Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik teleinformatyk
  • Kwalifikacja: INF.07 - Montaż i konfiguracja lokalnych sieci komputerowych oraz administrowanie systemami operacyjnymi
  • Data rozpoczęcia: 6 czerwca 2025 14:12
  • Data zakończenia: 6 czerwca 2025 14:24

Egzamin zdany!

Wynik: 35/40 punktów (87,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Która forma licencjonowania nie pozwala na korzystanie z programu bez opłat?

A. adware
B. GNU GPL
C. freeware
D. MOLP
MOLP, czyli Model Licencjonowania Oprogramowania, to struktura, która umożliwia organizacjom uzyskanie licencji na oprogramowanie w sposób, który jest dostosowany do ich potrzeb. W przeciwieństwie do innych modeli, takich jak freeware czy GNU GPL, MOLP zazwyczaj wiąże się z opłatami, co oznacza, że korzystanie z oprogramowania nie jest bezpłatne. Przykładem zastosowania MOLP jest sytuacja, gdy firma potrzebuje dostępu do oprogramowania dla wielu użytkowników. W takim przypadku, zamiast kupować indywidualne licencje, organizacja może nabyć licencję MOLP, co często prowadzi do oszczędności kosztów. Dobre praktyki w zakresie licencjonowania oprogramowania sugerują, aby organizacje dokładnie analizowały swoje potrzeby i wybierały model licencjonowania, który najlepiej odpowiada ich wymaganiom, a MOLP jest często korzystnym rozwiązaniem dla przedsiębiorstw z wieloma pracownikami.

Pytanie 2

W specyfikacji sieci Ethernet 1000Base-T maksymalna długość segmentu dla skrętki kategorii 5 wynosi

A. 100 m
B. 250 m
C. 500 m
D. 1000 m
Wybór długości segmentu 500 m, 250 m lub 1000 m opiera się na nieporozumieniu dotyczącym standardów Ethernet. W przypadku 1000Base-T maksymalna długość dla kabla skrętki kategorii 5 wynosi 100 m, a nie 250 m czy 500 m. Przekroczenie tego limitu może prowadzić do znacznych strat sygnału i zakłóceń, co w konsekwencji wpływa na jakość transmisji danych. Warto zaznaczyć, że skrętki Cat 5 oraz Cat 5e są zaprojektowane do efektywnego przesyłania sygnałów na krótszych dystansach, a ich wydajność maleje w miarę zwiększania długości kabla. Na przykład, długości 500 m lub 1000 m są zbyt odległe dla standardu 1000Base-T; takie długości są bardziej odpowiednie dla technologii światłowodowej, która może obsługiwać znacznie większe odległości bez utraty jakości sygnału. Typowym błędem w myśleniu jest założenie, że im dłuższy kabel, tym lepsze połączenie, co jest dalekie od prawdy w kontekście Ethernetu. Dla efektywności i niezawodności sieci lokalnych ważne jest stosowanie się do ściśle określonych standardów i dobrych praktyk branżowych, co obejmuje ograniczenie długości segmentów kablowych do maksymalnie 100 m w przypadku 1000Base-T.

Pytanie 3

Jaką funkcję punkt dostępu wykorzystuje do zabezpieczenia sieci bezprzewodowej, aby jedynie urządzenia z określonymi adresami fizycznymi mogły się z nią połączyć?

A. Radius (Remote Authentication Dial In User Service)
B. Nadanie SSID
C. Filtrowanie adresów MAC
D. Uwierzytelnianie
Filtrowanie adresów MAC to technika zabezpieczania sieci bezprzewodowej, która polega na zezwalaniu na dostęp tylko dla urządzeń o określonych adresach MAC, czyli fizycznych adresach sprzętowych. W praktyce, administrator sieci tworzy listę dozwolonych adresów MAC, co pozwala na kontrolowanie, które urządzenia mogą łączyć się z siecią. To podejście jest często stosowane w małych i średnich przedsiębiorstwach, gdzie istnieje potrzeba szybkiego działania i uproszczonego zarządzania dostępem. Należy jednak pamiętać, że mimo iż filtrowanie MAC zwiększa bezpieczeństwo, nie jest to metoda absolutna. Złośliwi użytkownicy mogą skanować sieć i kopiować adresy MAC, co czyni tę metodę podatną na ataki. Dobrym rozwiązaniem jest stosowanie filtrowania MAC w połączeniu z innymi mechanizmami zabezpieczeń, takimi jak WPA3 (Wi-Fi Protected Access 3) lub uwierzytelnianie 802.1X, co znacznie podnosi poziom ochrony sieci.

Pytanie 4

Najefektywniejszym sposobem na zabezpieczenie prywatnej sieci Wi-Fi jest

A. stosowanie szyfrowania WEP
B. stosowanie szyfrowania WPA-PSK
C. zmiana nazwy SSID
D. zmiana adresu MAC routera
Stosowanie szyfrowania WPA-PSK (Wi-Fi Protected Access Pre-Shared Key) jest najskuteczniejszą metodą zabezpieczenia domowej sieci Wi-Fi, ponieważ zapewnia silne szyfrowanie danych przesyłanych między urządzeniami a routerem. WPA-PSK wykorzystuje algorytmy szyfrowania TKIP (Temporal Key Integrity Protocol) lub AES (Advanced Encryption Standard), co znacznie podnosi bezpieczeństwo w porównaniu do przestarzałych metod, takich jak WEP. Aby wprowadzić WPA-PSK, użytkownik musi ustawić hasło, które będzie używane do autoryzacji urządzeń w sieci. Praktyczne zastosowanie tej metody polega na regularnej zmianie hasła, co dodatkowo zwiększa bezpieczeństwo. Warto także pamiętać o aktualizacji oprogramowania routera, co jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa sieci. W przypadku domowych sieci Wi-Fi, zastosowanie WPA-PSK jest standardem, który powinien być przestrzegany, aby chronić prywatność i integralność przesyłanych danych.

Pytanie 5

W ustawieniach haseł w systemie Windows Server aktywowana jest opcja hasło musi spełniać wymagania dotyczące złożoności. Ile minimalnie znaków powinno mieć hasło użytkownika?

A. 6 znaków
B. 5 znaków
C. 12 znaków
D. 10 znaków
Hasło użytkownika w systemie Windows Server musi składać się z co najmniej 6 znaków, aby spełniać wymagania dotyczące złożoności. Złożoność hasła ma na celu zwiększenie bezpieczeństwa systemu, redukując ryzyko nieautoryzowanego dostępu. Wymaganie minimalnej długości hasła to jedna z podstawowych praktyk w zarządzaniu bezpieczeństwem, która pomaga zabezpieczyć konta użytkowników przed atakami typu brute force. Przykładowo, stosując hasła o długości 6 znaków, zaleca się użycie kombinacji wielkich i małych liter, cyfr oraz znaków specjalnych, co znacznie podnosi poziom ochrony. Dla porównania, hasła składające się z zaledwie 5 znaków są mniej bezpieczne, ponieważ łatwiej je złamać przy użyciu odpowiednich narzędzi. Zgodnie z wytycznymi NIST (National Institute of Standards and Technology), złożoność haseł oraz ich długość są kluczowe dla ochrony danych, a stosowanie haseł o minimalnej długości 6 znaków jest powszechnie przyjętą praktyką w branży IT.

Pytanie 6

Gdy komputer K1 wykonuje polecenie ping, otrzymuje odpowiedź od komputera K2. Natomiast po wysłaniu polecenia ping w odwrotnym kierunku komputer K2 nie dostaje odpowiedzi od K1. Oba urządzenia działają na systemie Windows 7 lub 10. Jaka może być przyczyna tej sytuacji?

A. Zapora sieciowa jest wyłączona na komputerach K1 oraz K2.
B. Karta sieciowa komputera K2 jest uszkodzona.
C. Nieprawidłowa konfiguracja kart sieciowych w komputerach K1 i K2.
D. Ustawienia domyślne zapory na komputerze K1 są skonfigurowane.
Odpowiedź wskazująca na skonfigurowane domyślne ustawienia zapory na komputerze K1 jest prawidłowa, ponieważ zapory sieciowe w systemach operacyjnych, takich jak Windows 7 i 10, mają na celu zabezpieczenie systemu przed nieautoryzowanym dostępem. W przypadku, gdy zapora na komputerze K1 jest skonfigurowana w sposób blokujący przychodzące pakiety ICMP (protokół używany przez polecenie ping), komputer K2 nie będzie w stanie uzyskać odpowiedzi na wysyłane żądania ping. Przykładem praktycznego zastosowania tej wiedzy jest sytuacja, gdy administratorzy sieci muszą zarządzać regułami zapory, aby umożliwić określone typy komunikacji w sieci. Dobre praktyki sugerują, aby zapora była odpowiednio skonfigurowana, aby zezwalać na komunikację o krytycznym znaczeniu, jednocześnie blokując nieautoryzowane połączenia. Warto również regularnie monitorować i aktualizować ustawienia zapory w celu dostosowania do zmieniających się potrzeb sieci oraz zagrożeń.

Pytanie 7

Jakie zakresy adresów IPv4 można zastosować jako adresy prywatne w lokalnej sieci?

A. 200.186.0.0 ÷ 200.186.255.255
B. 168.172.0.0 ÷ 168.172.255.255
C. 127.0.0.0 ÷ 127.255.255.255
D. 172.16.0.0 ÷ 172.31.255.255
Zakres adresów IPv4 od 172.16.0.0 do 172.31.255.255 to jeden z trzech zakresów adresów prywatnych, które zostały opisane w normie RFC 1918. Te adresy są używane w sieciach lokalnych, czyli takich jak LAN, i nie mogą być routowane w Internecie. Przykład? W firmach często tworzy się wewnętrzną sieć, gdzie wiele komputerów może korzystać z jednego adresu publicznego. Dzięki tym adresom prywatnym oszczędzamy adresy IP i zwiększamy bezpieczeństwo, bo urządzenia w sieci lokalnej nie są widoczne z Internetu. Kiedy sieć lokalna łączy się z Internetem, stosuje się NAT, czyli Network Address Translation, który zamienia te prywatne adresy na publiczne. Często w organizacjach wykorzystuje się serwery DHCP, które automatycznie przydzielają adresy IP z tego zakresu, co znacznie ułatwia zarządzanie siecią.

Pytanie 8

Interfejs graficzny Menedżera usług IIS (Internet Information Services) w systemie Windows służy do ustawiania konfiguracji serwera

A. DNS
B. wydruku
C. terminali
D. WWW
Menedżer usług IIS (Internet Information Services) to kluczowe narzędzie do zarządzania serwerami WWW w systemie Windows. Umożliwia nie tylko konfigurację, ale także monitorowanie i optymalizację wydajności aplikacji webowych. Dzięki interfejsowi graficznemu, użytkownicy mogą łatwo tworzyć i zarządzać witrynami internetowymi, a także ustawiać różne protokoły, takie jak HTTP czy HTTPS. IIS wspiera wiele technologii, w tym ASP.NET, co pozwala na rozwijanie dynamicznych aplikacji internetowych. Przykładem praktycznego zastosowania IIS jest uruchamianie serwisów e-commerce, które wymagają stabilnego i bezpiecznego serwera do obsługi transakcji online. Dobrze skonfigurowany IIS według najlepszych praktyk zapewnia szybkie ładowanie stron, co jest niezbędne w kontekście SEO oraz doświadczenia użytkowników. Umożliwia także zarządzanie certyfikatami SSL, co jest kluczowe dla zabezpieczenia danych przesyłanych przez użytkowników.

Pytanie 9

Urządzenie warstwy dystrybucji, które odpowiada za połączenie odrębnych sieci oraz zarządzanie przepływem danych między nimi, nazywane jest

A. przełącznikiem
B. routerem
C. koncentratorem
D. serwerem
Router jest urządzeniem, które pełni kluczową rolę w łączeniu różnych sieci komputerowych oraz zarządzaniu przepływem danych między nimi. W przeciwieństwie do innych urządzeń sieciowych, jak przełączniki czy koncentratory, routery są zdolne do podejmowania decyzji o trasowaniu pakietów danych na podstawie ich adresów IP. Używają do tego protokołów routingu, takich jak RIP, OSPF czy BGP, co pozwala im na dynamiczne dostosowywanie tras w zależności od warunków w sieci. Przykładem zastosowania routera może być łączenie lokalnej sieci domowej z Internetem, gdzie router zarządza zarówno ruchem lokalnym, jak i komunikacją z siecią globalną. Dobre praktyki w zakresie konfiguracji routerów obejmują zabezpieczanie dostępu do panelu administracyjnego, aktualizowanie oprogramowania oraz stosowanie zapór sieciowych, aby chronić sieć przed nieautoryzowanym dostępem. Zrozumienie funkcji routerów jest kluczowe dla projektowania efektywnych i bezpiecznych architektur sieciowych.

Pytanie 10

Jaki argument komendy ipconfig w systemie Windows przywraca konfigurację adresów IP?

A. /flushdns
B. /displaydns
C. /release
D. /renew
Wybór innych parametrów polecenia ipconfig może prowadzić do nieporozumień co do ich funkcji. Parametr /flushdns, na przykład, jest używany do czyszczenia pamięci podręcznej DNS, co jest przydatne w przypadku problemów z rozwiązywaniem nazw domen. Często mylnie sądzi się, że to może pomóc w odnowieniu adresu IP, ale w rzeczywistości to działania związane z DNS, a nie z samym przydzieleniem adresu IP. Z kolei parametr /release służy do zwolnienia aktualnie przypisanego adresu IP, co może być pożądane, gdy chcemy, aby komputer przestał używać swojego obecnego adresu IP, ale nie odnawia on adresu. Wprowadza to zamieszanie, ponieważ użytkownicy mogą myśleć, że zwolnienie IP automatycznie je odnawia, co jest błędne. Ostatni parametr, /displaydns, wyświetla zawartość pamięci podręcznej DNS, co jest zupełnie innym procesem i nie ma żadnego wpływu na adresację IP. Warto zaznaczyć, że niepoprawne zrozumienie tych parametrów może prowadzić do frustracji, gdyż użytkownicy próbują rozwiązać problemy z siecią, wybierając niewłaściwe narzędzia. Kluczowym błędem w tym kontekście jest niezrozumienie różnicy między zarządzaniem adresami IP a zarządzaniem pamięcią podręczną DNS, co jest fundamentalne w praktyce administracji sieciami.

Pytanie 11

Wskaż, który z podanych adresów stanowi adres rozgłoszeniowy sieci?

A. 10.0.255.127/24
B. 10.0.255.127/22
C. 10.255.255.127/25
D. 10.0.255.127/23
Adres 10.255.255.127/25 jest adresem rozgłoszeniowym dla sieci, ponieważ w tej konkretnej masce podsieci (/25) ostatni adres w tej podsieci jest używany jako adres rozgłoszeniowy. Maska /25 oznacza, że pierwsze 25 bitów adresu jest używane do identyfikacji sieci, co pozostawia 7 bitów do identyfikacji hostów. W przypadku adresu 10.255.255.0/25, zakres adresów hostów wynosi od 10.255.255.1 do 10.255.255.126, a adres rozgłoszeniowy to 10.255.255.127. W praktyce adresy rozgłoszeniowe są kluczowe dla komunikacji w sieci, umożliwiając wysyłanie danych do wszystkich hostów w danej podsieci jednocześnie, co jest szczególnie przydatne w aplikacjach multicast i w sytuacjach, gdy chcemy przesłać informacje do wielu urządzeń. Rozumienie, jak obliczać adresy rozgłoszeniowe, jest istotne dla inżynierów sieciowych i administratorów IT, ponieważ pozwala na efektywne planowanie i zarządzanie zasobami sieciowymi zgodnie z najlepszymi praktykami branżowymi, zgodnymi z normami IETF.

Pytanie 12

Aby podłączyć drukarkę, która nie posiada karty sieciowej, do przewodowej sieci komputerowej, konieczne jest zainstalowanie serwera wydruku z odpowiednimi interfejsami

A. Centronics i RJ11
B. USB i RJ45
C. USB i RS232
D. Centronics i USB
Odpowiedź 'USB i RJ45' jest prawidłowa, ponieważ obydwa interfejsy są powszechnie stosowane do podłączenia drukarek do sieci komputerowych. Interfejs USB umożliwia szybkie przesyłanie danych między urządzeniem a komputerem, co jest kluczowe w przypadku drukarek, które wymagają efektywnej komunikacji. Z kolei interfejs RJ45 jest standardem w sieciach Ethernet, co pozwala na podłączenie drukarki do lokalnej sieci komputerowej bez potrzeby posiadania wbudowanej karty sieciowej. W przypadku serwera wydruku, urządzenie takie działa jako mostek pomiędzy drukarką a komputerami w sieci, co umożliwia wielu użytkownikom dostęp do tej samej drukarki. Przykłady zastosowania obejmują podłączenie drukarki biurowej do serwera, co pozwala na zdalne drukowanie dokumentów przez pracowników z różnych stanowisk. Zgodność z tymi standardami w znaczący sposób zwiększa elastyczność i użyteczność urządzeń w środowisku pracy, co jest zgodne z najlepszymi praktykami w branży IT.

Pytanie 13

Jak nazywa się protokół, który pozwala na ściąganie wiadomości e-mail z serwera?

A. SMTP
B. POP3
C. DNS
D. FTP
POP3, czyli Post Office Protocol w wersji 3, to protokół, który umożliwia pobieranie wiadomości e-mail z serwera do lokalnej skrzynki pocztowej użytkownika. Działa w modelu klient-serwer, gdzie klient (np. program pocztowy) nawiązuje połączenie z serwerem pocztowym, aby pobrać wiadomości. POP3 jest szczególnie przydatny w sytuacjach, gdy użytkownik chce mieć dostęp do swoich e-maili offline, ponieważ po pobraniu wiadomości, są one usuwane z serwera (chyba że skonfigurujemy protokół tak, aby je zachować). Zastosowanie tego protokołu jest powszechne w środowiskach, gdzie użytkownicy preferują lokalną archiwizację wiadomości e-mail, co jest zgodne z najlepszymi praktykami zarządzania informacjami. Protokół POP3 operuje na porcie 110 (lub 995 w przypadku bezpiecznego połączenia SSL), co jest zgodne z ustalonymi standardami w branży. Użytkownicy często korzystają z POP3, gdy korzystają z programów takich jak Microsoft Outlook, Mozilla Thunderbird czy Apple Mail, aby zarządzać swoimi skrzynkami pocztowymi w efektywny sposób.

Pytanie 14

Administrator zauważa, że jeden z komputerów w sieci LAN nie może uzyskać dostępu do Internetu, mimo poprawnie skonfigurowanego adresu IP. Który parametr konfiguracji sieciowej powinien sprawdzić w pierwszej kolejności?

A. Adres bramy domyślnej
B. Adres MAC karty sieciowej
C. Adres serwera DNS
D. Maskę podsieci
Adres bramy domyślnej jest kluczowym parametrem konfiguracji sieciowej, który umożliwia komputerowi w sieci LAN komunikację z urządzeniami poza swoją lokalną podsiecią, w tym z Internetem. Brama domyślna to zwykle adres IP routera lub innego urządzenia pośredniczącego, które przekazuje ruch wychodzący z lokalnej sieci do innych sieci. Nawet jeśli komputer ma poprawnie ustawiony adres IP i maskę podsieci, brak lub błędna konfiguracja bramy domyślnej uniemożliwi mu wysyłanie pakietów poza własny segment sieci – czyli właśnie do Internetu. To dlatego w praktyce administratorzy zawsze zaczynają od weryfikacji tego parametru, gdy urządzenie nie może się połączyć z zasobami zewnętrznymi. W standardowych systemach operacyjnych, takich jak Windows czy Linux, parametr ten jest podawany ręcznie lub automatycznie przez DHCP. Z mojego doświadczenia, nawet przy poprawnych pozostałych ustawieniach sieciowych najczęstszą przyczyną braku dostępu do Internetu jest właśnie brak lub literówka w adresie bramy. W środowiskach produkcyjnych i edukacyjnych regularnie powtarza się zasada: jeśli lokalna komunikacja działa, a Internet nie – sprawdź najpierw bramę domyślną. To podstawowy krok w diagnostyce sieciowej i element każdej checklisty administratora.

Pytanie 15

Który z dostępnych standardów szyfrowania najlepiej ochroni sieć bezprzewodową?

A. WEP 64
B. WPA-PSK(TKIP)
C. WEP 128
D. WPA2-PSK(AES)
WPA2-PSK(AES) to obecnie jeden z najbezpieczniejszych standardów szyfrowania dla sieci bezprzewodowych. Używa on algorytmu AES (Advanced Encryption Standard), który jest bardziej zaawansowany niż starsze metody, takie jak TKIP, używane w WPA-PSK. AES oferuje znacznie wyższy poziom bezpieczeństwa dzięki zastosowaniu silniejszego klucza szyfrowania oraz bardziej skomplikowanej architektury, co czyni go odpornym na wiele znanych ataków. Przykładem zastosowania WPA2-PSK(AES) może być konfiguracja domowej sieci Wi-Fi, gdzie użytkownicy mogą łatwo ustawić silne hasło, a także korzystać z bezpiecznego dostępu do internetu. Warto podkreślić, że zgodnie z najlepszymi praktykami branżowymi, zaleca się regularną aktualizację haseł oraz monitorowanie urządzeń podłączonych do sieci, aby zminimalizować ryzyko nieautoryzowanego dostępu. Co więcej, wiele nowoczesnych urządzeń sieciowych wspiera WPA3, kolejny krok w ewolucji bezpieczeństwa sieci bezprzewodowych, oferujący jeszcze wyższy poziom ochrony.

Pytanie 16

Który element zabezpieczeń znajduje się w pakietach Internet Security (IS), ale nie występuje w programach antywirusowych (AV)?

A. Skaner wirusów
B. Zapora sieciowa
C. Monitor wirusów
D. Aktualizacje baz wirusów
Zapora sieciowa to taki istotny element ochrony, który znajdziesz w pakietach Internet Security, ale nie w zwykłych programach antywirusowych. Jej zadaniem jest pilnowanie, co się dzieje w sieci – to znaczy, że blokuje nieproszonych gości i chroni Twoje urządzenie przed różnymi atakami. Dobrym przykładem jest korzystanie z publicznego Wi-Fi, gdzie zapora działa jak tarcza, zabezpieczając Twoje dane przed przechwyceniem. W zawodowym świecie zabezpieczeń zapory sieciowe są na porządku dziennym, bo są częścią większej strategii, która obejmuje szyfrowanie danych i regularne aktualizacje. Jak mówią w branży, np. NIST, włączenie zapory do ochrony informacji to absolutna podstawa – bez niej trudno mówić o skutecznym zabezpieczeniu.

Pytanie 17

Które urządzenie w sieci lokalnej nie segreguje obszaru sieci komputerowej na domeny kolizyjne?

A. Przełącznik.
B. Most.
C. Ruter.
D. Koncentrator.
Mosty, przełączniki i routery mają różne funkcje w sieciach i pomagają zarządzać ruchem, w tym dzielić sieć na różne domeny kolizyjne. Most działa na drugiej warstwie OSI, a jego zadaniem jest segmentowanie ruchu, co zmniejsza liczbę kolizji, bo tworzy oddzielne segmenty. Przełączniki, które też działają na tej samej warstwie, są jeszcze bardziej zaawansowane, bo używają MAC adresów do wysyłania danych tylko do właściwego urządzenia, co zmniejsza ryzyko kolizji. Z kolei routery działają na trzeciej warstwie i zarządzają ruchem między różnymi sieciami, co czyni je bardzo ważnymi w sieciach IP. Często ludzie myślą, że wszystkie te urządzenia są podobne do koncentratorów, ale tak nie jest. Koncentrator przesyła dane do wszystkich urządzeń, a mosty, przełączniki i routery robią to znacznie lepiej, co poprawia wydajność sieci. Dlatego, wybierając urządzenia do sieci, warto mieć na uwadze te zasady segmentacji ruchu i efektywności według nowoczesnych standardów.

Pytanie 18

W sieci o strukturze zaleca się, aby na powierzchni o wymiarach

A. 10 m2
B. 5 m2
C. 20 m2
D. 30 m2
W sieci strukturalnej, umieszczenie jednego punktu abonenckiego na powierzchni 10 m2 jest zgodne z zaleceniami standardów branżowych oraz dobrą praktyką inżynieryjną. Takie rozmieszczenie zapewnia optymalną długość kabli, minimalizując straty sygnału i zakłócenia. Praktyczne zastosowanie tej zasady można zauważyć w projektowaniu sieci lokalnych (LAN), gdzie odpowiednia gęstość punktów abonenckich pozwala na efektywne wykorzystanie dostępnej infrastruktury, zapewniając jednocześnie odpowiednią jakość usług. Warto również wspomnieć o standardzie ANSI/TIA-568, który określa wymagania dotyczące okablowania strukturalnego. Zgodnie z tym standardem, rozmieszczenie punktów abonenckich na powierzchni 10 m2 pozwala na efektywne zarządzanie siecią, co przekłada się na lepszą jakość usług dla użytkowników końcowych. Umożliwia to także lepszą elastyczność w rozbudowie sieci oraz dostosowywaniu do zmieniających się potrzeb użytkowników, co jest kluczowe w dynamicznym środowisku technologicznym.

Pytanie 19

Aby móc zakładać konta użytkowników, komputerów oraz innych obiektów i przechowywać ich dane w sposób centralny, konieczne jest zainstalowanie na serwerze Windows roli

A. Usługi certyfikatów Active Directory
B. Active Directory Federation Service
C. Usługi Domenowe Active Directory
D. Usługi LDS w usłudze Active Directory
Usługi Domenowe Active Directory (AD DS) są kluczowym elementem infrastruktury IT w środowiskach Windows. Instalacja tej roli na serwerze umożliwia zarządzanie kontami użytkowników, komputerów oraz innymi obiektami w zorganizowanej i scentralizowanej strukturze. AD DS oferuje hierarchiczną bazę danych, która przechowuje informacje o atrybutach obiektów, co ułatwia administrację i zapewnia bezpieczeństwo. Przykładem zastosowania AD DS jest możliwość tworzenia grup użytkowników oraz przydzielania im odpowiednich uprawnień dostępu do zasobów w sieci. Przykładowo, organizacje mogą stworzyć grupę „Pracownicy Działu IT”, co pozwala na szybkie zarządzanie dostępem do serwerów oraz aplikacji dedykowanych dla tego zespołu. AD DS wspiera także standardy branżowe, takie jak LDAP (Lightweight Directory Access Protocol), co umożliwia integrację z innymi systemami i aplikacjami, poprawiając tym samym współpracę różnych technologii. Dobre praktyki wdrażania AD DS obejmują regularne aktualizacje i utrzymanie struktury AD, aby zapewnić jej bezpieczeństwo i wydajność, co jest niezbędne w zarządzaniu rozbudowanymi środowiskami IT.

Pytanie 20

Która z kombinacji: protokół – warstwa, w której dany protokół działa, jest poprawnie zestawiona według modelu TCP/IP?

A. IGMP - warstwa Internetu
B. ICMP - warstwa aplikacji
C. RARP – warstwa transportowa
D. DHCP – warstwa dostępu do sieci
Wybór RARP (Reverse Address Resolution Protocol) jako protokołu warstwy transportowej jest błędny, ponieważ RARP działa na warstwie łącza danych. Służy do mapowania adresów IP na adresy MAC, co jest kluczowe w kontekście lokalnych sieci komputerowych, gdzie urządzenia muszą znać adresy fizyczne dla udanej komunikacji. Przemieszczając się do kolejnej opcji, DHCP (Dynamic Host Configuration Protocol) to protokół używany do automatycznej konfiguracji urządzeń w sieci, jednak działa on na warstwie aplikacji, a nie dostępu do sieci. Wiele osób myli DHCP z operacjami na niższych warstwach, ponieważ jego funkcjonalność wpływa na sposób, w jaki urządzenia związane są z siecią. ICMP (Internet Control Message Protocol) pełni rolę komunikacyjną między węzłami w sieci, jednak również działa na warstwie Internetu, a nie aplikacji. Typowe błędy myślowe prowadzące do tych nieprawidłowych wniosków mogą obejmować zrozumienie protokołów jako jedynie narzędzi do komunikacji na poziomie użytkownika, podczas gdy wiele z nich operuje na znacznie niższych warstwach, pełniąc różne funkcje w zakresie zarządzania ruchem sieciowym oraz konfiguracji adresów.

Pytanie 21

Ile równych podsieci można utworzyć z sieci o adresie 192.168.100.0/24 z wykorzystaniem maski 255.255.255.192?

A. 4 podsieci
B. 16 podsieci
C. 8 podsieci
D. 2 podsieci
Odpowiedź 4 podsieci jest poprawna, ponieważ zastosowanie maski 255.255.255.192 (czyli /26) do adresu 192.168.100.0/24 znacząco wpływa na podział tej sieci. W masce /24 mamy 256 adresów IP (od 192.168.100.0 do 192.168.100.255). Zastosowanie maski /26 dzieli tę przestrzeń adresową na 4 podsieci, z każdą z nich zawierającą 64 adresy (2^(32-26) = 2^6 = 64). Te podsieci będą miały adresy: 192.168.100.0/26, 192.168.100.64/26, 192.168.100.128/26 oraz 192.168.100.192/26. Taki podział jest przydatny w praktyce, na przykład w sytuacjach, gdzie potrzebujemy odseparować różne działy w firmie lub w przypadku przydzielania adresów dla różnych lokalizacji geograficznych. Dobrą praktyką w zarządzaniu adresami IP jest używanie podsieci, co ułatwia organizację ruchu w sieci oraz zwiększa bezpieczeństwo poprzez segmentację. Właściwe planowanie podsieci pozwala również zminimalizować marnotrawstwo adresów IP.

Pytanie 22

Jaką wartość ma domyślna maska dla adresu IP klasy B?

A. 255.0.0.0
B. 255.255.255.0
C. 255.255.0.0
D. 255.255.255.255
Domyślna maska dla adresu IP klasy B to 255.255.0.0. Oznacza to, że pierwsze dwa oktety adresu IP (16 bitów) są zarezerwowane na identyfikator sieciowy, podczas gdy pozostałe dwa oktety (16 bitów) mogą być wykorzystywane do identyfikacji poszczególnych hostów w tej sieci. Ta struktura pozwala na obsługę dużej liczby hostów, co czyni ją idealną do zastosowań w średnich i dużych sieciach. Na przykład, w sieci klasy B z maską 255.255.0.0 można zaadresować do 65,534 hostów (2^16 - 2, gdzie 2 odejmujemy z powodu adresu sieci oraz adresu rozgłoszeniowego). Użycie klasy B i odpowiedniej maski pozwala na efektywne zarządzanie adresacją IP w organizacjach, które wymagają dużej liczby unikalnych adresów, takich jak uczelnie czy duże przedsiębiorstwa. W praktyce, często wykorzystuje się tę maskę w połączeniu z protokołami routingu, aby zapewnić optymalne przesyłanie danych w sieciach rozległych (WAN).

Pytanie 23

Jaki jest adres rozgłoszeniowy dla sieci 172.30.0.0/16?

A. 172.30.255.255
B. 172.30.0.255
C. 172.0.255.255
D. 172.255.255.255
Adres rozgłoszeniowy dla sieci 172.30.0.0/16 jest 172.30.255.255, co wynika z zasad obliczania adresów IP w sieciach klasy C. W przypadku notacji CIDR /16 oznacza to, że pierwsze 16 bitów identyfikuje sieć, a pozostałe 16 bitów mogą być użyte do adresowania urządzeń w tej sieci, co daje maksymalnie 65,536 adresów (od 172.30.0.0 do 172.30.255.255). Adres rozgłoszeniowy jest ostatnim adresem w tej przestrzeni adresowej i jest używany do wysyłania pakietów do wszystkich hostów w danej sieci. W praktyce, rozgłoszenia są często wykorzystywane w protokołach takich jak DHCP (Dynamic Host Configuration Protocol) czy ARP (Address Resolution Protocol), gdzie urządzenia muszą komunikować się z wieloma innymi urządzeniami w danej sieci lokalnej. Zrozumienie tego konceptu jest kluczowe dla projektowania i implementacji efektywnych rozwiązań sieciowych, zgodnych z najlepszymi praktykami branżowymi oraz standardami sieciowymi.

Pytanie 24

Do jakiej sieci jest przypisany host o adresie 172.16.10.10/22?

A. 172.16.4.0
B. 172.16.16.0
C. 172.16.12.0
D. 172.16.8.0
Patrząc na twoje odpowiedzi, można zauważyć, że niektóre z nich wynikają z braku pełnego zrozumienia działania subnettingu i struktury adresów IP. Każdy adres IP dzieli się na część, która identyfikuje sieć, i część, która identyfikuje samego hosta. To jest kluczowe, żeby dobrze skonfigurować sieć. W przypadku adresu 172.16.10.10 z maską /22, żeby stwierdzić, do której sieci ten host przynależy, trzeba obliczyć adres sieci i rozumieć, jak działa maska podsieci. Ta maska wskazuje na 4 podsieci, a adres 172.16.8.0 to ta, z którą ma się łączyć nasz host. Odpowiedzi takie jak 172.16.4.0, 172.16.12.0 czy 172.16.16.0 są błędne, bo nie mieszczą się w odpowiednich przedziałach dla tej maski. Szczególnie 172.16.4.0 byłoby z innej podsieci, a 172.16.12.0 to tylko koniec zakresu tej samej podsieci, więc nie może być adresem sieciowym dla hosta 172.16.10.10. Często ludzie myślą, że adresy podsieci to po prostu liczby, a w rzeczywistości są one jasno określone przez maskę podsieci, co trzeba mieć na uwadze przy projektowaniu sieci. Dobrze jest też pamiętać, że stosowanie odpowiednich zasad i praktyk w subnettingu, jak CIDR, jest mega ważne dla efektywnego zarządzania adresami IP w nowoczesnych sieciach.

Pytanie 25

Adres sieci 172.16.0.0 zostanie podzielony na równe podsieci, z których każda obsługiwać będzie maksymalnie 510 użytecznych adresów. Ile podsieci zostanie stworzonych?

A. 128
B. 32
C. 64
D. 252
Adres 172.16.0.0 jest adresem klasy B, co oznacza, że domyślnie ma maskę podsieci 255.255.0.0. W celu podziału tego adresu na mniejsze podsieci, musimy zwiększyć liczbę bitów przeznaczonych na identyfikację podsieci. Zauważmy, że dla uzyskania co najmniej 510 użytecznych adresów w każdej podsieci, potrzebujemy co najmniej 9 bitów, ponieważ 2^9 - 2 = 510 (musimy odjąć 2 adresy: jeden dla adresu sieci i jeden dla adresu rozgłoszeniowego). To oznacza, że musimy poświęcić 9 bitów z części hosta. W adresie klasy B mamy 16 bitów przeznaczonych na hosty, więc po odjęciu 9 bitów, pozostaje nam 7 bitów. Tak więc liczba możliwych podsieci wynosi 2^7 = 128. Przykładowe zastosowanie tej wiedzy ma miejsce w dużych organizacjach, gdzie potrzebne jest tworzenie wielu podsieci dla różnych działów lub lokalizacji, co pozwala na efektywne zarządzanie ruchem sieciowym oraz poprawę bezpieczeństwa. Dobrą praktyką jest przemyślane planowanie podziału adresów IP, aby uniknąć przyszłych problemów z dostępnością adresów.

Pytanie 26

Jaką rolę odgrywa usługa proxy?

A. pośrednika sieciowego.
B. serwera e-mail.
C. serwera z usługami katalogowymi.
D. firewalla.
Proxy to taka usługa, która działa jak pośrednik między użytkownikiem a serwerem. Dzięki niemu możemy mieć większe bezpieczeństwo i prywatność, bo ukrywa nasz adres IP i daje dostęp do treści, które mogą być zablokowane w danym regionie. Na przykład, gdy firma korzysta z proxy, może kontrolować, co pracownicy oglądają w internecie, a także monitorować ruch sieciowy i blokować nieodpowiednie strony. Proxy działa też jak bufor, dzięki czemu często odwiedzane strony ładują się szybciej, bo mniej czasu schodzi na ich pobieranie. Warto wiedzieć, że korzystanie z proxy to standard w branży, który pomaga zapewnić bezpieczeństwo i wydajność w zarządzaniu siecią, co potwierdzają różne organizacje, jak Internet Engineering Task Force (IETF).

Pytanie 27

Domyślnie dostęp anonimowy do zasobów serwera FTP pozwala na

A. kompletne prawa dostępu
B. wyłącznie prawo do zapisu
C. wyłącznie prawo do odczytu
D. prawa zarówno do odczytu, jak i zapisu
Odpowiedź 'tylko prawo do odczytu' jest prawidłowa, ponieważ domyślnie anonimowy dostęp do serwera FTP zazwyczaj ogranicza użytkowników jedynie do możliwości przeglądania i pobierania plików. W praktyce oznacza to, że użytkownik może uzyskać dostęp do plików na serwerze, ale nie ma możliwości ich modyfikacji ani dodawania nowych. Tego rodzaju ograniczenia są zgodne z najlepszymi praktykami bezpieczeństwa, które zalecają minimalizowanie ryzyka związanego z nieautoryzowanymi zmianami w danych. Ograniczenie dostępu tylko do odczytu jest szczególnie istotne w kontekście serwerów publicznych, gdzie zasoby mogą być dostępne dla szerokiej gamy użytkowników. W wielu przypadkach, aby uzyskać dostęp do pełnych praw, użytkownik musi zarejestrować się i otrzymać odpowiednie uprawnienia. Warto również wspomnieć, że zgodnie z protokołem FTP, dostęp do zasobów może być konfigurowany przez administratorów w celu dalszego zwiększenia bezpieczeństwa oraz kontroli dostępu.

Pytanie 28

Kable światłowodowe nie są często używane w lokalnych sieciach komputerowych z powodu

A. niskiej wydajności.
B. niski poziom odporności na zakłócenia elektromagnetyczne.
C. znaczących strat sygnału podczas transmisji.
D. wysokich kosztów elementów pośredniczących w transmisji.
Kable światłowodowe są efektywnym medium transmisyjnym, wykorzystującym zjawisko całkowitego wewnętrznego odbicia światła do przesyłania danych. Choć charakteryzują się dużą przepustowością i niskimi stratami sygnału na długich dystansach, ich powszechne zastosowanie w lokalnych sieciach komputerowych jest ograniczone przez wysokie koszty związane z elementami pośredniczącymi w transmisji, takimi jak przełączniki i konwertery. Elementy te są niezbędne do integrowania technologii światłowodowej z istniejącymi infrastrukturami sieciowymi, które często opierają się na kablach miedzianych. W praktyce oznacza to, że organizacje, które pragną zainwestować w sieci światłowodowe, muszą być przygotowane na znaczne wydatki na sprzęt oraz jego instalację. Z drugiej strony, standardy takie jak IEEE 802.3 zdefiniowały wymagania techniczne dla transmisji w sieciach Ethernet, co przyczyniło się do rozwoju technologii światłowodowej, ale nadal pozostaje to kosztowną inwestycją dla wielu lokalnych sieci komputerowych.

Pytanie 29

Przekazywanie tokena (ang. token) ma miejsce w sieci o topologii fizycznej

A. magistrali
B. gwiazdy
C. pierścienia
D. siatki
Przekazywanie żetonu w sieci typu pierścieniowego to naprawdę ciekawy proces. W praktyce oznacza to, że dane krążą wokół zamkniętej pętli, co ułatwia dostęp do informacji dla każdego węzła. Każdy węzeł łączy się z dwoma innymi, tworząc coś w rodzaju zamkniętej sieci. Kiedy jeden węzeł chce przesłać dane, po prostu umieszcza je w żetonie, który następnie krąży, aż dotrze do celu. To rozwiązanie zmniejsza ryzyko kolizji, bo tylko jeden żeton jest aktywny w danym momencie, co poprawia wydajność. Ciekawe jest, że tego typu sieci często znajdziemy w lokalnych sieciach komputerowych, gdzie stała wymiana danych jest bardzo ważna. Dobrym przykładem jest technologia Token Ring, która była popularna w latach 80. i 90. XX wieku. Standardy IEEE 802.5 dokładnie opisują, jak te sieci powinny działać, co pozwala różnym urządzeniom na współpracę. W skrócie, zarządzanie przekazywaniem żetonu w sieci pierścieniowej sprawia, że jest to naprawdę funkcjonalne rozwiązanie w wielu zastosowaniach.

Pytanie 30

Którą maskę należy zastosować, aby komputery o adresach IPv4, przedstawionych w tabeli, były przydzielone do właściwych sieci?

Adresy IPv4 komputerówOznaczenie sieci
192.168.10.30Sieć 1
192.168.10.60Sieć 1
192.168.10.130Sieć 2
192.168.10.200Sieć 3

A. 255.255.255.224
B. 255.255.255.240
C. 255.255.255.128
D. 255.255.255.192
Maska 255.255.255.192, znana również jako /26, jest prawidłowym wyborem w kontekście przydzielania adresów IPv4 do odpowiednich sieci. Ta maska pozwala na utworzenie 64 adresów IP w jednej podsieci, co jest rezultatem użycia 6 bitów na adresy hostów (2^6 = 64). Z tego wynika, że 2 adresy są zarezerwowane: jeden na identyfikację sieci, a drugi na rozgłoszenie (broadcast). Dzięki temu, w sieci 192.168.10.0 do 192.168.10.63 mamy 62 dostępne adresy dla hostów, co idealnie pasuje do wymaganej struktury sieci. Oddziela to sieć 1 i sieć 2, umożliwiając ich właściwe funkcjonowanie i komunikację. W praktyce, stosowanie maski /26 umożliwia efektywne zarządzanie adresacją IP, unikając konfliktów i zatorów w komunikacji między urządzeniami. W przypadku większych sieci z większą liczbą hostów, maski takie jak 255.255.255.128 (/25) mogą być bardziej odpowiednie, ale w tym przypadku 255.255.255.192 jest optymalnym rozwiązaniem.

Pytanie 31

Który z programów został przedstawiony poniżej?

To najnowsza wersja klienta działającego na różnych platformach, cenionego na całym świecie przez użytkowników, serwera wirtualnej sieci prywatnej, umożliwiającego utworzenie połączenia pomiędzy hostem a lokalnym komputerem, obsługującego uwierzytelnianie przy użyciu kluczy, a także certyfikatów, nazwy użytkownika oraz hasła, a w wersji dla Windows dodatkowo oferującego karty.

A. Putty
B. OpenVPN
C. Ethereal
D. TightVNC
OpenVPN to otwartoźródłowy program, który umożliwia tworzenie wirtualnych sieci prywatnych (VPN) i cieszy się dużym uznaniem wśród użytkowników na całym świecie. Jego najnowsza wersja zapewnia wsparcie dla wielu platform, co oznacza, że można go używać na różnych systemach operacyjnych, takich jak Windows, macOS, Linux, iOS oraz Android. OpenVPN obsługuje różne metody uwierzytelniania, w tym uwierzytelnianie za pomocą kluczy publicznych, certyfikatów oraz standardowych nazw użytkowników i haseł. Dzięki temu użytkownicy mogą dostosowywać swoje połączenia do własnych potrzeb związanych z bezpieczeństwem. Kluczowe jest również to, że OpenVPN wspiera różne protokoły szyfrowania, co pozwala na zabezpieczenie przesyłanych danych przed nieautoryzowanym dostępem. Przykładowe zastosowanie OpenVPN obejmuje zdalny dostęp do zasobów firmowych, co pozwala pracownikom na bezpieczną pracę z domu. Standardy bezpieczeństwa, takie jak AES-256-GCM, są zgodne z najlepszymi praktykami branżowymi, co czyni OpenVPN odpowiednim wyborem dla organizacji dbających o ochronę danych.

Pytanie 32

Instalator jest w stanie zamontować 5 gniazd w ciągu jednej godziny. Ile wyniesie całkowity koszt materiałów i instalacji 20 natynkowych gniazd sieciowych, jeśli cena jednego gniazda to 5,00 zł, a stawka za roboczogodzinę instalatora wynosi 30,00 zł?

A. 220,00 zł
B. 130,00 zł
C. 700,00 zł
D. 350,00 zł
Poprawna odpowiedź to 220,00 zł, co można obliczyć, biorąc pod uwagę koszty materiałów oraz robocizny. Koszt samego materiału na 20 gniazd wynosi 20 gniazd x 5,00 zł/gniazdo = 100,00 zł. Instalator montuje 5 gniazd w ciągu godziny, więc na zamontowanie 20 gniazd potrzebuje 20 gniazd ÷ 5 gniazd/godzinę = 4 godziny. Koszt robocizny wynosi 4 godziny x 30,00 zł/godzinę = 120,00 zł. Sumując te dwa koszty: 100,00 zł (materiały) + 120,00 zł (robocizna) = 220,00 zł. Takie podejście do obliczeń jest zgodne z najlepszymi praktykami w branży, które zalecają zawsze dokładne oszacowanie zarówno kosztów materiałów, jak i pracy. Dobrą praktyką jest również uwzględnianie ewentualnych kosztów dodatkowych, takich jak transport czy opłaty za materiały, co może mieć miejsce w rzeczywistych projektach.

Pytanie 33

Jakie oprogramowanie odpowiada za funkcję serwera DNS w systemie Linux?

A. vsftpd
B. bind
C. apache
D. samba
Poprawna odpowiedź to bind, który jest popularnym serwerem DNS w systemach Linux. Bind, czyli Berkeley Internet Name Domain, to oprogramowanie, które implementuje protokół DNS (Domain Name System). Umożliwia to rozwiązywanie nazw domenowych na adresy IP, co jest kluczowe dla funkcjonowania internetu. Bind jest skonfigurowany do pracy zarówno jako serwer nazw autoritarny, jak i serwer rekurencyjny, co oznacza, że może odpowiadać na zapytania o nazwę domeny i jednocześnie przekazywać zapytania do innych serwerów DNS w celu uzyskania odpowiedzi. Przykładowo, gdy użytkownik wpisuje adres www.example.com w przeglądarce, serwer DNS wykorzystujący bind przekształca tę nazwę w odpowiedni adres IP, co pozwala na nawiązanie połączenia z właściwym serwerem. Bind jest zgodny z różnymi standardami, w tym RFC 1035, co czyni go niezawodnym narzędziem w zarządzaniu nazwami domenowymi. Dobrą praktyką jest regularne aktualizowanie konfiguracji serwera DNS oraz monitorowanie jego działania, aby zapewnić bezpieczeństwo i optymalną wydajność.

Pytanie 34

Fragment pliku httpd.conf serwera Apache wygląda następująco:

Listen 8012
Server Name localhost:8012

Aby zweryfikować prawidłowe funkcjonowanie strony WWW na serwerze, należy wprowadzić w przeglądarkę

A. http://localhost:apache
B. http://localhost:8012
C. http://localhost:8080
D. http://localhost
Odpowiedź http://localhost:8012 jest jak najbardziej poprawna, bo to właśnie ten adres wskazuje, na którym porcie serwer Apache czeka na żądania. W pliku httpd.conf mamy 'Listen 8012', co oznacza, że serwer będzie obsługiwał połączenia na tym porcie. Dodatkowo, 'Server Name localhost:8012' pokazuje, że serwer jest gotowy na przyjmowanie żądań z adresu localhost na podanym porcie. W praktyce, żeby dostać się do jakiejś aplikacji webowej, trzeba wpisać odpowiedni adres URL, który wskazuje i na hosta (czyli localhost), i na port (czyli 8012). Fajnie też pamiętać, że różne aplikacje mogą korzystać z różnych portów, a używanie odpowiedniego portu jest kluczowe, żeby wszystko działało jak należy. Na przykład port 80 jest standardowy dla HTTP, a 443 dla HTTPS. Więc jeśli aplikacja działa na innym porcie, tak jak 8012, to użytkownik musi o tym pamiętać w adresie URL.

Pytanie 35

Najbardziej popularny kodek audio używany przy ustawianiu bramki VoIP to

A. A.512
B. G.711
C. AC3
D. GSM
Kodek G.711 jest jednym z najczęściej stosowanych kodeków mowy w systemach VoIP. Jego główną zaletą jest wysoka jakość dźwięku, która osiągana jest dzięki zastosowaniu niekompresowanego formatu PCM (Pulse Code Modulation). G.711 działa na częstotliwości próbkowania 8 kHz i oferuje przepływność 64 kbps, co zapewnia bardzo dobrą jakość rozmów. W praktyce, kodek ten jest powszechnie wykorzystywany w zastosowaniach wymagających minimalnych opóźnień i wysokiej jakości audio, takich jak rozmowy telefoniczne oraz wideokonferencje. G.711 jest standardem ITU-T, co oznacza, że jest uznawany na całym świecie i zapewnia interoperacyjność między różnymi urządzeniami i systemami VoIP. Warto również wspomnieć, że G.711 ma dwie wersje: G.711 A-law, wykorzystywaną głównie w Europie, oraz G.711 μ-law, popularną w Ameryce Północnej. Wybór G.711 jako kodeka w bramkach VoIP jest zgodny z najlepszymi praktykami branżowymi, ponieważ pozwala na utrzymanie wysokiej jakości połączeń głosowych, co jest kluczowe dla satysfakcji użytkowników.

Pytanie 36

Umowa użytkownika w systemie Windows Serwer, która po wylogowaniu nie zachowuje zmian na serwerze oraz komputerze stacjonarnym i jest usuwana na zakończenie każdej sesji, to umowa

A. lokalny
B. mobilny
C. tymczasowy
D. obowiązkowy
Profil tymczasowy to taki typ konta w Windows Server, który powstaje automatycznie, jak się logujesz, a potem znika po wylogowaniu. To ważne, bo wszystko, co zrobisz podczas sesji, nie zostaje zapisane ani na serwerze, ani na komputerze. Takie rozwiązanie jest mega przydatne w miejscach, gdzie użytkownicy korzystają z systemu tylko przez chwilę, jak w szkołach czy firmach z wspólnymi komputerami. Dzięki tym profilom można zmniejszyć ryzyko, że ktoś nieuprawniony dostanie się do danych, a poza tym, pozostawia się czyste środowisko dla następnych użytkowników. Z doświadczenia mogę powiedzieć, że korzystanie z profilów tymczasowych jakby przyspiesza logowanie, bo nie obciążają one systemu zbędnymi danymi, co jest naprawdę fajne.

Pytanie 37

Jakie urządzenie należy użyć, aby połączyć sieć lokalną z Internetem?

A. most.
B. koncentrator.
C. przełącznik.
D. ruter.
Ruter to urządzenie, które pełni kluczową rolę w komunikacji pomiędzy siecią lokalną a Internetem. Jego głównym zadaniem jest przekazywanie danych pomiędzy różnymi sieciami, co pozwala na wymianę informacji pomiędzy urządzeniami wewnątrz sieci lokalnej a użytkownikami zewnętrznymi. Ruter wykonuje funkcje takie jak kierowanie pakietów, NAT (Network Address Translation) oraz zarządzanie adresami IP. Przykładem zastosowania rutera w praktyce jest sytuacja, gdy mamy w domu kilka urządzeń (komputery, smartfony, tablety), które łączą się z Internetem. Ruter pozwala tym urządzeniom na korzystanie z jednego, publicznego adresu IP, co jest zgodne z praktykami oszczędzania przestrzeni adresowej. Ruter może również zapewniać dodatkowe funkcje, takie jak zapora sieciowa (firewall) oraz obsługa sieci bezprzewodowych (Wi-Fi), co zwiększa bezpieczeństwo i komfort użytkowania. To urządzenie jest zatem niezbędne w każdej sieci, która chce mieć dostęp do globalnej sieci Internet.

Pytanie 38

Jak nazywa się topologia fizyczna, w której wszystkie urządzenia sieciowe są połączone z jednym centralnym urządzeniem?

A. drzewa
B. siatki
C. pierścienia
D. gwiazdy
Topologia gwiazdy to jedna z najpopularniejszych architektur sieciowych, w której wszystkie urządzenia, takie jak komputery i drukarki, są połączone z centralnym urządzeniem, zazwyczaj przełącznikiem lub hubem. Taki układ zapewnia łatwą konserwację i diagnozowanie problemów, gdyż ewentualne awarie jednego z węzłów nie wpływają na funkcjonowanie pozostałych urządzeń. Przykładem zastosowania topologii gwiazdy może być lokalna sieć komputerowa w biurze, gdzie wszystkie stacje robocze są podłączone do jednego przełącznika. Standardy takie jak Ethernet oraz protokoły sieciowe, takie jak TCP/IP, zostały zaprojektowane z myślą o pracy w takich strukturach. Zastosowanie topologii gwiazdy ułatwia także skalowanie sieci – wystarczy dodać nowe urządzenie do centralnego przełącznika, co czyni ją elastyczną i odpowiednią dla rozwijających się środowisk biurowych.

Pytanie 39

Kabel skrętkowy, w którym każda para przewodów ma oddzielne ekranowanie folią, a wszystkie przewody są umieszczone w ekranie z folii, jest oznaczany symbolem

A. F/FTP
B. S/UTP
C. S/FTP
D. F/UTP
Odpowiedź F/FTP odnosi się do kabla, który składa się z pojedynczych par przewodów, gdzie każda para jest chroniona przez osobny ekran foliowy, a cały kabel jest dodatkowo osłonięty ekranem foliowym. Tego typu konstrukcja pozwala na znaczne zmniejszenie zakłóceń elektromagnetycznych, co jest kluczowe w aplikacjach wymagających wysokiej wydajności oraz niezawodności przesyłu sygnałów, takich jak sieci komputerowe czy systemy telekomunikacyjne. W praktyce, kable F/FTP są często stosowane w środowiskach biurowych oraz w instalacjach, gdzie istnieje ryzyko występowania zakłóceń od innych urządzeń elektronicznych. Zgodnie ze standardem ISO/IEC 11801, który definiuje wymagania dotyczące kabli dla różnych aplikacji sieciowych, użycie ekranowanych kabli jest zalecane w przypadku instalacji w trudnych warunkach elektromagnetycznych. Przykładami zastosowania kabli F/FTP mogą być podłączenia w sieciach lokalnych (LAN), gdzie stabilność i jakość przesyłu danych jest priorytetem.

Pytanie 40

Jaką metodę należy zastosować, aby chronić dane przesyłane w sieci przed działaniem sniffera?

A. Zmiana hasła konta użytkownika
B. Skanowanie za pomocą programu antywirusowego
C. Szyfrowanie danych w sieci
D. Wykorzystanie antydialera
Szyfrowanie danych w sieci to kluczowy proces, który znacząco zwiększa bezpieczeństwo przesyłanych informacji. Sniffer to narzędzie służące do podsłuchiwania ruchu w sieci, co oznacza, że atakujący może przechwytywać dane takie jak hasła, numery kart kredytowych czy inne wrażliwe informacje. Szyfrowanie danych sprawia, że nawet jeśli te dane zostaną przechwycone, będą nieczytelne dla osób trzecich. Przykładem szyfrowania jest protokół HTTPS, który jest szeroko stosowany w Internecie do zabezpieczania komunikacji między przeglądarką a serwerem. Dzięki zastosowaniu szyfrowania, dane są kodowane za pomocą algorytmów takich jak AES czy RSA, co sprawia, że tylko uprawnione osoby z odpowiednim kluczem mogą je odczytać. Wdrożenie szyfrowania w transmitowanych danych jest zgodne z najlepszymi praktykami branżowymi, które zalecają zabezpieczanie wszystkich wrażliwych informacji w celu ochrony prywatności i integralności danych.