Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 5 czerwca 2025 20:26
  • Data zakończenia: 5 czerwca 2025 20:57

Egzamin niezdany

Wynik: 11/40 punktów (27,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jaką standardową wartość maksymalnej odległości można zastosować pomiędzy urządzeniami sieciowymi, które są ze sobą połączone przewodem UTP kat.5e?

A. 1000 m
B. 500 m
C. 10 m
D. 100 m
Standardowa maksymalna odległość dla przewodów UTP kategorii 5e wynosi 100 metrów. Ta wartość jest określona w standardzie ANSI/TIA-568, który reguluje wymagania dotyczące instalacji okablowania strukturalnego w budynkach. Utrzymanie tej odległości jest kluczowe dla zachowania odpowiedniej jakości sygnału oraz minimalizacji strat sygnałowych, co z kolei wpływa na wydajność sieci. W praktyce, przy projektowaniu sieci lokalnych, instalatorzy muszą zwrócić szczególną uwagę na długości kabli, aby zapewnić optymalną wydajność. Na przykład, w biurach, gdzie wiele urządzeń jest podłączonych do sieci, stosowanie kabli UTP kat. 5e w maksymalnej zalecanej długości pozwala na stabilne i szybkie połączenia internetowe oraz efektywne przesyłanie danych. Warto również zauważyć, że przy używaniu przełączników, rozgałęźników lub innych urządzeń sieciowych, maksymalna długość 100 metrów odnosi się do całkowitej długości segmentu kablowego, co oznacza, że połączenia między urządzeniami powinny być starannie planowane.

Pytanie 2

Jakie adresy mieszczą się w zakresie klasy C?

A. 192.0.0.0 ÷ 223.255.255.255
B. 224.0.0.1 ÷ 239.255.255.0
C. 1.0.0.1 ÷ 126.255.255.254
D. 128.0.0.1 ÷ 191.255.255.254
Adresy klasy C to zakres od 192.0.0.0 do 223.255.255.255, co jest zgodne z definicją klasy C w protokole IP. Adresy te są powszechnie używane w małych sieciach lokalnych, co sprawia, że są niezwykle praktyczne. W klasycznej konfiguracji sieci, adres klasy C pozwala na posiadanie do 256 różnych adresów (od 192.0.0.0 do 192.0.0.255), z czego 254 mogą być przypisane urządzeniom końcowym, ponieważ jeden adres jest zarezerwowany jako adres sieciowy, a drugi jako adres rozgłoszeniowy. Klasa C umożliwia również sieciowanie w sposób umożliwiający efektywne zarządzanie dużymi grupami urządzeń, co jest kluczowe w dzisiejszym świecie, gdzie złożoność sieci wzrasta. Dodatkowo, zgodnie z zasadami CIDR (Classless Inter-Domain Routing), adresy klasy C mogą być elastycznie podzielone na mniejsze podsieci, co pozwala na lepsze wykorzystanie dostępnych zasobów IP. W praktyce, adresy klasy C są często używane w biurach i małych firmach, gdzie liczba urządzeń końcowych nie przekracza 254.

Pytanie 3

Programy antywirusowe mogą efektywnie zabezpieczać komputer. Istotne jest, aby wybrać możliwość uruchamiania aplikacji razem z komputerem oraz opcję

A. monitorowania w czasie rzeczywistym (skanowania w tle)
B. automatycznego odłączenia od sieci w razie wykrycia infekcji
C. skanowania ostatnio uruchamianych aplikacji
D. automatycznego usuwania zainfekowanych plików
Automatyczne odłączenie od sieci w przypadku infekcji brzmi jak praktyczne rozwiązanie, jednak w rzeczywistości jest to podejście bardzo ograniczone i nieefektywne w kontekście ochrony przed zagrożeniami. Taki mechanizm nie tylko nie zapobiega infekcji, ale może również prowadzić do niezamierzonych konsekwencji, takich jak utrata dostępu do ważnych zasobów czy plików. W przypadku automatycznego kasowania zainfekowanych plików, strategia ta niesie ze sobą ryzyko nieodwracalnej utraty danych. Nie wszystkie pliki zainfekowane złośliwym oprogramowaniem są złośliwe same w sobie, a ich automatyczne usuwanie może prowadzić do usunięcia krytycznych danych. Skanowanie ostatnio używanych programów także nie jest najlepszym podejściem, ponieważ nie obejmuje ono złośliwego oprogramowania, które mogło zostać zainstalowane w tle lub nie jest aktualnie w użyciu. Skuteczne oprogramowanie antywirusowe powinno mieć zdolność do ciągłego monitorowania i analizy systemu, a nie ograniczać się do sporadycznego skanowania. Dlatego przy wyborze oprogramowania antywirusowego warto kierować się funkcjonalnościami, które zapewniają stałą ochronę oraz szybkie reakcje na zagrożenia, co jest zgodne z najlepszymi praktykami branżowymi.

Pytanie 4

Toner stanowi materiał eksploatacyjny w drukarce

A. laserowej
B. igłowej
C. sublimacyjnej
D. atramentowej
Wybór drukarki igłowej, atramentowej albo sublimacyjnej, gdy myślimy o tonerze, to nie najlepszy pomysł. Te drukarki działają zupełnie inaczej. Igłowe używają taśm barwiących, a igły uderzają w taśmę, żeby przenieść atrament na papier. Atramentówki natomiast rozpylają tusz, tworząc obraz na papierze z kropelek. Co do sublimacyjnych, to one działają na zasadzie, że barwnik w stałej formie zmienia się w gaz i osiada na papierze, co daje bardzo żywe kolory. Dlatego te technologie w ogóle nie używają tonera i działają na innych zasadach. Jak ktoś chce wybrać dobrą drukarkę, to powinien wiedzieć, jakie są różnice między tymi systemami, żeby dopasować je do swoich potrzeb. Czasem myślimy, że każda drukarka może używać tonera, a to może skończyć się tym, że źle dobierzemy sprzęt i materiały, co wpłynie na jakość druku i podniesie koszty.

Pytanie 5

Jakie narzędzie jest najbardziej odpowiednie do delikatnego zgięcia blachy obudowy komputera oraz przykręcenia śruby montażowej w trudno dostępnej lokalizacji?

Ilustracja do pytania
A. rys. C
B. rys. A
C. rys. B
D. rys. D
Zastosowanie odpowiedniego narzędzia w serwisie komputerowym jest kluczowe dla efektywności i jakości wykonanej pracy Na rysunku A przedstawione są nożyce do blach które są używane do cięcia blachy a nie do precyzyjnego odginania czy manipulowania w trudno dostępnych miejscach Mimo że nożyce te mogą wydawać się odpowiednie do pracy z blachą ich zastosowanie w delikatnej operacji jaką jest odginanie obudowy komputera jest nieodpowiednie ze względu na brak precyzji i możliwość uszkodzenia materiału Rysunek B pokazuje szczypce uniwersalne które są wszechstronne ale mniej precyzyjne niż szczypce długie Ich konstrukcja nie pozwala na dotarcie do ciasnych miejsc co jest krytyczne w przypadku montażu śrub w komputerach Rysunek C ilustruje obcinaki boczne które są przeznaczone do cięcia przewodów a nie do odginania blachy czy mocowania śrub Ich użycie w kontekście podanym w pytaniu jest całkowicie nieadekwatne i może prowadzić do uszkodzeń delikatnych komponentów komputerowych Ważne jest aby wybierać narzędzia które są zaprojektowane specjalnie do zadania jakie zamierzamy wykonać co nie tylko zwiększa skuteczność ale także minimalizuje ryzyko uszkodzeń i poprawia bezpieczeństwo pracy

Pytanie 6

Nierówne wydruki lub bladości w druku podczas korzystania z drukarki laserowej mogą sugerować

A. nieprawidłową instalację sterowników drukarki
B. niedobór tonera
C. uszkodzenia kabla łączącego drukarkę z komputerem
D. zagięcie kartki papieru w urządzeniu
Błędnie zainstalowane sterowniki drukarki mogą prowadzić do różnych problemów z komunikacją pomiędzy komputerem a urządzeniem, jednak nie są one bezpośrednią przyczyną bladych wydruków. Sterowniki dostarczają systemowi operacyjnemu niezbędnych informacji o funkcjach drukarki, a ich niewłaściwa instalacja może skutkować błędami w wydruku, ale nie w postaci wyraźnych zmian jakości druku, takich jak bladość. W kontekście uszkodzenia przewodu łączącego drukarkę z komputerem, choć może to prowadzić do przerwania lub braku komunikacji, nie ma to związku z jakością wydruku, a raczej z jego brakiem. Problemy z kartkami papieru, takie jak ich zgięcie, mogą spowodować błędy w podawaniu papieru, a niekoniecznie bladość lub nierównomierność wydruku. Kluczowe w diagnostyce problemów z drukiem jest zrozumienie, że czynniki fizyczne, jak stan tonera, mają bezpośredni wpływ na jakość druku, podczas gdy problemy z połączeniem czy oprogramowaniem mogą wpływać na inne aspekty działania drukarki, ale nie na samą jakość nanoszenia tonera. Wynika to z faktu, że w przypadku niewłaściwego działania mechanizmu drukującego, objawy mogą być całkowicie inne i niekoniecznie związane z bladością wydruku.

Pytanie 7

Jakiego rodzaju papieru należy użyć, aby wykonać "naprasowankę" na T-shircie z własnym zdjęciem przy pomocy drukarki atramentowej?

A. samoprzylepnego
B. Photo Matt
C. Photo Glossy
D. transferowego
Użycie papieru transferowego jest kluczowe przy tworzeniu naprasowanek na koszulki T-shirt z własnymi zdjęciami. Ten typ papieru jest specjalnie zaprojektowany do przenoszenia atramentowych wydruków na tkaniny. Proces ten polega na nadrukowaniu obrazu na papier transferowy, a następnie nałożeniu go na materiał za pomocą ciepła, najczęściej za pomocą prasy termicznej. Dzięki temu, obraz staje się integralną częścią tkaniny, co zapewnia trwałość i odporność na pranie. Warto zaznaczyć, że papier transferowy może być dostępny w wersjach jasnych i ciemnych, co pozwala na dostosowanie do koloru podstawy, na której będzie umieszczany nadruk. W praktyce, uzyskanie wysokiej jakości naprasowanki wymaga również odpowiedniego ustawienia drukarki oraz dobrania odpowiednich parametrów druku, takich jak jakość i profil koloru. Standardy w branży zalecają korzystanie z papierów transferowych od sprawdzonych producentów, co gwarantuje uzyskanie optymalnych rezultatów.

Pytanie 8

Na ilustracji przedstawiono przekrój kabla

Ilustracja do pytania
A. koncentrycznego
B. U/UTP
C. optycznego
D. S/UTP
Odpowiedzi zawierające terminy takie jak S/UTP i U/UTP odnoszą się do kabli typu skrętka nieekranowana lub ekranowana, które mają zupełnie inną konstrukcję. W odróżnieniu od kabla koncentrycznego, skrętki używane w telekomunikacji i sieciach komputerowych składają się z par przewodów skręconych ze sobą, co pomaga w redukcji interferencji elektromagnetycznych. Skrętki są zazwyczaj używane w sieciach Ethernet i telefonicznych, gdzie efektywność przesyłu opiera się na różnicowym przesyłaniu sygnału między przewodami w parze. Natomiast kabel optyczny, będący trzecią błędną odpowiedzią, wykorzystuje włókna światłowodowe do przesyłania danych w postaci impulsów świetlnych, co umożliwia przesyłanie danych na bardzo dużych odległościach z minimalnym tłumieniem i bez wpływu zakłóceń elektromagnetycznych. Kable optyczne są stosowane w infrastrukturze telekomunikacyjnej i internetowej, oferując szerokie pasmo i wysoką przepustowość. Zrozumienie różnic między tymi typami kabli jest kluczowe dla wyboru odpowiedniego rozwiązania w zależności od wymagań konkretnej aplikacji lub systemu.

Pytanie 9

Problemy związane z zawieszaniem się systemu operacyjnego w trakcie jego uruchamiania są zazwyczaj spowodowane

A. fragmentacją dysku SSD
B. umieszczeniem nośnika instalacyjnego systemu w napędzie optycznym
C. niewystarczającą ilością pamięci RAM
D. niepoprawną instalacją oprogramowania, np. sterowników
Mówiąc o pofragmentowanym dysku SSD jako przyczynie zamulania systemu, muszę powiedzieć, że to trochę nieporozumienie. SSD, na szczęście, nie przejmuje się fragmentacją tak jak tradycyjne HDD, bo działają na pamięci flash, więc dane mogą być odczytywane i zapisywane w każdym miejscu. O wiele bardziej realną przyczyną problemów przy uruchamianiu jest zbyt mała ilość RAM-u, bo to on odgrywa kluczową rolę w ładowaniu systemu. Można też użyć narzędzi do monitorowania pamięci, żeby sprawdzić, czy zasobów wystarcza. A jeśli w napędzie jest nośnik instalacyjny, to co prawda nie wpływa to bezpośrednio na zawieszanie się systemu, ale może sprawić, że system spróbuje z niego wystartować, co wydłuży włączenie, choć nie powinno całkowicie zablokować uruchamiania. A błędna instalacja oprogramowania, chociaż może przynieść różne problemy, to nie jest najczęstsza przyczyna zawieszania się systemu na starcie. System często potrafi rozpoznać i zignorować uszkodzone aplikacje, więc to niekoniecznie prowadzi do zamrożenia przy uruchamianiu.

Pytanie 10

Jakiej klasy należy adres IP 130.140.0.0?

A. Należy do klasy C
B. Należy do klasy B
C. Należy do klasy D
D. Należy do klasy A
Adres 130.140.0.0 należy do klasy B, ponieważ jego pierwszy oktet (130) mieści się w zakresie od 128 do 191, co jest charakterystyczne dla tej klasy. Klasa B jest zazwyczaj wykorzystywana w większych sieciach, gdzie potrzebna jest możliwość obsługi zarówno dużej liczby adresów hostów, jak i segmentacji sieci. W przypadku klasy B, 16 bitów jest przeznaczonych na identyfikację sieci, a pozostałe 16 bitów na identyfikację hostów, co pozwala na stworzenie 16,384 różnych sieci, z maksymalnie 65,534 hostami w każdej z nich. Przykładem zastosowania adresów z klasy B mogą być instytucje edukacyjne lub średniej wielkości przedsiębiorstwa, które potrzebują więcej adresów IP niż te, które są dostępne w klasie C, ale nie tak wiele jak te, które oferuje klasa A. W praktyce klasę B często wykorzystuje się w większych organizacjach, gdzie liczba urządzeń w sieci przekracza możliwości klas niższych. Zrozumienie klasyfikacji adresów IP jest kluczowe dla projektowania skutecznych i skalowalnych sieci, a znajomość ich zakresów umożliwia efektywne zarządzanie infrastrukturą sieciową.

Pytanie 11

Ile liczb w systemie szesnastkowym jest wymaganych do zapisania pełnej formy adresu IPv6?

A. 8
B. 24
C. 12
D. 16
Wybór liczby bloków w postaci adresu IPv6 wymaga zrozumienia, jak ten adres jest skonstruowany. Adres IPv6 składa się z 128 bitów, które są grupowane w osiem bloków, a każdy blok jest reprezentowany jako liczba szesnastkowa. Odpowiedzi takie jak 12, 16 czy 24 są błędne, ponieważ nie odzwierciedlają rzeczywistej struktury adresu IPv6. Typowym błędem jest mylenie liczby bloków z długością samego adresu. W rzeczywistości, każdy z ośmiu bloków mieści cztery cyfry szesnastkowe, co łącznie daje 32 cyfry, ale nie oznacza to, że mamy większą ilość bloków. Zrozumienie architektury adresacji IPv6, w tym koncepcji segmentacji adresów oraz hierarchii, jest kluczowe dla efektywnego wykorzystania tego protokołu w nowoczesnych sieciach. Warto zwrócić uwagę na standardy, takie jak RFC 4291, które precyzują sposób reprezentacji i użycia adresów IPv6, wskazując na znaczenie 8 bloków w zapewnieniu elastyczności i rozwoju w zakresie adresacji internetowej.

Pytanie 12

W skanerze z systemem CIS źródłem światła oświetlającym skanowany dokument jest

A. grupa trójkolorowych diod LED
B. układ żarówek
C. świetlówka
D. lampa fluorescencyjna
Wszystkie inne odpowiedzi, takie jak układ żarówek, świetlówka czy lampa fluorescencyjna, nie są adekwatne dla skanerów z układami CIS. Układ żarówek, choć może zapewniać odpowiednią intensywność światła, nie gwarantuje równomiernego i kontrolowanego oświetlenia, co jest kluczowe w procesie skanowania. Żarówki emitują światło w różnorodnych kierunkach, co może prowadzić do nierównomiernego oświetlenia skanowanej powierzchni, a w rezultacie do gorszej jakości skanowanych obrazów. Świetlówki z kolei, chociaż były popularne w przeszłości, charakteryzują się dłuższym czasem rozgrzewania oraz większym zużyciem energii, co sprawia, że nie są optymalnym rozwiązaniem w nowoczesnych urządzeniach. Lampa fluorescencyjna, podobnie jak świetlówka, ma ograniczenia w zakresie kontroli barwy oraz może wprowadzać zniekształcenia kolorów w obrazach. Użytkownicy mogą mylnie uważać, że te źródła światła są wystarczające, jednak w praktyce ich zastosowanie może prowadzić do strat jakościowych w dokumentach skanowanych. Oparcie się na przestarzałych technologiach oświetleniowych może negatywnie wpłynąć na wydajność skanera i jakość finalnych wyników, dlatego w nowoczesnych skanerach zawsze stosuje się rozwiązania takie jak diody LED, które spełniają współczesne normy jakości i efektywności.

Pytanie 13

Urządzenie sieciowe działające w drugiej warstwie modelu OSI, które przesyła sygnał do portu połączonego z urządzeniem odbierającym dane na podstawie analizy adresów MAC nadawcy i odbiorcy, to

A. terminator
B. modem
C. wzmacniak
D. przełącznik
Przełącznik, znany również jako switch, jest kluczowym urządzeniem w drugiej warstwie modelu OSI, czyli w warstwie łącza danych. Jego podstawową funkcją jest przesyłanie danych na podstawie adresów MAC, co pozwala na efektywne zarządzanie ruchem w sieci lokalnej. Przełączniki analizują pakiety danych przychodzące do portów, identyfikując adresy MAC nadawcy i odbiorcy. Dzięki temu mogą one inteligentnie kierować dane do odpowiednich urządzeń bez zbędnego rozprzestrzeniania ich do wszystkich podłączonych urządzeń, co zwiększa efektywność i bezpieczeństwo sieci. Przykładem zastosowania przełącznika jest sieć biurowa, gdzie różne komputery, drukarki i inne urządzenia są podłączone do przełącznika, co umożliwia im komunikację i wymianę danych. Standardy takie jak IEEE 802.1D dotyczące protokołów mostków oraz przełączników wskazują na znaczenie tych urządzeń w tworzeniu złożonych i wydajnych architektur sieciowych. Warto również zauważyć, że nowoczesne przełączniki mogą obsługiwać funkcje VLAN, co dodatkowo zwiększa możliwości segmentacji i bezpieczeństwa w sieci.

Pytanie 14

Aby przeprowadzić aktualizację zainstalowanego systemu operacyjnego Linux Ubuntu, należy wykorzystać komendę

A. kernel update
B. yum upgrade
C. apt-get upgrade albo apt upgrade
D. system update
Odpowiedzi 'kernel update', 'system update' i 'yum upgrade' to nie to, czego szukamy, kiedy mówimy o aktualizacji systemu Ubuntu. 'Kernel update' to nie jest konkretne polecenie w Linuxie, a sama aktualizacja jądra wymaga dodatkowych kroków i nie robi się jej tak po prostu. Dla Ubuntu, które opiera się na Debianie, powinno się używać 'apt-get' lub 'apt', a nie tych ogólnych fraz. 'System update' to pojęcie bardzo ogólne, które nie wskazuje konkretnego polecenia ani narzędzia – to może wprowadzać w błąd. Z kolei 'yum upgrade' to coś, co działa w dystrybucjach na bazie Red Hat, jak CentOS czy Fedora, a nie w Ubuntu. Ważne jest, żeby wiedzieć, jak te systemy zarządzania pakietami się różnią, bo to kluczowe w administrowaniu systemem. Jeśli nie zwracasz na to uwagi, mogą się pojawić błędy przy aktualizacjach, co może zaszkodzić działaniu programów i narazić system na różne niebezpieczeństwa.

Pytanie 15

Urządzeniem w zestawie komputerowym, które obsługuje zarówno dane wejściowe, jak i wyjściowe, jest

A. głośnik.
B. rysownik.
C. urządzenie do skanowania.
D. modem.
Wybór odpowiedzi dotyczących plotera, skanera czy głośnika jako elementów zestawu komputerowego przetwarzających dane wejściowe i wyjściowe jest błędny, ponieważ każda z tych jednostek ma ograniczone funkcje, które nie obejmują jednoczesnego przetwarzania obu typów danych. Ploter jest urządzeniem wyjściowym, które służy do tworzenia wydruków graficznych, takich jak plany architektoniczne, rysunki techniczne czy mapy, i nie przetwarza danych wejściowych. Skaner, z drugiej strony, jest urządzeniem wejściowym, które konwertuje fizyczne dokumenty na format cyfrowy, umożliwiając ich edycję lub archiwizację, ale również nie obsługuje danych wyjściowych. Głośnik, jako urządzenie wyjściowe, zamienia sygnały elektroniczne na dźwięki, co nas prowadzi do konkluzji, że nie przetwarza on danych wejściowych; jego funkcja jest jednoznacznie ograniczona do reprodukcji dźwięku. Takie podejście do analizy funkcji tych urządzeń może wynikać z nieporozumienia dotyczącego ich roli w systemie komputerowym. Kluczowe jest zrozumienie, że odpowiednie klasyfikowanie urządzeń wejściowych i wyjściowych jest fundamentem w nauce o komputerach i telekomunikacji, a ignorowanie tej zasady prowadzi do niewłaściwych wniosków dotyczących ich funkcji i zastosowania.

Pytanie 16

Urządzenie funkcjonujące w warstwie łącza danych, które umożliwia połączenie segmentów sieci o różnych architekturach, to

A. ruter
B. regenerator
C. koncentrator
D. most
Koncentrator, regenerator i ruter to urządzenia, które pełnią różne funkcje w ekosystemie sieciowym, ale nie są odpowiednie do opisanego zadania łączenia segmentów sieci o różnych architekturach. Koncentrator działa na poziomie fizycznym, działając jako prosty przekaźnik sygnału, co oznacza, że nie analizuje danych ani nie podejmuje decyzji dotyczących ich przekazywania. Oznacza to, że każde przesyłane przez niego dane są wysyłane do wszystkich podłączonych urządzeń, co może prowadzić do zatorów i nieefektywności w sieci. Regenerator jest urządzeniem stosowanym do wzmacniania sygnałów w sieciach, które są rozciągnięte na dużą odległość, co jest niezbędne w przypadku, gdy sygnał może ulegać degradacji, ale nie ma on zdolności do łączenia segmentów o różnych architekturach. Ruter natomiast operuje na warstwie trzeciej modelu OSI i jest odpowiedzialny za przekazywanie pakietów między różnymi sieciami, ale nie łączy segmentów o różnych standardach na poziomie warstwy łącza danych. Typowe błędy myślowe prowadzące do wyboru tych odpowiedzi mogą wynikać z niepełnego zrozumienia różnic między warstwami modelu OSI oraz funkcjami poszczególnych urządzeń sieciowych. Ważne jest, aby dokładnie rozumieć, jakie zadania pełnią te urządzenia, aby móc skutecznie projektować i zarządzać infrastrukturą sieciową.

Pytanie 17

Jaka jest maksymalna prędkość przesyłania danych w sieci lokalnej, w której wykorzystano przewód UTP kat.5e do budowy infrastruktury kablowej?

A. 10 Mb/s
B. 1 Gb/s
C. 10 Gb/s
D. 100 Mb/s
Przewód UTP kat. 5e, zgodnie z normą TIA/EIA-568-B, pozwala na transmisję danych z maksymalną prędkością 1 Gb/s na odległość do 100 metrów. To oznacza, że w sieciach lokalnych, które wykorzystują ten typ okablowania, możliwe jest osiągnięcie wydajności, która spełnia wymagania dla wielu aplikacji, w tym przesyłania danych w środowiskach biurowych i dla użytkowników końcowych. Przewody te wspierają standardy Ethernet, w tym 1000BASE-T, co czyni je odpowiednim rozwiązaniem dla nowoczesnych sieci, w których prędkość i niezawodność są kluczowe. Stosowanie UTP kat. 5e staje się standardem w instalacjach, gdzie zasięg i koszty są istotnymi czynnikami. Warto również zauważyć, że przewód kat. 5e jest w stanie obsłużyć nie tylko dane, ale również sygnały telefoniczne oraz inne formy komunikacji, co czyni go uniwersalnym w zastosowaniach sieciowych.

Pytanie 18

Protokół Transport Layer Security (TLS) jest rozszerzeniem którego z poniższych protokołów?

A. Network Terminal Protocol (telnet)
B. Session Initiation Protocol (SIP)
C. Security Socket Layer (SSL)
D. Security Shell (SSH)
Standard Transport Layer Security (TLS) jest rozwinięciem protokołu Security Socket Layer (SSL), który został zaprojektowany w celu zwiększenia bezpieczeństwa komunikacji w Internecie. SSL, opracowany przez Netscape, zapewniał szyfrowanie danych przesyłanych pomiędzy klientem a serwerem, co znacząco poprawiło ochronę przed podsłuchiwaniem i innymi zagrożeniami. TLS jest jego kontynuacją, wprowadzającą bardziej zaawansowane algorytmy szyfrowania oraz lepszą autoryzację użytkowników. Przykładowo, TLS jest powszechnie stosowany w protokołach HTTPS, które zapewniają bezpieczne połączenia w Internecie, co jest kluczowe dla ochrony danych osobowych i transakcji online. W praktyce oznacza to, że gdy korzystasz z bankowości internetowej lub dokonujesz zakupów online, prawdopodobnie korzystasz z protokołu TLS, który chroni Twoje dane przed przechwyceniem. Dobre praktyki w zakresie zabezpieczeń obejmują regularne aktualizacje implementacji TLS oraz korzystanie z najnowszych wersji protokołu, aby wykorzystać najbardziej aktualne metody zabezpieczeń.

Pytanie 19

Narzędzie w systemie Windows umożliwiające monitorowanie prób logowania do systemu to dziennik

A. System
B. aplikacji
C. zabezpieczeń
D. Setup
Wybór odpowiedzi związanej z dziennikiem 'Setup' może prowadzić do nieporozumień, ponieważ jest on używany głównie do rejestrowania zdarzeń związanych z instalacją i konfiguracją systemu operacyjnego. Informacje te nie zawierają szczegółów na temat prób logowania, co czyni ten dziennik niewłaściwym źródłem do monitorowania bezpieczeństwa. Odpowiedź 'System' jest również nieprawidłowa, ponieważ dziennik systemowy dotyczy ogólnych zdarzeń systemowych, takich jak błędy i ostrzeżenia, ale nie koncentruje się na aspektach związanych z bezpieczeństwem użytkowników i logowania. Z kolei dziennik 'aplikacji' rejestruje zdarzenia związane z uruchamianiem aplikacji oraz ich działaniem, co również nie ma związku z próbami logowania. Typowe błędy myślowe prowadzące do takich wyborów mogą obejmować mylenie różnych rodzajów dzienników oraz ich przeznaczenia. W praktyce, aby skutecznie zabezpieczać system, ważne jest zrozumienie, które dzienniki są odpowiednie do monitorowania konkretnych zdarzeń, w tym logowania, co jest kluczowym elementem zarządzania bezpieczeństwem systemów informatycznych. Warto zapoznać się z dokumentacją Microsoft oraz standardami bezpieczeństwa, aby lepiej zrozumieć, jakie narzędzia i dzienniki są używane do monitorowania bezpieczeństwa.

Pytanie 20

Która usługa pozwala na zdalne logowanie do komputerów, wykonywanie poleceń systemowych oraz zarządzanie siecią?

A. DNS
B. NNTP
C. IMAP
D. TELNET
IMAP (Internet Message Access Protocol) jest protokołem wykorzystywanym do zarządzania wiadomościami e-mail na serwerze, co oznacza, że pozwala użytkownikom na dostęp do ich poczty elektronicznej w czasie rzeczywistym, ale nie ma nic wspólnego z logowaniem się na zdalne komputery czy zarządzaniem systemem. Jest to podejście zupełnie nieodpowiednie, gdyż IMAP skupia się jedynie na operacjach związanych z e-mailem, takich jak pobieranie, usuwanie czy organizowanie wiadomości, bez jakiejkolwiek możliwości zdalnej kontroli nad systemem operacyjnym. DNS (Domain Name System) jest z kolei systemem, który tłumaczy nazwy domenowe na adresy IP, a więc również nie oferuje funkcji logowania czy zarządzania komputerami. Jego podstawową rolą jest ułatwienie lokalizacji zasobów w sieci poprzez zapewnienie przyjaznych dla użytkowników nazw. NNTP (Network News Transfer Protocol) jest protokołem przeznaczonym do przesyłania wiadomości w grupach dyskusyjnych, co także nie ma związku z zdalnym dostępem do komputerów. Często mylenie tych protokołów wynika z nieporozumień dotyczących ich funkcji i zastosowań. Wiele osób przypisuje im podobne właściwości, nie rozumiejąc, że każdy z nich jest stworzony dla odmiennych celów i operacji sieciowych. Kluczowym błędem w myśleniu jest zakładanie, że każdy protokół komunikacyjny może pełnić dowolną funkcję, podczas gdy w rzeczywistości każdy z nich ma swoje specyficzne zastosowanie i ograniczenia.

Pytanie 21

Minimalna ilość pamięci RAM wymagana dla systemu operacyjnego Windows Server 2008 wynosi przynajmniej

A. 512 MB
B. 1 GB
C. 1,5 GB
D. 2 GB
Wybór odpowiedzi wskazujących na wartości poniżej 2 GB, takie jak 512 MB, 1,5 GB czy 1 GB, opiera się na nieaktualnych założeniach dotyczących wymagań systemowych. W początkowych latach istnienia systemów operacyjnych, takie jak Windows Server 2003 czy starsze wersje, rzeczywiście mogły funkcjonować przy mniejszych ilościach pamięci RAM. Jednak wraz z rozwojem technologii oraz wzrostem wymagań aplikacji i usług, minimalne wymagania dotyczące pamięci RAM znacznie się zwiększyły. Użytkownicy często mylą 'minimalne' wymagania z 'zalecanymi', co prowadzi do nieporozumień. Używanie serwera z pamięcią niższą niż 2 GB w kontekście Windows Server 2008 może prowadzić do poważnych problemów wydajnościowych, takich jak wolniejsze działanie aplikacji, długie czasy odpowiedzi oraz częstsze przestoje. W systemach serwerowych pamięć RAM ma kluczowe znaczenie dla utrzymania wydajności i zdolności obsługi wielu jednoczesnych połączeń. Należy również pamiętać, że zbyt mała ilość pamięci może ograniczać możliwości zarządzania zasobami oraz wprowadzać ograniczenia w zakresie funkcjonalności serwera, co w konsekwencji może prowadzić do nieefektywności w operacjach biznesowych.

Pytanie 22

Urządzenie elektryczne lub elektroniczne, które zostało zużyte i posiada znak widoczny na ilustracji, powinno być

Ilustracja do pytania
A. Wyrzucone do kontenerów na odpady komunalne
B. Wyrzucone do pojemników z tym oznaczeniem
C. Przekazane do miejsca odbioru zużytej elektroniki
D. Przekazane do punktu skupującego złom
Przekreślony kosz na śmieci na urządzeniu elektronicznym sugeruje zakaz wyrzucania go do zwykłych pojemników na odpady komunalne. Jest to ważny aspekt ochrony środowiska, ponieważ urządzenia te mogą zawierać niebezpieczne substancje chemiczne, które są szkodliwe dla ekosystemu. Dlatego nie należy ich wyrzucać do pojemników oznaczonych tym znakiem, co byłoby sprzeczne z ideą recyklingu i przetwarzania odpadów elektronicznych. Przekazywanie do punktu skupu złomu również nie jest zalecane, ponieważ takie miejsca nie mają odpowiednich systemów do bezpiecznego zarządzania substancjami toksycznymi i nie zapewniają recyklingu zgodnie z normami. Złomowiska mogą przyczyniać się do zanieczyszczenia środowiska, jeśli nie są odpowiednio zarządzane. Wyrzucanie do śmieci bytowych jest niezgodne z dyrektywą WEEE, której celem jest promowanie odpowiedzialnego zarządzania e-odpadami. Dlatego ważne jest, aby zużyte urządzenia przekazywać do punktów odbioru zużytej elektroniki, gdzie są one bezpiecznie przetwarzane i recyklingowane, co minimalizuje negatywny wpływ na środowisko i pozwala na odzyskiwanie wartościowych surowców. Takie podejście wpisuje się w zasady zrównoważonego rozwoju oraz gospodarki o obiegu zamkniętym, która dąży do minimalizacji odpadów i optymalizacji użycia zasobów naturalnych poprzez ich ponowne wykorzystywanie w procesach produkcyjnych. Właściwe postępowanie z e-odpadami jest kluczowe dla ochrony zasobów środowiska naturalnego i zdrowia ludzkiego.

Pytanie 23

Jakie polecenie w systemie Windows służy do zbadania trasy, po jakiej przesyłane są pakiety w sieci?

A. route
B. netstat
C. tracert
D. ipconfig
Odpowiedzi takie jak 'ipconfig', 'netstat' czy 'route' są często mylone z funkcjonalnością polecenia 'tracert', jednak każde z nich ma zupełnie inne zastosowanie w kontekście diagnostyki sieci. 'Ipconfig' służy do wyświetlania i konfiguracji ustawień IP na komputerze, takich jak adresy IP, maski podsieci oraz bramy domyślnej. Umożliwia to użytkownikom zarządzanie ich połączeniami sieciowymi, ale nie dostarcza informacji o trasie pakietów w sieci. Natomiast 'netstat' jest narzędziem do monitorowania aktywnych połączeń sieciowych i otwartych portów, co może być pomocne w analizie ruchu, ale nie w śledzeniu drogi, jaką pokonują pakiety. Z kolei 'route' jest poleceniem do zarządzania tablicą routingu w systemie operacyjnym. Umożliwia ono dodawanie, usuwanie lub modyfikowanie wpisów routingu, lecz nie ma za zadanie analizowania trasy pakietów. Zrozumienie różnicy między tymi narzędziami jest kluczowe, aby efektywnie zarządzać siecią i diagnostyką problemów. W praktyce, często zdarza się, że osoby nieprzygotowane technicznie mylą te narzędzia, co prowadzi do niejasności w analizie problemów sieciowych. Właściwe stosowanie narzędzi diagnostycznych może znacząco poprawić wydajność operacyjną i zminimalizować czas przestoju w przypadku problemów z łącznością.

Pytanie 24

Jakie narzędzie jest używane w systemie Windows do przywracania właściwych wersji plików systemowych?

A. replace
B. debug
C. sfc
D. verifer
Wszystkie pozostałe opcje nie są odpowiednie dla przywracania prawidłowych wersji plików systemowych w Windows. 'Replace' jest ogólnym terminem odnoszącym się do procesu zastępowania plików, jednak nie jest to narzędzie ani komenda w systemie Windows, które miałoby na celu naprawę plików systemowych. Użytkownicy często mylą ten termin z funkcjami zarządzania plikami, ale rzeczywiście nie odnosi się on do skanowania ani naprawy plików systemowych. 'Debug' to narzędzie służące głównie do analizy i debugowania aplikacji, a nie do zarządzania plikami systemowymi. Jego głównym celem jest identyfikacja i naprawa błędów w kodzie programów, co jest zupełnie inną funkcjonalnością niż ta, którą oferuje 'sfc'. Z kolei 'verifier' to narzędzie do monitorowania sterowników i sprawdzania ich stabilności, które również nie ma związku z przywracaniem uszkodzonych plików systemowych. Niektórzy użytkownicy mogą myśleć, że wszystkie te narzędzia są zbliżone w swojej funkcji, co prowadzi do nieporozumień. Kluczowym błędem jest założenie, że narzędzia do debugowania czy weryfikacji mogą zastąpić konkretne funkcje skanowania i naprawy systemu, co w praktyce może prowadzić do niewłaściwych działań i wydłużenia czasu rozwiązania problemów z systemem.

Pytanie 25

Jakie rozwiązanie należy wdrożyć i prawidłowo ustawić, aby chronić lokalną sieć komputerową przed atakami typu Smurf pochodzącymi z Internetu?

A. bezpieczna przeglądarka stron WWW
B. oprogramowanie antyspamowe
C. skaner antywirusowy
D. zapora ogniowa
Odpowiedzi sugerujące instalację oprogramowania antyspamowego, bezpiecznej przeglądarki lub skanera antywirusowego jako środków ochrony przed atakami typu Smurf są nieprawidłowe, ponieważ nie adresują one bezpośrednio charakterystyki tego typu ataku. Oprogramowanie antyspamowe jest przeznaczone głównie do filtrowania niechcianych wiadomości e-mail i nie ma wpływu na ataki skierowane na infrastrukturę sieciową. Bezpieczna przeglądarka stron WWW, mimo że może chronić przed złośliwym oprogramowaniem lub phishingiem, nie zabezpiecza sieci przed atakami DDoS, takimi jak Smurf, które polegają na nadużywaniu komunikacji sieciowej. Skanery antywirusowe również nie mają na celu obrony przed tego typu atakami, gdyż są wykorzystywane do wykrywania i usuwania wirusów oraz złośliwego oprogramowania na lokalnych maszynach, a nie do monitorowania i kontrolowania ruchu sieciowego. Wybór niewłaściwych narzędzi zabezpieczających prowadzi do mylnego przekonania, że system jest odpowiednio chroniony, podczas gdy rzeczywiste zagrożenia pozostają na wolności. W kontekście ataku Smurf, kluczową kwestią jest umiejętność rozpoznawania i zarządzania ruchem sieciowym, co można osiągnąć jedynie poprzez zastosowanie zapory ogniowej oraz implementację odpowiednich reguł filtrowania ruchu. Każda sieć powinna być wyposażona w odpowiednie rozwiązania zgodne z najlepszymi praktykami branżowymi, takimi jak regularne audyty bezpieczeństwa oraz dostosowane polityki zarządzania dostępem.

Pytanie 26

Na rysunku zobrazowano schemat

Ilustracja do pytania
A. przełącznika kopułkowego
B. karty graficznej
C. zasilacza impulsowego
D. przetwornika DAC
Karta graficzna to komponent komputerowy dedykowany do renderowania grafiki i generowania obrazów. Jej kluczowymi elementami są procesor graficzny (GPU) oraz pamięć RAM, które wspólnie odpowiadają za przetwarzanie danych graficznych. Schemat przedstawiony na rysunku nie zawiera elementów typowych dla układów graficznych, takich jak złącza wideo czy procesory przetwarzania grafiki. Przetwornik DAC, czyli cyfrowo-analogowy, służy do konwersji sygnałów cyfrowych na analogowe, co jest istotne w systemach dźwiękowych i telekomunikacyjnych. Tego typu układ zawiera zwykle drabinkę rezystorową i wzmacniacze operacyjne, które nie są obecne w analizowanym schemacie. Przełącznik kopułkowy natomiast to mechaniczny element stosowany w klawiaturach i innych urządzeniach wejściowych, który poprzez fizyczne naciśnięcie zamyka obwód elektryczny. Schemat zasilacza impulsowego zawiera elementy elektroniczne takie jak diody, tranzystory i kondensatory, które umożliwiają efektywną konwersję energii, nie mając zastosowania w kontekście mechanicznych przełączników. Błędy w rozpoznaniu schematu wynikają często z mylenia funkcji i zastosowań poszczególnych komponentów elektronicznych oraz ich charakterystycznych układów w różnych systemach technologicznych. Właściwe rozpoznanie takich rysunków wymaga zrozumienia ich funkcji i sposobu działania, co jest kluczowe przy projektowaniu i naprawie urządzeń elektronicznych.

Pytanie 27

Atak DDoS (ang. Disributed Denial of Service) na serwer doprowadzi do

A. przechwytywania pakietów sieciowych
B. przeciążenia aplikacji serwującej określone dane
C. zbierania danych o atakowanej sieci
D. zmiany pakietów przesyłanych przez sieć
Zrozumienie ataków typu DDoS wymaga znajomości ich charakterystyki oraz celów. Atak DDoS nie polega na podmianie pakietów przesyłanych przez sieć, co sugeruje pierwsza niepoprawna odpowiedź. Podmiana pakietów, znana jako atak typu Man-in-the-Middle, wymaga dostępu do transmisji danych i jest zupełnie innym rodzajem zagrożenia, które nie ma nic wspólnego z DDoS. Podobnie, przechwytywanie pakietów, co sugeruje kolejna odpowiedź, również nie jest związane z DDoS. Ataki te koncentrują się na przytłoczeniu zasobów serwera, a nie na manipulacji danymi w transmisji. Stosowanie technik przechwytywania danych w kontekście DDoS jest mylne, ponieważ kluczowym celem DDoS jest spowodowanie niedostępności usługi, a nie analizowanie jej ruchu. Zbieranie informacji na temat atakowanej sieci, co sugeruje jeszcze jedna odpowiedź, jest bardziej związane z atakami typu reconnaissance, które mają na celu zrozumienie struktury sieci i potencjalnych słabości, aby później przeprowadzić skuteczniejszy atak. W rzeczywistości, ataki DDoS skupiają się na zasypywaniu serwera żądaniami, a nie na analizie czy manipulacji danymi. Te błędne koncepcje mogą prowadzić do niewłaściwego planowania obrony przed zagrożeniami, co podkreśla znaczenie edukacji w zakresie bezpieczeństwa IT.

Pytanie 28

Aby naprawić uszkodzony sektor rozruchowy dysku w systemie Windows 7, należy użyć polecenia

A. nircmd /standby
B. bootrec /fixmbr
C. fixboot /renew
D. fixmbr /all
Inne polecenia wymienione w pytaniu są niewłaściwe w kontekście naprawy sektora rozruchowego dysku twardego w systemie Windows 7. Przykładowo, polecenie 'nircmd /standby' nie ma związku z naprawą jakichkolwiek problemów dotyczących rozruchu. Narzędzie nircmd jest używane do wykonywania różnorodnych zadań systemowych, takich jak wprowadzanie systemu w stan wstrzymania, ale nie dotyczy naprawy MBR ani sektora rozruchowego. Z kolei 'fixboot /renew' nie jest poprawnym poleceniem w systemie Windows, ponieważ 'fixboot' jest używane do naprawy sektora rozruchowego, lecz nie ma opcji '/renew'. Użytkownicy mogą się mylić, sądząc, że dodawanie różnych przełączników może zwiększyć skuteczność polecenia, podczas gdy w rzeczywistości użycie niepoprawnych argumentów może prowadzić do błędów. 'fixmbr /all' również jest niepoprawne, ponieważ poprawne polecenie 'fixmbr' nie przyjmuje argumentu '/all'. To nieporozumienie może wynikać z mylnego podejścia do zrozumienia, jak działają polecenia w wierszu poleceń. Kluczowym błędem jest zatem nadmierne skomplikowanie prostych poleceń, co prowadzi do frustracji i niepowodzeń w naprawie systemu. Znajomość poprawnych poleceń oraz ich zastosowań jest fundamentalna dla skutecznej diagnostyki i rozwiązywania problemów związanych z systemem operacyjnym.

Pytanie 29

Na które wyjście powinniśmy podłączyć aktywne głośniki w karcie dźwiękowej, której schemat przedstawiony jest na rysunku?

Ilustracja do pytania
A. Speaker out
B. Line in
C. Mic in
D. Line out
W tym pytaniu niektóre odpowiedzi mogą wyglądać na dobre, ale po chwili zastanowienia widać, że nie są takie. 'Line in' to gniazdo do podłączania urządzeń audio jak odtwarzacze CD czy inne źródła, które wysyłają sygnał do karty dźwiękowej. To wejście, więc sygnał idzie w stronę przeciwną do tego, co potrzebujemy, żeby zasilać głośniki. 'Mic in' to z kolei miejsce do mikrofonów, ale one też potrzebują wzmocnienia sygnału, więc to też jest wejście. Sygnał z mikrofonu jest zupełnie inny niż liniowy, ma inną impedancję i poziom, dlatego nie można go użyć do głośników. 'Speaker out' niby wygląda na odpowiednie, ale to wyjście jest dla głośników pasywnych, które potrzebują mocy z karty dźwiękowej. Jeśli podepniemy do tego aktywne głośniki, to może być problem, bo sygnał już jest wzmocniony, co prowadzi do zniekształceń. W skrócie, żeby dobrze podłączyć sprzęt audio do komputera i mieć świetną jakość dźwięku, trzeba rozumieć różnice między wejściami a wyjściami, bo to może uchronić nas przed błędami i uszkodzeniami sprzętu.

Pytanie 30

Adres IP jest zapisany jako cztery grupy liczb, które są oddzielone kropkami

A. helów
B. bitów
C. oktetów
D. dekad
Numer IP, będący kluczowym elementem protokołu komunikacyjnego w sieciach komputerowych, zapisywany jest w formie czterech oktetów oddzielonych kropkami. Oktet to jednostka danych składająca się z ośmiu bitów, co pozwala na reprezentację wartości od 0 do 255 dla każdego z czterech segmentów. Dzięki temu, adresy IPv4, które są najczęściej używane, mogą przyjąć formę taką jak 192.168.0.1. W praktyce pozwala to na zdefiniowanie około 4 miliardów unikalnych adresów w ramach tego systemu. Dobre praktyki zalecają, aby w dokumentacji i konfiguracjach sieciowych zawsze posługiwać się pełnymi adresami IP, aby uniknąć nieporozumień. Ponadto, znajomość struktury i formatu adresów IP jest kluczowa przy projektowaniu i zarządzaniu sieciami, a także podczas rozwiązywania problemów związanych z komunikacją w sieci.

Pytanie 31

Która z podanych właściwości kabla koncentrycznego RG-58 sprawia, że obecnie nie jest on używany do tworzenia lokalnych sieci komputerowych?

A. Koszt narzędzi do instalacji i łączenia kabli
B. Maksymalna prędkość przesyłania danych 10Mb/s
C. Maksymalna odległość między punktami wynosząca 185 m
D. Brak opcji zakupu dodatkowych urządzeń sieciowych
Kabel koncentryczny RG-58 charakteryzuje się maksymalną prędkością transmisji danych wynoszącą 10 Mb/s, co w dzisiejszych standardach sieciowych jest zdecydowanie zbyt niskie. Współczesne lokalne sieci komputerowe (LAN) wymagają znacznie wyższych prędkości, aby zaspokoić potrzeby użytkowników i aplikacji. Na przykład, w technologii Ethernet standard 100BASE-TX zapewnia prędkość transmisji danych wynoszącą 100 Mb/s, a nawet 1 Gb/s w przypadku standardu 1000BASE-T. Przykładem zastosowania nowoczesnych technologii jest sieć biurowa, w której wiele urządzeń, takich jak komputery, drukarki i serwery, wymaga szybkiej wymiany danych. Dlatego kabel RG-58, z uwagi na swoje ograniczenia, został w dużej mierze zastąpiony przez szybsze i bardziej niezawodne rozwiązania, takie jak skrętka (np. Cat5e, Cat6) oraz światłowody, które oferują nie tylko większe prędkości transmisji, ale również znacznie wyższe odległości między urządzeniami bez strat w jakości sygnału, co jest kluczowe w nowoczesnych infrastrukturach sieciowych.

Pytanie 32

Numer 22 umieszczony w adresie http://www.adres_serwera.pl:22 wskazuje na

A. program, do którego wysyłane jest zapytanie
B. numer sekwencyjny pakietu przesyłającego dane
C. PID procesu działającego na serwerze
D. port, różny od standardowego numeru dla danej usługi
Odpowiedzi sugerujące, że liczba 22 w adresie URL odnosi się do aplikacji, sekwencyjnego pakietu lub PID procesu, są błędne, ponieważ mylą fundamentalne pojęcia związane z protokołami i komunikacją sieciową. Porty są kluczowymi elementami architektury sieciowej, które umożliwiają lokalizację konkretnych usług na serwerze, a nie identyfikację aplikacji. Zrozumienie, że port to punkt końcowy komunikacji, jest niezbędne, aby pojąć, jak różne aplikacje mogą współdzielić ten sam adres IP, ale korzystać z różnych portów. Z kolei sekwencyjne pakiety danych to termin używany w kontekście transportu danych, gdzie nadawane są pakiety w określonej kolejności, ale nie mają bezpośredniego związku z numeracją portów. Na końcu, PID (Process ID) odnosi się do identyfikacji procesów działających na serwerze, ale nie jest używane w kontekście adresów URL. Typowym błędem myślowym jest utożsamianie różnych elementów architektury sieciowej, co prowadzi do nieprawidłowych wniosków. Zrozumienie tych różnic jest kluczowe dla właściwego zarządzania sieciami i zabezpieczeniami.

Pytanie 33

Które z poniższych stwierdzeń jest prawdziwe w odniesieniu do przedstawionej konfiguracji serwisu DHCP w systemie Linux?

A. Karcie sieciowej urządzenia main przypisany zostanie adres IP 39:12:86:07:55:00
B. Komputery działające w sieci będą miały adres IP z zakresu 176.16.20.50 ÷ 176.16.20.250
C. Komputery uzyskają adres IP z zakresu 176.16.20.251 ÷ 255.255.255.0
D. System przekształci adres IP 192.168.221.102 na nazwę main
Wybór pierwszej odpowiedzi, która sugeruje, że system zamieni adres IP 192.168.221.102 na nazwę 'main', jest błędny, ponieważ adres IP podany w tej odpowiedzi nie znajduje się w zdefiniowanym zakresie DHCP. Konfiguracja DHCP przedstawiona w pytaniu obejmuje zakres od 176.16.20.50 do 176.16.20.250, co oznacza, że jakiekolwiek inne adresy IP, takie jak 192.168.221.102, są poza zasięgiem serwera DHCP i nie mogą być przypisane do żadnego hosta w tej konfiguracji. Tego rodzaju zamiana nazw na podstawie adresu IP jest związana z systemem DNS, a nie DHCP, co prowadzi do typowego błędu myślowego, w którym myli się funkcje tych dwóch systemów. Z kolei odpowiedź dotycząca adresu 176.16.20.251 jest również myląca, gdyż przekracza zdefiniowany zakres DHCP, co jest sprzeczne z zasadami działania tej usługi. Wreszcie, przypisywanie adresu MAC do adresu IP, co sugeruje trzecia odpowiedź, jest niepoprawne, ponieważ adres MAC jest adresem sprzętowym, a nie adresem IP, a przekazanie adresu MAC jako adresu IP nie ma sensu w kontekście konfiguracji DHCP. Adres MAC jest wykorzystywany do identyfikacji urządzenia w sieci, podczas gdy adres IP jest przypisywany do komunikacji w ramach tej sieci.

Pytanie 34

W celu konserwacji elementów z łożyskami oraz ślizgami w urządzeniach peryferyjnych wykorzystuje się

A. sprężone powietrze
B. tetrową szmatkę
C. smar syntetyczny
D. powłokę grafitową
Smar syntetyczny jest optymalnym rozwiązaniem do konserwacji elementów łożyskowanych oraz ślizgowych w urządzeniach peryferyjnych ze względu na swoje wyjątkowe właściwości tribologiczne. Charakteryzuje się niskim współczynnikiem tarcia, wysoką odpornością na ścinanie oraz stabilnością termiczną, co sprawia, że jest idealny do zastosowań w warunkach wysokotemperaturowych i dużych obciążeń. Przykładowo, w silnikach elektrycznych lub napędach mechanicznych, smar syntetyczny zmniejsza zużycie elementów ściernych, co wydłuża żywotność urządzeń. Zgodnie z normą ISO 6743, smary syntetyczne są klasyfikowane według różnych wymagań aplikacyjnych, co pozwala na dobór odpowiedniego produktu do specyficznych warunków pracy. Użycie smaru syntetycznego jest również zgodne z najlepszymi praktykami w zakresie utrzymania ruchu, co przyczynia się do zwiększenia efektywności energetycznej oraz zmniejszenia kosztów operacyjnych.

Pytanie 35

Połączenia typu point-to-point, realizowane za pośrednictwem publicznej infrastruktury telekomunikacyjnej, oznacza się skrótem

A. PAN
B. WLAN
C. VPN
D. VLAN
VLAN, WLAN oraz PAN to terminy, które odnoszą się do różnych typów sieci, jednak żaden z nich nie opisuje technologii, która umożliwia bezpieczne połączenia przez publiczną infrastrukturę telekomunikacyjną. VLAN (Virtual Local Area Network) to metoda segmentacji sieci lokalnej, która pozwala na tworzenie wielu logicznych sieci w ramach jednego fizycznego medium. VLAN-y są często używane w dużych organizacjach do zwiększenia wydajności i bezpieczeństwa, umożliwiając separację ruchu sieciowego. WLAN (Wireless Local Area Network) odnosi się do sieci lokalnych opartych na technologii bezprzewodowej, co umożliwia urządzeniom mobilnym łączenie się z internetem bez użycia kabli. Z kolei PAN (Personal Area Network) to sieć o bardzo małym zasięgu, używana do komunikacji między urządzeniami osobistymi, takimi jak telefony czy laptopy, zazwyczaj za pośrednictwem technologii Bluetooth. Skupiając się na tych terminach, można zauważyć, że koncentrują się one na różnych aspektach lokalej komunikacji, zamiast na tworzeniu bezpiecznych połączeń przez publiczną infrastrukturę. Zrozumienie tych różnic jest kluczowe, aby unikać pomyłek w kontekście zastosowań technologii sieciowych oraz ich bezpieczeństwa.

Pytanie 36

Symbol okablowania przedstawiony na diagramie odnosi się do kabla

Ilustracja do pytania
A. światłowodowego
B. ethernetowego krosowanego
C. ethernetowego prostego
D. szeregowego
Kabel szeregowy, często wykorzystywany w komunikacji między urządzeniami na małe odległości, jak porty szeregowe COM, nie jest stosowany w standardowych połączeniach sieciowych między urządzeniami takimi jak przełączniki. Jego działanie opiera się na przesyłaniu danych bit po bicie, co jest nieefektywne w przypadku dużych ilości danych, w przeciwieństwie do sieci Ethernet, które mogą transmitować dane równolegle. Z kolei kabel światłowodowy, choć zapewnia wysoką szybkość transmisji i odporność na zakłócenia elektromagnetyczne, charakteryzuje się inną budową fizyczną i działaniem. Wykorzystuje on światło do przesyłu danych i jest używany głównie na duże odległości w sieciach szkieletowych, a nie w typowych połączeniach przełączników w lokalnej sieci komputerowej. Ethernetowy kabel prosty, najbardziej popularny w sieciach lokalnych, służy do łączenia urządzeń o różnych funkcjach, takich jak komputer z przełącznikiem lub routerem. Kabel prosty nie zmienia konfiguracji przewodów, co oznacza, że dane transmitowane w ten sposób muszą trafiać do urządzenia, które automatycznie rozpoznaje, jak odebrać i wysłać sygnał. W sytuacji przedstawionej na schemacie, kabel prosty nie będzie odpowiedni do bezpośredniego połączenia dwóch przełączników bez wsparcia funkcji automatycznego przełączania MDI/MDI-X. Zrozumienie różnic między tymi typami kabli jest kluczowe dla projektowania wydajnych i funkcjonalnych sieci komputerowych, a błędna identyfikacja może prowadzić do problemów z komunikacją sieciową i wydajnością.

Pytanie 37

Jaki typ macierzy dyskowych zapewnia tak zwany mirroring dysków?

A. RAID-5
B. RAID-0
C. RAID-1
D. RAID-3
RAID-0 to technologia, która dzieli dane na kilka dysków, co zwiększa wydajność, ale nie oferuje żadnej redundancji. W przypadku awarii jednego z dysków, wszystkie dane są tracone. W praktyce RAID-0 jest często stosowany w systemach, gdzie priorytetem jest szybkość zapisu i odczytu danych, na przykład w gamingowych komputerach stacjonarnych. RAID-3 wykorzystuje dysk parzystości do ochrony danych, ale nie jest on powszechnie używany, ponieważ nie zapewnia wysokiej wydajności przy operacjach zapisu. RAID-5 łączy zarówno rozdzielanie danych, jak i parzystość, co daje większą niezawodność niż RAID-0, ale nadal nie odpowiada na fundamentalne założenia mirroringu, ponieważ nie tworzy pełnej kopii danych na wszystkich dyskach. Typowym błędem jest mylenie przypadków, w których zależy nam na wydajności, a nie na bezpieczeństwie danych. Kluczowe jest zrozumienie, że RAID-1 jest jedynym rozwiązaniem w odpowiedzi na pytanie o mirroring, natomiast inne poziomy RAID są projektowane z różnymi celami, które nie obejmują czystej redundantności danych.

Pytanie 38

Po zainstalowaniu z domyślnymi uprawnieniami, system Windows XP nie obsługuje formatu systemu plików

A. EXT
B. NTFS
C. FAT16
D. FAT32
Odpowiedź "EXT" jest poprawna, ponieważ system Windows XP nie obsługuje systemu plików EXT, który jest standardowym systemem plików stosowanym w systemach operacyjnych Linux. Windows XP obsługuje inne systemy plików, takie jak NTFS, FAT16 i FAT32, ale nie EXT. Praktyczne zastosowanie tej wiedzy polega na tym, że podczas pracy z systemem Windows XP nie będzie możliwości montowania partycji sformatowanych w systemie EXT, co może być istotne dla administratorów systemów, którzy muszą integrować urządzenia z różnymi systemami operacyjnymi. Zrozumienie poszczególnych systemów plików jest kluczowe w kontekście zarządzania danymi i dostępem do nich w złożonych środowiskach informatycznych. Stosowanie odpowiedniego systemu plików w zależności od OS zapewnia optymalną wydajność oraz bezpieczeństwo danych.

Pytanie 39

Ustal rozmiar klastra na podstawie zamieszczonego fragmentu komunikatu systemu WINDOWS, który pojawia się po zakończeniu działania programu format a:

1 457 664 bajtów całkowitego miejsca na dysku.
1 457 664 bajtów dostępnych na dysku.

      512 bajtów w każdej jednostce alokacji.
    2 847 jednostek alokacji dostępnych na dysku.

       12 bitów w każdym wpisie tabeli FAT.
A. 1 457 664 bajtów
B. 0,5 KB
C. 512 KB
D. 12 bitów
Pierwsza odpowiedź mówi o całkowitym miejscu na dysku, a nie o rozmiarze klastra. 1 457 664 bajtów to suma przestrzeni, którą można wykorzystać na dysku. Druga odpowiedź 512 KB to kompletny strzał w dziesiątkę, bo sugeruje, że klaster jest wielki jak kilkaset kilobajtów. W rzeczywistości w FAT mamy do czynienia z kilkoma setkami bajtów. Większe klastry znacznie podniosłyby minimalny rozmiar pliku, co mogłoby prowadzić do sporych strat przestrzeni, zwłaszcza przy malutkich plikach. Odpowiedź numer trzy odnosi się do bitów w tabeli FAT, a te 12 bitów to wartość dla FAT12, więc nie ma to związku z rozmiarem klastrów. Często myli się klastery z innymi jednostkami alokacji czy indeksacji, co prowadzi do błędów w zrozumieniu efektywności i organizacji danych na dysku. Ważne jest, żeby odróżniać fizyczne i logiczne jednostki pamięci w systemach plików, bo to pomaga zrozumieć, jak działa system operacyjny i zarządzanie pamięcią masową.

Pytanie 40

W lokalnej sieci protokołem odpowiedzialnym za dynamiczną konfigurację adresów IP jest

A. FTP
B. DHCP
C. TCP/IP
D. DNS
Wybranie odpowiedzi, która nie jest protokołem DHCP, pokazuje, że może jest jakieś nieporozumienie w temacie ról różnych protokołów w sieciach komputerowych. Na przykład, DNS to protokół, który tłumaczy nazwy domenowe na adresy IP, więc jest ważny dla surfowania po Internecie, ale nie zajmuje się przydzielaniem adresów IP. TCP/IP, z kolei, to zestaw protokołów do komunikacji w sieciach, ale nie ma nic wspólnego z dynamicznym przydzielaniem adresów IP. A FTP, no cóż, to protokół do przesyłania plików, a nie do przydzielania adresów. Te pomyłki mogą wynikać z mylenia funkcji różnych protokołów. Każdy z nich ma swoją rolę w sieci, ale tylko DHCP jest stworzony do tego, żeby dynamicznie przydzielać adresy IP w czasie rzeczywistym. Warto zrozumieć te różnice, bo to naprawdę ważne dla dobrego zarządzania nowoczesnymi sieciami.
Strona wykorzystuje pliki cookies do poprawy doświadczenia użytkownika oraz analizy ruchu. Szczegóły