Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 30 maja 2025 16:33
  • Data zakończenia: 30 maja 2025 16:53

Egzamin niezdany

Wynik: 18/40 punktów (45,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Do czego służy magistrala danych w systemach mechatronicznych?

A. Chłodzenia komponentów
B. Zasilania urządzeń
C. Przesyłania sygnałów między komponentami
D. Mocowania elementów mechanicznych
Pozostałe odpowiedzi sugerują inne funkcje, które magistrala mogłaby potencjalnie pełnić, ale są one niepoprawne w kontekście jej rzeczywistego zastosowania. Magistrala danych nie służy do zasilania urządzeń. Zasilanie to proces dostarczania energii elektrycznej do komponentów systemu, który zazwyczaj realizowany jest przez dedykowane przewody zasilające i nie jest związany z przesyłem danych. Również chłodzenie komponentów nie jest funkcją magistrali danych. Chłodzenie odbywa się przez systemy mechaniczne, takie jak wentylatory czy radiatory, które odprowadzają ciepło z elementów elektronicznych. Jest to kluczowe dla utrzymania stabilnych warunków pracy, ale nie ma związku z funkcją komunikacji danych. Mocowanie elementów mechanicznych to z kolei proces związany z fizycznym łączeniem części systemu, co realizowane jest za pomocą śrub, zacisków czy innych mechanicznych uchwytów, a nie przez magistralę danych. Takie myślenie może wynikać z błędnego zrozumienia roli magistrali jako centralnego punktu komunikacyjnego, co może być mylnie interpretowane jako centralny punkt zasilania czy chłodzenia. Tego typu błędne interpretacje można jednak z łatwością wyeliminować poprzez odpowiednie zrozumienie podstawowych funkcji każdego z systemów wchodzących w skład mechatroniki.

Pytanie 2

W systemie mechatronicznym planowane jest użycie sieci polowej AS-i w wersji 2.0. Jaką maksymalną ilość urządzeń podrzędnych jedno urządzenie główne (master) może obsługiwać?

A. 24 urządzenia
B. 64 urządzenia
C. 32 urządzenia
D. 31 urządzeń
Odpowiedź 31 urządzeń jest prawidłowa, ponieważ standard AS-i w wersji 2.0 rzeczywiście pozwala na podłączenie maksymalnie 31 urządzeń podporządkowanych do jednego urządzenia nadrzędnego (master). Taki system jest powszechnie stosowany w automatyce przemysłowej, gdzie istnieje potrzeba efektywnego zarządzania dużą liczbą elementów wykonawczych i czujników. W praktyce, to oznacza, że jedno urządzenie master może obsługiwać różnorodne aplikacje, takie jak kontrola oświetlenia, monitorowanie procesów czy zarządzanie napędami. Ponadto, standard AS-i zapewnia łatwość konfiguracji i integracji z innymi systemami automatyki, co czyni go popularnym wyborem w złożonych instalacjach. Zrozumienie możliwości sieci AS-i oraz jej ograniczeń jest kluczowe dla inżynierów, projektantów systemów i techników zajmujących się automatyzacją, aby móc skutecznie projektować i wdrażać rozwiązania w różnych warunkach przemysłowych.

Pytanie 3

Dane techniczne zamieszczone w tabeli dotyczą

Rodzaj cieczy hydraulicznejolej mineralny
Zakres temperatury pracy-25°C do +80°C
Standardowa filtracja cieczy hydraulicznej90 μm
Zakres lepkości cieczy hydraulicznej16 mm²/s do 200 mm²/s
Poziom głośności65 dB (A)
Napięcie zasilania silnika230 V 50 Hz, 3x400 V 50 Hz
Napięcie zasilania rozdzielaczy24 V DC, 230 V 50 Hz
Pojemność nominalna zbiornika7 dm³20 dm³

A. rozdzielacza pneumatycznego.
B. rozdzielacza hydraulicznego.
C. zasilacza hydraulicznego.
D. sprężarki powietrza.
Wybór rozdzielacza pneumatycznego, sprężarki powietrza lub rozdzielacza hydraulicznego jako odpowiedzi może wynikać z niepełnego zrozumienia funkcji i zastosowań tych urządzeń. Rozdzielacz pneumatyczny jest elementem systemów pneumatycznych, które działają na zasadzie sprężonego powietrza. Tego typu urządzenia nie wykorzystują cieczy hydraulicznych ani nie wymagają filtracji, co stanowi fundamentalną różnicę w porównaniu do zasilaczy hydraulicznych. Sprężarki powietrza zajmują się przetwarzaniem powietrza, a nie cieczy, co również sprawia, że ich dane techniczne nie są zgodne z informacjami zawartymi w tabeli. Rozdzielacz hydrauliczny natomiast może być mylony z zasilaczem hydrauliczny, lecz pełni inną funkcję, polegającą na kierowaniu przepływu cieczy hydraulicznej w systemie. Brak umiejętności rozróżnienia między tymi urządzeniami może prowadzić do błędnych wniosków, dlatego ważne jest, aby zrozumieć, że każdy z wymienionych elementów ma unikalne właściwości i zastosowania. Przykłady zastosowań, takie jak systemy sterowania w hydraulice, wymagają dokładnego przemyślenia, jakie urządzenia będą użyte. Kluczowe dla zrozumienia jest również zapoznanie się z dokumentacją techniczną oraz standardami branżowymi, które dostarczają istotnych informacji o parametrach technicznych i wymaganiach dla poszczególnych komponentów systemów hydraulicznych.

Pytanie 4

W dokumentacji dotyczączej prasy pneumatycznej jako kluczowy parametr eksploatacji określono ciśnienie zasilające na poziomie 0,6 MPa ± 5%. Który z podanych pomiarów nie mieści się w akceptowalnym zakresie?

A. 630 000 Pa
B. 600 kPa
C. 0,58 MPa
D. 650 kPa
Odpowiedź '650 kPa' jest właściwa, ponieważ znajduje się poza dopuszczalnym zakresem ciśnienia zasilania dla prasy pneumatycznej. Zgodnie z dokumentacją, wartość ciśnienia nominalnego wynosi 0,6 MPa, a dopuszczalne odchylenie wynosi ± 5%. Oznacza to, że ciśnienie powinno mieścić się w przedziale od 0,57 MPa do 0,63 MPa. Wartość 650 kPa, co odpowiada 0,65 MPa, przekracza górną granicę tego zakresu, co może prowadzić do niebezpiecznych sytuacji podczas pracy urządzenia. Przykładowo, w przypadku nadmiernego ciśnienia dochodzi do zwiększonego ryzyka uszkodzenia elementów prasy, co może skutkować awarią maszyny oraz zagrożeniem dla operatorów. W praktyce, kontrola i monitorowanie ciśnienia zasilania jest kluczowe dla zapewnienia prawidłowej pracy i bezpieczeństwa urządzeń pneumatycznych. Przestrzeganie tych norm jest zgodne z wytycznymi branżowymi, które zalecają regularne kalibracje oraz audyty systemów ciśnieniowych.

Pytanie 5

Podczas serwisowania układów hydraulicznych, jakie działanie jest kluczowe?

A. Sprawdzenie jakości farby na urządzeniach
B. Usuwanie zanieczyszczeń z powierzchni zewnętrznych
C. Malowanie rurociągów
D. Sprawdzenie szczelności połączeń
Sprawdzenie szczelności połączeń w układach hydraulicznych to kluczowy krok w procesie serwisowania. Wszelkie nieszczelności mogą prowadzić do wycieków płynów, co z kolei może skutkować spadkiem ciśnienia roboczego, co jest niebezpieczne dla całego systemu. Nieszczelności mogą także prowadzić do zanieczyszczenia płynu hydraulicznego, co ma negatywny wpływ na wydajność i trwałość pompy oraz innych elementów układu. Regularne sprawdzanie szczelności pomaga w wykrywaniu potencjalnych problemów zanim doprowadzą one do poważniejszych awarii. Dzięki temu można zapewnić dłuższą żywotność układu i uniknąć kosztownych napraw. Stosując odpowiednie metody diagnostyczne, takie jak testy ciśnieniowe czy użycie specjalnych płynów detekcyjnych, można zlokalizować nawet najmniejsze nieszczelności. W praktyce, konserwacja i sprawdzanie szczelności połączeń jest nie tylko dobrą praktyką, ale wręcz standardem w branży, który zapewnia bezpieczne i efektywne działanie układów hydraulicznych.

Pytanie 6

Pomiar natężenia prądu zasilającego silnik przeprowadza się w celu ustalenia

A. prędkości obrotowej silnika
B. obciążenia silnika
C. poślizgu silnika
D. temperatury pracy silnika
Pomiar natężenia prądu zasilania silnika jest kluczowym elementem w ocenie obciążenia, które silnik musi pokonać w trakcie pracy. W praktyce, jeśli silnik napotyka na większy opór, na przykład przy rozpoczęciu pracy przy pełnym obciążeniu, natężenie prądu wzrasta, co skutkuje koniecznością dostarczenia większej mocy. Zrozumienie relacji między natężeniem prądu a obciążeniem silnika jest istotne, szczególnie w kontekście monitorowania wydajności i optymalizacji pracy maszyn. W standardach branżowych, takich jak IEC 60034 dotyczących silników elektrycznych, uwzględnia się pomiary prądowe jako część regularnych inspekcji. Gromadzenie takich danych pozwala na przewidywanie awarii i planowanie konserwacji, co przekłada się na dłuższą żywotność sprzętu oraz efektywność energetyczną. Prawidłowe pomiary natężenia prądu umożliwiają również dostosowanie parametrów pracy silnika do aktualnych potrzeb roboczych, co jest kluczowe w automatyzacji procesów przemysłowych.

Pytanie 7

Najwyższą precyzję pomiaru rezystancji uzwojenia silnika elektrycznego zapewnia metoda

A. pomiaru bezpośredniego omomierzem cyfrowym
B. mostkowa przy zastosowaniu mostka Wheatstone'a lub Thomsona
C. pomiaru bezpośredniego omomierzem analogowym
D. pośrednia przy użyciu woltomierza oraz amperomierza
Pomiar rezystancji uzwojeń silnika elektrycznego przy użyciu woltomierza i amperomierza, mimo że jest techniką powszechnie stosowaną, nie gwarantuje wysokiej dokładności. Ta metoda opiera się na zastosowaniu prawa Ohma i pomiarze napięcia oraz natężenia prądu, jednak jest podatna na błędy, które mogą wynikać z wpływu reaktancji indukcyjnej oraz oporu wewnętrznego przyrządów pomiarowych. Takie pomiary mogą być zniekształcone przez różne czynniki, jak np. zmiany temperatury, co wpływa na rezystancję i może prowadzić do nieprecyzyjnych wyników. W przypadku pomiaru bezpośredniego omomierzem cyfrowym czy analogowym, również można napotkać na problemy związane z dokładnością. Omomierze cyfrowe, chociaż bardziej precyzyjne niż ich analogowe odpowiedniki, mogą wprowadzać błędy w pomiarze w sytuacjach, gdy rezystancje są bardzo małe, na co wskazuje ich specyfikacja. Z kolei omomierze analogowe mogą być mniej precyzyjne z powodu wpływu czynnika ludzkiego, ponieważ odczyt wymaga manualnej interpretacji wskazania. W praktyce, pomiar rezystancji uzwojeń silników elektrycznych wymaga metod, które minimalizują te błędy i zapewniają wiarygodność wyników, co czyni pomiar mostkowy najbardziej odpowiednim rozwiązaniem dla takich zastosowań. Porozumienie o właściwych metodach pomiarowych, zgodne z normami branżowymi, jest kluczowe dla zapewnienia wysokiej jakości i bezpieczeństwa w pracy z urządzeniami elektrycznymi.

Pytanie 8

Po przeprowadzeniu naprawy układu pneumatycznego zszywacza tapicerskiego zauważono, że zszywki nie są całkowicie wbite w drewno. Co należy zrobić w pierwszej kolejności?

A. sprawdzić jakość zszywek
B. ustawić odpowiednie ciśnienie robocze
C. zmierzyć siłę zszywania
D. ocenić działanie układu roboczego zszywacza
Regulacja ciśnienia roboczego jest kluczowym krokiem w diagnostyce problemów z niepełnym wbijaniem zszywek w drewno. W układzie pneumatycznym, odpowiednie ciśnienie powietrza wpływa bezpośrednio na siłę zszywania oraz efektywność pracy zszywacza. Zbyt niskie ciśnienie może spowodować, że zszywki nie będą miały wystarczającej energii do wniknięcia w materiał, co skutkuje ich niepełnym wbijaniem. Z kolei zbyt wysokie ciśnienie może prowadzić do uszkodzenia materiału lub zszywek, a także do niestabilnego działania narzędzia. W praktyce, aby zapewnić optymalne parametry pracy, powinno się regularnie kontrolować ciśnienie w układzie, zgodnie z zaleceniami producenta narzędzia. Warto również przeprowadzać okresowe przeglądy i konserwację układu pneumatycznego, co pozwoli na uniknięcie wielu problemów związanych z jakością zszywania. Prawidłowe ustawienie ciśnienia to zatem nie tylko element diagnostyki, ale także kluczowy aspekt utrzymania wysokiej jakości pracy zszywacza.

Pytanie 9

Jakie dane powinny być zdefiniowane w programie sterującym jako dane typu BOOL?

A. Binarne
B. Dziesiętne
C. Heksadecymalne
D. Oktadecymalne
Wybór odpowiedzi dotyczącej danych oktadecymalnych, dziesiętnych lub heksadecymalnych jest nieprawidłowy z kilku powodów. Po pierwsze, dane te odnoszą się do różnych systemów liczbowych, które są używane do reprezentacji liczb, a nie do definiowania wartości logicznych typu BOOL. W systemie dziesiętnym liczby są reprezentowane w oparciu o podstawę 10, co czyni go najbardziej naturalnym sposobem liczenia dla ludzi, ale nie jest odpowiedni dla zmiennych BOOL, które potrzebują jedynie dwóch stanów. Z kolei system heksadecymalny, oparty na podstawie 16, jest często używany w programowaniu do reprezentacji dużych wartości liczbowych w bardziej kompaktowej formie, jednak także nie jest on adekwatny do zastosowania w kontekście zmiennych logicznych. System oktadecymalny, będący pochodną systemu ósemkowego, również nie ma zastosowania w kontekście zdecydowania, czy zmienna ma wartość prawda czy fałsz. Typowe błędy myślowe prowadzące do takiego wniosku to mylenie różnych systemów liczbowych z pojęciem zmiennych logicznych. W praktyce, prawidłowe korzystanie z danych typu BOOL wymaga zrozumienia, że są to zmienne binarne o ograniczonej liczbie stanów, a nie złożonych przedstawień liczbowych.

Pytanie 10

Jak określa się cechę sterownika PLC, która umożliwia zachowanie aktualnych wartości operandów użytych w programie podczas przełączania z trybu RUN na STOP lub po utracie zasilania?

A. Strobowanie
B. Redundancja
C. Synchronizacja
D. Remanencja
Każda z niepoprawnych odpowiedzi na postawione pytanie odnosi się do koncepcji, które są istotne w kontekście sterowania i systemów automatyki, jednak nie odpowiadają one na pytanie o zachowanie wartości operandów w sytuacjach krytycznych. Redundancja odnosi się do systemów zapasowych, które mają na celu zwiększenie niezawodności przez wprowadzenie dodatkowych elementów; jednak nie ma ona zastosowania w kontekście zachowywania wartości operacyjnych w PLC. Strobowanie z kolei dotyczy technik synchronizacji sygnałów w czasie i nie odnosi się do konserwacji wartości zmiennych po wyłączeniu. Synchronizacja jest procesem koordynowania działań wielu systemów lub elementów, co również nie ma bezpośredniego wpływu na zachowanie stanu operacyjnego w PLC. Te koncepcje mylone są często z remanencją, co może prowadzić do błędnych interpretacji funkcji sterowników PLC. Kluczowe jest zrozumienie, że remanencja odnosi się bezpośrednio do zachowania stanu pomimo zmian w zasilaniu, podczas gdy inne terminy koncentrują się na różnych aspektach działania systemów automatyki, co może prowadzić do utraty danych w sytuacjach awaryjnych, jeśli zostaną źle zrozumiane.

Pytanie 11

Jak często należy wykonywać przeglądy techniczne w urządzeniach i systemach mechatronicznych?

A. Minimum raz do roku
B. Co trzy lata
C. Raz na pięć lat
D. Co dwa lata
Odpowiedź "Co najmniej raz w roku" jest zgodna z obowiązującymi przepisami prawa oraz najlepszymi praktykami w zarządzaniu urządzeniami i systemami mechatronicznymi. Regularne przeglądy techniczne, przeprowadzane co najmniej raz w roku, mają kluczowe znaczenie dla zapewnienia bezpieczeństwa użytkowników oraz niezawodności operacyjnej urządzeń. Takie przeglądy pozwalają na wczesne wykrycie potencjalnych usterek, co w konsekwencji minimalizuje ryzyko awarii. Przykładem może być systemy automatyki przemysłowej, w których regularne inspekcje komponentów, takich jak czujniki czy siłowniki, mogą zapobiec kosztownym przestojom produkcyjnym. Ponadto, zgodnie z normą PN-EN ISO 13849-1, regularne przeglądy są niezbędne do zapewnienia zgodności systemów z wymaganiami bezpieczeństwa. Wiedza na temat częstotliwości przeglądów jest kluczowa dla inżynierów i techników, którzy odpowiadają za operacyjną gotowość i bezpieczeństwo systemów mechatronicznych.

Pytanie 12

Obniżenie błędu statycznego, skrócenie czasu odpowiedzi, pogorszenie jakości regulacji przy niższych częstotliwościach, wzmocnienie szumów z przetwornika pomiarowego charakteryzuje działanie regulatora

A. I
B. P
C. PD
D. PID
Regulator PD (proporcjonalno-derywacyjny) jest stosowany w systemach regulacji, gdzie kluczowe znaczenie ma szybka reakcja na zmiany w wartościach regulowanych. Jego działanie polega na ograniczeniu błędu statycznego oraz skróceniu czasu reakcji, co czyni go idealnym rozwiązaniem w aplikacjach wymagających dynamicznej regulacji. Przykładami zastosowania regulatora PD są systemy automatyki przemysłowej, gdzie szybkie dostosowanie parametrów, takich jak temperatura czy ciśnienie, jest niezbędne dla zachowania efektywności procesów produkcyjnych. W praktyce, zastosowanie regulatora PD może prowadzić do znacznego zmniejszenia czasu potrzebnego na osiągnięcie wartości docelowej, co jest zgodne z najlepszymi praktykami inżynieryjnymi. Jednakże, należy pamiętać, że przy niższych częstotliwościach może dojść do pogorszenia jakości regulacji, co jest istotnym czynnikiem, który warto uwzględnić podczas projektowania systemu regulacji.

Pytanie 13

W podręczniku obsługi silnika zasilanego napięciem 400 V i kontrolowanego przez PLC powinna być zawarta informacja: Przed rozpoczęciem prac konserwacyjnych należy odłączyć wszystkie obwody zasilające.

A. zabezpieczyć je przed uruchomieniem i sprawdzić, czy nie ma napięcia
B. uziemić silnik oraz uziemić sterownik przy użyciu urządzenia do uziemiania
C. zabezpieczyć je przed uruchomieniem oraz zewrzeć obudowę silnika z uziemieniem
D. sprawdzić, czy nie ma napięcia i zewrzeć złącza silnika
Wybór odpowiedzi, które sugerują zabezpieczenie obwodów w sposób niezgodny z normami, może prowadzić do poważnych konsekwencji. Odpowiedzi takie jak "uziemić silnik" czy "zewrzeć zaciski silnika" wprowadzają niepoprawne i potencjalnie niebezpieczne praktyki. Uziemienie silnika jest techniką, która powinna być stosowana tylko w określonych sytuacjach, gdyż niewłaściwe jej zastosowanie może prowadzić do porażenia prądem lub uszkodzenia urządzenia. Procedura zewrzenia zacisków silnika również nie jest standardowym wymaganiem i może prowadzić do uszkodzeń, jeśli nie jest przeprowadzana przez wykwalifikowany personel. Ponadto, wiele osób może błędnie interpretować potrzebę uziemienia jako wystarczające zabezpieczenie, co jest nieprawidłowe. Z kolei sprawdzanie braku napięcia powinno być zawsze obligatoryjne, jednak nie może być jedynym środkiem ostrożności. Ignorowanie tych zasad prowadzi do typowych błędów myślowych, takich jak niedocenianie ryzyka przy pracy z urządzeniami elektrycznymi, co może mieć tragiczne skutki. Właściwe zrozumienie i stosowanie zasad bezpieczeństwa jest kluczowe, aby uniknąć wypadków i zapewnić bezpieczeństwo własne oraz innych pracowników w środowisku przemysłowym.

Pytanie 14

Schemat połączeń układu hydraulicznego powinien być tworzony zgodnie z kierunkiem przepływu sygnału, czyli od dołu do góry. Z perspektywy elementów zasilających, wskaż właściwą sekwencję poszczególnych części układu hydraulicznego.

A. Zawory reagujące na sygnały obiektowe, zawory robocze, zawory sterujące, elementy wykonawcze
B. Zawory sterujące, zawory reagujące na sygnały obiektowe, zawory robocze, elementy wykonawcze
C. Zawory reagujące na sygnały obiektowe, zawory sterujące, zawory robocze, elementy wykonawcze
D. Zawory reagujące na sygnały obiektowe, zawory sterujące, elementy wykonawcze, zawory robocze
Poprawna odpowiedź wskazuje na prawidłowy układ elementów w hydraulice, gdzie najpierw umieszczamy zawory reagujące na sygnały obiektowe, a następnie zawory sterujące, robocze i na końcu elementy wykonawcze. Taki układ jest zgodny z zasadami projektowania systemów hydraulicznych, które zalecają, aby sygnały były przekazywane w kierunku od źródła zasilania do elementów wykonawczych. Przykładem praktycznym może być układ hydrauliczny w maszynach budowlanych, gdzie precyzyjne sterowanie ruchem siłowników jest kluczowe dla efektywności pracy. Dobrze zaprojektowany układ hydrauliczny nie tylko zwiększa wydajność, ale także poprawia bezpieczeństwo operacji, ponieważ odpowiednie sterowanie pozwala na szybsze i bardziej precyzyjne reakcje na zmiany w otoczeniu. W branży hydraulicznej, zgodność z normami ISO oraz PN EN jest istotna, ponieważ przyczynia się do zwiększenia niezawodności i trwałości systemów. Zastosowanie takiej kolejności elementów pozwala również na łatwiejsze diagnozowanie usterek oraz optymalizację procesu serwisowego.

Pytanie 15

Jakiego czujnika należy używać do obserwacji temperatury uzwojeń silnika elektrycznego?

A. Warystora
B. Hallotronu
C. Tensometru
D. Termistora
Wybór niewłaściwego czujnika do monitorowania temperatury uzwojeń silnika elektrycznego może prowadzić do nieefektywnego funkcjonowania urządzenia oraz uszkodzenia jego komponentów. Hallotron, na przykład, jest sensor sprzężenia magnetycznego, który detekuje pole magnetyczne, ale nie jest zaprojektowany do pomiaru temperatury. Jego zastosowanie w monitorowaniu temperatury uzwojeń silnika byłoby nieodpowiednie, ponieważ jego działanie opiera się na zupełnie innych zasadach fizycznych. Warystor, będący elementem ochrony przed przepięciami, również nie nadaje się do tego celu, gdyż jego funkcja polega na zmniejszaniu napięcia, a nie na pomiarze temperatury. Użycie tensometru, z kolei, jest mylne, ponieważ ten czujnik służy do pomiaru odkształceń mechanicznych, co nie ma związku z monitorowaniem temperatury. Często osoby mylą różne typy czujników, nie rozumiejąc ich specyfiki oraz zastosowania. Kluczowe jest zrozumienie, że każdy czujnik ma swoją unikalną funkcję oraz przeznaczenie, a wybór niewłaściwego czujnika może prowadzić do błędnych pomiarów, co wpływa na bezpieczeństwo i wydajność urządzeń elektrycznych.

Pytanie 16

Wskaż operator w języku IL, który musi być użyty w programie sterującym, aby zrealizować wywołanie bloku funkcyjnego FUN_1?

A. LD FUN_1
B. CAL FUN_1
C. RET FUN_1
D. ST FUN_1
Operator "CAL" w języku IL (Instruction List) jest kluczowym elementem programowania w systemach sterowania, pozwalającym na efektywne wywoływanie bloków funkcyjnych, takich jak FUN_1. Użycie operatora "CAL" oznacza, że w danym punkcie programu następuje przekazanie kontroli do zdefiniowanej funkcji, co jest niezbędne dla realizacji zadań automatyzacji procesów. Bloki funkcyjne stanowią podstawowy element programowania w systemach PLC, a ich wywoływanie za pomocą "CAL" pozwala na modularne podejście do tworzenia aplikacji. Przykładowo, w przypadku złożonych systemów, operator ten umożliwia wielokrotne wykorzystanie tych samych bloków funkcyjnych w różnych częściach programu, co sprzyja optymalizacji kodu i zmniejsza ryzyko błędów. W praktyce, każdy programista PLC powinien być dobrze zaznajomiony z tym operatorem oraz jego zastosowaniami, aby efektywnie projektować systemy automatyzacji, zgodnie z najlepszymi praktykami branżowymi.

Pytanie 17

W jakim celu stosuje się enkodery w systemach automatyki?

A. Redukcja zużycia energii
B. Poprawa jakości dźwięku
C. Zwiększanie mocy silnika
D. Pomiar przemieszczenia i prędkości
Chociaż wydaje się, że enkodery mogą wpływać na różne aspekty działania systemów, nie zwiększają one mocy silnika. Moc silnika jest określana przez jego konstrukcję oraz zasilanie i nie jest bezpośrednio kontrolowana przez enkodery. Dlatego myślenie, że enkoder mógłby zwiększyć moc, jest błędnym przekonaniem. Co więcej, enkodery same w sobie nie redukują zużycia energii. Ich funkcją jest dostarczanie informacji o położeniu i prędkości, a nie bezpośrednia optymalizacja zużycia energii. Jednak dokładne dane z enkoderów mogą pomóc systemom sterującym w bardziej efektywnym zarządzaniu silnikami, co może pośrednio prowadzić do oszczędności energii. Ostatnia opcja, poprawa jakości dźwięku, jest całkowicie niepowiązana z funkcją enkoderów. Enkodery nie mają wpływu na jakość dźwięku, ponieważ ich zadaniem jest przetwarzanie sygnałów mechanicznych na elektryczne do precyzyjnego pomiaru ruchu, a nie przetwarzanie dźwięku. Te błędne przekonania mogą wynikać z niedokładnego zrozumienia funkcji i zastosowań enkoderów w systemach automatyki, które są bardziej złożone niż mogłoby się wydawać na pierwszy rzut oka.

Pytanie 18

Który z wymienionych kwalifikatorów działań, wykorzystywanych w metodzie SFC, może być pominięty w opisie bloku akcji, nie wpływając na sposób realizacji przypisanego w nim działania?

A. S
B. N
C. R
D. D
Wybierając inne kwalifikatory, można napotkać na kilka kluczowych nieporozumień dotyczących ich funkcji w metodzie SFC. Kwalifikator "D" oznacza działanie, które jest realizowane w danej chwili, co sugeruje konieczność podania dodatkowych warunków dla jego wykonania. Pominięcie tego kwalifikatora prowadziłoby do niejasności co do tego, kiedy dokładnie działanie powinno być zainicjowane. Kwalifikator "R" sygnalizuje, że działanie powinno być powtarzane, co jest kluczowe w kontekście zautomatyzowanych procesów, w których czas cyklu i sekwencje powtórzeń mają fundamentalne znaczenie dla efektywności. W przypadku jego pominięcia, efektor może nie działać zgodnie z zamierzeniem, co prowadzi do nieefektywności w operacjach. Kwalifikator "S" z kolei odnosi się do stanu, w którym powinno nastąpić określone działanie. Pominięcie go w opisie bloku akcji również może spowodować, że proces nie będzie realizowany zgodnie z zamierzeniem, co może mieć negatywne skutki w kontekście bezpieczeństwa i wydajności procesów. W praktyce, zrozumienie roli wszystkich kwalifikatorów oraz ich wpływu na wykonanie danego działania jest kluczowe dla właściwego modelowania procesów w automatyce przemysłowej. Typowe błędy myślowe związane z tym zagadnieniem to ignorowanie znaczenia poszczególnych kwalifikatorów, co prowadzi do uproszczeń i nieprawidłowych wniosków na temat działania systemu.

Pytanie 19

Silniki komutatorowe jako urządzenia napędowe w urządzeniach mechatronicznych nie powinny być stosowane w

A. pomieszczeniach o niskiej temperaturze
B. zadaszonej hali produkcyjnej
C. pomieszczeniach zagrożonych wybuchem
D. pomieszczeniach klimatyzowanych
Niewłaściwy wybór odpowiedzi może wynikać z niepełnego zrozumienia zasad działania silników komutatorowych oraz specyfiki środowisk roboczych. Zadaszone hale produkcyjne oraz pomieszczenia klimatyzowane są miejscami, w których silniki te mogą być używane w sposób bezpieczny, ponieważ nie stwarzają one warunków sprzyjających wybuchowi. Zastosowanie silników komutatorowych w takich konfiguracjach jest powszechną praktyką, szczególnie tam, gdzie nie ma ryzyka wystąpienia substancji łatwopalnych. Ponadto, w pomieszczeniach o niskiej temperaturze, silniki komutatorowe również mogą być stosowane, choć należy pamiętać o ich możliwościach pracy w niskotemperaturowych warunkach oraz o ewentualnych ograniczeniach związanych z ich wydajnością. Wybór nieodpowiednich lokalizacji dla tych urządzeń często wynika z błędnych założeń dotyczących ich działania i bezpieczeństwa, co może prowadzić do poważnych konsekwencji. Dlatego kluczowe jest, aby osoby odpowiedzialne za dobór napędów mechatronicznych miały pełną wiedzę na temat ich zastosowania oraz możliwych zagrożeń, aby podejmować świadome decyzje. Przykłady dobrej praktyki wskazują na znaczenie analizy ryzyk oraz przestrzegania norm branżowych, takich jak np. ISO 13849, które regulują bezpieczeństwo maszyn i urządzeń w kontekście ich użytkowania w różnych warunkach.

Pytanie 20

Jaki program jest używany do gromadzenia wyników pomiarów, ich wizualizacji, zarządzania procesem, alarmowania oraz archiwizacji danych?

A. KiCAD
B. AutoCAD
C. WinCC
D. InteliCAD
Odpowiedzi takie jak KiCAD, InteliCAD oraz AutoCAD wskazują na pewne nieporozumienia dotyczące zastosowania tych programów. KiCAD jest narzędziem do projektowania obwodów elektronicznych, skupiającym się na tworzeniu schematów i płytek PCB. Jego funkcjonalności są całkowicie różne od tych wymaganych do zbierania danych pomiarowych i ich wizualizacji w kontekście kontroli procesów. Podobnie, InteliCAD jest platformą CAD, która służy do projektowania 2D i 3D, ale nie ma zastosowań w monitorowaniu procesów przemysłowych ani w zbieraniu wyników pomiarów. AutoCAD, z kolei, jest jednym z najbardziej znanych programów CAD do projektowania architektonicznego i inżynieryjnego, ale również nie jest przeznaczony do pracy z danymi pomiarowymi ani do automatyzacji procesów. Typowe błędy myślowe prowadzące do takich wyborów mogą wynikać z mylenia funkcji projektowych z funkcjami kontrolnymi. Użytkownicy mogą sądzić, że każdy program inżynieryjny może być użyty do monitorowania procesów, co nie jest prawdą. Kluczowe jest zrozumienie różnicy między programami dedykowanymi do projektowania a tymi, które są przeznaczone do automatyzacji i monitorowania procesów przemysłowych.

Pytanie 21

Zanieczyszczony element filtra oleju doprowadził do znacznego obniżenia efektywności układu smarowania. Co należy w takim przypadku zrobić?

A. przedmuchać wkład filtra przy użyciu sprężonego powietrza
B. wymienić wkład lub filtr
C. wyczyścić wkład filtra za pomocą wody destylowanej
D. usunąć zanieczyszczenia z wkładu filtra za pomocą szczotki drucianej
Próba przemywania wkładu filtra wodą destylowaną lub oczyszczania go szczotką drucianą jest podejściem, które nie tylko jest nieefektywne, ale również może prowadzić do dalszych problemów. Filtr oleju działa na zasadzie zatrzymywania zanieczyszczeń i cząstek w oleju silnikowym, a jego struktura nie jest przystosowana do wielokrotnego użycia. Używanie wody destylowanej może nie usunąć wszystkich zanieczyszczeń, a dodatkowo może wprowadzić wilgoć do systemu olejowego, co jest szkodliwe dla silnika. Czynność polegająca na czyszczeniu filtra szczotką drucianą może uszkodzić jego strukturę, co może doprowadzić do przedostawania się cząstek zanieczyszczeń do obiegu olejowego. Oprócz tego, przedmuchiwanie wkładu filtra sprężonym powietrzem może jedynie przesunąć zanieczyszczenia, ale nie usuwa ich w sposób skuteczny, co może prowadzić do dalszych problemów z przepływem oleju. W związku z tym, nieprzestrzeganie zasad dotyczących wymiany filtrów może skutkować nieodwracalnymi uszkodzeniami silnika, co podkreśla wagę stosowania się do standardów i dobrych praktyk w zakresie konserwacji pojazdów.

Pytanie 22

Jaką wartość częstotliwości powinno się ustawić w przetwornicy częstotliwości zasilającej silnik indukcyjny klatkowy z jedną parą biegunów, aby jego wał osiągał prędkość zbliżoną do 2400 obr./min?

A. 60 Hz
B. 30 Hz
C. 50 Hz
D. 40 Hz
Wybór innych częstotliwości, takich jak 30 Hz, 50 Hz czy 60 Hz, prowadzi do znacznych rozbieżności w osiąganej prędkości obrotowej silnika indukcyjnego klatkowego. Przy wyborze 30 Hz, zastosowany wzór na prędkość obrotową daje n = (120 * 30) / 1 = 3600 obr/min, co jest zbyt wysoką wartością, biorąc pod uwagę standardowe parametry pracy silników tego typu, które zwykle operują w zakresie do 2400 obr/min. W przypadku 50 Hz obliczenia wskazują na prędkość 6000 obr/min, co jest niemożliwe do osiągnięcia bez ryzyka uszkodzenia silnika, ponieważ nadmierne obroty mogą prowadzić do przegrzania i zniszczenia mechanizmów wewnętrznych. Z kolei 60 Hz, odpowiadające prędkości 7200 obr/min, zdecydowanie przekracza normalne operacyjne warunki dla standardowych silników jednofazowych i może prowadzić do awarii. Typowe błędy myślowe, które mogą prowadzić do takich nieprawidłowych wniosków, to ignorowanie zależności pomiędzy częstotliwością zasilania a wynikową prędkością obrotową oraz nieprawidłowe oszacowanie wpływu poślizgu, który zawsze występuje w silnikach indukcyjnych. Dla prawidłowego doboru częstotliwości zasilania kluczowe jest zrozumienie tych zależności oraz zastosowanie odpowiednich standardów przy pracy z falownikami i silnikami elektrycznymi.

Pytanie 23

Podczas pracy z siłownikiem hydraulicznym dostrzeżono drobne zadrapania na tłoczysku. Jak należy zlikwidować te rysy?

A. spawanie
B. polerowanie
C. chromowanie
D. lutowanie
Wybór lutowania jako metody usuwania rys na tłoczysku siłownika hydraulicznego jest nieodpowiedni, ponieważ lutowanie polega na łączeniu metali za pomocą materiału lutowniczego, a nie na usuwaniu uszkodzeń powierzchniowych. Proces ten może prowadzić do wprowadzenia dodatkowych naprężeń w materiale, co w kontekście elementów hydraulicznych narażonych na wysokie ciśnienie, może skutkować poważnymi awariami. Spawanie, z kolei, jest metodą, która również łączy materiały, jednak generuje znaczne ciepło, co może zmieniać strukturę metalową tłoczyska i wpływać na jego wytrzymałość. Obie te metody są zatem niewłaściwe w kontekście naprawy powierzchni, ponieważ mogą nie tylko nie usunąć rys, ale też wprowadzić dodatkowe problemy związane z integralnością materiału. Chromowanie, mimo że ma swoje zalety w zakresie zwiększenia odporności na korozję, nie jest procesem, który usuwa wady powierzchniowe, a jedynie może ich zakryć. W praktyce zastosowanie spawania lub lutowania do naprawy tłoczysk siłowników hydraulicznych prowadzi do poważnych błędów myślowych, gdyż koncentruje się na niewłaściwych metodach zamiast na odpowiednich technikach konserwacji, takich jak polerowanie, które jest zgodne z najlepszymi praktykami w branży hydraulicznej.

Pytanie 24

Jakie są różnice między blokiem funkcyjnym przerzutnika RS a blokiem przerzutnika SR w PLC?

A. Odwróceniem sygnałów Set i Reset
B. Przewagą sygnałów Set i Reset
C. Czasem reakcji
D. Ilością stanów pośrednich
Wybór odpowiedzi związanej z liczbą stanów pośrednich pokazuje, że możesz mieć niepełne zrozumienie tego, jak działają przerzutniki. Wydaje się, że myślisz, że RS i SR różnią się tylko ilością stanów, a to nie do końca tak jest. Oba działają na podstawie dwóch stanów: 0 i 1. Warto też zauważyć, że szybkość działania nie jest główną różnicą między nimi, chociaż faktycznie różne realizacje mogą reagować w różnym czasie. Kluczowe jest to, że przerzutnik SR może zmieniać stan, gdy oba sygnały są aktywne, a w RS musi być aktywny Set, żeby Reset nie miał wpływu. Pamiętaj, że negacja sygnałów Set i Reset dotyczy bardziej logiki w niektórych schematach, a niekoniecznie samej różnicy w działaniu tych przerzutników. Często spotykane błędy to pomijanie podstawowych zasad działania tych bloków funkcyjnych oraz brak zrozumienia ich w praktycznych zastosowaniach. Żeby skutecznie projektować systemy automatyki, warto naprawdę dobrze poznać te funkcjonalne różnice.

Pytanie 25

Falowniki używane w przetwornicach częstotliwości mają na celu regulację

A. prędkości obrotowej silnika, poprzez modyfikację wartości prądu zasilającego silnik
B. kierunku obrotów silnika, poprzez zmianę częstotliwości napięcia zasilającego silnik
C. mocy silnika, poprzez zmianę częstotliwości napięcia zasilającego silnik
D. prędkości obrotowej silnika, poprzez zmianę częstotliwości napięcia zasilającego silnik
Falowniki w przetwornicach częstotliwości odgrywają kluczową rolę w regulacji prędkości obrotowej silników. Poprzez zmianę częstotliwości napięcia zasilającego, falownik umożliwia dostosowanie prędkości obrotowej silnika do wymagań obciążenia, co jest istotne w wielu zastosowaniach przemysłowych, takich jak pompy, wentylatory czy taśmociągi. Dzięki tej technologii możliwe jest osiągnięcie większej efektywności energetycznej oraz redukcji kosztów operacyjnych. W przypadku silników asynchronicznych, zmiana częstotliwości zasilania bezpośrednio wpływa na prędkość obrotową, co pozwala na precyzyjne sterowanie procesami. W praktyce, zastosowanie falowników pozwala na unikanie skoków w prędkości obrotowej, co z kolei przekłada się na dłuższy czas eksploatacji urządzeń oraz zmniejszenie zużycia energii. Jest to zgodne z najlepszymi praktykami branżowymi, które promują zrównoważony rozwój oraz efektywność energetyczną w przemyśle.

Pytanie 26

Gdzie nie powinno się stosować urządzeń mechatronicznych z silnikiem komutatorowym?

A. W suszarni
B. W lakierni
C. W chłodni
D. W mleczarni
Wybór odpowiedzi sugerujących użycie urządzeń mechatronicznych z silnikami komutatorowymi w miejscach takich jak suszarnie, chłodnie czy mleczarnie jest niepoprawny z kilku istotnych powodów. W suszarniach, gdzie obecne są wysokie temperatury i potencjalnie łatwopalne materiały, iskrzenie może również stanowić zagrożenie, jednak ryzyko to nie jest tak wysokie jak w lakierniach. Użycie silników komutatorowych w takich środowiskach może być stosowane, ale wymaga odpowiednich zabezpieczeń. W chłodniach, gdzie dominują warunki niskotemperaturowe, iskrzenie silników komutatorowych nie jest typowym zagrożeniem, lecz ich zastosowanie może prowadzić do problemów z utrzymaniem stabilności termicznej, co jest kluczowe w przechowywaniu produktów. Mleczarnie charakteryzują się specyficznymi wymaganiami sanitarnymi, gdzie wprowadzenie silników mogących generować zanieczyszczenia, takie jak cząstki węgla, nie jest zalecane. W każdym z tych przypadków można poprawnie zastosować silniki innych typów, które są bardziej odpowiednie dla danego środowiska. Warto zauważyć, że zrozumienie zastosowania odpowiednich technologii w różnych kontekstach przemysłowych jest kluczowe dla zapewnienia efektywności oraz bezpieczeństwa pracy. Przykłady zastosowań innych typów silników oraz ich przystosowanie do specyficznych warunków mogą przyczynić się do optymalizacji procesów oraz eliminacji zbędnych ryzyk.

Pytanie 27

Którego z przetworników temperatury należy użyć w układzie mechatronicznym, jeżeli:
- elementem sensorycznym w układzie jest czujnik Pt 100,
- przetwornik będzie zasilany z zasilacza wewnętrznego sterownika PLC (24 V DC),
- wyjście przetwornika podłączone będzie do wejścia analogowego 4 do 20 mA sterownika,
- układ pomiarowy będzie zamontowany na zewnątrz hali produkcyjnej?

Typ czujnika
parametr
7NG3211-PNC007NG3211-PT1007NG3211-PKL007NG3211-PN100
WejścieCzujniki
rezystancyjne
półprzewodnikowe
Czujniki
rezystancyjne
TermoparyCzujniki
rezystancyjne
Wyjście0 ÷ 20 mA0 ÷ 20 mA4 ÷ 20 mA4 ÷ 20 mA
Zasilanie8,5 ÷ 36 V DC8,5 ÷ 30 V DC8,5 ÷ 30 V DC8,5 ÷ 36 V DC
Stopień
ochrony
IP 40IP 40IP 40IP 40
Temperatura
otoczenia
0 ÷ 40°C0 ÷ 40°C-40 ÷ 80°C-40 ÷ 80°C

A. 7NG3211-PT100
B. 7NG3211-PNC00
C. 7NG3211-PKL00
D. 7NG3211-PN100
Wybranie złego przetwornika z dostępnych opcji może wynikać z tego, że nie do końca rozumiesz specyfikacje techniczne. Na przykład, przetwornik 7NG3211-PKL00 nie nadaje się, bo nie współpracuje z czujnikami Pt 100. To oznacza, że nie odczyta dobrze wartości rezystancyjnych tych czujników. Z kolei 7NG3211-PT100 oczywiście może współpracować z Pt 100, ale może nie mieć napięcia 24 V DC, co jest kluczowe, zwłaszcza w systemach PLC. Dodatkowo, są pewne wątpliwości co do jego montażu w trudnych warunkach zewnętrznych, co jest istotne, bo takie elementy mogą być narażone na zmiany w pogodzie, co wpływa na pomiary. W automatyce przemysłowej ważne jest, żeby znać zgodność sprzętu i wybierać odpowiednie komponenty, bo to ma wielki wpływ na to jak system działa. Ignorowanie tego może prowadzić do problemów z integracją i błędnych odczytów, co na pewno nie pomaga w procesach technologicznych. Dlatego warto dokładnie analizować specyfikacje przed podjęciem decyzji.

Pytanie 28

Jakiego elementu elektronicznego należy użyć do ograniczenia przepięć na cewce stycznika z napięciem stałym, który jest podłączony do wyjścia tranzystorowego sterownika PLC?

A. Tranzystor
B. Diodę
C. Triak
D. Diak
Wybór elementu elektronicznego do redukcji przepięć wymaga zrozumienia funkcji i właściwości każdego z wymienionych elementów. Diak, który jest elementem wykorzystywanym głównie w obwodach do regulacji mocy, nie jest odpowiedni do ochrony przed przepięciami, ponieważ nie ma zdolności do kierunkowego przewodzenia prądu jak dioda. W sytuacjach, gdy na cewce stycznika dochodzi do przepięć, diak nie działa, co może prowadzić do uszkodzenia układu. Triak, który jest używany do sterowania prądem w obwodach prądu zmiennego, również nie nadaje się w tym kontekście, gdyż jego konstrukcja nie pozwala na skuteczną ochronę przed nagłymi wzrostami napięcia w obwodach prądu stałego. Z kolei tranzystor, mimo że może pełnić funkcję przełączającą, nie jest dedykowany do ochrony przed przepięciami; sam może ulec uszkodzeniu w wyniku zbyt wysokiego napięcia. Typowym błędem jest mylenie tych elementów i ich funkcji, co może prowadzić do nieefektywności w projektowaniu układów elektronicznych. Odpowiednie dobieranie komponentów do zabezpieczeń to kluczowy element inżynierii, dlatego warto znać ich charakterystyki oraz zastosowania, aby uniknąć kosztownych awarii i uszkodzeń sprzętu.

Pytanie 29

W systemie regulacji dwustanowej zauważono zbyt częste wahania wokół wartości docelowej. W celu redukcji częstotliwości tych wahań, konieczne jest w regulatorze cyfrowym

A. zwiększyć zakres histerezy
B. zmniejszyć zakres histerezy
C. zwiększyć wartość sygnału regulacyjnego
D. zmniejszyć wartość sygnału zadawania
Zwiększenie szerokości histerezy w regulatorze dwustanowym to naprawdę ważna rzecz, która pomaga ograniczyć częstotliwość oscylacji wokół wartości zadanej. Histereza to jakby strefa, w której regulator nie reaguje na drobne zmiany. To jest dość istotne, zwłaszcza w systemach, gdzie mogą występować małe fluktuacje. Na przykład, w regulacji temperatury pieców przemysłowych to oznacza, że nie będziemy mieć niepotrzebnych reakcji na niewielkie wahania temperatury. Dzięki temu piec nie włącza się i wyłącza ciągle, co jest super dla stabilizacji systemu i poprawy efektywności energetycznej. Z tego, co wiem, według dobrych praktyk inżynieryjnych, większa histereza daje większy komfort i stabilność w działaniu, co idealnie wpisuje się w zasady projektowania regulatorów oraz standardy automatyki przemysłowej.

Pytanie 30

Trójfazowy silnik indukcyjny klatkowy zasilany nominalnym napięciem uruchamia się i działa prawidłowo, lecz po obciążeniu zbyt mocno się nagrzewa. W jaki sposób można ustalić przyczynę?

A. Sprawdzić współosiowość wałów silnika oraz maszyny napędzanej
B. Zmierzyć prąd pobierany przez silnik oraz napięcie na zaciskach w czasie pracy
C. Sprawdzić swobodę obracania się wirnika w stojanie
D. Zmierzyć wartość napięcia w linii zasilającej
Pomiar prądu pobieranego przez silnik oraz napięcia na zaciskach podczas jego pracy jest kluczowym krokiem w diagnozowaniu problemów związanych z nadmiernym nagrzewaniem się silnika indukcyjnego trójfazowego klatkowego. Wysokie wartości prądu mogą wskazywać na przeciążenie silnika, co jest jednym z głównych czynników prowadzących do przegrzewania. Przykładowo, jeśli silnik działa w warunkach, które wymagają od niego większej mocy niż nominalna, to może to prowadzić do wzrostu temperatury oraz uszkodzenia uzwojenia. Z kolei pomiar napięcia na zaciskach pozwala ocenić, czy silnik otrzymuje odpowiednią ilość energii. Niewłaściwe napięcie może być wynikiem problemów w instalacji elektrycznej, co również wpływa na wydajność silnika. W praktyce, zgodnie z normami, warto regularnie przeprowadzać takie pomiary jako część rutynowej konserwacji, aby zminimalizować ryzyko awarii oraz przedłużyć żywotność urządzenia. Monitorowanie tych parametrów jest zgodne z dobrymi praktykami w utrzymaniu ruchu i pozwala na wczesne wykrywanie problemów, co jest kluczowe w środowisku przemysłowym.

Pytanie 31

Które z wymienionych komend spowoduje przeniesienie programu z PLC do pamięci komputera?

A. Write
B. Upload
C. Download
D. Erase Memory
Wybór odpowiedzi "Write" jest błędny, ponieważ termin ten odnosi się do procesu zapisywania danych do pamięci urządzenia, a nie do ich przesyłania z urządzenia do komputera. W kontekście PLC, write oznacza zapisanie nowego programu lub zmiany w istniejącym programie bezpośrednio w pamięci urządzenia. Takie podejście może prowadzić do nieporozumień, ponieważ wiele osób myli procesy uploadowania i zapisywania, sądząc, że oba terminy oznaczają to samo, co może prowadzić do nieefektywnego zarządzania programami. Kolejna mylna koncepcja dotyczy odpowiedzi "Download", która w rzeczywistości oznacza przesyłanie danych z komputera do sterownika, a nie odwrotnie. To rozróżnienie jest kluczowe w praktyce inżynieryjnej, ponieważ skutki nieprawidłowego przesyłania danych mogą prowadzić do poważnych błędów w programowaniu i funkcjonowaniu systemów automatyki. Odpowiedź "Erase Memory" z kolei wskazuje na proces usuwania danych z pamięci, co również jest niezgodne z pytaniem. Usuwanie danych może być częścią rutynowego zarządzania pamięcią, ale nie dotyczy przesyłania programu do komputera. Takie nieporozumienia mogą prowadzić do błędnego stosowania procedur, co w efekcie zwiększa ryzyko awarii systemów przemysłowych. Dlatego kluczowe jest zrozumienie podstawowych terminów oraz ich kontekstu w pracy z PLC, aby uniknąć błędów i zapewnić skuteczne zarządzanie procesami automatyzacji.

Pytanie 32

Którą funkcję logiczną realizuje program napisany w języku listy instrukcji?

LD%I0.1
AND%I0.2
STN%Q0.1

A. NOR
B. NAND
C. XOR
D. OR
Program napisany w języku listy instrukcji realizuje funkcję NAND, co oznacza, że najpierw łączy dwa sygnały wejściowe za pomocą bramki AND, a następnie neguje wynik tej operacji. Funkcja NAND jest jedną z podstawowych funkcji logicznych, która jest niezwykle użyteczna w projektowaniu systemów cyfrowych. Przykładem zastosowania funkcji NAND jest implementacja układów pamięci oraz różnych rodzajów flip-flopów, które są kluczowe w architekturze komputerów. W praktyce, zarówno w projektowaniu sprzętu, jak i w programowaniu, znajomość funkcji logicznych, w tym NAND, jest niezbędna do efektywnego tworzenia algorytmów i struktur danych. Użycie NAND umożliwia implementację wszystkich innych funkcji logicznych, co czyni ją uniwersalnym narzędziem w inżynierii cyfrowej. Warto również zauważyć, że w kontekście standardów branżowych, takich jak IEEE, projektanci układów cyfrowych często korzystają z funkcji NAND, aby uprościć skomplikowane logiki, co jest zgodne z najlepszymi praktykami w tej dziedzinie.

Pytanie 33

Na wyświetlaczu panelu operatorskiego falownika wyświetla się kod błędu F005. Określ na podstawie tabeli z instrukcji serwisowej co może być przyczyną sygnalizowania wystąpienia błędu.

Kod błęduOpis uszkodzeniaCzynności naprawcze
F001PrzepięcieSprawdź czy wielkość napięcia zasilania jest właściwe dla znamion falownika i sterowanego silnika.
Zwiększyć czas opadania częstotliwości (nastawa P003).
Sprawdź czy moc hamowania mieści się w dopuszczalnych granicach.
F002PrzetężenieSprawdź czy moc falownika jest odpowiednia do zastosowanego silnika.
Sprawdź czy długość kabli zasilających silnika nie jest zbyt duża.
Sprawdź czy nie nastąpiło przebicie izolacji uzwojeń silnika lub przewodów kabli zasilających.
Sprawdź czy wartości nastaw P081 - P086 są zgodne z wartościami danych znamionowych silnika.
Sprawdź czy wartość nastawy P089 jest zgodna z wielkością rzeczywistej rezystancji uzwojeń stojana silnika.
Zwiększ czas narastania częstotliwości wyjściowej P002.
Zmniejsz wielkości forsowania częstotliwości (wartość nastaw P078 i P079).
Sprawdź czy wał silnika nie jest zablokowany lub przeciążony.
F003PrzeciążenieSprawdź czy silnik nie jest przeciążony.
Zwiększ częstotliwość maksymalną (wartość nastawy P013) w przypadku gdy używany jest silnik o dużym poślizgu znamionowym.
F005Przegrzanie falownika
(zadziałanie wewnętrznego termistora PTC)
Sprawdź czy temperatura otoczenia przekształtnika nie jest zbyt wysoka.
Sprawdź czy wloty i wyloty powietrza chłodzącego obudowy falownika nie są przysłonięte przez elementy sąsiadujące.
Sprawdź czy wentylator chłodzący funkcjonuje prawidłowo.
F008Przekroczenie okresu oczekiwania na sygnał z łącza szeregowegoSprawdź poprawność łącza szeregowego.
Sprawdź prawidłowość ustawienia parametrów komunikacji łącza szeregowego (wartości nastaw P091 - P093).

A. Za małe obciążenie na wale silnika.
B. Za duża moc silnika.
C. Za mała częstotliwość.
D. Za duża temperatura otoczenia.
Odpowiedź "Za duża temperatura otoczenia." jest prawidłowa, ponieważ kod błędu F005, wskazujący na przegrzanie falownika, jednoznacznie sugeruje, że warunki otoczenia są niewłaściwe. Przegrzanie falownika może prowadzić do poważnych uszkodzeń urządzenia, co w dłuższym czasie może skutkować jego awarią. W praktyce, aby zapobiec takim sytuacjom, ważne jest zapewnienie odpowiedniego chłodzenia i wentylacji falownika w jego miejscu instalacji. Zastosowanie wentylatorów lub systemów klimatyzacyjnych jest kluczowe w zapewnieniu optymalnych warunków pracy. Warto również regularnie monitorować temperaturę otoczenia oraz stan termistora PTC, co pozwoli na wczesne wykrywanie problemów z przegrzewaniem. W przypadku wykrycia wysokiej temperatury otoczenia, należy rozważyć zmianę lokalizacji falownika lub poprawę jego chłodzenia, zgodnie z wytycznymi producenta, co jest zgodne z najlepszymi praktykami branżowymi.

Pytanie 34

Jaką rolę pełnią enkodery w serwonapędach AC?

A. Chronią serwonapęd przed przeciążeniem
B. Informują o momencie generowanym przez napęd
C. Stanowią element wykonawczy serwonapędu
D. Dostarczają informacji o pozycji i prędkości napędu
Enkodery w serwonapędach AC pełnią kluczową rolę w monitorowaniu i regulacji ruchu napędu. Ich głównym zadaniem jest dostarczanie informacji o aktualnej pozycji i prędkości, co jest niezbędne do precyzyjnego sterowania. Dzięki enkoderom, systemy automatyki mogą realizować złożone zadania, takie jak kontrola pozycji w aplikacjach robotycznych czy CNC. Przykładowo, w maszynach sterowanych numerycznie, enkodery umożliwiają dokładne pozycjonowanie narzędzi, co ma kluczowe znaczenie dla precyzji obróbczej. Zgodnie z najlepszymi praktykami w branży, stosowanie wysokiej jakości enkoderów pozwala na osiągnięcie lepszej dynamiki systemu oraz zwiększenie efektywności energetycznej. W standardach takich jak ISO 13849, zaleca się użycie enkoderów w kontekście bezpieczeństwa funkcjonalnego, co podkreśla ich znaczenie nie tylko w kontekście wydajności, ale i bezpieczeństwa operacyjnego.

Pytanie 35

Wskaż system sieciowy, który korzysta z topologii w kształcie pierścienia?

A. Profibus DPInterBus-S
B. LonWorks
C. InterBus
D. Modbus
InterBus jest siecią przemysłową, która rzeczywiście wykorzystuje topologię pierścieniową. Tego rodzaju topologia umożliwia cykliczne przesyłanie danych pomiędzy urządzeniami, co poprawia efektywność komunikacji w systemach automatyki przemysłowej. InterBus działa na zasadzie przesyłania danych w jednym kierunku, co minimalizuje ryzyko kolizji oraz zwiększa szybkość transmisji. Tego typu rozwiązanie jest szczególnie korzystne w aplikacjach wymagających niskich opóźnień i wysokiej niezawodności, takich jak systemy sterowania w procesach produkcyjnych czy w automatyce budynkowej. Warto również zauważyć, że dzięki swojej strukturze InterBus pozwala na łatwą rozbudowę systemu bez potrzeby przerywania istniejącej komunikacji. Użycie topologii pierścieniowej w InterBus jest zgodne z najlepszymi praktykami w obszarze projektowania sieci przemysłowych, co czyni tę sieć odpowiednim wyborem w wielu zastosowaniach przemysłowych.

Pytanie 36

W jednofazowym silniku indukcyjnym napędzającym urządzenie mechatroniczne uszkodzeniu uległ kondensator pracy o parametrach znamionowych 2,5 uF / 450 V. Którym z wymienionych kondensatorów należy zastąpić uszkodzony, aby naprawić urządzenie?

Dane techniczne:
Napięcie znamionowe450 V
Częstotliwość znamionowa50 ÷ 60 Hz
Tolerancja pojemności±5%
Oczekiwana żywotność10 000 h (HPFNT)
Stopień ochronyIP00
ModelPojemność [μF]Wymiary D x H [mm]
MK 450-1130 x 57
MK 450-1,51,530 x 57
MK 450-2230 x 57
MK 450-2,52,530 x 57
MK 450-101035 x 57
MK 450-12,512,535 x 70
MK 450-202040 x 70
MK 450-252540 x 70
MK 450-505040 x 70

A. MK 450-2
B. MK 450-20
C. MK 450-2,5
D. MK 450-25
Kondensator oznaczony jako 'MK 450-2,5' jest poprawnym zamiennikiem uszkodzonego kondensatora o parametrach 2,5 uF / 450 V. Kluczowym czynnikiem przy doborze kondensatora jest zgodność zarówno z pojemnością, jak i napięciem znamionowym. W przypadku silników indukcyjnych, kondensatory są niezbędne do poprawnego rozruchu i funkcjonowania silnika, dlatego ich wybór ma fundamentalne znaczenie. Zastosowanie kondensatora o niewłaściwej pojemności może prowadzić do obniżenia wydajności silnika lub jego uszkodzenia. W praktyce, zastosowanie kondensatora MK 450-2,5, który spełnia te wymagania, zapewnia optymalną pracę silnika oraz minimalizuje ryzyko awarii. Warto również pamiętać, że stosowanie kondensatorów o wyższej pojemności lub napięciu może nie być zalecane, gdyż może to prowadzić do nieprawidłowego działania systemu. Zgodnie z normami branżowymi, należy zawsze dobierać komponenty zgodnie z ich specyfikacją techniczną. W przypadku wątpliwości, warto konsultować się z dokumentacją producenta lub specjalistą.

Pytanie 37

Jaki typ zaworu powinno się użyć w układzie pneumatycznym, aby zachować ciśnienie na określonym poziomie?

A. Zawór przełączający
B. Zawór redukcyjny
C. Zawór nastawny podwójnego sygnału
D. Zawór nastawny dławiąco-zwrotny
Wybór niewłaściwego zaworu w układzie pneumatycznym może prowadzić do poważnych problemów operacyjnych. Zawór nastawny podwójnego sygnału, mimo że pełni funkcję regulacyjną, nie jest przeznaczony do bezpośredniego utrzymania ciśnienia na stałym poziomie. Jego działanie opiera się na regulacji strumienia powietrza w odpowiedzi na zmieniające się sygnały, co w kontekście utrzymania ciśnienia może prowadzić do fluktuacji, a nie stabilizacji. Zawór nastawny dławiąco-zwrotny z kolei, chociaż może być używany do regulacji przepływu, również nie jest odpowiedni do bezpośredniej kontroli ciśnienia, co może skutkować niedostatecznym lub nadmiernym ciśnieniem w systemie. Zawory przełączające, które zmieniają kierunek przepływu medium, również nie mają zastosowania w kontekście regulacji ciśnienia na zadanym poziomie. Te koncepcje mogą wynikać z mylnego założenia, że jakiekolwiek urządzenie regulacyjne może działać jako skuteczny zawór redukcyjny. W rzeczywistości, zawór redukcyjny jest zaprojektowany specjalnie do tego celu, co czyni go niezastąpionym w wielu systemach pneumatycznych. Ignorowanie tej zasady może prowadzić do nieefektywności procesów oraz kosztownych napraw, dlatego zrozumienie właściwego zastosowania każdego typu zaworu jest kluczowe dla prawidłowego funkcjonowania układów pneumatycznych.

Pytanie 38

Które z poniższych wskazówek dotyczących komunikacyjnej sieci sterowników PLC jest nieprawdziwe?

A. Kable komunikacyjne powinny być prowadzone równolegle z kablami zasilającymi
B. Kable powinny być niskorezystancyjne, czyli mieć duży przekrój żył
C. Kable powinny charakteryzować się niską pojemnością międzyżyłową
D. Kable używane powinny być miedziane
Używanie kabli niskorezystancyjnych oraz miedzianych często jest polecane, ale to tylko teoria, bo jak nie połączysz ich z odpowiednim prowadzeniem kabli, to może być niewłaściwie. Kable o dużym przekroju żył mogą pomóc z minimalizowaniem strat sygnału, co jest bardzo ważne, ale jeśli prowadzi się je obok kabli zasilających, to te zakłócenia mogą być tak duże, że nie ma sensu ich stosować. Z drugiej strony, kable miedziane, mimo że świetnie przewodzą, mogą też stwarzać problemy, jak się je źle poukłada. Kable o niskiej pojemności wzajemnej są dobre na zmniejszenie zakłóceń, ale ich działanie jest ograniczone, kiedy są blisko kabli zasilających, bo wtedy te zakłócenia mogą powodować błędy w transmisji. Wiele systemów automatyki przemysłowej stosuje standardy jak IEC 61000, które opisują prowadzenie kabli, żeby zmniejszyć ryzyko zakłóceń. Więc trzeba pamiętać, że sama jakość kabli to nie wszystko, musi być odpowiednie prowadzenie, żeby wszystko działało jak należy.

Pytanie 39

Jaką rolę odgrywa zawór przelewowy w hydraulicznej prasie?

A. Zrzuca olej z siłownika do zbiornika.
B. Chroni przed powrotem oleju z rozdzielacza do pompy.
C. Umożliwia regulację wartości siły wytwarzanej przez prasę.
D. Filtruje zanieczyszczenia z oleju.
Istnieje wiele błędnych przekonań dotyczących funkcji zaworu przelewowego w prasie hydraulicznej, które mogą prowadzić do mylnych wniosków. Nieprawdziwe jest stwierdzenie, że zawór ten odprowadza olej z siłownika do zbiornika, ponieważ jego podstawowym zadaniem nie jest transport oleju, lecz regulacja ciśnienia w systemie. W praktyce, odprowadzanie oleju z siłownika realizowane jest przez inne elementy układu hydraulicznego, np. przez zawory sterujące. Również stwierdzenie, że zawór przelewowy zapobiega cofaniu oleju z rozdzielacza do pompy, jest mylne. Choć zawory mogą pełnić funkcję zabezpieczającą, to ich główną rolą nie jest zapobieganie cofaniu, ale raczej utrzymanie optymalnego ciśnienia. Kolejna niepoprawna koncepcja sugeruje, że zawór przelewowy odfiltrowuje zanieczyszczenia z oleju. W rzeczywistości filtracja oleju to zadanie innych elementów, takich jak filtry hydrauliczne, które są projektowane specjalnie do usuwania zanieczyszczeń. Zrozumienie rzeczywistej roli zaworu przelewowego jest kluczowe dla prawidłowego funkcjonowania układów hydraulicznych oraz zapewnienia ich efektywności i bezpieczeństwa. Wiedza na temat rzeczywistych funkcji poszczególnych komponentów systemu hydraulicznego jest niezbędna do dokonywania świadomych wyborów projektowych oraz eksploatacyjnych.

Pytanie 40

Który z poniższych typów czujników używany jest do wykrywania pozycji tłoka siłownika beztłoczyskowego, na którym zamontowane są magnesy?

A. Indukcyjny
B. Kontaktronowy
C. Ultradźwiękowy
D. Tensometryczny
Czujnik kontaktronowy to urządzenie, które działa na zasadzie reakcji na pole magnetyczne, które zmienia się w wyniku ruchu tłoka siłownika beztłoczyskowego z zamontowanymi magnesami. Urządzenie to składa się z dwóch styków zamkniętych w szklanej obudowie, które otwierają się lub zamykają w momencie oddziaływania z polem magnetycznym. Dzięki tej zasadzie działania, czujnik kontaktronowy jest idealnym rozwiązaniem do monitorowania położenia tłoka, ponieważ umożliwia precyzyjne określenie jego pozycji bez kontaktu mechanicznego, co eliminuje zużycie elementów mechanicznych. W praktyce, czujniki te są szeroko stosowane w automatyzacji przemysłowej, zwłaszcza w aplikacjach wymagających wysokiej niezawodności, takich jak systemy pneumatyczne i hydrauliczne. Warto również zauważyć, że czujniki kontaktronowe są zgodne z różnymi standardami przemysłowymi, co czyni je popularnym wyborem w wielu aplikacjach inżynieryjnych.