadnicza, która jest szczegółowym opracowaniem graficznym terenu, zawiera niezbędne informacje dotyczące ukształtowania terenu, granic działek, istniejącej infrastruktury oraz innych istotnych elementów. Dzięki wykorzystaniu mapy zasadniczej, geodeta może dokładnie zidentyfikować miejsca, które będą wymagały szczegółowego pomiaru oraz ustalić odpowiednie punkty osnowy, które będą podstawą do dalszych prac pomiarowych. Przykładowo, w przypadku planowania budowy obiektu, analiza mapy zasadniczej pozwala na zlokalizowanie punktów referencyjnych oraz ustalenie granic działki. Dobre praktyki w zakresie zakładania osnowy pomiarowej podkreślają znaczenie dokładności i szczegółowości mapy zasadniczej, co ma kluczowe znaczenie dla jakości przeprowadzanych pomiarów oraz późniejszych analiz.

Pytanie 31

Jakie informacje <u><strong>nie są umieszczane</strong></u> na szkicu polowym podczas pomiaru szczegółów terenowych przy użyciu metody ortogonalnej?

A. Wysokości punktów terenu
B. Numery obiektów budowlanych
C. Sytuacyjne szczegóły terenowe
D. Domiary prostokątne
Wysokości punktów terenu nie są zamieszczane na szkicu polowym z pomiaru szczegółów terenowych metodą ortogonalną, ponieważ ten rodzaj szkicu koncentruje się głównie na przedstawieniu szczegółów sytuacyjnych oraz relacji przestrzennych między obiektami. W praktyce, szkic polowy ma na celu odwzorowanie układu budynków, dróg oraz innych istotnych elementów terenu, co pozwala na ich identyfikację i późniejsze odtworzenie w dokumentacji technicznej. Przykładem zastosowania szkicu ortogonalnego może być sporządzanie planów zagospodarowania przestrzennego, gdzie kluczowe jest przedstawienie układu funkcjonalnego terenu, a nie jego wysokości. Dodatkowo, w standardach geodezyjnych, takich jak Zasady Techniki Geodezyjnej (PTG), wskazuje się, że szkice polowe powinny być zwięzłe i zawierać tylko najistotniejsze informacje, co wyklucza konieczność umieszczania danych o wysokościach."

Pytanie 32

Niwelator to narzędzie służące do dokonania pomiaru

A. wysokości punktów
B. kątów zenitalnych
C. różnic wysokości
D. kątów nachylenia
Niwelator to dosyć specyficzne urządzenie, które służy głównie do mierzenia różnic wysokości pomiędzy punktami w terenie. Jak to działa? Wykorzystuje coś w rodzaju poziomicy, by dokładnie określić te różnice. To bardzo ważne w różnych dziedzinach, takich jak budownictwo czy geodezja, bo dobrze wykonane pomiary wysokości są kluczowe. Na przykład, kiedy budujemy fundamenty, musimy być pewni, że wszystko jest na właściwej wysokości, żeby budowla była stabilna. Niwelatory są też wykorzystywane do tworzenia map topograficznych, gdzie precyzyjne różnice w wysokościach terenu mają ogromne znaczenie. W branży mamy różne normy, jak ISO, które przypominają, jak ważne są dokładne pomiary. A co ciekawe, teraz mamy również niwelatory elektroniczne, które jeszcze bardziej podnoszą jakość pomiarów, co naprawdę ma znaczenie w dzisiejszych projektach budowlanych.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Przy dokonywaniu pomiarów trzeba uwzględnić błąd miejsca zera?

A. rozstawów, stosując taśmę stalową
B. kątów poziomych
C. kątów pionowych
D. rozstawów, przy użyciu dalmierza elektromagnetycznego
Podczas pomiarów odległości, zarówno za pomocą taśmy stalowej, jak i dalmierza elektromagnetycznego, nie uwzględnia się błędu miejsca zera w taki sam sposób jak w pomiarach kątów pionowych. W przypadku odległości, błędy mogą wynikać z innych źródeł, takich jak rozszerzalność taśmy pod wpływem temperatury, błędy w ustawieniu punktów odniesienia czy zakłócenia sygnału w przypadku dalmierzy. Koncentracja na błędzie miejsca zera w tych kontekstach prowadzi do niewłaściwych wniosków, ponieważ pomiar odległości polega na bezpośrednich pomiarach fizycznych, a nie na pomiarze kątów, gdzie błąd ten odgrywa kluczową rolę. Ponadto w pomiarach kątów poziomych również nie występuje błąd miejsca zera w takim zakresie, jak ma to miejsce w przypadku kątów pionowych, gdyż przy pomiarze kątów poziomych można stosować różne metody kalibracji, które eliminują ten problem. Typowym błędem myślowym jest założenie, że wszystkie rodzaje pomiarów są narażone na ten sam rodzaj błędu, co prowadzi do niewłaściwych praktyk pomiarowych i w konsekwencji do nieprawidłowych wyników. W kontekście standardów i dobrych praktyk, ważne jest, aby każdy typ pomiaru był traktowany indywidualnie, w zależności od używanej technologii i metodologii, co pozwala na uniknięcie wielu pułapek związanych z błędami pomiarowymi.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Gdzie umieszczane są punkty odniesienia do pomiaru przemieszczeń w kierunku pionowym?

A. w obszarze wpływu monitorowanego obiektu
B. na monitorowanym obiekcie
C. w sąsiedztwie monitorowanego obiektu
D. poza obszarem wpływu monitorowanego obiektu
Prawidłowa odpowiedź, czyli lokalizacja punktów odniesienia poza strefą oddziaływania monitorowanego obiektu, jest kluczowa dla poprawności pomiarów przemieszczeń pionowych. Punkty odniesienia powinny być umiejscowione w obszarze, który nie jest narażony na wpływ czynników wywołujących ruch monitorowanego obiektu, takich jak drgania, osiadanie lub przemieszczenia. Dzięki temu uzyskujemy stabilne i wiarygodne dane, które można wykorzystać do analizy zmian w długim okresie. Na przykład, w inżynierii lądowej, standardy takie jak Eurokod 7 zalecają, aby punkty odniesienia były umieszczone w lokalizacjach, które są z dala od wszelkich potencjalnych zakłóceń. Przykładem może być monitorowanie osiadania budynków; jeśli punkty referencyjne znajdują się w pobliżu, mogą być poddawane tym samym wpływom co obiekt, co zafałszuje wyniki pomiarów. W kontekście geodezji, takie podejście jest kluczowe do uzyskania precyzyjnych wyników, które są podstawą do podejmowania decyzji inżynieryjnych.