Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.05 - Eksploatacja urządzeń elektronicznych
  • Data rozpoczęcia: 7 kwietnia 2025 11:49
  • Data zakończenia: 7 kwietnia 2025 12:05

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Liczba 3,5 w naturalnym systemie binarnym będzie zapisana jako

A. 11,0
B. 10,1
C. 01,1
D. 11,1
W przypadku błędnych odpowiedzi, istnieje kilka koncepcji, które mogą prowadzić do nieprawidłowego rozumienia konwersji liczb. Przykładowo, odpowiedź '01,1' sugeruje, że część całkowita liczby 3 powinna być zapisana jako '01', co jest mylnym podejściem. W systemie binarnym, przednie zera nie mają znaczenia, a liczba 3 zapisywana jest wyłącznie jako '11'. Kolejna niepoprawna odpowiedź '10,1' wynika z nieprawidłowego przeliczenia liczby całkowitej, która w tym przypadku zostałaby zinterpretowana jako 2, a nie 3. Wynikając z tego, część ułamkowa pozostaje prawidłowa, jednak całość jest błędna. Odpowiedź '11,0' również jest niewłaściwa, ponieważ sugeruje, że liczba 3,5 nie ma części ułamkowej, co jest sprzeczne z definicją liczby zmiennoprzecinkowej. Typowym błędem myślowym prowadzącym do takich niepoprawnych odpowiedzi jest niepełne zrozumienie, jak działają konwersje systemów liczbowych oraz pomijanie istotnych wartości w zapisie binarnym. Warto zwrócić uwagę na znaczenie znajomości zasad konwersji oraz ich zastosowania w praktyce, co jest niezbędne w wielu dziedzinach związanych z informatyką i inżynierią. Zrozumienie różnicy między reprezentacją binarną liczby całkowitej a ułamkowej jest kluczowe dla poprawnych obliczeń oraz efektywnego programowania.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Stabilność systemu automatycznej regulacji sprawia, że gdy układ zostaje wyprowadzony ze stanu równowagi,

A. sam wraca do tego stanu.
B. nie wraca do tego stanu, oscyluje.
C. wyłącza się automatycznie.
D. resetuje się.
W przypadku nieprawidłowych odpowiedzi można zauważyć pewne powszechne błędy myślowe, które prowadzą do błędnych wniosków o stabilności układów automatycznej regulacji. Przykładowo, sugestia, że układ "resetuje się", wskazuje na niepełne zrozumienie mechanizmów regulacyjnych. Takie podejście może sugerować, że układ przestaje działać w momencie zakłócenia, co jest sprzeczne z ideą ciągłości działania systemu automatyki. Z kolei stwierdzenie, że układ "wyłącza się samoczynnie", implikuje, że w przypadku zakłócenia nie podejmuje on żadnych działań kompensacyjnych, co jest charakterystyczne dla systemów niestabilnych lub awaryjnych, a nie zautomatyzowanych regulacji. Oscylacje, o których mowa w ostatniej nieprawidłowej odpowiedzi, mogą występować w systemach niestabilnych, ale nie są one pożądanym efektem w praktyce inżynieryjnej. W rzeczywistości, dobrym przykładem są systemy, w których odpowiedź na zakłócenie prowadzi do oscylacji, co może wskazywać na niewłaściwe dobranie parametrów regulatora. Zrozumienie tych zasad jest kluczowe w kontekście projektowania układów regulacji, które powinny być zgodne z najlepszymi praktykami w branży, takimi jak dostosowanie parametrów do specyfikacji systemu oraz realnych warunków eksploatacyjnych.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Przepustowość transferu danych w sieci wynosząca 256 kb/s odpowiada wartości

A. 16kB/s
B. 64kB/s
C. 8kB/s
D. 32kB/s
Odpowiedź 32kB/s jest prawidłowa, ponieważ 1 bajt (B) składa się z 8 bitów (b). Aby przeliczyć prędkość transferu z kilobitów na kilobajty, należy podzielić wartość w kilobitach przez 8, ponieważ 8 bitów tworzy 1 bajt. Zatem, 256 kb/s podzielone przez 8 daje 32 kB/s. Przykładowo, w przypadku pobierania pliku o wielkości 32 kB z prędkością 256 kb/s, czas pobierania wyniesie zaledwie 1 sekundy. W praktyce, znajomość tej konwersji jest kluczowa dla projektantów sieci oraz inżynierów zajmujących się optymalizacją wydajności transferu danych. Przykładowo, w kontekście monitorowania przepustowości sieci, umiejętność szybkiego przeliczania jednostek pozwala na lepszą ocenę efektywności transferu oraz identyfikację potencjalnych wąskich gardeł w komunikacji sieciowej.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Oblicz amplitudę sygnału wyjściowego generatora o częstotliwości 100 Hz, jeśli woltomierz elektromagnetyczny zmierzył napięcie 8 V?

A. 9,8 V
B. 22,1 V
C. 11,3 V
D. 5,6 V
Amplituda sygnału wyjściowego generatora o częstotliwości 100 Hz, którą mierzono za pomocą woltomierza elektromagnetycznego, może wprowadzać w błąd, jeśli nie zrozumie się, jak działają pomiary napięcia w kontekście sygnałów zmiennych. Odpowiedzi takie jak 5,6 V, 9,8 V czy 22,1 V sugerują różne błędne interpretacje tego, co woltomierz wskazuje. Woltomierz elektromagnetyczny, gdy mierzy sygnał sinusoidalny, wyświetla wartość skuteczną (RMS) napięcia. Wartość RMS dla sygnału sinusoidalnego jest mniejsza od maksymalnej wartości napięcia o pierwiastek z dwóch. Zatem dla napięcia 8 V, które zostało zmierzone przez woltomierz, należy stosować wzór U(max) = U(RMS) × √2. Jeśli ktoś pomyliłby pomiar z innym typem sygnału, np. prostokątnym czy trójkątnym, mógłby błędnie oszacować amplitudę. Często występującym problemem jest także nieuwzględnienie wpływu impedancji obciążenia lub nierozumienie, że pomiar wykonany na zniekształconym sygnale nie będzie odzwierciedlał rzeczywistej amplitudy. Tego rodzaju błędne rozumowanie może prowadzić do znaczących pomyłek w projektach inżynieryjnych, gdzie precyzyjne dane o napięciu są kluczowe, a ich ignorowanie może skutkować awarią sprzętu lub niewłaściwym działaniem obwodów. W związku z tym warto zapoznać się z dokumentacją producentów przyrządów pomiarowych oraz standardami, takimi jak IEC 61557, aby lepiej zrozumieć, jak maksymalizować dokładność i bezpieczeństwo pomiarów.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Podczas podłączania czujki akustycznej typu NC do centrali alarmowej w układzie EOL, trzeba szeregowo z kontaktem alarmowym tej czujki podłączyć

A. rezystor
B. diodę
C. termistor
D. kondensator
Podłączenie rezystora szeregowo ze stykiem alarmowym czujki akustycznej typu NC (Normalnie Zamknięty) w konfiguracji EOL (End of Line) jest kluczowe dla zapewnienia właściwego działania systemu alarmowego. Rezystor pełni rolę elementu zabezpieczającego oraz sygnalizującego stan linii. W konfiguracji EOL, rezystor jest umieszczony na końcu obwodu, co pozwala na monitorowanie wartości rezystancji. W przypadku zwarcia, rezystancja liniowa spadnie, co aktywuje alarm. Natomiast w przypadku otwarcia linii, rezystancja wzrośnie, również inicjując sygnał alarmowy. Zastosowanie rezystora zgodnie z normami, takimi jak EN 50131, zapewnia większą niezawodność systemu alarmowego, a także minimalizuje ryzyko fałszywych alarmów. Przykładowo, w instalacjach monitorujących systemy zabezpieczeń, takich jak ochrona obiektów, poprawne użycie rezystora EOL jest standardem branżowym, który zwiększa efektywność i bezpieczeństwo systemu.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

W wielostopniowych wzmacniaczach prądu stałego pomiędzy poszczególnymi stopniami stosowane są różne rodzaje sprzężeń

A. mieszane
B. pojemnościowe
C. galwaniczne
D. transformatorowe
Sprzężenia galwaniczne to kluczowy element w wielostopniowych wzmacniaczach prądu stałego, ponieważ zapewniają one izolację elektryczną pomiędzy poszczególnymi stopniami wzmacniacza. Dzięki temu, sygnał z jednego stopnia może być przekazywany do następnego bez ryzyka przenikania szumów, zakłóceń czy różnych potencjałów elektrycznych. Przykładowo, w zastosowaniach audio, sprzężenia galwaniczne są używane do eliminacji pętli masy, co może znacząco poprawić jakość dźwięku. Standardem w branży jest stosowanie transformatorów lub optoizolatorów dla zapewnienia takiego sprzężenia. Dobre praktyki wskazują na konieczność używania takich rozwiązań w układach, gdzie precyzyjne odwzorowanie sygnału jest kluczowe, na przykład w systemach pomiarowych czy w telekomunikacji. Sprzężenia galwaniczne umożliwiają również lepszą kontrolę nad parametrami wzmacniacza, takimi jak wzmocnienie i pasmo przenoszenia, co jest istotne w projektowaniu nowoczesnych układów elektronicznych.

Pytanie 28

Który typ pamięci nieulotnej w urządzeniach elektronicznych pozwala na aktualizację firmware bez konieczności użycia dedykowanego programatora?

A. FLASH ROM
B. EEPROM
C. EPROM
D. OTP ROM
FLASH ROM (ang. Flash Read-Only Memory) to rodzaj pamięci nieulotnej, która umożliwia zapis oraz kasowanie danych w blokach. Jest to kluczowa cecha, która odróżnia ją od tradycyjnych pamięci ROM, takich jak EPROM czy OTP ROM. W przypadku FLASH ROM, użytkownicy mogą aktualizować firmware urządzenia bez potrzeby używania skomplikowanego sprzętu programującego, co znacząco uproszcza proces aktualizacji. Przykładowo, w urządzeniach takich jak smartfony, tablety czy routery, firmware można zaktualizować bezpośrednio z poziomu systemu operacyjnego. Tego typu rozwiązania są zgodne z powszechnie stosowanymi standardami w branży elektronicznej, które podkreślają znaczenie łatwej aktualizacji oprogramowania w kontekście zapewnienia bezpieczeństwa oraz wprowadzania nowych funkcji. Przykłady zastosowania FLASH ROM obejmują nie tylko urządzenia konsumenckie, ale także sprzęt przemysłowy, gdzie regularne aktualizacje są kluczowe dla utrzymania wydajności i bezpieczeństwa działania systemów.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Aby sprawdzić ciągłość połączeń w obwodach drukowanych w urządzeniach elektronicznych, należy zastosować

A. omomierz
B. woltomierz
C. watomierz
D. amperomierz
Korzystanie z woltomierza, watomierza czy amperomierza do sprawdzania ciągłości połączeń w obwodach drukowanych to niezbyt dobry pomysł. Woltomierz mierzy napięcie, a to nie powie nam nic o oporze w obwodzie. Jakby ktoś próbował użyć woltomierza do tego, to mógłby się mocno zdziwić, bo napięcie nie mówi, czy połączenie działa. Watomierz też nie jest tu odpowiedni, bo on mierzy moc, a nie oporność ani nie powiedziałby, czy obwód jest zamknięty. Amperomierz, który sprawdza natężenie prądu, też się nie nadaje, bo do niego trzeba mieć prąd w obwodzie, który może być przerwany. Jak ktoś korzysta z tych urządzeń do testowania ciągłości, to mogą się narazić na złe diagnozy, co prowadzi do nieudanych napraw i zbędnych wydatków. Dlatego lepiej użyć omomierza, bo jest stworzony właśnie do tych pomiarów.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Adresy fizyczne MAC w sieciach komputerowych są początkowo przydzielane przez

A. producenta karty sieciowej
B. dostawcę usług internetowych
C. indywidualnego użytkownika sieci
D. zarządcę sieci lokalnej
Adresy fizyczne MAC (Media Access Control) są unikalnymi identyfikatorami przypisywanymi do interfejsów sieciowych urządzeń. Te adresy są nadawane przez producenta karty sieciowej i są zapisywane w trwałej pamięci sprzętowej urządzenia, co zapewnia ich unikalność i stałość. Adres MAC składa się z 48-bitowego numeru, który jest zazwyczaj przedstawiany w postaci 12-cyfrowego heksadecymalnego ciągu, podzielonego na sześć par. Standard IEEE 802.3 definiuje sposób komunikacji w sieciach lokalnych oraz znaczenie adresów MAC. Przykładem zastosowania adresów MAC jest ich użycie w protokołach takich jak Ethernet, gdzie umożliwiają one identyfikację urządzeń w sieci i kierowanie danych w odpowiednie miejsca. W praktyce, jeśli dwa urządzenia chcą wymienić informacje w sieci lokalnej, adres MAC jednego z nich będzie wskazywał, do którego urządzenia mają być przekazywane dane, co jest kluczowe dla poprawnego działania komunikacji w sieci.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.