Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 3 kwietnia 2025 20:17
  • Data zakończenia: 3 kwietnia 2025 20:33

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Jakie urządzenie chroni silnik przed zwarciem i przeciążeniem?

A. odgromnik
B. termistor
C. wyłącznik silnikowy
D. przekaźnik termiczny
Choć przekaźnik termiczny, odgromnik i termistor są ważnymi elementami w systemach elektrycznych, nie pełnią one roli zabezpieczenia silników przed zwarciem i przeciążeniem. Przekaźnik termiczny działa na zasadzie detekcji wzrostu temperatury, co może być stosowane w zabezpieczeniach różnych obwodów, ale nie jest bezpośrednim zabezpieczeniem silnika. Jego zastosowanie ogranicza się do obwodów, w których przyczyny przegrzania są inne niż przeciążenie lub zwarcie. Odgromnik, z drugiej strony, jest urządzeniem ochronnym zapobiegającym skutkom przepięć, ale nie zabezpiecza przed problemami związanymi z przeciążeniem silników. Jego rola koncentruje się na ochronie instalacji przed wyładowaniami atmosferycznymi. Termistor, jako element elektroniczny, również nie jest praktycznym rozwiązaniem do zabezpieczania silników, gdyż jego zastosowanie ogranicza się do pomiarów temperatury, a nie do bezpośredniego odcięcia zasilania w przypadku awarii. W praktyce, przy projektowaniu systemów elektrycznych i automatyki, kluczowe jest stosowanie wyłączników silnikowych, które oferują odpowiednią reakcję na zmiany warunków pracy silnika, co gwarantuje jego dłuższą żywotność i bezawaryjność.

Pytanie 8

Podczas prac związanych z montażem mechatronicznych elementów konstrukcyjnych na znacznej wysokości, co należy założyć?

A. maskę przeciwpyłową
B. kask ochronny
C. okulary ochronne
D. buty ochronne
Kask ochronny jest kluczowym elementem wyposażenia ochronnego podczas prac na wysokości, zwłaszcza przy montażu mechatronicznych elementów konstrukcyjnych. Jego głównym zadaniem jest ochrona głowy przed urazami w przypadku upadku przedmiotów, co jest szczególnie istotne w środowiskach przemysłowych. Standardy takie jak PN-EN 397:2012 podkreślają konieczność stosowania kasków, które spełniają określone normy bezpieczeństwa. Przykładowo, w sytuacjach, gdzie mogą wystąpić spadające narzędzia lub materiały, kask może zapobiec poważnym obrażeniom lub nawet urazom śmiertelnym. Warto również zwrócić uwagę na dodatkowe funkcje kasków, takie jak możliwość montażu osłon twarzy czy słuchawek komunikacyjnych, co zwiększa komfort i bezpieczeństwo pracy. W kontekście mechatroniki, gdzie elementy są często ciężkie i wymagają precyzyjnego montażu, odpowiednia ochrona głowy staje się niezbędna.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Aby zweryfikować ciągłość układów elektrycznych, wykorzystuje się

A. woltomierz
B. watomierz
C. omomierz
D. amperomierz
Omomierz jest urządzeniem pomiarowym, które służy do pomiaru rezystancji elektrycznej, a jego zastosowanie w zakresie sprawdzania ciągłości połączeń elektrycznych jest kluczowe. W praktyce, omomierz jest wykorzystywany do wykrywania ewentualnych przerw w obwodach oraz oceny jakości połączeń. Na przykład, w instalacjach elektrycznych, przed oddaniem do użytkowania, ważne jest, aby sprawdzić, czy wszystkie połączenia są prawidłowo wykonane i czy nie występują utraty kontaktu. Normy takie jak PN-IEC 60364-6 podkreślają znaczenie przeprowadzania pomiarów ciągłości przewodów ochronnych, co można zrealizować właśnie przy pomocy omomierza. Warto również zauważyć, że pomiar ciągłości powinien być wykonywany w stanie nieenergetycznym instalacji, co zapewnia bezpieczeństwo oraz dokładność pomiarów. Umiejętność posługiwania się omomierzem w kontekście sprawdzania połączeń elektrycznych jest istotna dla każdego elektryka, a także dla osób zajmujących się konserwacją i przeglądami instalacji elektrycznych.

Pytanie 12

Jakie urządzenie jest używane do pomiaru ciśnienia w systemach hydraulicznych?

A. przepływomierz
B. tensometr
C. manometr
D. zawór nadążny
Chociaż tensometry, zawory nadążne i przepływomierze pełnią ważne funkcje w systemach hydraulicznych, nie są one odpowiednie do bezpośredniego pomiaru ciśnienia. Tensometry służą do mierzenia odkształceń materiałów, co ma zastosowanie w kontrolach strukturalnych, ale nie dostarczają bezpośrednich informacji o ciśnieniu w układzie hydraulicznym. Z kolei zawory nadążne są mechanizmami regulacyjnymi, które kontrolują przepływ płynów, ale nie są urządzeniami pomiarowymi i nie mogą samodzielnie dostarczać danych o ciśnieniu. Przepływomierze natomiast mierzą przepływ cieczy lub gazu i dostarczają informacji o ilości medium przechodzącego przez dany punkt, ale nie informują o ciśnieniu, które jest kluczowym aspektem w monitorowaniu stanu układów hydraulicznych. Zrozumienie, jakie urządzenia służą do konkretnego zastosowania, jest kluczowe dla efektywności i bezpieczeństwa operacji w inżynierii hydraulicznej. Typowym błędem jest mylenie funkcji tych urządzeń, co może prowadzić do niewłaściwego doboru sprzętu oraz potencjalnych awarii systemów hydraulicznych.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Elastyczny przewód elektryczny, służący do łączenia elementów systemu elektrycznego w aplikacjach mechatronicznych, powinien być

A. równo przycięty na końcach
B. odizolowany na dowolną długość
C. zaizolowany na końcach
D. zakończony na końcach tulejkami
Zakończenie przewodu giętkiego tulejkami to naprawdę ważna sprawa, zwłaszcza z perspektywy bezpieczeństwa i skuteczności połączeń w systemach mechatronicznych. Tulejki, czyli końcówki przewodów, dają mocne i trwałe połączenia, co zmniejsza ryzyko różnych awarii, zarówno mechanicznych, jak i elektrycznych. Jak dobrze wiemy, dzięki tulejkom żyły przewodów są lepiej chronione przed uszkodzeniami mechanicznymi czy korozją, co na pewno wydłuża ich żywotność. Poza tym, użycie tulejek ułatwia podłączanie przewodów do różnych elementów systemu, jak złącza czy komponente elektroniczne. To jest w sumie istotne w układach mechatronicznych, bo często trzeba coś zmieniać. I jeszcze jedno: stosowanie tulejek jest zgodne z branżowymi normami i standardami, a to ma znaczenie nie tylko dla bezpieczeństwa operatorów, lecz także dla niezawodności całego systemu. Dlatego warto korzystać z tulejek w zakończeniach przewodów giętkich, bo to po prostu najlepsza praktyka w tej dziedzinie.

Pytanie 17

Ile jednostek napędowych użyto w manipulatorze, którego diagram pokazano na rysunku?

A. 3 jednostki napędowe
B. 6 jednostek napędowych
C. 4 jednostki napędowe
D. 5 jednostek napędowych
Wybór innej liczby napędów, takich jak trzy, cztery lub sześć, może wynikać z nieporozumień dotyczących podstawowych zasad działania manipulatorów. Trzy napędy mogą wydawać się wystarczające w prostych aplikacjach, jednak w praktyce ograniczają one zakres ruchu i precyzję, co nie jest wystarczające w bardziej złożonych zadaniach. Warto zauważyć, że manipulatory zwykle wymagają co najmniej czterech napędów, aby uzyskać podstawowe możliwości ruchowe. Jednak cztery napędy mogą prowadzić do obszarów martwych, gdzie manipulator nie jest w stanie osiągnąć określonych pozycji. Z kolei wybór sześciu napędów, chociaż teoretycznie może zwiększyć możliwości robota, może prowadzić do nadmiaru i skomplikowania systemu, co nie zawsze jest uzasadnione w kontekście efektywności i kosztów. Niekiedy zaawansowane systemy operacyjne mogą wprowadzać dodatkowe trudności w programowaniu i konfiguracji robota. W praktyce, wybór liczby napędów powinien być starannie przemyślany w kontekście specyficznych wymagań aplikacji oraz zgodności z normami branżowymi, takimi jak ISO 9283, które podkreślają znaczenie optymalizacji w projektowaniu systemów robotycznych. Właściwe dobranie liczby napędów jest kluczowe dla uzyskania równowagi między wydajnością a prostotą operacyjną, co jest istotne dla każdego inżyniera zajmującego się robotyką.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Co może się zdarzyć, gdy w trakcie montażu silnika trójfazowego nastąpi przerwanie przewodu ochronnego PE?

A. przeciążenia instalacji elektrycznej, co może skutkować pożarem
B. wzrostu temperatury silnika podczas pracy, co może prowadzić do zapalenia się silnika
C. awarii stojana silnika
D. pojawienia się napięcia na obudowie silnika, co grozi porażeniem prądem elektrycznym
W analizowanej sytuacji kilka odpowiedzi nieprawidłowo interpretuje skutki przerwania przewodu ochronnego PE. Nie jest prawdą, że uszkodzenie stojana silnika następuje w wyniku tego zdarzenia, ponieważ przewód PE nie jest bezpośrednio odpowiedzialny za jego funkcjonowanie. Stojan silnika, który jest kluczowym elementem jego budowy, działa niezależnie od przewodu ochronnego, a jego uszkodzenia są zazwyczaj wynikiem przegrzewania, przeciążeń lub wad konstrukcyjnych. Ponadto, przeciążenie sieci elektrycznej i zagrożenie pożarowe nie są bezpośrednio związane z przerwaniem przewodu ochronnego, lecz mogą być efektem niewłaściwego użytkowania urządzeń lub ich uszkodzenia, co prowadzi do zbyt dużych poborów prądu. Również zwiększenie temperatury silnika w czasie pracy nie jest bezpośrednim skutkiem braku przewodu PE, a może być efektem zbyt dużego obciążenia silnika czy niewłaściwego chłodzenia. Kluczowe jest zrozumienie, że przewód ochronny ma na celu jedynie zapewnienie bezpiecznego odprowadzenia prądów upływowych, a jego brak głównie prowadzi do niebezpieczeństwa porażenia prądem, a nie do uszkodzenia samych komponentów silnika. Zgodnie z regulacjami dotyczącymi bezpieczeństwa, przerwanie przewodu PE powinno być zawsze traktowane jako poważne zagrożenie, które wymaga natychmiastowej reakcji, a nie jako sytuacja, która może powodować inne problemy techniczne.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Osoba, która doświadczyła porażenia prądem elektrycznym, nie oddycha, natomiast krążenie krwi jest prawidłowe. Jakie czynności należy wykonać w odpowiedniej kolejności podczas udzielania pierwszej pomocy?

A. udrożnienie dróg oddechowych, wykonanie sztucznego oddychania i masaż serca
B. ustawienie na boku, sztuczne oddychanie
C. sztuczne oddychanie oraz masaż serca
D. udrożnienie dróg oddechowych, wykonanie sztucznego oddychania
Wybór innych odpowiedzi wskazuje na pewne nieporozumienia dotyczące kolejności działań przy udzielaniu pomocy osobie porażonej prądem elektrycznym. Na przykład, w sytuacjach, w których krążenie jest zachowane, ale oddech jest zatrzymany, kluczowe jest najpierw zapewnienie drożności dróg oddechowych, a następnie przystąpienie do sztucznego oddychania. Wybór odpowiedzi, która pomija ten krok, może prowadzić do poważnych konsekwencji zdrowotnych, takich jak niedotlenienie mózgu, które może nastąpić w ciągu kilku minut. Ułożenie na boku, które można znaleźć w niektórych odpowiedziach, jest istotne w kontekście ochrony dróg oddechowych, jednak stosuje się je głównie w przypadku, gdy pacjent wykazuje oznaki świadomego oddychania lub po epizodach wymiotów, a nie w sytuacji całkowitego zatrzymania oddechu. Dodatkowo, przeprowadzanie masażu serca w sytuacji, gdy krążenie jest zachowane, jest nieuzasadnione i może prowadzić do niepotrzebnych uszkodzeń klatki piersiowej oraz zaburzeń rytmu serca. Takie podejścia mogą wskazywać na niepełne zrozumienie zasad pierwszej pomocy, co może zagrażać życiu poszkodowanego. W sytuacji udzielania pomocy przedlekarskiej, kluczowe znaczenie ma znajomość właściwej sekwencji działań, co opiera się na wiedzy z zakresu medycyny ratunkowej i wytycznych resuscytacyjnych.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Jakiego typu silnik prądu stałego powinno się użyć w systemie napędowym dla bardzo ciężkiej przepustnicy?

A. Bezszczotkowy
B. Bocznikowy
C. Szeregowy
D. Obcowzbudny
Silniki obcowzbudne, bocznikowe i bezszczotkowe, choć mają swoje zastosowania, nie nadają się najlepiej do obsługi bardzo ciężkich przepustnic. Silniki obcowzbudne charakteryzują się stałym momentem obrotowym, co sprawia, że przy dużych obciążeniach mogą mieć problemy z dostarczeniem wymaganego momentu w niskich prędkościach. W praktyce oznacza to, że silnik tego typu może nie zapewnić wystarczającej siły do otwarcia ciężkiej przepustnicy, co może prowadzić do niewłaściwego działania systemu. Silniki bocznikowe, choć oferują lepsze właściwości w zakresie regulacji prędkości, również nie generują takiego momentu obrotowego przy rozruchu jak silniki szeregowe, co jest kluczowe w sytuacji, gdy konieczne jest pokonanie dużego oporu przy uruchamianiu. Bezszczotkowe silniki prądu stałego, z kolei, chociaż oferują wiele zalet, takich jak mniejsze zużycie i wyższa efektywność, w kontekście zastosowań wymagających dużych momentów obrotowych przy rozruchu, mogą nie spełniać oczekiwań. Wybór niewłaściwego typu silnika w krytycznych aplikacjach może prowadzić do awarii systemów oraz zwiększonego zużycia energii. Dlatego kluczowe jest zrozumienie specyfiki i wymagań aplikacji, a także właściwego doboru komponentów w oparciu o rzetelną analizę ich charakterystyk. Wydajność, niezawodność i bezpieczeństwo systemu napędowego muszą być zawsze priorytetem.

Pytanie 25

W normalnych warunkach działania wyłącznika różnicowoprądowego wektorowa suma natężeń prądów sinusoidalnych przepływających w przewodach fazowych oraz neutralnym wynosi

A. 3 A
B. 1 A
C. 2 A
D. 0 A
Odpowiedzi 1 A, 2 A i 3 A sugerują istnienie różnicy prądów w obwodzie, co w przypadku prawidłowego działania wyłącznika różnicowoprądowego jest niepoprawne. Wyłącznik ten działa na zasadzie pomiaru różnicy między prądem wpływającym a wypływającym, a w warunkach normalnych te dwa prądy powinny być równe, co prowadzi do zera. W przypadku podania wartości 1 A, 2 A czy 3 A można by błędnie wnioskować, że w obwodzie występuje jakaś forma upływu prądu, co jest mylące. Typowym błędem w myśleniu jest założenie, że każdy prąd płynący przez obwód musi generować różnice natężeń, co nie jest zgodne z zasadami zachowania energii. W praktyce, w instalacjach elektrycznych, sumowanie prądów sinusoidalnych w obwodzie powinno zawsze prowadzić do zera, co jest warunkiem stabilności i bezpieczeństwa systemu. Warto pamiętać, że niewłaściwe zrozumienie działania wyłączników różnicowoprądowych może prowadzić do błędnych decyzji w projektowaniu i eksploatacji instalacji elektrycznych, co w skrajnych przypadkach może zagrażać życiu i zdrowiu użytkowników.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Podczas inspekcji systemu podnośnika hydraulicznego zauważono, że olej się spienia i jest wydobywany przez odpowietrznik zbiornika. Co może być przyczyną tej usterki?

A. Wytarte pierścienie uszczelniające rozdzielaczy
B. Wytarte pierścienie uszczelniające tłokowe
C. Nieszczelność w przewodzie ssawnym pompy
D. Nieszczelność zaworu bezpieczeństwa
Nieszczelność w przewodzie ssawnym pompy jest kluczową przyczyną spieniania się oleju w układzie hydraulicznym. Gdy przewód ssawny jest nieszczelny, powietrze dostaje się do układu, co powoduje, że olej nie jest prawidłowo zasysany przez pompę. W efekcie powietrze miesza się z olejem, co prowadzi do jego spienienia i wytworzenia bąbelków powietrza. To zjawisko obniża wydajność hydrauliczną systemu oraz może prowadzić do uszkodzenia pompy i innych komponentów. W praktyce, aby zapobiec takim problemom, należy regularnie kontrolować stan przewodów ssawnych oraz ich połączeń, zgodnie z zaleceniami producentów maszyn i norm branżowych. Dobrą praktyką jest również stosowanie systemów monitorujących, które informują o ewentualnych nieszczelnościach lub spadkach ciśnienia. Właściwe uszczelnienie przewodów jest kluczowe dla zapewnienia długotrwałej i efektywnej pracy układu hydraulicznego, co jest istotne w zastosowaniach przemysłowych oraz budowlanych, gdzie niezawodność sprzętu jest priorytetem.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Jakiego typu przewód jest zalecany do komunikacji w magistrali CAN?

A. Przewodu koncentrycznego
B. Skrętki czteroparowej, ekranowanej
C. Skrętki dwuprzewodowej
D. Przewodu dziewięciożyłowego
Wybór nieodpowiedniego przewodu do komunikacji w magistrali CAN może prowadzić do licznych problemów, takich jak zakłócenia sygnału, błędy w transmisji oraz obniżona wydajność całego systemu. Skrętka czteroparowa, mimo że jest popularna w sieciach Ethernet i innych systemach komunikacyjnych, nie jest zoptymalizowana pod kątem wymagań magistrali CAN. System ten wymaga przewodu o specyficznych właściwościach, takich jak niska impedancja i efektywna ochrona przed zakłóceniami, co skrętka czteroparowa nie zapewnia. Przewód koncentryczny stosowany jest w telekomunikacji i nie nadaje się do zastosowania w magistrali CAN, ponieważ jego konstrukcja nie wspiera metod różnicowych, które są kluczowe dla stabilnej komunikacji w tym standardzie. Ponadto, przewód dziewięciożyłowy jest zbyt skomplikowany i nieefektywny do implementacji w systemach CAN, które wykorzystują jedynie dwa przewody do komunikacji. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków często opierają się na mylnej interpretacji zastosowania różnych typów przewodów bez uwzględnienia specyfikacji technicznych i wymagań dotyczących sygnałów CAN. Rekomendacje branżowe jasno wskazują, że dla magistrali CAN najlepszym wyborem jest skrętka dwuprzewodowa, co zapewnia efektywność i niezawodność całego systemu.

Pytanie 34

Siłownik hydrauliczny o powierzchni tłoka A = 20 cm2 musi wygenerować siłę F = 30 kN. Jakie powinno być ciśnienie oleju?

A. 15 000 bar
B. 1 500 bar
C. 15 bar
D. 150 bar
Odpowiedź 150 bar jest prawidłowa z uwagi na zastosowanie wzoru na obliczenie ciśnienia w siłowniku hydraulicznym. Ciśnienie (p) oblicza się według wzoru p = F / A, gdzie F to siła wywierana przez siłownik, a A to powierzchnia czynna tłoka. W tym przypadku F wynosi 30 kN, co jest równoznaczne z 30 000 N, a A wynosi 20 cm², co należy przeliczyć na m² (20 cm² = 0,002 m²). Podstawiając wartości do wzoru: p = 30 000 N / 0,002 m² = 15 000 000 Pa, co daje 150 bar (1 bar = 100 000 Pa). W praktyce, w hydraulice przemysłowej, utrzymywanie właściwego ciśnienia ma kluczowe znaczenie dla efektywności działania układów, co wpływa na bezpieczeństwo oraz niezawodność maszyn. Technologie hydrauliczne są powszechnie stosowane w budownictwie, przemyśle motoryzacyjnym i lotniczym, gdzie precyzyjne sterowanie siłą i ruchem jest niezbędne.

Pytanie 35

Co oznaczają kolory przewodów w trójprzewodowych czujnikach zbliżeniowych prądu stałego?

A. brązowy (czerwony) - minus zasilania; czarny - plus zasilania
B. brązowy (czerwony) - plus zasilania; czarny - przewód sygnałowy; niebieski - minus zasilania
C. niebieski - przewód sygnałowy; brązowy (czerwony) - przewód sygnałowy; czarny - minus zasilania; niebieski - plus zasilania
D. brązowy (czerwony) - przewód sygnałowy; czarny - minus zasilania; niebieski - plus zasilania
Odpowiedź, w której brązowy (czerwony) przewód oznacza plus zasilania, czarny przewód to przewód impulsowy, a niebieski przewód to minus zasilania, jest prawidłowa i zgodna z powszechnie przyjętymi standardami branżowymi. W systemach zbliżeniowych prądu stałego kolorystyka przewodów ma kluczowe znaczenie dla zapewnienia prawidłowego działania urządzeń. Użycie brązowego lub czerwonego przewodu jako przewodu dodatniego (plus) jest normą w wielu krajach, a czarny przewód jest standardowo używany jako przewód sygnałowy lub impulsowy. Niebieski przewód w tym kontekście pełni funkcję przewodu ujemnego (minus). W praktyce, stosowanie się do tych oznaczeń ma kluczowe znaczenie dla prawidłowego podłączenia urządzeń, co zapobiega zwarciom oraz uszkodzeniom komponentów. W przypadku błędnego podłączenia, na przykład zamieniając przewody plus i minus, może dojść do uszkodzenia czujnika lub nieprawidłowego działania systemu. Przykładem zastosowania tej wiedzy może być instalacja systemów automatyki budynkowej, gdzie prawidłowe podłączenie czujników zbliżeniowych jest kluczowe dla ich efektywności.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.