Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 26 kwietnia 2025 16:21
  • Data zakończenia: 26 kwietnia 2025 16:55

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Do wykonania preparatu według zamieszczonej procedury należy przygotować wagę, łyżeczkę, palnik gazowy, trójnóg, bagietkę, szczypce metalowe oraz

Procedura otrzymywania tlenku magnezu przez prażenie węglanu magnezu.
Odważoną ilość węglanu magnezu ubić dokładnie w tyglu (wcześniej zważonym) i przykryć pokrywką.
Początkowo ogrzewać niewielkim kopcącym płomieniem, a następnie gdy tygiel ogrzeje się, ogrzewać
silniej w temperaturze czerwonego żaru przez około 20 minut. Po zakończeniu prażenia tygiel odstawić
do ostudzenia chroniąc przed wilgocią. Zważyć tygiel z preparatem i obliczyć wydajność.

A. tygiel, siatkę grzewczą, eksykator.
B. tygiel, trójkąt ceramiczny, krystalizator.
C. tygiel z pokrywką, trójkąt ceramiczny, eksykator.
D. tygiel z pokrywką, siatkę grzewczą, zlewkę z zimną wodą.
Poprawna odpowiedź zawiera tygiel z pokrywką, trójkąt ceramiczny oraz eksykator, które są kluczowymi elementami w procesie prażenia węglanu magnezu do uzyskania tlenku magnezu. Tygiel z pokrywką jest niezbędny do przeprowadzenia reakcji chemicznych w kontrolowanych warunkach, chroniąc substancję przed zanieczyszczeniami oraz zapewniając właściwą izolację termiczną. Trójkąt ceramiczny pełni rolę podpory dla tygla, umożliwiając równomierne ogrzewanie nad płomieniem palnika gazowego. Eksykator jest istotny po zakończeniu prażenia, gdyż pozwala na schłodzenie produktu w warunkach niskiej wilgotności, co zapobiega jego absorpcji wody z otoczenia. Odpowiednie korzystanie z tych narzędzi jest zgodne z najlepszymi praktykami laboratoriami chemicznymi, co jest szczególnie ważne w kontekście uzyskiwania czystych i stabilnych produktów chemicznych. Zrozumienie procedur oraz standardów bezpieczeństwa w laboratoriach chemicznych jest kluczowe dla osiągnięcia sukcesu w eksperymentach.

Pytanie 3

Wskaż, do jakiego typu należą zamieszczone równania reakcji.

I. 2 Mg + O2 → 2 MgO
II. 2 KMnO4 → K2MnO4 + MnO2 + O2
III. BaCl2 + H2SO4→ BaSO4 + 2 HCl

A. I - analiza, II - synteza, HI - wymiana podwójna.
B. I - wymiana pojedyncza, II — analiza, III - synteza.
C. I - synteza, II - analiza, DI - wymiana podwójna.
D. I - synteza, II - analiza, HI - wymiana pojedyncza.
Odpowiedź "I - synteza, II - analiza, DI - wymiana podwójna" jest prawidłowa, ponieważ precyzyjnie klasyfikuje przedstawione reakcje chemiczne. Reakcja I, 2 Mg + O2 → 2 MgO, to klasyczny przykład reakcji syntezy, kiedy to dwa reagenty łączą się, tworząc jeden produkt. Takie reakcje są fundamentalne w chemii, ponieważ ilustrują procesy, które są podstawą wielu syntez chemicznych w przemyśle, na przykład w produkcji różnych związków chemicznych. Reakcja II, 2 KMnO4 → K2MnO4 + MnO2 + O2, jest reakcją analizy, gdzie jeden reagent ulega rozkładowi na kilka produktów, co jest kluczowym procesem w chemii analitycznej i przy wytwarzaniu różnych substancji chemicznych. Reakcja III, BaCl2 + H2SO4 → BaSO4 + 2 HCl, to reakcja wymiany podwójnej, podczas której dwa reagenty wymieniają składniki, co jest powszechną metodą w chemii nieorganicznej. Takie klasyfikacje są nie tylko istotne w akademickiej chemii, ale również mają zastosowanie w różnych gałęziach przemysłu chemicznego, gdzie zrozumienie typologii reakcji jest kluczowe dla optymalizacji procesów produkcyjnych.

Pytanie 4

Jakie pH ma roztwór buforowy otrzymany w wyniku zmieszania 0,2 M roztworu kwasu octowego i 0,2 M roztworu octanu sodu, w stosunku objętościowym 3 : 2?

Bufor octanowy według Walpole'a
0,2 M
kwas octowy [ml]
0,2 M
octan sodu [ml]
pH
7,03,04,39
6,04,04,58
5,05,04,75
4,06,04,94
3,07,05,13

A. 5,13
B. 4,39
C. 4,94
D. 4,58
Odpowiedź 4,58 jest jak najbardziej trafna! Można ją uzyskać dzięki równaniu Hendersona-Hasselbalcha, które łączy pH, pKa oraz stosunek stężeń kwasu i zasady. Kwas octowy, czyli CH₃COOH, ma pKa w okolicach 4,76. W naszym buforze mamy stosunek 3:2 dla kwasu octowego i octanu sodu, co daje nam 0,6 M kwasu i 0,4 M zasady. Podstawiając te wartości do równania, dostajemy: pH = pKa + log([A-]/[HA]) = 4,76 + log(0,4/0,6) = 4,58. Takie obliczenia są naprawdę ważne w laboratoriach chemicznych. Kontrola pH to kluczowy sprawa w wielu procesach, na przykład w biologii molekularnej czy w produkcji leków, gdzie stabilność pH ma ogromny wpływ na działanie substancji.

Pytanie 5

Urządzeniem pomiarowym nie jest

A. pehametr
B. eksykator
C. konduktometr
D. termometr
Eksykator jest urządzeniem, które nie służy do pomiarów, lecz do przechowywania substancji w warunkach obniżonego ciśnienia atmosferycznego lub w atmosferze kontrolowanej. Używany jest w laboratoriach chemicznych do zabezpieczania materiałów wrażliwych na wilgoć, powietrze lub inne czynniki atmosferyczne. Na przykład, eksykator może być stosowany do przechowywania substancji higroskopijnych, takich jak sól kuchenną, aby zapobiec ich nawilżeniu i degradacji. W praktyce, eksykatory często zawierają substancje osuszające, które pomagają utrzymać odpowiednie warunki w ich wnętrzu. W odróżnieniu od konduktometru, pH-metra i termometru, które są zaprojektowane do wykonywania precyzyjnych pomiarów fizykochemicznych, eksykator pełni jedynie funkcję przechowalniczą, co czyni go przyrządem niepomiarowym według standardów metrologicznych.

Pytanie 6

Czystość konkretnego odczynnika chemicznego wynosi: 99,9-99,99%. Jakiego rodzaju jest ten odczynnik?

A. techniczny.
B. czysty.
C. chemicznie czysty.
D. czysty do analizy.
Odpowiedź "czysty do analizy" jest poprawna, ponieważ odczynniki chemiczne o poziomie czystości wynoszącym 99,9-99,99% są klasyfikowane jako czyste do analizy, co oznacza, że spełniają wysokie standardy czystości wymagane do prowadzenia precyzyjnych analiz chemicznych. Takie substancje są niezbędne w laboratoriach analitycznych, gdzie dokładność wyników jest kluczowa. Przykłady zastosowania obejmują analizę substancji aktywnych w farmaceutyce, gdzie nawet niewielkie zanieczyszczenia mogą wpłynąć na skuteczność leku. Zgodnie z normami, takimi jak ISO 17025, laboratoria muszą korzystać z odczynników o określonych parametrach czystości, aby zapewnić wiarygodność i powtarzalność wyników. Odczynniki czyste do analizy są również stosowane w badaniach środowiskowych, gdzie precyzyjne pomiary są kluczowe dla oceny jakości wody czy powietrza. Wybór odpowiednich odczynników gwarantuje, że wyniki są nie tylko dokładne, ale także zgodne z regulacjami prawnymi i standardami jakości.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Wapno palone uzyskuje się poprzez prażenie wapienia według równania: CaCO3 → CaO + CO2. Ile kilogramów wapienia należy zastosować, aby w efekcie jego prażenia otrzymać 7 kg wapna palonego, jeśli wydajność reakcji wynosi 50%?
Masy molowe: MCa = 40 g/mol, MC = 12 g/mol, MO = 16 g/mol.

A. 50,0 kg
B. 12,5 kg
C. 25,0 kg
D. 37,5 kg
Wybór niewłaściwej odpowiedzi często wynika z błędnego zrozumienia zachodzących procesów chemicznych oraz pomieszania koncepcji wydajności reakcji i ilości reagentu. Przykładowo, podanie 50 kg wapnia palonego jako odpowiedzi może sugerować, że respondenci nie uwzględnili wydajności reakcji. W rzeczywistości, wydajność 50% oznacza, że tylko połowa teoretycznie uzyskanych produktów reakcji jest pozyskiwana. Z tego powodu, aby uzyskać 7 kg wapna palonego, najpierw należałoby obliczyć, ile CaCO3 jest potrzebne, przy założeniu, że 100% wydajność dostarczyłaby 14 kg. Następnie, uwzględniając wydajność, trzeba pomyśleć o tym, że do uzyskania takiej ilości trzeba podwoić ilość węglanu wapnia. Osoby dokonujące obliczeń mogą również popełnić błąd w obliczeniach mas molowych, co może prowadzić do mylnych wyników. Kolejnym typowym błędem jest ignorowanie jednostek miary, gdzie niektórzy mogą skupić się tylko na samych liczbach, zapominając, że kilogramy i gramy to różne jednostki. Zrozumienie tego aspektu jest kluczowe w praktycznych zastosowaniach chemii, gdzie precyzyjne pomiary są niezbędne dla uzyskania pożądanych efektów reakcji chemicznych.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Mając wagę laboratoryjną z dokładnością pomiaru 10 mg, nie da się wykonać odważki o masie

A. 0,013 g
B. 13 g
C. 1300 mg
D. 130 mg
Odpowiedź 0,013 g jest prawidłowa, ponieważ waga laboratoryjna o dokładności odczytu 10 mg (0,01 g) nie pozwala na precyzyjne ważenie mas mniejszych niż ta wartość. Przygotowanie odważki o masie 0,013 g wymagałoby pomiaru, który jest poniżej granicy dokładności wagi, skutkując niedokładnym odczytem. W praktyce laboratoria powinny stosować wagi, które są w stanie dokładnie mierzyć masy w zakresie ich potrzeb, a zgodność z normami dotyczącymi dokładności pomiarów jest kluczowa. Przykładowo, w laboratoriach chemicznych, gdzie precyzyjne pomiary są niezbędne do uzyskania wiarygodnych wyników, zawsze używa się wag, które sprostają wymaganiom analitycznym. Ważenie substancji o masach mniejszych niż 10 mg przy użyciu wagi, która ma taką granicę dokładności, prowadziłoby do błędów systematycznych, co mogłoby mieć wpływ na dalsze etapy analizy.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Czego brakuje w zestawie pokazanym na ilustracji?

A. bagietka, termometr oraz siatka
B. stojak, łącznik i łapa
C. stojak, termometr oraz siatka
D. stojak, łącznik oraz termometr
Odpowiedź 'statyw, łącznik i łapa' jest poprawna, ponieważ te elementy są niezbędne do stabilizacji i prawidłowego montażu sprzętu laboratoryjnego. Statyw jest kluczowym elementem w każdej pracowni chemicznej lub fizycznej, umożliwiającym bezpieczne trzymanie różnych akcesoriów, takich jak naczynia reakcyjne czy przyrządy pomiarowe. Łącznik służy do łączenia różnych elementów sprzętu, co pozwala na bardziej złożone konfiguracje, które mogą być wymagane w trakcie eksperymentów. Łapa natomiast zapewnia pewne uchwycenie i stabilizację, co jest szczególnie ważne w przypadku użycia szkła laboratoryjnego, które jest wrażliwe na uszkodzenia. W praktyce, zastosowanie tych elementów pozwala na przeprowadzanie doświadczeń w sposób bezpieczny oraz efektywny, co jest zgodne z najlepszymi praktykami w laboratoriach. Użycie statywów i uchwytów jest standardem w każdym laboratorium, co podkreśla ich fundamentalne znaczenie w pracy naukowej.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Aby zregenerować rozpuszczalnik organiczny, należy wykonać proces

A. odparowywania
B. filtrowania
C. destylacji
D. demineralizacji
Destylacja jest procesem separacji substancji na podstawie różnic w ich temperaturze wrzenia, co czyni ją idealnym narzędziem do regeneracji rozpuszczalników organicznych. Działa na zasadzie podgrzewania mieszanki, co powoduje odparowanie składników o niższej temperaturze wrzenia, a następnie skraplanie ich w osobnym naczyniu. Dla przykładu, w przemyśle chemicznym często stosuje się destylację w celu odzyskiwania rozpuszczalników używanych w reakcjach chemicznych, co nie tylko zmniejsza koszty, ale również przyczynia się do zrównoważonego rozwoju przez ograniczenie odpadów. W praktyce, destylacja jest szeroko stosowana w laboratoriach, gdzie należy oczyszczać i regenerować substancje chemiczne. Warto również dodać, że stosowanie destylacji jest zgodne z dobrymi praktykami laboratoryjnymi, które promują minimalizację odpadów oraz efektywne zarządzanie substancjami chemicznymi.

Pytanie 15

Aby oszacować czystość MgCO3, poddano prażeniu próbkę o wadze 5 g tej soli aż do osiągnięcia stałej masy. W trakcie prażenia zachodzi reakcja:
MgCO3 → MgO + CO2 Całkowity ubytek masy wyniósł 2,38 g.
(Masy molowe reagentów to: MgCO3 – 84 g/mol, MgO – 40 g/mol, CO2 – 44 g/mol) Jaką czystość miała próbka węglanu magnezu?

A. około 50% czystej substancji
B. bliżej nieokreśloną masę domieszek
C. 90,7% czystej substancji
D. 100% czystej substancji
Analizując inne odpowiedzi, istotne jest zrozumienie, dlaczego niektóre z nich są błędne. Wskazanie, że węglan magnezu zawiera około 50% czystej substancji, jest nieuzasadnione, gdyż nie uwzględnia rzeczywistego ubytku masy podczas prażenia. Przykładowo, pominięcie obliczeń ilości powstałego CO2 prowadzi do znacznego zaniżenia jakości próbki. Z kolei stwierdzenie, że węglan magnezu zawiera 100% czystej substancji, jest nierealistyczne, ponieważ każda próbka chemiczna może zawierać zanieczyszczenia, a proces prażenia ujawnia ich obecność. Kolejna odpowiedź, mówiąca o bliżej nieokreślonej masie domieszek, sugeruje brak analizy ilościowej, co jest fundamentalnym błędem w chemii analitycznej. W praktyce laboratorium chemicznego, każda analiza powinna opierać się na solidnych obliczeniach i znajomości reakcji chemicznych. Często, błędy myślowe prowadzące do takich odpowiedzi wynikają z ignorowania relacji mas molowych oraz z podstawowych zasad stoichiometrii. Zrozumienie tych reguł jest kluczowe dla poprawnego przeprowadzania analiz chemicznych, co wpływa na jakość wyników oraz ich interpretację. Znajomość standardów analitycznych i dobrych praktyk w chemii pozwala uniknąć takich nieścisłości.

Pytanie 16

Jaką objętość zasady sodowej o stężeniu 1,0 mol/dm3 należy dodać do 56,8 g kwasu stearynowego, aby otrzymać mydło sodowe (stearynian sodu)?

C17H35COOH + NaOH → C17H35COONa + H2O
(MC17H35COOH = 284 g/mol, MC17H35COONa = 306 g/mol, MNaOH = 40 g/mol, MH2O= 18 g/mol)

A. 150 cm3
B. 100 cm3
C. 200 cm3
D. 250 cm3
Odpowiedzi takie jak 250 cm3, 100 cm3 i 150 cm3 wynikają z niepoprawnych obliczeń lub niepełnego zrozumienia reakcji chemicznej zachodzącej podczas saponifikacji. Dodanie 250 cm3 zasady sodowej do 56,8 g kwasu stearynowego skutkowałoby nadmiarem zasady, co mogłoby prowadzić do powstawania niepożądanych produktów ubocznych oraz nadmiernej alkaliczności końcowego mydła. Taki nadmiar reagentu jest niezgodny z zasadami dobrych praktyk laboratoryjnych, które wymagają precyzyjnego dawkowania reagentów. Z kolei wybór 100 cm3 lub 150 cm3 zasady sodowej również nie zapewnia pełnej reakcji neutralizacji, co skutkuje niedostatecznym przekształceniem kwasu w mydło. W praktyce, niedobór zasady może prowadzić do niepełnej reakcji, co z kolei wpływa na jakość końcowego produktu. W kontekście branżowym, produkcja mydeł wymaga ścisłej kontroli procesów chemicznych oraz monitorowania stosunków molowych reagentów, aby zapewnić zgodność z normami i jakością produktów. Całość procesu saponifikacji powinna być przeprowadzana z zachowaniem odpowiednich standardów, aby uniknąć problemów z jakością oraz bezpieczeństwem końcowego mydła.

Pytanie 17

Który zestaw zawiera niezbędne urządzenia laboratoryjne do przygotowania 10% (m/m) roztworu NaCl?

A. Waga laboratoryjna, zlewka, cylinder miarowy, palnik
B. Waga laboratoryjna, kolba miarowa, naczynko wagowe, palnik
C. Waga laboratoryjna, cylinder miarowy, kolba miarowa, szkiełko zegarkowe
D. Waga laboratoryjna, zlewka, cylinder miarowy, naczynko wagowe
Wybór sprzętu laboratoryjnego do sporządzania roztworów wymaga staranności i precyzji. W przypadku pierwszej odpowiedzi brak jest naczynka wagowego, co jest istotnym niedociągnięciem, ponieważ ważenie substancji jest kluczowe dla osiągnięcia właściwego stężenia roztworu. Z kolei w drugiej odpowiedzi zamiast zlewki pojawia się kolba miarowa, która jest używana głównie do przygotowywania roztworów o określonej objętości, ale nie jest optymalna do mieszania składników. Kolby są bardziej odpowiednie do tworzenia roztworów o stałej objętości, co może prowadzić do nieporozumień dotyczących pomiarów. W czwartej odpowiedzi cylinder miarowy jest wymieniony, ale ponownie brakuje naczynka wagowego, co skutkuje niedokładnością w procesie odważania substancji. Typowym błędem myślowym w takich zadaniach jest mylenie funkcji poszczególnych sprzętów, co może prowadzić do zrozumienia, że kolby miarowe mogą zastąpić zlewki, co jest nieprawdziwe. Zastosowanie nieodpowiednich narzędzi może zmniejszyć dokładność i wiarygodność uzyskanych wyników, dlatego kluczowe jest stosowanie odpowiedniego sprzętu zgodnie z jego przeznaczeniem w laboratorium.

Pytanie 18

Oddzielanie płynnej mieszaniny wieloskładnikowej poprzez odparowanie, a następnie skraplanie jej komponentów, to proces

A. filtracji
B. koagulacji
C. krystalizacji
D. destylacji
Destylacja to proces, który polega na rozdzielaniu składników cieczy poprzez ich odparowanie i następne skroplenie. Jest to technika szeroko stosowana w różnych gałęziach przemysłu, takich jak petrochemia, przemysł spożywczy, a także w laboratoriach chemicznych. Przykładem zastosowania destylacji w przemyśle jest produkcja alkoholi, gdzie poprzez destylację fermentowanych surowców uzyskuje się wysokoprocentowe napoje. Proces destylacji wykorzystuje różnice w temperaturach wrzenia poszczególnych składników, co pozwala na ich selektywne odparowanie i kondensację. W praktyce, w destylacji frakcyjnej, stosuje się kolumny destylacyjne, które umożliwiają wielokrotne skraplanie i odparowywanie, co zwiększa efektywność rozdziału. Warto również znać standardy takie jak ASTM D86, które określają metody przeprowadzania destylacji w przemyśle naftowym, gwarantując wysoką jakość oraz powtarzalność procesów.

Pytanie 19

Na podstawie danych w tabeli określ, jaką masę próbki należy pobrać, jeżeli wielkość ziarna wynosi 1·10-5 m.

Wielkość ziaren lub kawałków [mm]Poniżej 11-1011-50Ponad 50
Pierwotna próbka (minimum) [g]10020010002500

A. 100 g
B. 1000 g
C. 2500 g
D. 200 g
Wybór innych mas próbki, takich jak 200 g, 2500 g czy 1000 g, może wynikać z nieporozumienia dotyczącego związku między wielkością próbki a jej reprezentatywnością. Większość użytkowników może sądzić, że większa masa próbki przyczyni się do lepszej dokładności analizy. Jednak w kontekście wielkości ziarna poniżej 1 mm, stosowanie większej masy może prowadzić do problemów z homogenizacją próbki oraz zwiększać ryzyko zanieczyszczenia. Zgodnie z dobrymi praktykami, przy małych ziarnach kluczowe jest, aby masa próbki była odpowiednia do ich właściwości fizycznych. W rzeczywistości, większa masa niekoniecznie poprawia jakość analizy, a może nawet wprowadzić dodatkowe błędy. W wielu przypadkach, aby uniknąć tzw. efektu selektywnego, zaleca się stosowanie minimalnych mas próbki określonych w standardach, które zapewniają odpowiednią reprezentatywność. Na przykład, w badaniach materiałów sypkich, zwłaszcza w kontekście przemysłu chemicznego, zbyt duża masa próbki może generować dodatkowe wydatki i komplikacje w przygotowaniu, co może prowadzić do nieefektywności w procesie analitycznym. Z tego powodu, kluczowe jest, aby przestrzegać wskazanych norm dotyczących masy próbki, aby uzyskać wiarygodne i powtarzalne wyniki analizy.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Aby przygotować 500 cm3 roztworu KMnO4 (M = 158 g/mol) o stężeniu 0,02 mol/dm3, ile należy zważyć?

A. 7,95 g KMnO4
B. 1,58 g KMnO4
C. 15,8 g KMnO4
D. 3,16 g KMnO4
W przypadku analizy błędnych odpowiedzi warto zwrócić uwagę na kilka kluczowych aspektów dotyczących obliczeń chemicznych. Często popełnianym błędem jest mylenie jednostek objętości; na przykład, jeżeli ktoś obliczał masę KMnO4 dla 500 cm³, ale nie przeliczył tej wartości na dm³, może to prowadzić do znaczących pomyłek. Warto pamiętać, że 500 cm³ to 0,5 dm³, co jest kluczowe dla poprawności obliczeń. Dodatkowo, nieprawidłowy wybór jednostek stężenia, jak np. użycie stężenia masowego zamiast molowego, może wprowadzić w błąd. Innym typowym błędem jest pominięcie mocy molowej, co prowadzi do przeszacowania lub niedoszacowania wymaganej masy substancji. W kontekście przygotowywania roztworów, zgodność z normami oraz dobrymi praktykami laboratoryjnymi jest kluczowa. Na przykład, nieodpowiednia masa może wpłynąć na wyniki analizy, co w konsekwencji prowadzi do błędnych wniosków. Dlatego zawsze zaleca się staranność i dokładność w obliczeniach oraz stosowanie odpowiednich jednostek. To nie tylko zwiększa precyzję, ale i pozwala uniknąć kosztownych pomyłek w dalszych etapach badań chemicznych.

Pytanie 23

Aby zebrać próbki gazów, wykorzystuje się

A. detektory gazów
B. miarki cylindryczne
C. butelki z plastikowym wieczkiem
D. aspiratory
Aspiratory są urządzeniami zaprojektowanymi specjalnie do pobierania próbek gazowych w kontrolowanych warunkach. Ich działanie polega na wykorzystaniu podciśnienia do zasysania gazów z określonego otoczenia, co pozwala na zbieranie reprezentatywnych prób do dalszej analizy. W laboratoriach chemicznych oraz w przemyśle petrochemicznym aspiratory są niezbędne do monitorowania jakości powietrza, a także do wykrywania zanieczyszczeń gazowych. Przykładem zastosowania aspiratorów jest ich użycie w badaniach środowiskowych, gdzie ocenia się stężenie szkodliwych substancji w atmosferze. Standardy, takie jak ISO 16000, określają metody pobierania próbek gazowych, a stosowanie aspiratorów jest zgodne z najlepszymi praktykami w tej dziedzinie, zapewniając dokładność i wiarygodność wyników analitycznych. Ponadto, aspiratory mogą być używane do analizy gazów wydechowych w przemyśle motoryzacyjnym, co jest kluczowe dla oceny emisji i przestrzegania norm ekologicznych.

Pytanie 24

Jakie jest stężenie procentowe roztworu HCl (M=36,46 g/mol) o gęstości 1,19 g/cm3 oraz stężeniu molowym 12 mol/dm3?

A. 19,6%
B. 39,2%
C. 36,8%
D. 78,3%
Obliczenie stężenia procentowego roztworu HCl zaczynamy od określenia masy substancji rozpuszczonej w danym objętości roztworu. Mając stężenie molowe wynoszące 12 mol/dm³, możemy obliczyć masę HCl w 1 dm³ roztworu, korzystając z masy molowej HCl (36,46 g/mol). Zatem masa HCl w 1 dm³ wynosi: 12 mol/dm³ * 36,46 g/mol = 437,52 g. Gęstość roztworu wynosi 1,19 g/cm³, co oznacza, że masa 1 dm³ roztworu wynosi 1190 g. Stężenie procentowe obliczamy według wzoru: (masa substancji rozpuszczonej / masa roztworu) * 100%. Podstawiając wartości: (437,52 g / 1190 g) * 100% = 36,77%, co zaokrąglamy do 36,8%. Takie obliczenia są istotne w praktyce chemicznej, na przykład w laboratoriach, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania wiarygodnych wyników doświadczeń. Zrozumienie stężenia procentowego i jego zastosowania jest istotne w kontekście przemysłu chemicznego oraz analizy jakościowej i ilościowej substancji chemicznych.

Pytanie 25

Który z wskaźników nie jest używany w alkacymetrii?

A. Błękit tymolowy
B. Fenoloftaleina
C. Oranż metylowy
D. Skrobia
Oranż metylowy, fenoloftaleina oraz błękit tymolowy to wskaźniki, które odgrywają kluczową rolę w alkacymetrii, a ich zastosowanie jest oparte na ich zdolności do zmiany koloru w odpowiedzi na zmiany pH roztworu. Oranż metylowy, zmieniający kolor przy pH 3,1 - 4,4, jest szczególnie użyteczny w reakcjach, gdzie dominują kwasy. Fenoloftaleina, zmieniająca barwę z bezbarwnej na różową w zakresie pH 8,2 - 10,0, znajduje zastosowanie w titracji zasadowej, gdzie istotne jest ustalenie momentu, w którym zasadowość roztworu jest wystarczająca do neutralizacji kwasu. Błękit tymolowy, zmieniający kolor w pH 6,0 - 7,6, jest często wykorzystywany w analizach, gdzie pH roztworu zbliża się do neutralności. W związku z tym, mylenie skrobi z tymi wskaźnikami może wynikać z nieporozumienia dotyczącego ich funkcji. Skrobia, będąca naturalnym polisacharydem, nie działa jako wskaźnik pH, lecz jest używana jako reagent do wykrywania jodu, co pokazuje różnice w ich zastosowaniach. Zrozumienie różnic w zastosowaniach tych substancji jest kluczowe, aby uniknąć błędnych wniosków w praktyce laboratoryjnej.

Pytanie 26

Do filtracji osadów drobnokrystalicznych wykorzystuje się filtry

A. sztywne, o największych porach
B. elastyczne, o najmniejszych porach
C. elastyczne, o największych porach
D. sztywne, o najmniejszych porach
Sączki twarde o najmniejszych porach są optymalnym wyborem do sączenia osadów drobnokrystalicznych, ponieważ ich struktura zapewnia skuteczne oddzielanie cząstek stałych od cieczy. Twardość materiału sączka pozwala na zachowanie stabilności mechanicznej podczas procesu filtracji, co jest kluczowe w wielu zastosowaniach laboratoryjnych i przemysłowych. Przykładowo, w laboratoriach chemicznych, gdzie często stosowane są różne metody analityczne, takie jak chromatografia czy spektroskopia, twarde sączki umożliwiają precyzyjne oczyszczanie próbek, eliminując drobne zanieczyszczenia, co wpływa na dokładność uzyskiwanych wyników. Dodatkowo, stosowanie sączków o najmniejszych porach jest zgodne z normami filtracji, które wymagają wykorzystania materiałów o odpowiednich właściwościach mechanicznych i chemicznych, aby zapewnić wysoką efektywność procesu oczyszczania i minimalizację straty substancji. W praktyce, sączki te są wykorzystywane w różnych branżach, w tym w farmacji, biotechnologii oraz przemysłach spożywczym, gdzie czystość produktu finalnego jest absolutnie kluczowa.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Rozdział składników mieszaniny w chromatografii odbywa się dzięki ich różnym

A. absorpcji
B. adsorpcji
C. rozpuszczalności
D. lotności
Odpowiedzi dotyczące lotności, absorpcji oraz rozpuszczalności nie oddają sedna procesu rozdziału chromatograficznego, który w rzeczywistości opiera się na adsorpcji. Lotność odnosi się do zdolności substancji do przechodzenia w stan gazowy, co nie jest kluczowym czynnikiem w chromatografii, ponieważ proces ten zazwyczaj zachodzi w fazie ciekłej lub stałej. Odpowiedzi takie jak absorpcja mogą być mylone z adsorpcją, jednak obejmują one inny mechanizm, w którym cząsteczki są wchłaniane w objętość substancji, a nie tylko przyczepiają się do jej powierzchni. Rozpuszczalność, choć ważna w kontekście interakcji między fazami, nie jest bezpośrednim czynnikiem determinującym rozdział składników w chromatografii. W praktyce, zrozumienie tych różnic jest kluczowe w procesach analitycznych, ponieważ wybrana metoda rozdziału i fazy mogą znacząco wpłynąć na efektywność i wydajność analizy. Niewłaściwe zrozumienie tych terminów może prowadzić do błędnych wniosków i nieefektywnego rozdziału składników, co jest krytyczne w zastosowaniach przemysłowych oraz laboratoryjnych, takich jak analizy chemiczne czy kontrola jakości produktów.

Pytanie 29

Z podanego wykazu wybierz sprzęt potrzebny do zmontowania zestawu do sączenia pod próżnią.

123456
pompka wodnalejek
z długą nóżką
kolba
okrągłodenna
kolba ssawkowalejek sitowychłodnica
powietrzna

A. 4,5,6
B. 1,2,4
C. 1,2,3
D. 1,4,5
Jak wybrałeś niepoprawną odpowiedź, to pewnie masz jakieś niejasności związane z tym, jak działają zestawy do sączenia pod próżnią. Lejek z długą nóżką i kolba okrągłodenne w odpowiedziach pokazują, że coś tu poszło nie tak, bo ich funkcje nie pasują do tego, co chcemy osiągnąć. Lejek z długą nóżką, mimo że jest używany w różnych sytuacjach w laboratoriach, nie jest kluczowy do filtracji pod próżnią, bo jego kształt nie sprzyja wytwarzaniu próżni. Co do kolby okrągłodennej, to okej w wielu reakcjach, ale nie spełnia roli naczynia dla filtratu w tym kontekście. Zdarza się też, że nie doceniamy kolby ssawkowej, a to ona jest naprawdę niezbędna w tym procesie. Jej brak może prowadzić do nieefektywnej separacji substancji. Zrozumienie tych podstawowych zasad i dobór właściwych narzędzi to klucz do sukcesu w chemicznych labach. Wybór niewłaściwych elementów może spowodować problemy i zanieczyszczenia próbek. Warto mieć na uwadze te rzeczy, żeby w przyszłości nie popełniać podobnych błędów.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Odczynnik, który w specyficznych warunkach reaguje wyłącznie z danym jonem, umożliwiając tym samym jego identyfikację w mieszance, to odczynnik

A. selektywny
B. charakterystyczny
C. specyficzny
D. indywidualny
Odczynnik specyficzny to taki, który reaguje z określonym jonem w danej mieszaninie, co pozwala na jego wykrycie i analizę. Oznacza to, że w warunkach laboratoryjnych, odczynnik ten jest w stanie wyizolować reakcję tylko dla jednego jonu, unikając interakcji z innymi składnikami. Przykładem może być zastosowanie odczynnika specyficznego do wykrywania jonów srebra w roztworach, gdzie używany jest tiocyjanian potasu, który reaguje z srebrem, tworząc charakterystyczny kompleks. Tego typu odczynniki są kluczowe w analizie chemicznej, gdyż umożliwiają precyzyjne pomiary i wykrywanie substancji w skomplikowanych mieszaninach. W laboratoriach często stosuje się różne metody analityczne, takie jak spektroskopia czy chromatografia, które wymagają użycia odczynników o wysokiej specyfice, aby wyniki były wiarygodne. Specyficzność odczynnika jest zgodna z dobrą praktyką laboratoryjną i standardami jakości, co jest istotne w kontekście zapewnienia dokładności wyników analizy.

Pytanie 33

Aby oczyścić zwęglone osady w probówce, należy zastosować

A. słaby kwas
B. słabą zasadę
C. mieszaninę chromową
D. rozpuszczalnik organiczny
Rozpuszczalniki organiczne, takie jak etanol czy aceton, są często stosowane do rozpuszczania substancji organicznych, jednak ich skuteczność w usuwaniu zwęglonych osadów jest ograniczona. Zwęglone resztki to w dużej mierze węgiel, który nie reaguje z większością związków organicznych, co czyni je trudnymi do usunięcia za pomocą takich rozpuszczalników. Użycie słabego kwasu, jak kwas octowy, może również okazać się niewystarczające, ponieważ nie posiada on wystarczającej siły do utlenienia zwęglonych osadów, które są bardziej odporne na działanie słabych kwasów. Słabe zasady, takie jak wodorotlenek sodu, mogą pomóc w usuwaniu niektórych zanieczyszczeń, ale podobnie jak kwasy, ich działanie na zwęglone osady jest ograniczone. W praktyce laboratoryjnej, stosowanie tych substancji może prowadzić do mylnych wniosków o ich skuteczności, co może skutkować nieodpowiednim przygotowaniem sprzętu lub próbek do dalszych analiz. Dlatego ważne jest, aby korzystać z odpowiednich, sprawdzonych metod oczyszczania, takich jak stosowanie mieszaniny chromowej, która zapewnia lepsze rezultaty w usuwaniu trudnych do zlikwidowania osadów.

Pytanie 34

W trakcie destylacji cieczy wykorzystuje się tzw. kamienie wrzenne, ponieważ

A. przyspieszają proces wrzenia cieczy
B. przyspieszają przebieg destylacji
C. obniżają temperaturę wrzenia cieczy
D. umożliwiają równomierne wrzenie cieczy
Kamyczki wrzenne odgrywają kluczową rolę w procesie destylacji, ponieważ umożliwiają równomierne wrzenie cieczy. Dzięki nim powstaje wiele małych bąbelków pary, co prowadzi do wzrostu powierzchni wymiany między cieczą a parą. W rezultacie ciecz wrze w sposób bardziej kontrolowany, co jest istotne w kontekście uzyskiwania czystych frakcji destylacyjnych. W praktyce, stosowanie kamyczków wrzennych pozwala unikać zjawiska tzw. „bumu wrzenia”, które może prowadzić do gwałtownego wrzenia i nieefektywności procesu. Dobre praktyki w chemii analitycznej zalecają stosowanie kamyczków w celu zapewnienia stabilności procesu, co jest szczególnie ważne w przemyśle chemicznym i farmaceutycznym, gdzie precyzyjne oddzielanie składników jest kluczowe dla uzyskania wysokiej jakości produktów. W związku z tym, kamyczki wrzenne przyczyniają się nie tylko do poprawy efektywności destylacji, ale także do bezpieczeństwa całego procesu, co jest zgodne z międzynarodowymi standardami bezpieczeństwa chemicznego.

Pytanie 35

Aby otrzymać czystą substancję, próbka z nitroaniliną została poddana procesowi krystalizacji. Jaką masę nitroaniliny użyto do krystalizacji, jeśli uzyskano 1,5 g czystego związku, a wydajność krystalizacji wyniosła 75%?

A. 0,02 g
B. 0,5 g
C. 50 g
D. 2 g
W przypadku obliczeń związanych z krystalizacją często dochodzi do nieporozumień dotyczących interpretacji wydajności oraz masy próbki. Wydajność krystalizacji to kluczowy parametr, który informuje nas, jaką część początkowej masy substancji udało się uzyskać w formie czystego związku. Niektórzy mogą błędnie zakładać, że masa odważki powinna być równa masie czystego produktu, co jest znamienne dla błędnej interpretacji wyników. Odpowiedzi, które sugerują masę mniejszą niż rzeczywista masa próbki, ignorują fakt, że wydajność jest zawsze wyrażana jako wartość mniejsza niż 1 lub 100%. To prowadzi do poważnych błędów w obliczeniach. Na przykład, odpowiedzi, które sugerują masy takie jak 0,02 g czy 0,5 g, pomijają podstawowy związek pomiędzy masą uzyskanego produktu a jego wydajnością. Ważne jest również to, aby zrozumieć, że przy krystalizacji nie tylko ilość, ale także jakość uzyskanego produktu jest kluczowa. W praktyce, niewłaściwe obliczenia mogą prowadzić do nieefektywnego procesu oczyszczania, co może mieć poważne konsekwencje w przemyśle chemicznym. W kontekście standardów branżowych, takie błędy mogą skutkować niezgodnością z wymaganiami jakościowymi, co jest nieakceptowalne w produkcji farmaceutyków i chemikaliów specjalistycznych. Z tego powodu niezwykle ważne jest, aby zrozumieć i zastosować poprawne metody obliczeń w każdym etapie procesu chemicznego.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Oblicz, ile moli gazu można zebrać w pipecie gazowej o pojemności 500 cm3, jeśli gaz będzie gromadzony w warunkach normalnych. (W normalnych warunkach jeden mol gazu ma objętość 22,4 dm3)

A. 0,200 mola
B. 0,100 mola
C. 0,002 mola
D. 0,022 mola
Aby obliczyć liczbę moli gazu, który można zebrać w pipecie gazowej o pojemności 500 cm³ w warunkach normalnych, należy skorzystać z faktu, że w tych warunkach jeden mol gazu zajmuje objętość 22,4 dm³. Najpierw przekształcamy objętość pipecie z cm³ na dm³, co daje: 500 cm³ = 0,5 dm³. Następnie stosujemy wzór na obliczenie liczby moli: liczba moli = objętość gazu / objętość jednego mola. W naszym przypadku to będzie: liczba moli = 0,5 dm³ / 22,4 dm³/mol = 0,022 mól. To obliczenie jest zgodne z zasadami chemii gazów idealnych i przydatne w różnych zastosowaniach laboratoryjnych, takich jak przygotowywanie roztworów, gdzie precyzyjne dawkowanie reagentów jest kluczowe. Zrozumienie tego zagadnienia jest istotne nie tylko w chemii, ale również w dziedzinach pokrewnych, takich jak inżynieria chemiczna czy biotechnologia, gdzie kontrola warunków reakcji jest niezbędna dla uzyskania optymalnych wyników.

Pytanie 38

Wszystkie pojemniki z odpadami, zarówno stałymi, jak i ciekłymi, które są przekazywane do służby zajmującej się utylizacją, powinny być opatrzone informacjami

A. o rodzaju analizy, do której były używane
B. o nazwie wytwórcy oraz dacie zakupu
C. o dacie i godzinie przekazania
D. o jak najbardziej dokładnym składzie tych odpadów
Odpowiedź dotycząca możliwie szczegółowego składu odpadów jest prawidłowa, ponieważ zgodnie z obowiązującymi przepisami dotyczącymi gospodarowania odpadami, szczegółowe informacje o składzie odpadów są kluczowe dla ich prawidłowej utylizacji. Umożliwia to odpowiednim służbom ustalenie, jakie procesy recyklingu lub unieszkodliwiania są najbardziej odpowiednie. Na przykład, jeśli odpady zawierają substancje niebezpieczne, konieczne jest zastosowanie specjalnych procedur ich przetwarzania, aby zminimalizować ryzyko dla środowiska i zdrowia publicznego. Dodatkowo, zgodnie z normami ISO 14001, organizacje powinny prowadzić ewidencję oraz monitorować rodzaje i ilości odpadów, co sprzyja efektywnemu zarządzaniu nimi i zgodności z przepisami. W praktyce, dokumentacja zawierająca szczegółowy skład odpadów może również ułatwić audyty oraz kontrole środowiskowe, a także przyczynić się do optymalizacji procesów gospodarki odpadami w przedsiębiorstwie.

Pytanie 39

Aby przyspieszyć reakcję, należy zwiększyć stężenie substratów

A. zwiększyć, a temperaturę zmniejszyć
B. zwiększyć, a temperaturę podnieść
C. zmniejszyć, a temperaturę podnieść
D. zmniejszyć, a temperaturę obniżyć
Zwiększenie szybkości reakcji chemicznych trochę się sprowadza do tego, jak ważne są substraty i temperatura. Kiedy podnosisz stężenie substratów, to więcej cząsteczek jest dostępnych do reakcji, więc mają większe szanse na zderzenie. Z drugiej strony, wyższa temperatura podkręca energię kinetyczną cząsteczek, co sprawia, że zderzają się częściej i mocniej, co pomaga im pokonać energię aktywacji. Na przykład w biochemii, jak mamy reakcje enzymatyczne, zwiększenie stężenia substratu może pomóc osiągnąć maksymalną prędkość reakcji, co jest zgodne z zasadą Vmax. W praktyce w przemyśle chemicznym, dobrze jest dostosować stężenie i temperaturę, żeby zoptymalizować wydajność i rentowność. Ciekawe jest to, że czasami, jak w reakcjach równowagi, podwyższenie stężenia reagentów może przesunąć równowagę w stronę produktów, co też jest korzystne dla wydajności reakcji.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.