Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.05 - Eksploatacja urządzeń elektronicznych
  • Data rozpoczęcia: 7 kwietnia 2025 13:11
  • Data zakończenia: 7 kwietnia 2025 13:33

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Która z opcji odbiornika TV pozwala na oglądanie programów za pomocą streamingu?

A. Multi PIP
B. Timeshift
C. Telegazeta
D. Smart
Odpowiedź 'Smart' jest prawidłowa, ponieważ funkcja ta umożliwia korzystanie z aplikacji i platform streamingowych, co stało się standardem w nowoczesnych odbiornikach telewizyjnych. Telewizory z funkcją Smart posiadają dostęp do Internetu, co pozwala na oglądanie audycji na żądanie z takich serwisów jak Netflix, YouTube czy HBO Max. W praktyce, użytkownicy mogą korzystać z tych aplikacji, aby oglądać filmy, seriale i programy, które nie są dostępne w tradycyjnej telewizji. Smart TV wspiera również technologie takie jak AirPlay i Chromecast, co umożliwia strumieniowanie z urządzeń mobilnych. W kontekście dobrych praktyk branżowych, producenci telewizorów inwestują w rozwój interfejsów użytkownika oraz optymalizację aplikacji, aby zapewnić jak najlepsze doświadczenia wizualne i dźwiękowe, co znacząco podnosi komfort oglądania.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Stopniowo zmniejszający się zasięg działania bezprzewodowych urządzeń do zdalnego sterowania pracujących w paśmie 433 MHz może świadczyć o

A. pogarszających się warunkach atmosferycznych
B. niewystarczającym napięciu zasilającym odbiornik
C. usterce w obwodzie anteny nadajników
D. utonie pojemności baterii zasilającej nadajniki
Pogarszające się warunki atmosferyczne mogą wpływać na zasięg sygnału bezprzewodowego, jednak w przypadku zdalnego sterowania w paśmie 433 MHz, ich wpływ jest zazwyczaj minimalny. Zmiany temperatury, opady deszczu czy śniegu mogą wprawdzie powodować pewne zakłócenia sygnału, ale nie prowadzą do stopniowego zmniejszania się zasięgu na przestrzeni wielu dni, co sugeruje problem z zasilaniem urządzeń. Zbyt niskie napięcie zasilające odbiornik mogłoby prowadzić do niepoprawnej pracy odbiornika, ale nie jest to bezpośredni czynnik wpływający na zasięg sygnału. W rzeczywistości, jeśli napięcie zasilające odbiornik jest zbyt niskie, urządzenie może całkowicie przestać działać, a nie jedynie zmniejszyć zasięg. Usterka w obwodzie anteny nadajników, chociaż możliwa, również nie jest najczęstszą przyczyną stopniowego spadku zasięgu. Zazwyczaj usterki te objawiają się nagłym, a nie stopniowym spadkiem jakości sygnału. W praktyce, wiele osób myli objawy związane z wyczerpującymi się bateriami z innymi problemami technicznymi, co prowadzi do niewłaściwych diagnoz i nieefektywnego rozwiązywania problemów. Właściwe zrozumienie tych kwestii jest kluczowe dla utrzymania efektywności i niezawodności urządzeń zdalnego sterowania.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Obniżenie stałej czasowej Ti w regulatorze PI spowoduje

A. wzrost przeregulowania oraz skrócenie czasu regulacji
B. redukcję przeregulowania oraz skrócenie czasu regulacji
C. wzrost przeregulowania oraz wydłużenie czasu regulacji
D. redukcję przeregulowania oraz wydłużenie czasu regulacji
W przypadku zmniejszenia stałej czasowej Ti w regulatorze PI wiele osób mylnie zakłada, że prowadzi to do zmniejszenia przeregulowania oraz wydłużenia czasu regulacji, co nie znajduje uzasadnienia w teorii i praktyce regulacji. Zmniejszanie Ti oznacza, że składnik całkujący w regulatorze reaguje szybciej na zmiany błędu, co w rezultacie przyspiesza odpowiedź systemu. Jednakże, ta szybkość reakcji nie jest bezpośrednio proporcjonalna do stabilności układu. W rzeczywistości, im bardziej agresywnie układ reaguje na zmiany, tym większe ryzyko przeregulowania. Zmiana wartości Ti powinna być starannie przemyślana, a nie oparta na intuicji. Zbyt niska stała czasowa może prowadzić do niestabilności systemu, a proces regulacji może stać się nieprzewidywalny. W praktyce, błędne interpretacje często prowadzą do zastosowania niewłaściwych parametrów w procesie strojenia regulatorów, co kończy się niepożądanymi skutkami, takimi jak częste wahania w regulowanym parametrem. W standardach branżowych kładzie się duży nacisk na zastosowanie technik analizy stabilności, takich jak kryteria Nyquista czy Bodego, aby zrozumieć wpływ każdej zmiany na charakterystyki układu. Kluczowym błędem myślowym jest mylenie szybkości reakcji z jakością regulacji, co może prowadzić do nieefektywnych rozwiązań w inżynierii automatyki.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Jaką wartość napięcia odczytuje cyfrowy multimetr z aktywowaną funkcją True RMS na wyjściu obciążonego transformatora głośnikowego, który zasila szkolną instalację radiowęzłową, pokazując wartość 22,8 V?

A. Średnią
B. Skuteczną
C. Międzyszczytową
D. Maksymalną
Odpowiedź 'Skuteczna' jest prawidłowa, ponieważ multimetr cyfrowy z funkcją True RMS mierzy wartość skuteczną napięcia, co jest szczególnie istotne w przypadku sygnałów zmiennych, takich jak napięcie na wyjściu transformatora głośnikowego. Wartość skuteczna (RMS, Root Mean Square) określa równoważną wartość DC, która dostarcza tę samą moc do obciążenia. W praktyce oznacza to, że jeśli transformator głośnikowy zasilany jest napięciem zmiennym, wskazanie multimetru 22,8 V oznacza, że ta wartość skuteczna dostarcza równoważną moc do podłączonego obciążenia, co jest kluczowe w zastosowaniach audio. W branży audio i elektroakustycznej, pomiar wartości skutecznej jest standardem, ponieważ pozwala na dokładną ocenę wydajności systemu, zapewniając stabilność i jakość dźwięku. Dobrą praktyką jest stosowanie multimetrów z funkcją True RMS, które poprawnie mierzą napięcia w systemach, gdzie występują zniekształcenia sygnału, co jest często spotykane w instalacjach radiowęzłowych.

Pytanie 12

Jakie jednostki są używane do określenia tłumienia jednostkowego linii światłowodowej?

A. dB/km
B. mV/dB
C. dB/mV
D. m/dB
Tłumienie jednostkowe linii światłowodowej mówimy w decybelach na kilometr (dB/km). To jest standard w telekomunikacji. Generalnie, decybel to jednostka logarytmiczna, która pozwala na porównanie poziomów sygnału optycznego. A kilometr to po prostu długość, pozwala to określić, jak mocno sygnał traci na jakości na danej długości światłowodu. Na przykład, jak tłumienie wynosi 0,2 dB/km, to znaczy, że na każdym kilometrze sygnał traci właśnie 0,2 dB. To tłumienie jest mega ważne w projektowaniu systemów optycznych, bo inżynierowie mogą dzięki temu stwierdzić, jak długo można puścić sygnał, żeby był jeszcze w miarę ok. Jak mamy do czynienia z dłuższymi odcinkami, to czasami trzeba wstawić wzmacniacze optyczne, żeby jakość sygnału się nie pogarszała. Używanie właściwych jednostek to niby podstawa, ale to naprawdę pomaga w komunikacji technicznej i w pracy nad projektami.

Pytanie 13

Która z technologii stosuje światło podczerwone do przesyłania danych?

A. BLUETOOTH
B. IRDA
C. WIMAX
D. ZIGBEE
IRDA, czyli Infrared Data Association, to taki fajny standard do komunikacji bezprzewodowej. Działa na zasadzie światła podczerwonego i jest wykorzystywany do przesyłania danych na krótkich dystansach. Sporo urządzeń korzysta z tej technologii, jak telefony, laptopy czy różne drukarki i skanery. Działa to tak, że urządzenia muszą być blisko siebie, zazwyczaj w odległości maksymalnie 1 metra, a nawet można przesyłać dane z prędkością do 4 Mbps. Przykładowo, można łatwo przesłać kontakty między telefonami, nawet bez kabli. IRDA jest też oszczędna pod względem energii, co czyni ją idealną dla urządzeń na baterie. Dzięki temu standardowi różne urządzenia od różnych producentów mogą ze sobą współpracować, co jest naprawdę ważne w dzisiejszym świecie komunikacji bezprzewodowej.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Aby przeprowadzić demontaż uszkodzonego regulatora PID zamontowanego na szynie DIN, należy postępować zgodnie z poniższą kolejnością:

A. odkręcić przewody, odpiąć regulator z szyny, odłączyć zasilanie
B. odpiąć regulator z szyny, odłączyć zasilanie, odkręcić przewody
C. odłączyć zasilanie, odpiąć regulator z szyny, odkręcić przewody
D. odłączyć zasilanie, odkręcić przewody, odpiąć regulator z szyny
Poprawna odpowiedź opiera się na zasadach bezpieczeństwa oraz najlepszych praktykach w pracy z urządzeniami elektrycznymi. Pierwszym krokiem jest odłączenie napięcia, co jest kluczowe dla zapewnienia bezpieczeństwa podczas demontażu. W przeciwnym razie istnieje ryzyko porażenia prądem, co może prowadzić do poważnych obrażeń. Następnie, odkręcenie przewodów jest niezbędne, aby uniknąć ich uszkodzenia w trakcie usuwania regulatora PID. W momencie, gdy przewody są odkręcone, można bezpiecznie odpiąć regulator z szyny DIN. Proces ten jest zgodny z normami BHP (Bezpieczeństwa i Higieny Pracy), które stanowią fundament w każdej branży zajmującej się instalacjami elektrycznymi. Zastosowanie odpowiedniej kolejności działań minimalizuje ryzyko awarii sprzętu oraz zwiększa ogólną efektywność pracy. Przykładem praktycznym może być serwisowanie systemów automatyki przemysłowej, gdzie błędne podejście do demontażu może prowadzić do przestojów w produkcji.

Pytanie 18

Urządzenie, które pozwala na przesył sygnału telewizyjnego z kilku anten poprzez jeden kabel, to

A. zwrotnica
B. symetryzator
C. konwerter
D. rozgałęźnik
Konwertery, rozgałęźniki i symetryzatory to urządzenia, które pełnią różne funkcje w systemach telewizyjnych, jednak nie są one odpowiednie do przesyłania sygnału z kilku anten przez jedno łącze. Konwerter, często stosowany w systemach satelitarnych, ma za zadanie zmieniać sygnał satelitarny na formę, która może być odbierana przez dekoder. Nie jest on jednak w stanie efektywnie łączyć sygnałów z wielu anten, co eliminuje możliwość jego wykorzystania w opisanej sytuacji. Rozgałęźnik, z drugiej strony, dzieli sygnał z jednego źródła na wiele wyjść, ale nie potrafi efektywnie miksować sygnałów z różnych anten. Stosowanie rozgałęźników w przypadku sygnałów z różnych źródeł może prowadzić do znacznych strat sygnału oraz interferencji, co negatywnie wpływa na jakość obrazu i dźwięku. Symetryzator zaś służy do dopasowywania impedancji w układach antenowych, co jest istotne w kontekście eliminacji strat sygnałowych, jednak również nie rozwiązuje problemu łączenia sygnałów z wielu anten. Często błędne podejście polega na myleniu tych urządzeń i ich zastosowań, co prowadzi do nieefektywnego projektowania instalacji telewizyjnych, a także do niepotrzebnych kosztów związanych z poprawą jakości sygnału. Właściwe zrozumienie funkcji każdego z tych urządzeń jest kluczowe dla skutecznego planowania i realizacji instalacji telewizyjnych, które będą spełniały oczekiwania użytkowników w zakresie jakości odbioru sygnału.

Pytanie 19

Według standardu przesyłania sygnału telewizyjnego w Polsce (64QAM, FEC 3/4), minimalna wartość sygnału na wyjściu z gniazda antenowego powinna wynosić

A. 48 dBμV
B. 26 dBμV
C. 42 dBμV
D. 30 dBμV
Wybór jakiegokolwiek poziomu sygnału innego niż 48 dBμV może prowadzić do nieprawidłowego odbioru sygnału telewizyjnego, co jest szczególnie istotne w systemie opartym na 64QAM i FEC 3/4. Poziomy takie jak 30 dBμV, 42 dBμV czy 26 dBμV są niewystarczające, aby zapewnić stabilny i niezawodny odbiór. Poziom 30 dBμV, na przykład, jest zbyt niski, aby pokonać typowe straty sygnału związane z kablami antenowymi oraz zakłóceniami zewnętrznymi. W praktyce może to prowadzić do błędów w dekodowaniu, co skutkuje przerywanym lub całkowicie utraconym sygnałem. 42 dBμV, chociaż teoretycznie może wydawać się akceptowalnym poziomem, nie uwzględnia należycie wszelkich dodatkowych strat, które mogą wystąpić w rzeczywistych warunkach. Ponadto, poziom 26 dBμV jest zdecydowanie poniżej wymaganych wartości, co oznacza, że sygnał będzie zbyt słaby do jakiejkolwiek sensownej analizy i dekodowania, co prowadzi do złej jakości obrazu oraz dźwięku. Zrozumienie tych wartości jest kluczowe dla projektowania efektywnych systemów telewizyjnych. Zastosowanie niewłaściwych poziomów sygnału może wynikać z niepełnej wiedzy na temat norm oraz specyfikacji technicznych, co prowadzi do błędnych decyzji podczas planowania i budowy instalacji. Dlatego tak ważne jest, aby zawsze przestrzegać zalecanych norm i standardów, aby uniknąć problemów z jakością sygnału.

Pytanie 20

Częścią odpowiedzialną za przekształcenie energii fal elektromagnetycznych na napięcie w radiowym odbiorniku jest

A. antenna odbiorcza
B. demodulator
C. heterodyna
D. wzmacniacz w.cz.
Antena odbiorcza jest kluczowym elementem w odbiornikach radiowych, ponieważ jej podstawową funkcją jest przekształcanie energii fal elektromagnetycznych w sygnały elektryczne. Dzięki swojej konstrukcji, antena jest w stanie efektywnie zbierać fale radiowe, które następnie są konwertowane na napięcie. W praktyce oznacza to, że anteny są projektowane z myślą o ich rezonansie dla określonych częstotliwości, co pozwala na optymalne odbieranie sygnałów. Na przykład, anteny dipolowe są popularne w zastosowaniach amatorskich, a ich prostota i efektywność sprawiają, że są szeroko stosowane w radiokomunikacji. W branży telekomunikacyjnej istotne jest również przestrzeganie standardów dotyczących efektywności anten, takich jak te określone przez ETSI lub IEEE, co zapewnia wysoką jakość odbioru sygnałów. Zrozumienie roli anteny w systemie radiowym pozwala inżynierom lepiej projektować i integrować różne komponenty, poprawiając jakość i niezawodność komunikacji.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

W trakcie konserwacji systemu antenowego wykryto błąd dokonany przez instalatora. Zamiast odpowiedniego przewodu o impedancji falowej 75 Ω podłączono przewód o impedancji falowej 300 Ω. W rezultacie tej pomyłki poziom sygnału odbieranego przez odbiornik

A. pozostał bez zmian
B. wynosił 0
C. uległ zmniejszeniu
D. uległ wzrostowi
Odpowiedź, że poziom sygnału zmniejszył się, jest prawidłowa, ponieważ zastosowanie przewodu o impedancji falowej 300 Ω zamiast 75 Ω prowadzi do niedopasowania impedancyjnego. Takie niedopasowanie powoduje odbicie części sygnału, co w rezultacie skutkuje osłabieniem sygnału odbieranego przez odbiornik. W systemach telekomunikacyjnych, zgodnych z normami, takie jak IEC 61196 dotyczące przewodów do sygnałów analogowych i cyfrowych, kluczowe jest stosowanie przewodów o odpowiedniej impedancji, aby minimalizować straty sygnału. W praktyce, dobór odpowiedniego przewodu może znacząco wpłynąć na jakość sygnału, a nieodpowiedni wybór może prowadzić do zakłóceń, zniekształceń oraz obniżonej jakości odbioru. W przypadku systemów telewizyjnych czy radiowych, stosowanie przewodów o 75 Ω jest standardem, ponieważ pozwala na optymalne przenoszenie sygnałów bez znaczących strat. Warto pamiętać, że w profesjonalnych instalacjach antenowych dbałość o zgodność impedancyjną jest kluczowym aspektem zapewniającym wysoką jakość odbioru oraz niezawodność systemu.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Układ do pomiaru, który umożliwia dokładne ustalanie małych i bardzo małych rezystancji, to mostek

A. Thomsona
B. Wiena
C. Maxwella
D. Wheatstone’a
Mostek Maxwella jest stosowany głównie do pomiarów indukcyjności, a jego zasada działania opiera się na równoważeniu impedancji w obwodzie prądu zmiennego. Stąd wynika, że nie nadaje się on do dokładnego pomiaru rezystancji, zwłaszcza tych bardzo małych. Mostek Wiena, z kolei, jest układem używanym głównie do pomiaru impedancji w obwodach prądu zmiennego, co sprawia, że jego zastosowanie do pomiarów rezystancji jest ograniczone i mniej precyzyjne niż w przypadku mostka Thomsona. Mostek Wheatstone’a, znany z prostoty i stosunkowo dobrej dokładności, jest odpowiedni do pomiaru rezystancji, ale jego skuteczność spada przy niskich wartościach rezystancji ze względu na wpływ szumów i błędów pomiarowych. W praktyce, błędne wybory pomiarowe wynikają często z nieznajomości specyfikacji i ograniczeń poszczególnych mostków, co prowadzi do niepoprawnych wniosków na temat ich zastosowania. Zrozumienie tych różnic jest kluczowe dla prawidłowego doboru narzędzi w pracach badawczych oraz przemysłowych.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Najczęściej wykorzystywany do tworzenia sieci komputerowej LAN przewód UTP skrętka jest zbudowany z

A. jednej pary żył w przewodzie
B. trzech par żył w przewodzie
C. czterech par żył w przewodzie
D. dwóch par żył w przewodzie
Przewód UTP (Unshielded Twisted Pair) używany w budowie sieci LAN składa się z czterech par przewodów, co jest zgodne z najnowszymi standardami sieciowymi, takimi jak 10BASE-T, 100BASE-TX oraz 1000BASE-T. W każdej parze żył, przewody są skręcone ze sobą, co redukuje zakłócenia elektromagnetyczne oraz poprawia jakość sygnału. Dzięki czterem parom możliwe jest jednoczesne przesyłanie danych w obu kierunkach, co zwiększa przepustowość i efektywność komunikacji w sieci. Standardy takie jak TIA/EIA-568 określają zasady dotyczące użycia przewodów UTP oraz ich okablowania, co jest kluczowe przy projektowaniu nowoczesnych sieci komputerowych. W praktyce, stosowanie skrętki UTP z czterema parami żył pozwala na osiągnięcie dużej szybkości transmisji, co jest szczególnie istotne w środowiskach biurowych czy w centrach danych, gdzie wymagana jest wysoka wydajność sieci. Dodatkowo, zrozumienie struktury przewodu UTP ma kluczowe znaczenie dla instalacji oraz diagnostyki problemów w sieci.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Podczas konserwacji systemu sygnalizacji włamania i napadu nie jest konieczne sprawdzenie

A. działania czujek alarmowych
B. wysokości zamontowania manipulatora
C. poziomu naładowania akumulatora
D. działania obwodów sabotażowych
Wysokość zamontowania manipulatora nie jest elementem, który wpływa na funkcjonalność systemu sygnalizacji włamania i napadu, co czyni tę odpowiedź prawidłową. W ramach konserwacji systemu kluczowe jest sprawdzenie działania obwodów sabotażowych, poziomu naładowania akumulatora oraz czujek alarmowych. Obwody sabotażowe mają na celu zabezpieczenie urządzeń przed próbami ich usunięcia lub zniszczenia, co jest kluczowe dla utrzymania integralności systemu. Poziom naładowania akumulatora jest istotny, aby zapewnić ciągłość zasilania w przypadku awarii energetycznej, a czujki alarmowe są pierwszym ogniwem detekcji intruza. Dlatego w praktyce, podejście do konserwacji powinno uwzględniać te elementy w celu zapewnienia sprawności systemu. Zgodnie z normami branżowymi, regularne przeglądy tych komponentów powinny być integralną częścią procedur konserwacyjnych, co zapewnia bezpieczeństwo użytkowników oraz ich mienia.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Rozpoczynając wymianę przekaźnika w obwodzie sterującym, pierwszym krokiem powinno być

A. odłączyć przewody podłączone do styków przekaźnika
B. wyłączyć napięcie w obwodzie sterowania
C. zdjąć przekaźnik z szyny TH-35
D. odłączyć przewody podłączone do cewki przekaźnika
Wyłączenie napięcia w obwodzie sterowania przed przystąpieniem do wymiany przekaźnika jest kluczowym krokiem w zapewnieniu bezpieczeństwa pracy z urządzeniami elektrycznymi. Wszelkie prace w obrębie instalacji elektrycznych powinny być zgodne z zasadami BHP, które nakazują zawsze zaczynać od odłączenia zasilania. Przykładowo, wyłączając napięcie, minimalizujemy ryzyko porażenia prądem, które może wystąpić, gdy nieświadomie dotkniemy przewodów pod napięciem. Zgodnie z normą PN-EN 50110-1, każdy operator powinien być świadomy niebezpieczeństw związanych z pracą przy urządzeniach elektrycznych i stosować odpowiednie procedury. Dodatkowo, wyłączenie zasilania pozwala na spokojne i dokładne przeprowadzenie wymiany przekaźnika, co jest kluczowe dla prawidłowego funkcjonowania całego systemu. Nieprzestrzeganie tej zasady może prowadzić do poważnych uszkodzeń urządzeń oraz zagrażać zdrowiu osób pracujących w pobliżu.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

W wzmacniaczu mocy działającym w klasie A prąd przez element aktywny tego wzmacniacza (tranzystor) przepływa przez czas

A. krótszy od pół okresu sygnału sterującego
B. krótszy niż pełen okres, lecz dłuższy niż pół okresu sygnału sterującego
C. wynoszący pełen okres sygnału sterującego
D. wynoszący połowę okresu sygnału sterującego
Odpowiedzi sugerujące, że prąd w tranzystorze wzmacniacza klasy A płynie przez krótszy czas niż pełen okres sygnału sterującego, opierają się na nieporozumieniu dotyczącym zasad działania tego typu wzmacniaczy. Klasa A, w przeciwieństwie do klas B czy C, nie wyłącza się w trakcie cyklu sygnału. Wzmacniacz klasy A działa w trybie, w którym tranzystor jest zawsze włączony, co oznacza, że prąd płynie nieprzerwanie przez cały okres sygnału. Wzmacniacze klasy B i C mają swoje zastosowania w aplikacjach wymagających większej efektywności energetycznej, jednak w takich przypadkach pojawiają się zniekształcenia, ponieważ tranzystory są aktywne tylko w połowie lub mniejszym czasie cyklu. Zrozumienie tych różnic jest kluczowe, zwłaszcza w kontekście projektowania systemów audio, gdzie jakość dźwięku wymaga minimalnych zniekształceń. Typowe błędy myślowe związane z tym zagadnieniem to mylenie wzmacniaczy klasy A z innymi klasami, co prowadzi do błędnych wniosków o ich działaniu. Z perspektywy praktycznej, wybór wzmacniacza klasy A w zastosowaniach audio może być podyktowany chęcią uzyskania lepszej jakości dźwięku, ale wiąże się też z wyższym zużyciem energii i większymi stratami cieplnymi.

Pytanie 39

Tranzystor pracuje w układzie wspólnego emitera. Podstawowym zadaniem zaznaczonego na rysunku kondensatora C w tym układzie jest

Ilustracja do pytania
A. minimalizacja wpływu tętnień napięcia zasilającego.
B. realizacja pętli ujemnego sprzężenia zwrotnego.
C. ograniczenie od góry pasma przenoszenia układu.
D. odseparowanie składowej stałej napięcia wyjściowego.
Trzeba przyznać, że zrozumienie, co robi kondensator w układzie wspólnego emitera, jest naprawdę ważne, jeśli chcesz dobrze projektować obwody. Mówić, że kondensator odpowiada za pętlę sprzężenia zwrotnego, to lekko się myli. Sprzężenie zwrotne w tym układzie robi się głównie za pomocą rezystorów, które wpływają na różne parametry wzmacniacza. No i jeszcze ta sprawa z tętnieniami napięcia zasilającego – kondensator C nie jest tu głównym aktorem. Tętnienia powinny być eliminowane raczej przez porządne filtrowanie na zasilaniu. Co do ograniczenia pasma przenoszenia, to też nie jest zadanie kondensatora, bo na to wpływają inne elementy, jak układ sprzężenia zwrotnego czy pojemności pasożytnicze. Często spotykam się z pomyłkami na ten temat, co wprowadza w błąd i może przeszkadzać w dobrym projektowaniu. Dlatego ważne jest, żeby zrozumieć, jak powinny działać kondensatory i jakie mają znaczenie w układach elektronicznych.

Pytanie 40

Dioda LED w zakresie długości fali 940 nm generuje promieniowanie elektromagnetyczne

A. podczerwone
B. zielone
C. ultrafioletowe
D. żółte
Dioda LED emitująca promieniowanie elektromagnetyczne o długości fali 940 nm należy do zakresu promieniowania podczerwonego. Promieniowanie to jest niewidoczne dla ludzkiego oka, ale ma szerokie zastosowanie w technologii, w tym w telekomunikacji, czujnikach ruchu oraz w urządzeniach zdalnego sterowania. Na przykład, diody LED emitujące podczerwień są często wykorzystywane w pilotach do telewizorów oraz w systemach monitoringu, gdzie przesyłają dane bezprzewodowo. Warto zaznaczyć, że zakres podczerwieni rozciąga się od 700 nm do 1 mm, co czyni długość fali 940 nm idealnym kandydatem do zastosowań w technologii IR. Zrozumienie tego rodzaju promieniowania jest istotne dla projektowania systemów optycznych oraz elektronicznych, które wykorzystują detekcję na podczerwień, co ma kluczowe znaczenie w nowoczesnych rozwiązaniach technologicznych.