Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 7 czerwca 2025 02:13
  • Data zakończenia: 7 czerwca 2025 02:15

Egzamin niezdany

Wynik: 6/40 punktów (15,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Z jakiego układu zasilania powinna być zasilana maszyna mechatroniczna, skoro na schemacie sieć zasilającą oznaczono symbolem 400 V ~ 3/N/PE?

A. TT
B. TN – C
C. TN – S
D. TI
Odpowiedź TN-S jest prawidłowa, ponieważ oznaczenie 400 V ~ 3/N/PE wskazuje na sieć trójfazową z przewodem neutralnym oraz przewodem ochronnym. W układzie TN-S przewód neutralny (N) oraz przewód ochronny (PE) są odseparowane, co zwiększa bezpieczeństwo użytkowania urządzeń mechatronicznych. Stosowanie sieci TN-S jest zgodne z normami IEC 60364, które zalecają, by w przypadku zasilania systemów wymagających wysokiego poziomu bezpieczeństwa elektrycznego, stosować właśnie ten typ układu. Przykładem zastosowania układu TN-S mogą być środowiska przemysłowe, gdzie urządzenia mechatroniczne zasilane są z sieci o wysokiej mocy, minimalizując ryzyko porażenia prądem. Dodatkowo, TN-S pozwala na lepszą ochronę przed zakłóceniami elektromagnetycznymi, co jest kluczowe w przypadku wrażliwych urządzeń elektronicznych. Z tego względu układ TN-S jest preferowany w nowoczesnych instalacjach elektrycznych.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Parametry takie jak powierzchnia membrany, temperatura operacyjna, typ napędu, maksymalne ciśnienie, skok oraz precyzja położenia są charakterystyczne dla

A. silnika hydraulicznego
B. siłownika hydraulicznego
C. smarownicy pneumatycznej
D. siłownika pneumatycznego
Odpowiedzi takie jak smarownica pneumatyczna, silnik hydrauliczny i siłownik hydrauliczny zawierają szereg nieporozumień, które wynikają z mylenia różnych technologii napędowych. Smarownica pneumatyczna jest urządzeniem stosowanym do wprowadzania smarów do systemów pneumatycznych, a nie do generowania ruchu, co czyni ją nieodpowiednią w kontekście parametru skoku czy dokładności położenia. Silnik hydrauliczny, chociaż wykorzystuje ciśnienie płynów do generowania ruchu, funkcjonuje na zupełnie innych zasadach niż siłowniki pneumatyczne. Jego budowa i charakterystyka pracy opierają się na płynach hydraulicznych, co oznacza, że maksymalne ciśnienie i temperatura pracy są zupełnie inne. Siłowniki hydrauliczne, podobnie jak silniki hydrauliczne, także operują na zasadzie wykorzystania cieczy pod ciśnieniem, co diametralnie różni się od zasad działania siłowników pneumatycznych, gdzie główną rolę odgrywa sprężone powietrze. Wybór technologii powinien być uzasadniony specyfiką aplikacji, ponieważ zarówno siłowniki hydrauliczne, jak i pneumatyczne mają swoje unikalne zalety i ograniczenia. Zrozumienie tych różnic jest kluczowe dla właściwego doboru komponentów w systemach automatyki przemysłowej.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Jaką metodę uzyskiwania sprężonego powietrza należy zastosować, aby jak najlepiej usunąć olej z medium roboczego?

A. Filtrację
B. Osuszanie
C. Redukcję
D. Odolejanie
Szukając odpowiedzi na pytanie dotyczące oczyszczania sprężonego powietrza z oleju, często można napotkać nieporozumienia związane z innymi metodami, które nie są przeznaczone do eliminacji oleju. Osuszanie, na przykład, koncentruje się na usuwaniu wilgoci z powietrza, co jest kluczowe w zapobieganiu korozji i uszkodzeniom spowodowanym przez kondensat. Mimo że ma ono fundamentalne znaczenie w procesach pneumatycznych, nie rozwiązuje problemu obecności oleju, który może być szkodliwy. Z kolei redukcja ciśnienia sprężonego powietrza jest procesem, który może zmieniać charakterystykę pracy systemów, ale nie eliminuje zanieczyszczeń olejowych. Filtracja, choć potencjalnie skuteczna, nie zawsze skoncentrowana jest na usuwaniu oleju, a często odnosi się do ogólnego usuwania zanieczyszczeń, w tym kurzu i większych cząstek. Użytkownicy mogą błędnie zakładać, że te metody mogą zastąpić odolejanie, co jest niezgodne z najlepszymi praktykami w branży. Poznanie specyfiki każdej z tych metod oraz ich odpowiednich zastosowań jest kluczowe dla prawidłowego funkcjonowania systemów pneumatycznych. Użycie niewłaściwej metody może prowadzić do poważnych problemów eksploatacyjnych oraz obniżenia efektywności procesów produkcyjnych.

Pytanie 7

Jakiej z wymienionych aktywności nie powinien wykonywać operator pras hydraulicznych sterowanych przez sterownik PLC?

A. Modernizować urządzenia
B. Weryfikować stan osłon urządzenia
C. Uruchamiać programu sterującego
D. Konfigurować parametrów urządzenia
Poprawna odpowiedź to "modernizować urządzenia". Pracownik obsługujący prasę hydrauliczną sterowaną za pośrednictwem sterownika PLC nie powinien podejmować się modernizacji tych urządzeń, ponieważ działania te wymagają specjalistycznej wiedzy i umiejętności, które posiadają jedynie wykwalifikowani inżynierowie lub technicy zajmujący się modernizacją maszyn. Zmiany w konstrukcji lub oprogramowaniu mogą mieć istotny wpływ na bezpieczeństwo i funkcjonowanie całego systemu. Dlatego zgodnie z normami branżowymi, takimi jak ISO 12100, które dotyczą bezpieczeństwa maszyn, wszelkie modyfikacje powinny być przeprowadzane przez osoby posiadające odpowiednie kwalifikacje. Tego rodzaju zmiany mogą obejmować aktualizacje oprogramowania sterującego, co jest kluczowe dla poprawy wydajności oraz funkcjonalności maszyny. Odpowiedzialne podejście do takich działań pomaga w minimalizacji ryzyka awarii oraz zapewnienia ciągłości produkcji.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Najczęściej stosowaną kategorią cieczy roboczych w hydraulice są

A. oleje pochodzenia roślinnego
B. oleje mineralne oraz ciecze niepalne
C. mieszanki wody oraz olejów mineralnych
D. mieszanki wody i olejów roślinnych
Oleje mineralne i ciecze niepalne są kluczowymi komponentami w hydraulice, ze względu na swoje wyjątkowe właściwości. Ich doskonała lepkość oraz stabilność termiczna sprawiają, że są one w stanie skutecznie przekazywać siłę w systemach hydraulicznych. Oleje mineralne charakteryzują się także niskim poziomem parowania i dużą odpornością na utlenianie, co wydłuża żywotność cieczy roboczych. Przykładem zastosowania olejów mineralnych są systemy hydrauliczne w maszynach budowlanych, takich jak koparki, gdzie niezawodność i efektywność przekazywania energii są kluczowe. W praktyce, stosowanie cieczy niepalnych jest istotne w kontekście bezpieczeństwa oraz ochrony środowiska, szczególnie w aplikacjach wymagających minimalizacji ryzyka pożaru. Zgodnie z normami ISO 6743-4, oleje mineralne klasy HFA, HFB, HFC i HFD są zalecane w różnych zastosowaniach hydraulicznych, co potwierdza ich dominującą pozycję na rynku.

Pytanie 11

Jaki sterownik powinien być wykorzystany do zarządzania 5 pompami napełniającymi 5 zbiorników, gdy włączanie i wyłączanie poszczególnych pomp opiera się na sygnałach z czujników binarnych, które wykrywają niski oraz wysoki poziom cieczy, a także system uruchamiany jest ręcznie przyciskiem zwiernym i wyłączany przyciskiem rozwiernym?

A. Posiadający co najmniej 16 wejść i 8 wyjść cyfrowych
B. Posiadający co najmniej 8 wejść i 4 wyjścia cyfrowe
C. Posiadający co najmniej 8 wejść i 4 wyjścia analogowe
D. Posiadający co najmniej 16 wejść i 8 wyjść analogowych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa odpowiedź to ta o 16 wejściach i 8 wyjściach cyfrowych. Sterownik z taką liczbą portów może bez problemu obsługiwać 5 pomp i 5 czujników, które sygnalizują niski oraz wysoki poziom cieczy. W automatyce przemysłowej, zgodnie z normą IEC 61131, ważne jest, aby mieć wystarczającą liczbę wejść i wyjść, żeby móc dobrze monitorować i sterować urządzeniami. Dzięki tym 16 wejściom można podłączyć wszystkie potrzebne czujniki i przyciski, co jest niezbędne do ręcznej obsługi np. pomp. Wyjścia cyfrowe są tutaj istotne, bo pozwalają na kontrolowanie urządzeń wykonawczych, jak pompy. Moim zdaniem to kluczowe, bo w sytuacji awaryjnej szybkie wyłączenie pompy może zapobiec przelaniu i związanym z tym szkodom. Warto też dodać, że cyfrowe sygnały zwiększają niezawodność systemu i ułatwiają integrację z innymi elementami automatyki.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Podczas wymiany uszkodzonego kondensatora, można użyć zamiennika o

A. niższej wartości napięcia nominalnego
B. niższej wartości pojemności
C. wyższej wartości pojemności
D. wyższej wartości napięcia nominalnego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zastosowanie kondensatora o większej wartości napięcia nominalnego jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności układów elektronicznych. Wyższa wartość napięcia nominalnego oznacza, że kondensator będzie w stanie wytrzymać większe napięcia bez ryzyka uszkodzenia. Przykładem może być kondensator stosowany w zasilaczach impulsowych, gdzie napięcia mogą być znacznie wyższe niż nominalne. W takim przypadku, zastosowanie kondensatora o odpowiednio wysokim napięciu nominalnym zabezpiecza go przed awarią. Dobrą praktyką jest, aby wartość napięcia nominalnego kondensatora była co najmniej 20-30% wyższa od maksymalnego napięcia roboczego w układzie, co znacząco zwiększa niezawodność. Warto również pamiętać, że kondensatory są klasyfikowane zgodnie z normami, takimi jak IEC 60384, które definiują ich parametry i zastosowania. Wybierając zamiennik, warto zwrócić uwagę na te standardy, co pozwala na efektywne i bezpieczne projektowanie obwodów.

Pytanie 15

Jakiego typu wyjście powinien mieć sterownik PLC, aby w systemie sterowania wykorzystującym ten sterownik możliwa była modulacja szerokości impulsu – PWM?

A. Analogowe napięciowe
B. Binarne tranzystorowe
C. Analogowe prądowe
D. Binarne przekaźnikowe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sterownik PLC z wyjściami binarnymi tranzystorowymi jest kluczowym elementem w systemach automatyki, szczególnie w zastosowaniach wymagających modulacji szerokości impulsu (PWM). Wyjścia te umożliwiają bardzo precyzyjne sterowanie czasem trwania impulsu, co jest niezbędne do regulacji mocy dostarczanej do urządzeń, takich jak silniki czy podgrzewacze. Przykładem zastosowania PWM w praktyce jest kontrola prędkości obrotowej silnika, gdzie zmiana czasu włączenia i wyłączenia impulsu pozwala na osiągnięcie płynnej regulacji prędkości. Dodatkowo, wyjścia tranzystorowe charakteryzują się szybkim czasem przełączania oraz minimalnymi stratami mocy, co czyni je idealnymi do zastosowań w systemach, gdzie efektywność energetyczna ma kluczowe znaczenie. W branżowych standardach, takich jak IEC 61131-3, podkreśla się znaczenie wyjść binarnych tranzystorowych w kontekście nowoczesnych aplikacji automatyki, co czyni je praktycznym wyborem dla inżynierów projektujących nowoczesne układy sterowania.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Który z wymienionych kwalifikatorów działań, wykorzystywanych w metodzie SFC, może być pominięty w opisie bloku akcji, nie wpływając na sposób realizacji przypisanego w nim działania?

A. N
B. R
C. S
D. D

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kwalifikator "N" w metodzie SFC (Sequential Function Chart) oznacza brak kwalifikatora, co oznacza, że nie ma dodatkowego opisu dla danego działania. Jego pominięcie nie wpływa na sposób realizacji bloku akcji, ponieważ nie dodaje on żadnych warunków ani szczegółów, które musiałyby być brane pod uwagę w procesie wykonawczym. W praktyce, stosowanie kwalifikatorów w SFC jest kluczowe dla zapewnienia przejrzystości i zrozumiałości diagramów, jednak w przypadku "N" mamy do czynienia z sytuacją, w której blok akcji działa w taki sam sposób, niezależnie od tego, czy ten kwalifikator jest obecny, czy nie. W branży automatyki przemysłowej, znajomość i umiejętność stosowania kwalifikatorów w SFC jest niezbędna do efektywnego modelowania procesów, co pozwala na łatwiejszą analizę i optymalizację działań. Na przykład, w przypadku zautomatyzowanego procesu pakowania, kwalifikatory mogą pomóc w określeniu, kiedy maszyna powinna przejść do kolejnego etapu, a ich odpowiednie stosowanie zapewnia płynność całej operacji.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Które z poniższych narzędzi CAD pozwala na wykonanie analizy wytrzymałościowej korbowodu podczas etapu projektowania?

A. DWG
B. ERA
C. PMI
D. MES

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Metoda Elementów Skończonych, czyli MES, to naprawdę fajna technika, która inżynierom pozwala na dokładne modelowanie i symulację tego, jak różne obiekty będą się zachowywać pod różnymi obciążeniami. W przypadku analizy korbowodu, MES jest super przydatne, bo możesz określić geometrię i materiały, co jest mega ważne, by ocenić, jak dobrze ten korbowód będzie działał, a przede wszystkim czy będzie bezpieczny. Rozdzielając skomplikowany obiekt na mniejsze fragmenty, można dokładnie obliczyć, jakie siły na niego działają. Przykładowo, inżynierowie mogą sprawdzić, jak korbowód zniesie obciążenia dynamiczne, które pojawiają się podczas pracy silnika. To pomaga znaleźć te newralgiczne punkty, które mogą się uszkodzić. W inżynierii MES to standard, który naprawdę ułatwia projektowanie i zmniejsza ryzyko, że coś pójdzie nie tak z ostatecznym produktem. To jest zgodne z najlepszymi praktykami w inżynierii mechanicznej.

Pytanie 20

Ile poziomów kwantyzacji oraz jaka jest rozdzielczość napięciowa przetwornika A/C użytego w urządzeniu mechatronicznym o zakresie pomiarowym 0÷10 V i dokładności 10 bitów?

A. 512 poziomów kwantyzacji i rozdzielczość napięciowa 19,53 mV
B. 256 poziomów kwantyzacji i rozdzielczość napięciowa 39,06 mV
C. 1024 poziomów kwantyzacji i rozdzielczość napięciowa 9,76 mV
D. 2048 poziomów kwantyzacji i rozdzielczość napięciowa 4,88 mV

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przetwornik A/C o rozdzielczości 10 bitów umożliwia przetwarzanie sygnału wejściowego na 1024 poziomy kwantyzacji, co jest wynikiem obliczenia 2^10. Każdy poziom odpowiada konkretnej wartości napięcia, a w przypadku skali pomiarowej 0÷10 V, rozdzielczość napięciowa wynosi około 9,76 mV. Oznacza to, że najmniejsza różnica napięcia, którą można rozróżnić, wynosi właśnie 9,76 mV. Taki przetwornik znajduje zastosowanie w wielu urządzeniach mechatronicznych, gdzie precyzyjny pomiar napięcia jest kluczowy, na przykład w systemach automatyki przemysłowej, czujnikach temperatury czy systemach monitorowania parametrów w czasie rzeczywistym. Zrozumienie działania przetworników A/C oraz ich parametrów, takich jak rozdzielczość i poziomy kwantyzacji, jest niezbędne dla inżynierów projektujących nowoczesne systemy, które muszą współpracować z różnorodnymi sygnałami analogowymi. W praktyce stosuje się te przetworniki w aplikacjach, gdzie wymagane jest dokładne odwzorowanie zmiennych sygnałów analogowych na wartości cyfrowe, co pozwala na dalsze przetwarzanie i analizy danych.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

W zakres czynności konserwacyjnych dla zespołu hydraulicznego, realizowanych raz w roku, nie wchodzi

A. sprawdzenie wartości rezystancji uziemienia
B. czyszczenie filtra
C. kontrola szczelności zespołu oraz przewodów
D. wymiana płynu hydraulicznego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprawdzanie wartości rezystancji uziemienia nie wchodzi w zakres prac konserwacyjnych zespołu hydraulicznego, ponieważ jest to zabieg rutynowy, mający na celu zapewnienie bezpieczeństwa i prawidłowego funkcjonowania instalacji elektrycznych. Uziemienie jest kluczowe dla ochrony przed przepięciami i zwarciami, lecz nie jest bezpośrednio związane z eksploatacją hydrauliki. W ramach konserwacji zespołów hydraulicznych, czynności takie jak wymiana płynu hydraulicznego, czyszczenie filtra oraz kontrola ciśnienia są niezbędne do utrzymania sprawności i efektywności systemu. Dbanie o odpowiedni stan płynów oraz filtrów wpływa na żywotność urządzeń oraz minimalizuje ryzyko awarii. W praktyce, regularne przeglądy hydrauliki powinny być prowadzone zgodnie z obowiązującymi standardami branżowymi, takimi jak PN-EN 982, które określają wymagania dotyczące bezpieczeństwa i konserwacji urządzeń hydraulicznych. Przykłady prawidłowych działań konserwacyjnych obejmują również smarowanie ruchomych części oraz monitorowanie stanu uszczelek, co przyczynia się do dłuższej eksploatacji systemów hydraulicznych.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Jaką z poniższych czynności konserwacyjnych można przeprowadzić podczas pracy silnika prądu stałego?

A. Oczyścić łopatki wentylatora
B. Zmierzyć prędkość obrotową metodą stroboskopową
C. Przeczyścić elementy wirujące silnika za pomocą odpowiednich środków
D. Zamienić szczotki komutatora

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zmierzenie prędkości obrotowej metodą stroboskopową jest kluczowym procesem w diagnostyce i konserwacji silników prądu stałego, ponieważ pozwala na monitorowanie parametrów pracy silnika bez konieczności jego wyłączania. Metoda ta polega na użyciu stroboskopu, który emituje błyski światła w synchronizacji z obrotami wirnika. Dzięki temu operator widzi wirnik w stanie nieruchomym, co umożliwia dokładny odczyt prędkości obrotowej. Praktyczne zastosowanie tej metody jest nieocenione w sytuacjach, gdy konieczne jest szybkie sprawdzenie stanu technicznego silnika, a jego wyłączenie wiązałoby się z przestojem w pracy maszyny. Zgodnie z dobrymi praktykami, zaleca się regularne monitorowanie prędkości obrotowej silników, co pozwala na wczesne wykrywanie nieprawidłowości oraz podejmowanie działań prewencyjnych, co zwiększa niezawodność i bezpieczeństwo pracy urządzeń.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Podczas czynności konserwacyjnych wykryto niewystarczający poziom sprężania powietrza w sprężarce tłokowej. Który z wymienionych komponentów sprężarki z pewnością nie uległ zniszczeniu?

A. Uszczelka głowicy
B. Zawór ssący
C. Korbowód tłoka
D. Gładź cylindra

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Korbowód tłoka jest kluczowym elementem układu tłokowego sprężarki, ale jego stan nie wpływa bezpośrednio na poziom sprężania powietrza. Działa on jako przekaźnik ruchu, przekształcając ruch obrotowy wału korbowego na ruch posuwisty tłoka. W przypadku niskiego poziomu sprężania, przyczyny mogą leżeć w innych elementach, takich jak zawory lub gładź cylindra. Na przykład, zużycie gładzi cylindra może prowadzić do nieszczelności, co skutkuje obniżonym sprężaniem. Korbowód, będąc elementem mechanicznym, jest bardziej odporny na uszkodzenia, jeśli nie jest obciążony innymi problemami, takimi jak rozszczelnienie. Dobra praktyka w konserwacji sprężarek zaleca regularne kontrole stanu korbowodu oraz jego smarowanie, aby zminimalizować ryzyko uszkodzeń. Korbowód tłoka powinien być również sprawdzany pod kątem luzów, aby zapewnić efektywność całego układu sprężania.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Jedną z metod umożliwiających identyfikację nieprawidłowości w pracy urządzeń oraz instalacji mechatronicznych o dużej mocy jest technologia obrazowania w podczerwieni. Który z wymienionych instrumentów jest stosowany w takich badaniach?

A. Kamera termograficzna
B. Tester kabli
C. Oscyloskop cyfrowy
D. Termometr elektroniczny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kamera termowizyjna to zaawansowane narzędzie, które wykorzystuje technologię obrazowania w podczerwieni do analizy rozkładu temperatury na powierzchniach obiektów. Dzięki temu możliwe jest wykrywanie nieprawidłowości w działaniu urządzeń mechatronicznych dużej mocy, takich jak silniki, transformatory czy układy chłodzenia. Przykładowo, w przemyśle energetycznym kamery termowizyjne są wykorzystywane do monitorowania stanu transformatorów, co pozwala na wczesne wykrycie przegrzewania się komponentów i tym samym zapobiegnięcie awariom. Technologia ta znajduje zastosowanie również w diagnostyce budynków, gdzie pozwala na identyfikację strat ciepła i nieszczelności. Warto podkreślić, że zgodnie z normami branżowymi, regularne używanie kamer termograficznych powinno być częścią strategii zarządzania utrzymaniem ruchu, co znacząco podnosi efektywność operacyjną oraz bezpieczeństwo systemów mechatronicznych.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Właściwości takie jak moc silnika, liczba cylindrów, stopień sprężania, pojemność zbiornika, efektywność oraz ciśnienie są typowe dla

A. pompy hydraulicznej
B. silnika hydraulicznego
C. siłownika pneumatycznego
D. sprężarki tłokowej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Podczas oceny sprężarek tłokowych musisz zwrócić uwagę na kilka istotnych parametrów, takich jak moc silnika, liczba cylindrów, stopnie sprężania czy pojemność zbiornika. Te rzeczy są naprawdę ważne w różnych branżach, od klimatyzacji po chłodnictwo. Sprężarka tłokowa działa tak, że tłok w cylindrze przesuwa się, a to właśnie zwiększa ciśnienie gazu. Dzięki takim wskaźnikom jak ciśnienie robocze czy wydajność powietrza inżynierowie mogą dobrać sprzęt do konkretnego zastosowania, gdzie potrzebna jest odpowiednia moc sprężania. Ogólnie znajomość tych parametrów pozwala na lepsze projektowanie i dobór sprężarek, co jest ważne w branży. Rozumienie tych kwestii jest kluczowe, jeśli chcesz, żeby systemy działały efektywnie i były niezawodne.