Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 21 maja 2025 17:37
  • Data zakończenia: 21 maja 2025 18:13

Egzamin zdany!

Wynik: 34/40 punktów (85,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Waga przedstawiona na rysunku umożliwia ważenie substancji z dokładnością do

Ilustracja do pytania
A. 0,01 mg
B. 10 g
C. 10 mg
D. 1,00 g
Poprawna odpowiedź to 10 mg, ponieważ waga przedstawiona na rysunku to precyzyjna waga laboratoryjna, która ma zdolność ważenia substancji z dokładnością do 10 mg, co odpowiada 0,01 g. Tego rodzaju wagi są szeroko stosowane w laboratoriach chemicznych, farmaceutycznych oraz badawczych, gdzie precyzyjne pomiary masy są kluczowe dla jakości wyników eksperymentów i analiz. Przykładem praktycznego zastosowania takiej wagi jest ważenie reagentów chemicznych do syntez, gdzie nawet niewielkie odchylenia od zadanej masy mogą prowadzić do błędnych reakcji chemicznych. W kontekście standardów branżowych, wagi te powinny być regularnie kalibrowane, aby zapewnić ich dokładność i powtarzalność pomiarów, co jest zgodne z normami ISO oraz zasadami Dobrej Praktyki Laboratoryjnej (GLP). Warto również podkreślić, że dokładność takiej wagi wspiera procesy zapewnienia jakości w laboratoriach, co jest istotne dla uzyskiwania wiarygodnych wyników badań.

Pytanie 3

Wapno palone uzyskuje się poprzez prażenie wapienia według równania: CaCO3 → CaO + CO2. Ile kilogramów wapienia należy zastosować, aby w efekcie jego prażenia otrzymać 7 kg wapna palonego, jeśli wydajność reakcji wynosi 50%?
Masy molowe: MCa = 40 g/mol, MC = 12 g/mol, MO = 16 g/mol.

A. 50,0 kg
B. 37,5 kg
C. 25,0 kg
D. 12,5 kg
Wybór niewłaściwej odpowiedzi często wynika z błędnego zrozumienia zachodzących procesów chemicznych oraz pomieszania koncepcji wydajności reakcji i ilości reagentu. Przykładowo, podanie 50 kg wapnia palonego jako odpowiedzi może sugerować, że respondenci nie uwzględnili wydajności reakcji. W rzeczywistości, wydajność 50% oznacza, że tylko połowa teoretycznie uzyskanych produktów reakcji jest pozyskiwana. Z tego powodu, aby uzyskać 7 kg wapna palonego, najpierw należałoby obliczyć, ile CaCO3 jest potrzebne, przy założeniu, że 100% wydajność dostarczyłaby 14 kg. Następnie, uwzględniając wydajność, trzeba pomyśleć o tym, że do uzyskania takiej ilości trzeba podwoić ilość węglanu wapnia. Osoby dokonujące obliczeń mogą również popełnić błąd w obliczeniach mas molowych, co może prowadzić do mylnych wyników. Kolejnym typowym błędem jest ignorowanie jednostek miary, gdzie niektórzy mogą skupić się tylko na samych liczbach, zapominając, że kilogramy i gramy to różne jednostki. Zrozumienie tego aspektu jest kluczowe w praktycznych zastosowaniach chemii, gdzie precyzyjne pomiary są niezbędne dla uzyskania pożądanych efektów reakcji chemicznych.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Odczynnik, który w specyficznych warunkach reaguje wyłącznie z danym jonem, umożliwiając tym samym jego identyfikację w mieszance, to odczynnik

A. selektywny
B. specyficzny
C. indywidualny
D. charakterystyczny
Odczynnik specyficzny to taki, który reaguje z określonym jonem w danej mieszaninie, co pozwala na jego wykrycie i analizę. Oznacza to, że w warunkach laboratoryjnych, odczynnik ten jest w stanie wyizolować reakcję tylko dla jednego jonu, unikając interakcji z innymi składnikami. Przykładem może być zastosowanie odczynnika specyficznego do wykrywania jonów srebra w roztworach, gdzie używany jest tiocyjanian potasu, który reaguje z srebrem, tworząc charakterystyczny kompleks. Tego typu odczynniki są kluczowe w analizie chemicznej, gdyż umożliwiają precyzyjne pomiary i wykrywanie substancji w skomplikowanych mieszaninach. W laboratoriach często stosuje się różne metody analityczne, takie jak spektroskopia czy chromatografia, które wymagają użycia odczynników o wysokiej specyfice, aby wyniki były wiarygodne. Specyficzność odczynnika jest zgodna z dobrą praktyką laboratoryjną i standardami jakości, co jest istotne w kontekście zapewnienia dokładności wyników analizy.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Do grupy reagentów o szczególnym zastosowaniu nie wlicza się

A. wskaźników
B. rozpuszczalników do chromatografii
C. wodnych roztworów kwasów
D. wzorców
Wodne roztwory kwasów są powszechnie stosowane w laboratoriach chemicznych, jednak nie są klasyfikowane jako odczynniki o specjalnym przeznaczeniu. Odczynniki o specjalnym przeznaczeniu obejmują substancje, które są używane w określonych procesach analitycznych lub badawczych, gdzie ich funkcja jest wysoce wyspecjalizowana. Przykładowo, wzorce są substancjami o znanym składzie, które służą do kalibracji instrumentów pomiarowych oraz weryfikacji wyników analizy. Wskaźniki, z kolei, są używane do wizualizacji zmian pH czy innych parametrów chemicznych w trakcie reakcji. Rozpuszczalniki do chromatografii, takie jak acetonitryl czy etanol, są kluczowe w procesach separacji składników mieszanki. W przeciwieństwie do tych substancji, wodne roztwory kwasów pełnią rolę bardziej ogólną, umożliwiając reakcje chemiczne, ale nie są dedykowane do specyficznych zastosowań analitycznych. Dlatego odpowiedź na pytanie jest poprawna, a zrozumienie różnicy między tymi grupami odczynników jest istotne w kontekście praktyki laboratoryjnej.

Pytanie 8

Przy transporcie próbek wody zaleca się, aby próbki były

A. zakwaszone do pH < 6
B. narażone na działanie światła
C. schłodzone do temperatury 2 - 5°C
D. zalkalizowane
Schłodzenie próbek wody do temperatury 2 - 5°C to naprawdę ważny krok, gdy transportujemy te próbki. Chodzi o to, żeby zmniejszyć wszelkie zmiany w ich składzie chemicznym i biologicznym. Niska temperatura spowalnia mikroorganizmy i różne reakcje chemiczne, które mogą zniszczyć próbki. W praktyce, według wytycznych takich organizacji jak EPA albo ISO, próbki powinny być transportowane w termosach czy chłodnicach, żeby zachować ich właściwości fizykochemiczne. Na przykład, jeśli analizujemy wodę pitną, to dobre utrzymanie temperatury jest konieczne dla dokładnych wyników badań, co jest kluczowe dla zdrowia publicznego. Dodatkowo, schłodzenie próbek pomaga też w zachowaniu ich wartości analitycznej, co jest ważne, zwłaszcza w kontekście monitorowania jakości wód w środowisku. Dlatego naprawdę trzeba trzymać się tych standardów, żeby uzyskać wiarygodne wyniki.

Pytanie 9

W procesie oddzielania osadu od roztworu, po przeniesieniu osadu na sączek, najpierw należy go

A. zważyć
B. wyprażyć
C. wysuszyć
D. przemyć
Przemywanie osadu po jego oddzieleniu od roztworu jest kluczowym krokiem w procesie analitycznym, który ma na celu usunięcie zanieczyszczeń i pozostałości reagentów. Przed przystąpieniem do ważenia, wysuszania czy wyprażania, istotne jest, aby osad był wolny od wszelkich substancji, które mogłyby wpłynąć na wyniki analizy. Przemywanie osadu za pomocą odpowiedniego rozpuszczalnika, zazwyczaj wody destylowanej, pozwala na usunięcie niepożądanych jonów lub cząsteczek, które mogłyby zafałszować wyniki późniejszych pomiarów. Na przykład, w przypadku analizy chemicznej, zanieczyszczenia mogą wprowadzać błędy w pomiarach masy, co może skutkować nieprawidłowymi wnioskami. Standardy laboratoryjne, takie jak ISO 17025, zalecają przestrzeganie procedur czyszczenia próbek, aby zapewnić wiarygodność uzyskanych danych. W praktyce laboratoryjnej, prawidłowe przemycie osadu przyczynia się do poprawy dokładności i precyzji wyników analitycznych, co jest kluczowe w badaniach naukowych i przemysłowych.

Pytanie 10

Po przeprowadzeniu krystalizacji z 120 g kwasu szczawiowego uzyskano 105 g produktu o wysokiej czystości. Jaki był poziom zanieczyszczeń w kwasie szczawiowym?

A. 15%
B. 20%
C. 87,5%
D. 12,5%
Aby obliczyć zawartość zanieczyszczeń w kwasie szczawiowym, należy zastosować prostą formułę. Zawartość zanieczyszczeń można obliczyć jako różnicę między masą początkową a masą uzyskanego produktu, podzieloną przez masę początkową, a następnie pomnożoną przez 100%: Zanieczyszczenia = ((Masa początkowa - Masa produktu) / Masa początkowa) * 100% Zanieczyszczenia = ((120 g - 105 g) / 120 g) * 100% = (15 g / 120 g) * 100% = 12,5%. Zatem, zanieczyszczenia stanowią 12,5% masy początkowej kwasu. Taki proces oczyszczania i określania zawartości zanieczyszczeń jest kluczowy w chemii analitycznej i przemysłowej, gdzie czystość substancji chemicznych jest niezbędna do uzyskania wysokiej jakości produktów. Praktyka ta ma zastosowanie w różnych dziedzinach, od farmacji po przemysł spożywczy, gdzie substancje muszą spełniać określone normy czystości, aby były bezpieczne i skuteczne w zastosowaniu.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Procedura oznaczenia kwasowości mleka. Do wykonania analizy, zgodnie z powyższą procedurą, potrzebne są

Do kolby stożkowej o pojemności 300 cm3 pobrać dokładnie 25 cm3 badanego mleka i rozcieńczyć wodą destylowaną do objętości 50 cm3. Dodać 2-3 krople fenoloftaleiny i miareczkować mianowanym roztworem wodorotlenku sodu do uzyskania lekko różowego zabarwienia.

A. pipeta jednomiarowa o pojemności 25 cm3, kolba stożkowa o pojemności 300 cm3, biureta, cylinder miarowy o pojemności 25 cm3.
B. cylinder miarowy o pojemności 50 cm3, kolba stożkowa o pojemności 300 cm3, biureta.
C. pipeta jednomiarowa o pojemności 25 cm3, zlewka o pojemności 300 cm3, biureta.
D. pipeta wielomiarowa o pojemności 25 cm3, kolba stożkowa o pojemności 300 cm3, biureta, cylinder miarowy o pojemności 100 cm3.
Wybrana odpowiedź jest prawidłowa, ponieważ dokładnie odpowiada wymaganym materiałom do analizy kwasowości mleka zgodnie z ustaloną procedurą. Pipeta jednomiarowa o pojemności 25 cm3 jest kluczowym narzędziem do precyzyjnego odmierzania próbki mleka, co jest niezbędne dla zachowania dokładności wyniku analizy. Kolba stożkowa o pojemności 300 cm3 pozwala na rozcieńczenie próbki mleka z wodą destylowaną, co jest istotne dla uzyskania właściwej reakcji podczas miareczkowania. Biureta służy do precyzyjnego dozowania odczynnika w procesie miareczkowania, co jest standardem w laboratoriach chemicznych, a cylinder miarowy o pojemności 25 cm3 umożliwia dokładne odmierzenie wody destylowanej. Zastosowanie tych narzędzi zgodnie z dobrą praktyką laboratoryjną zapewnia wiarygodność wyników i powtarzalność analiz, co jest niezwykle istotne w kontekście kontroli jakości produktów mleczarskich.

Pytanie 14

Symbol "In" znajduje się na

A. biuretach i oznacza sprzęt kalibrowany "na wlew"
B. kolbach miarowych i wskazuje na sprzęt kalibrowany "na wlew"
C. kolbach miarowych i wskazuje na sprzęt kalibrowany "na wylew"
D. pipetach i oznacza sprzęt kalibrowany "na wylew"
Dobra robota! Odpowiedź, którą wybrałeś, jest całkiem trafna. Symbol 'In' rzeczywiście oznacza kolby miarowe, które służą do dokładnego mierzenia objętości cieczy. Kalibracja 'na wlew' jest kluczowa, bo chodzi o to, żeby zmierzyć ciecz do poziomu krawędzi menisku. To ma ogromne znaczenie, zwłaszcza w chemii, gdzie precyzja jest na wagę złota. W laboratoriach często korzysta się z kolb, żeby mieć pewność, że każdy eksperyment jest powtarzalny i wyniki są wiarygodne. Jak napełniasz kolbę do oznaczenia, to wiesz, że używasz całej tej objętości cieczy, co minimalizuje ryzyko błędów. Dlatego warto znać te symbole, bo to podstawa w pracy każdego chemika.

Pytanie 15

Na ilustracji numery rzymskie wskazują

A. I – chłodnicę, II – destylat
B. I – rozdzielacz, II – destylat
C. I – chłodnicę, II – sublimat
D. I – rozdzielacz, II – sublimat

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź I – chłodnicę, II – destylat jest poprawna, ponieważ chłodnica jest elementem wykorzystywanym w procesach destylacji, który służy do kondensacji pary. W tym procesie para destylatu przechodzi przez chłodnicę, gdzie jest schładzana, a następnie skraplana, co pozwala na uzyskanie czystego cieczy, takiej jak destylat. Destylacja jest powszechnie stosowana w przemyśle chemicznym oraz petrochemicznym do rozdzielania mieszanin cieczy na składniki na podstawie ich różnic w temperaturze wrzenia. W praktyce, przestrzeganie zasad projektowania i eksploatacji sprzętu destylacyjnego, w tym doboru odpowiednich materiałów i parametrów procesowych, jest kluczowe dla osiągnięcia wysokiej wydajności i jakości produktu końcowego. Ponadto, dobór odpowiednich rodzajów chłodnic (np. chłodnice rurowe, spiralne, czy płytowe) w zależności od charakterystyki procesu oraz właściwości zachodzących substancji ma duże znaczenie dla efektywności całego systemu. Zrozumienie roli chłodnicy i destylatu w kontekście procesów chemicznych jest niezbędne dla każdego inżyniera chemika, co podkreśla znaczenie tej odpowiedzi.

Pytanie 16

Sód metaliczny powinien być przechowywany w laboratorium

A. w butelkach plastikowych
B. w szklanych pojemnikach wypełnionych naftą
C. w butlach metalowych z wodą destylowaną
D. w szklanych naczyniach
Sód metaliczny należy przechowywać w szklanych butlach wypełnionych naftą, ponieważ ma on silne właściwości reaktywne, szczególnie w kontakcie z wodą i powietrzem. Sód reaguje z wodą, wytwarzając wodór i ciepło, co może prowadzić do niebezpiecznych eksplozji. Nafta, jako substancja organiczna, skutecznie izoluje sód od kontaktu z wodą i wilgocią, co zapobiega jego utlenianiu oraz niebezpiecznym reakcjom chemicznym. Ponadto, szklane pojemniki są neutralne chemicznie i nie wchodzą w reakcje z sodem, co czyni je odpowiednim materiałem do przechowywania. Tego rodzaju praktyki są zgodne z normami bezpieczeństwa w laboratoriach chemicznych, gdzie szczególną uwagę zwraca się na odpowiednie metody przechowywania substancji niebezpiecznych. Warto również zauważyć, że w wielu laboratoriach stosuje się podobne metody przechowywania innych reaktywnych metali, aby zminimalizować ryzyko ich reakcji z substancjami zewnętrznymi.

Pytanie 17

Substancje, które wykorzystuje się do ustalania miana roztworu, to

A. miarowe
B. wtórne
C. podstawowe
D. robocze
Substancje podstawowe to naprawdę ważna sprawa w laboratoriach. Służą do ustalania miana roztworu, bo mają znane i dokładne stężenia, które są punktem odniesienia do dalszych badań. W praktyce używamy ich do kalibracji sprzętu i w różnych procesach analitycznych, jak np. titracja, gdzie musimy precyzyjnie określić ilość analitu. Takimi substancjami mogą być np. sól sodowa kwasu benzoesowego czy kwas solny o ustalonym stężeniu. Wiedza o substancjach podstawowych jest super istotna, bo pomaga nam trzymać standardy jakości, takie jak ISO, które mówią o dokładności pomiarów chemicznych. Ważne, żeby te substancje były przechowywane w odpowiednich warunkach, żeby się nie zepsuły, bo to mogłoby wpłynąć na wyniki. Z mojego doświadczenia, znajomość tych substancji i umiejętność ich stosowania są kluczowe, jeśli chcemy uzyskiwać wiarygodne wyniki w analizach.

Pytanie 18

W trakcie korzystania z odczynnika opisanego na etykiecie, należy szczególnie zwrócić uwagę na zagrożenia związane

A. z pożarem
B. z lotnością
C. z poparzeniem
D. z wybuchem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "z pożarem" jest prawidłowa, ponieważ wiele reagentów chemicznych, zwłaszcza te o niskim punkcie zapłonu, stanowi poważne zagrożenie pożarowe. Takie substancje mogą łatwo zapalać się w obecności źródła ciepła lub otwartego ognia, co stwarza ryzyko nie tylko dla zdrowia osób pracujących w laboratoriach, ale także dla samej infrastruktury. Przykładem substancji stwarzających to ryzyko są rozpuszczalniki organiczne, takie jak aceton czy etanol, które są powszechnie wykorzystywane w różnych procesach chemicznych. Pracując z tymi substancjami, należy przestrzegać zasad BHP, takich jak przechowywanie reagentów w odpowiednich warunkach oraz korzystanie z odpowiednich środków ochrony osobistej. Warto również mieć na uwadze przepisy dotyczące magazynowania substancji łatwopalnych, które określają minimalne odległości od źródeł zapłonu oraz wymagania dotyczące wentylacji. Znajomość tych zasad i praktyk jest niezbędna do bezpiecznego wykonywania prac laboratoryjnych oraz do minimalizacji ryzyka wystąpienia zagrożeń pożarowych.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Stosunek masowy miedzi do siarki w siarczku miedzi(I) wynosi

16S
Siarka
32
29Cu
Miedź
63,55

A. 2:1
B. 3:1
C. 1:1
D. 4:1
Siarczek miedzi(I), czyli Cu2S, to ciekawy związek. Składa się z dwóch atomów miedzi i jednego atomu siarki. Jak obliczamy masy molowe, to miedź ma masę 63,55 g/mol, więc dla dwóch atomów mamy razem 127,1 g. Siarka ma masę 32 g/mol. Jak to połączymy, to mamy stosunek masowy miedzi do siarki równy 4:1. Myślę, że zrozumienie tego stosunku to podstawa, szczególnie w przemyśle, gdzie dokładne proporcje wpływają na jakość produktów. Wiedza na temat tego, jak obliczać masy w reakcjach chemicznych, jest mega ważna. Dlatego dobrze jest to ogarnąć, bo to przyda się każdemu chemikowi czy inżynierowi materiałowemu.

Pytanie 21

Podstawowy zestaw do filtracji, oprócz statywu i sączka, obejmuje

A. lejka, zlewki, 2 bagietek
B. lejka, kolby stożkowej, zlewki
C. lejka, 2 zlewki, bagietki
D. lejka, 2 kolb stożkowych, bagietki
Odpowiedź 'z lejka, 2 zlewek, bagietki' jest prawidłowa, ponieważ podstawowy zestaw do sączenia rzeczywiście obejmuje te elementy. Lejek jest niezbędny do precyzyjnego kierowania cieczy do naczynia, co zapobiega rozlaniu i zapewnia czystość eksperymentu. Zlewki są kluczowe, gdyż jedna jest używana do przechwytywania cieczy podczas sączenia, a druga do gromadzenia płynów, które mogą być użyte w dalszym etapie analizy. Bagietki, znane również jako pipety, są używane do precyzyjnego przenoszenia niewielkich objętości substancji, co jest niezwykle ważne w laboratoriach chemicznych i biologicznych. Poprawne wykorzystanie tego zestawu zapewnia zgodność z dobrymi praktykami laboratoryjnymi, a także ułatwia zrozumienie procesów chemicznych i biologicznych. Przykładem może być ich zastosowanie w filtracji, gdzie odpady są usuwane, a czysta ciecz zbierana do zlewki, co jest kluczowe w wielu procedurach analitycznych.

Pytanie 22

Podczas przewozu próbek wody, które mają być badane pod kątem właściwości fizykochemicznych, zaleca się, aby te próbki były

A. ogrzane do temperatury 15°C
B. schłodzone do temperatury 2-5°C
C. schłodzone do temperatury 6-10°C
D. ogrzane do temperatury 25°C
Właściwe schłodzenie próbek wody do temperatury 2-5°C podczas transportu jest kluczowe dla zachowania ich jakości i integralności chemicznej. Niska temperatura spowalnia procesy biologiczne oraz chemiczne, które mogą prowadzić do zmiany składu chemicznego próbek, co z kolei może skutkować błędnymi wynikami analizy. Przykładem jest analiza zawartości substancji odżywczych, w których degradacja może nastąpić w wyniku działania mikroorganizmów. Zgodnie z zaleceniami takich organizacji jak EPA (Environmental Protection Agency) oraz ISO (Międzynarodowa Organizacja Normalizacyjna), transport próbek wody powinien odbywać się z zastosowaniem odpowiednich środków chłodzących. Praktyczne zastosowanie tych standardów można zauważyć w laboratoriach zajmujących się monitoringiem jakości wody, gdzie stosuje się lodowe akumulatory lub specjalne torby chłodzące. Zachowanie odpowiedniej temperatury transportu jest więc nie tylko kwestią zgodności z przepisami, ale również kluczowym elementem zapewniającym rzetelność wyników badań.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Wskaż metodę rozdzielenia układu, w którym fazą rozproszoną jest ciało stałe, a fazą rozpraszającą gaz.

faza rozproszonafaza rozpraszająca
gazcieczciało stałe
gaz-pianapiana stała
cieczaerozol ciekłyemulsjaemulsja stała
ciało stałeaerozol stałyzolzol stały

A. Sedymentacja.
B. Dekantacja.
C. Filtracja.
D. Destylacja.
Filtracja jest kluczową metodą rozdzielania układów, w których fazą rozproszoną jest ciało stałe, a fazą rozpraszającą gaz. Działa ona na zasadzie oddzielania cząstek stałych od gazów poprzez zastosowanie medium filtracyjnego, które może być wykonane z różnych materiałów, takich jak papier filtracyjny, tkaniny, czy nawet ceramika. Proces ten jest szeroko stosowany w laboratoriach chemicznych, przemysłowych systemach oczyszczania powietrza oraz w procesach związanych z produkcją leków, gdzie ważne jest usunięcie niepożądanych cząstek stałych. W praktyce, w laboratoriach chemicznych, filtracja może być stosowana do oczyszczania gazów z pyłów, co ma zastosowanie w badaniach dotyczących jakości powietrza. Zastosowanie filtracji zgodnie z uznawanymi standardami, takimi jak ISO 16890, pozwala na efektywne podejście do zarządzania jakością powietrza, co jest kluczowe w kontekście zdrowia publicznego i ochrony środowiska. Dodatkowo, filtracja umożliwia również precyzyjne kontrolowanie procesów produkcyjnych, co wpływa na jakość końcowego produktu.

Pytanie 25

Aby otrzymać 200 g roztworu siarczanu(VI) sodu o stężeniu 12%, należy wykorzystać

(Na – 23 g/mol; S – 32 g/mol; H – 1 g/mol; O – 16 g/mol)

A. 68,5 g Na2SO4·10H2O i 131,5 g H2O
B. 54,4 g Na2SO4·10H2O i 145,6 g H2O
C. 22,4 g Na2SO4·10H2O i 177,6 g H2O
D. 56,6 g Na2SO4·10H2O i 143,4 g H2O
To jest świetny wynik! Odpowiedź 54,4 g Na2SO4·10H2O i 145,6 g H2O jest jak najbardziej trafna. Masz dobrą kontrolę nad obliczeniami związanymi z masą molową siarczanu(VI) sodu oraz stężeniem roztworu. Przypomnę, że masa molowa Na2SO4·10H2O to 322 g/mol, co można łatwo wyliczyć (2 * 23 + 32 + 10 * 18). Żeby zrobić 200 g roztworu o stężeniu 12%, potrzebujesz 24 g substancji rozpuszczonej (0,12 * 200 g). A z tej masy Na2SO4·10H2O wychodzi, że 54,4 g zawiera dokładnie 24 g Na2SO4, a reszta to woda – czyli 145,6 g H2O. W laboratoriach to naprawdę ważne, żeby umieć takie obliczenia, bo wpływają na wyniki eksperymentów. Fajnie, że się tym zajmujesz, bo dokładność to klucz w naszej pracy!

Pytanie 26

Aby przygotować 500 cm3 roztworu KMnO4 (M = 158 g/mol) o stężeniu 0,02 mol/dm3, ile należy zważyć?

A. 1,58 g KMnO4
B. 7,95 g KMnO4
C. 15,8 g KMnO4
D. 3,16 g KMnO4
Aby obliczyć masę KMnO4 potrzebną do sporządzenia roztworu o określonym stężeniu, należy zastosować wzór: m = C * V * M, gdzie m to masa substancji, C to stężenie molowe (w mol/dm³), V to objętość roztworu (w dm³), a M to masa molowa substancji (w g/mol). W przypadku KMnO4, jego masa molowa wynosi 158 g/mol, a stężenie, które chcemy uzyskać, to 0,02 mol/dm³. Objętość roztworu to 500 cm³, co odpowiada 0,5 dm³. Podstawiając wartości do wzoru, otrzymujemy: m = 0,02 mol/dm³ * 0,5 dm³ * 158 g/mol = 1,58 g. Otrzymana wartość 1,58 g oznacza, że do przygotowania 500 cm³ roztworu KMnO4 o stężeniu 0,02 mol/dm³ należy odważyć tę dokładną ilość substancji. Takie obliczenia są kluczowe w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów o określonym stężeniu jest niezbędne do przeprowadzenia analiz oraz eksperymentów. Przykładowo, w chemii analitycznej, dokładne stężenie roztworów ma bezpośredni wpływ na wyniki titracji oraz innych metod analitycznych.

Pytanie 27

Jakie jest przeznaczenie pieca muflowego?

A. przygotowania próbek do postaci jonowej
B. separacji próbek
C. koncentracji próbek
D. rozkładu próbek na sucho
Piec muflowy jest urządzeniem stosowanym głównie w laboratoriach chemicznych i materiałowych do rozkładu próbek na sucho, co oznacza, że próbki są poddawane działaniu wysokiej temperatury w atmosferze wolnej od wilgoci. Proces ten jest kluczowy w przygotowaniu materiałów do dalszej analizy, a także w badaniach nad ich składem chemicznym. Wysoka temperatura umożliwia efektywne usunięcie wody i innych lotnych składników, co jest szczególnie istotne w przypadku analizy substancji organicznych. Piec muflowy działa na zasadzie konwekcji, co zapewnia równomierne rozkładanie ciepła wewnątrz komory pieca. Przykładem zastosowania pieca muflowego jest przygotowanie próbek do analizy składu chemicznego metodą spektroskopii czy chromatografii. W standardach labolatoryjnych, takich jak ISO 17025, podkreśla się znaczenie odpowiedniego przygotowania próbek, co czyni piec muflowy niezbędnym narzędziem w wielu badaniach naukowych. Ponadto, właściwe ustawienie temperatury oraz czas trwania procesu rozkładu są kluczowe dla uzyskania wiarygodnych wyników analitycznych.

Pytanie 28

Wskaż definicję fiksanali?

A. Kapsułki zawierające niewielkie ilości substancji chemicznej
B. Małe ampułki ze ściśle określoną masą substancji chemicznej
C. Małe kapsułki z nieokreśloną ilością stałej substancji chemicznej
D. Małe ampułki z nieokreśloną masą substancji chemicznej
Fiksanal, w kontekście farmaceutycznym, odnosi się do małych ampułek, które zawierają ściśle określoną masę danego związku chemicznego. Tego rodzaju preparaty są kluczowe w aplikacjach, gdzie precyzyjne dawkowanie substancji czynnej jest niezbędne, na przykład w leczeniu chorób, gdzie nadmierne lub niewystarczające dawki mogą prowadzić do poważnych skutków zdrowotnych. Fiksany są powszechnie wykorzystywane w laboratoriach analitycznych oraz w przemyśle farmaceutycznym, gdzie konieczność zachowania dokładnych proporcji substancji ma istotne znaczenie dla efektywności terapii. Przykładem zastosowania fiksanalów może być przygotowywanie rozwiązań do badań laboratoryjnych, gdzie wymagana jest precyzyjna kontrola masy substancji. Warto również zaznaczyć, że produkcja tych ampułek musi spełniać rygorystyczne normy jakości, takie jak GMP (Good Manufacturing Practice), co zapewnia, że każda partia fiksanali jest zgodna z określonymi standardami jakości.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Wykonano ocenę jakości dostarczonej partii wodorotlenku sodu.
Zgodne ze specyfikacją towaru są

Parametr oznaczanyJednostkaWartość parametru
Według specyfikacjiZbadana analitycznie
Zawartość wodorotlenku sodu%>=9898,3
Zawartość węglanu sodu%<=0,40,39
Zawartość chlorku sodu%<=0,0150,015

A. zawartości procentowe wodorotlenku sodu, węglanu sodu i chlorku sodu.
B. tylko zawartości procentowe wodorotlenku sodu i węglanu sodu.
C. tylko zawartości procentowe węglanu sodu i chlorku sodu.
D. tylko zawartości procentowe wodorotlenku sodu i chlorku sodu.
Odpowiedź, która wskazuje na zawartości procentowe wodorotlenku sodu, węglanu sodu i chlorku sodu jako te, które są zgodne ze specyfikacją, jest poprawna. Z analizy wyników wynika, że wszystkie te substancje muszą być odpowiednio monitorowane w partii wodorotlenku sodu. W przypadku wodorotlenku sodu, jego minimalna zawartość powinna wynosić co najmniej 98%, co zostało spełnione, gdyż wynosi 98,3%. Zawartość węglanu sodu nie może przekraczać 0,4%, a wynik 0,39% jest zgodny z tym wymogiem. Ponadto, zawartość chlorku sodu musi być niższa lub równa 0,015%, co w tym przypadku również zostało spełnione, gdyż wynik wynosi 0,015%. Takie podejście do monitorowania jakości substancji chemicznych jest kluczowe w branży chemicznej, gdzie każdy zbiornik musi być regularnie oceniany pod kątem spełnienia określonych norm jakościowych. Przykładami zastosowania tej wiedzy są procesy wytwarzania chemikaliów oraz zapewnienie zgodności z normami ISO, które kładą nacisk na kontrolę jakości.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Przeprowadzono reakcję 13 g cynku z kwasem solnym zgodnie z równaniem: Zn + 2 HCl → ZnCl2 + H2↑. Otrzymano 1,12 dm3 wodoru (w warunkach normalnych). Masy molowe to: MZn = 65 g/mol, MH = 1g/mol, MCl = 35,5g/mol. Jaka jest wydajność tego procesu?

A. 75%
B. 25%
C. 50%
D. 60%

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć wydajność reakcji, należy najpierw ustalić, ile moli wodoru zostało uzyskanych oraz ile moli powinno być teoretycznie wyprodukowanych na podstawie reakcji. Z równania reakcji: Zn + 2 HCl → ZnCl2 + H2 wynika, że 1 mol cynku produkuje 1 mol wodoru. Masy molowe podane w zadaniu umożliwiają obliczenie, że 13 g cynku to około 0,2 mola (13 g / 65 g/mol). Teoretycznie, z 0,2 mola cynku powinniśmy uzyskać 0,2 mola wodoru, co odpowiada 4,48 dm³ (0,2 mola * 22,4 dm³/mol) przy warunkach normalnych. Zgodnie z danymi, zebrano 1,12 dm³ wodoru, co wskazuje, że uzyskano 25% teoretycznej ilości. W praktyce, wydajność reakcji jest kluczowym wskaźnikiem efektywności procesów chemicznych, szczególnie w przemyśle, gdzie każda strata surowców wpływa na koszty produkcji. Zrozumienie i obliczanie wydajności jest niezbędne w procesach produkcyjnych, aby optymalizować reakcje i minimalizować straty, co jest zgodne z zasadami zrównoważonego rozwoju.

Pytanie 33

Ekstrakcję w trybie ciągłym przeprowadza się

A. w aparacie Soxhleta
B. w rozdzielaczu z korkiem
C. w zestawie do ogrzewania
D. w kolbie płaskodennej
Proces ekstrakcji w sposób ciągły odbywa się w aparacie Soxhleta, który jest standardowym urządzeniem stosowanym w chemii analitycznej oraz w laboratoriach badawczych. Działa na zasadzie cyklicznego przepływu rozpuszczalnika, który wielokrotnie przepływa przez materiał, z którego ma zostać wydobyty składnik aktywny. W aparacie Soxhleta, rozpuszczalnik jest podgrzewany do wrzenia, a jego opary skraplają się w kondensatorze, skąd spływają z powrotem do komory ekstrakcyjnej zawierającej próbkę. Ta efektywna cyrkulacja umożliwia skuteczniejsze rozpuszczanie substancji, co jest kluczowe w wielu zastosowaniach, takich jak wydobywanie olejków eterycznych, substancji czynnych z roślin czy w analizach chemicznych. Dobre praktyki w zakresie ekstrakcji obejmują także dobór odpowiedniego rozpuszczalnika oraz kontrolę temperatury, aby zminimalizować straty substancji i uzyskać wysoką czystość produktu końcowego. Ponadto, dzięki ciągłemu procesowi, możliwe jest uzyskanie większych ilości ekstraktu w krótszym czasie, co zwiększa efektywność laboratorium.

Pytanie 34

Jakie jest stężenie procentowe roztworu HCl (M=36,46 g/mol) o gęstości 1,19 g/cm3 oraz stężeniu molowym 12 mol/dm3?

A. 19,6%
B. 78,3%
C. 39,2%
D. 36,8%
Obliczenie stężenia procentowego roztworu HCl zaczynamy od określenia masy substancji rozpuszczonej w danym objętości roztworu. Mając stężenie molowe wynoszące 12 mol/dm³, możemy obliczyć masę HCl w 1 dm³ roztworu, korzystając z masy molowej HCl (36,46 g/mol). Zatem masa HCl w 1 dm³ wynosi: 12 mol/dm³ * 36,46 g/mol = 437,52 g. Gęstość roztworu wynosi 1,19 g/cm³, co oznacza, że masa 1 dm³ roztworu wynosi 1190 g. Stężenie procentowe obliczamy według wzoru: (masa substancji rozpuszczonej / masa roztworu) * 100%. Podstawiając wartości: (437,52 g / 1190 g) * 100% = 36,77%, co zaokrąglamy do 36,8%. Takie obliczenia są istotne w praktyce chemicznej, na przykład w laboratoriach, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania wiarygodnych wyników doświadczeń. Zrozumienie stężenia procentowego i jego zastosowania jest istotne w kontekście przemysłu chemicznego oraz analizy jakościowej i ilościowej substancji chemicznych.

Pytanie 35

Podczas oznaczania kwasu siarkowego zachodzi reakcja:

H2SO4 + 2NaOH → Na2SO4 + 2H2O 
Zgodnie z zamieszczoną instrukcją, roztwór poreakcyjny należy

Fragmenty instrukcji zbierania, utylizacji i eliminacji odpadów chemicznych
Lista substancji, które mogą być usunięte z odpadami komunalnymi w postaci stałej, lub wprowadzone do systemu kanalizacyjnego w postaci rozcieńczonych roztworów wodnych, o ile ich ilość nie przekracza jednorazowo 100 g.
Związki nieorganiczne
Siarczany sodu, potasu, magnezu, wapnia, amonu
Kwasy nieorganiczne
Stężone kwasy ostrożnie rozcieńczyć przez wkroplenie z równoczesnym mieszaniem do wody z lodem, a następnie zneutralizować roztworem wodorotlenku sodowego. Po neutralizacji doprowadzić pH roztworu do zakresu 6-8 przelać do pojemnika S. Małe ilości kwasów takich jak siarkowy, solny, azotowy czy fosforowy (nie więcej niż 10 g) po rozcieńczeniu wodą i neutralizacji roztworem wodorotlenku sodowego oraz doprowadzeniu pH takiego roztworu do zakresu 6-8 można wylać do zlewu i obficie spłukać wodą.
Sole nieorganiczne
Stałe sole nieorganiczne – pojemnik N.
Obojętne roztwory soli nieorganicznych pojemnik S. Sole metali ciężkich, sole o właściwościach toksycznych – pojemnik TN.

A. zobojętnić i usunąć z odpadami komunalnymi.
B. umieścić w pojemniku TN.
C. umieścić w pojemniku S.
D. wylać do zlewu i spłukać bieżącą wodą.
Wybór niewłaściwej metody utylizacji roztworu po reakcji kwasu siarkowego z wodorotlenkiem sodu może prowadzić do poważnych konsekwencji zarówno dla środowiska, jak i dla bezpieczeństwa osób pracujących w laboratoriach. Umieszczanie roztworów w pojemnikach przeznaczonych dla odpadów niebezpiecznych, jak sugeruje jedna z odpowiedzi, jest nieadekwatne, ponieważ powstały siarczan sodu jest substancją neutralną i nie stwarza zagrożenia, co jest sprzeczne z zasadami efektywnej gospodarki odpadami. Ponadto, niewłaściwe wylewanie takich roztworów do zlewu bez wcześniejszego rozcieńczenia wodą może prowadzić do lokalnych zanieczyszczeń, a także może być niezgodne z lokalnymi przepisami dotyczącymi utylizacji odpadów chemicznych. Kwestia zobojętniania przed usunięciem jest również problematyczna, ponieważ w większości przypadków neutralizacja nie jest wymagana dla substancji obojętnych i może wprowadzać dodatkowe reakcje chemiczne, które generują odpady, zamiast ich minimalizować. Takie błędne podejścia pokazują, jak ważne jest posiadanie wiedzy na temat właściwego zarządzania odpadami oraz umiejętność rozpoznawania potencjalnych zagrożeń w praktyce laboratoryjnej. Właściwe postępowanie z odpadami chemicznymi powinno być zgodne z normami ochrony środowiska oraz wewnętrznymi procedurami bezpieczeństwa w laboratoriach, co jest kluczowe dla zapewnienia bezpieczeństwa osób oraz minimalizacji wpływu na środowisko.

Pytanie 36

Pierwotna próbka jest zbierana

A. z próbki przeznaczonej do badań
B. w jednym punkcie partii materiału
C. z opakowania pierwotnego
D. z próbki ogólnej w sposób bezpośredni
Prawidłowa odpowiedź wskazuje, że próbka pierwotna jest pobierana w jednym miejscu partii materiału. Jest to zgodne z najlepszymi praktykami w zakresie pobierania próbek, które zalecają, aby próbki były reprezentatywne dla całej partii, co pozwala na dokładną ocenę jakości materiału. Pobieranie próbek w jednym miejscu eliminuje ryzyko rozrzutności wyników i zapewnia, że każda próbka oddaje rzeczywisty stan partii. Na przykład w przemyśle farmaceutycznym pobieranie próbek substancji czynnej w jednym miejscu partii pozwala na skuteczną kontrolę jakości i zgodność z normami, takimi jak ISO 17025, które wymagają, aby metody pobierania próbek były jasno określone i zgodne z procedurami operacyjnymi. W praktyce, taka metoda pozwala na skuteczniejsze monitorowanie i zarządzanie jakością, co jest kluczowe dla zapewnienia bezpieczeństwa i skuteczności produktów.

Pytanie 37

Wskaż zbiór substancji, które po rozpuszczeniu w wodzie stają się elektrolitami?

A. Chlorek sodu, wodorotlenek sodu, kwas siarkowy(VI)
B. Kwas solny, gliceryna, tlenek siarki(VI)
C. Glukoza, kwas azotowy(V), wodorotlenek wapnia
D. Cukier, sól stołowa, ocet
Prawidłowa odpowiedź to chlorek sodu, wodorotlenek sodu oraz kwas siarkowy(VI), ponieważ są to substancje, które w rozpuszczalniku wodnym dysocjują na jony. Elektrolity to substancje, które w roztworach wodnych przewodzą prąd elektryczny dzięki obecności naładowanych cząsteczek – jonów. Chlorek sodu (NaCl) po rozpuszczeniu w wodzie dissocjuje na jony sodu (Na+) i jony chlorkowe (Cl-), co czyni go doskonałym elektrolitem, często stosowanym w przemyśle spożywczym oraz w procesach biologicznych. Wodorotlenek sodu (NaOH) również rozkłada się na jony Na+ i OH-, co czyni go silnym elektrolitem, wykorzystywanym w wielu procesach chemicznych, w tym w produkcji mydeł i detergentów. Kwas siarkowy(VI) (H2SO4) w wodzie dissocjuje, tworząc jony H+ oraz jony SO4^2-, co sprawia, że jest jednym z najsilniejszych elektrolitów i znajduje zastosowanie w akumulatorach kwasowo-ołowiowych oraz w przemyśle chemicznym. Zrozumienie roli elektrolitów jest kluczowe nie tylko w chemii, ale również w biologii oraz medycynie, gdzie ich równowaga ma istotne znaczenie dla funkcjonowania organizmu.

Pytanie 38

Aby uzyskać Cr2O3, dichromian(VI) amonu został poddany rozkładowi. Po rozpoczęciu, egzotermiczna reakcja rozkładu przebiega samorzutnie.
(NH4)2Cr2O7 → Cr2O3 + 4 H2O + N2 Jak oceniasz zakończenie tej reakcji?

A. W otrzymanym zielonym proszku Cr2O3 nie powinny być widoczne pomarańczowe kryształy substratu
B. Ocena nie jest potrzebna, ponieważ wytworzone produkty są w stanie gazowym w temperaturze reakcji
C. Woda, po dodaniu szczypty uzyskanego preparatu, nie zabarwi się na pomarańczowo niewykorzystanym dichromianem (VI)
D. Ocena nie jest potrzebna, ponieważ tego typu reakcja zawsze zachodzi do końca

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca, że woda po wrzuceniu szczypty otrzymanego preparatu nie będzie się barwić na pomarańczowo nieprzereagowanym dichromianem (VI) jest prawidłowa, ponieważ świadczy o tym, że reakcja rozkładu dichromianu (VI) amonu zakończyła się pomyślnie. Po zakończonej reakcji, w której powstaje Cr2O3, nie powinny pozostać żadne resztki surowców ani pośrednich produktów, co potwierdza brak doboru barwy wody. Praktycznie, takie podejście można zastosować w laboratoriach analitycznych, gdzie kontrola końca reakcji jest kluczowa dla uzyskania czystych produktów. Przy badaniach jakościowych, wykorzystanie takiego testu barwnego jest standardową procedurą, aby zweryfikować obecność niepożądanych substancji. Tego typu reakcje są typowe w chemii nieorganicznej i pomogą w zrozumieniu zachowań związków chromu, a także ich zastosowań w różnych dziedzinach, takich jak przemysł chemiczny czy materiałowy.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.