Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 30 maja 2025 00:26
  • Data zakończenia: 30 maja 2025 00:47

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Dokonano pomiaru kąta pionowego w dwóch ustawieniach lunety, uzyskując rezultaty: OI= 101g80c70cc, OII= 298g17c00cc. Jaki jest kąt zenitalny?

A. 298g18c15cc
B. 101g81c85cc
C. 199g98c85cc
D. 196g36c30cc
Żeby obliczyć kąt zenitalny w oparciu o pomiary kątów pionowych zrobione w dwóch różnych położeniach lunety, trzeba skorzystać z wzoru: Kąt zenitalny = OI + OII - 200g. W naszym przypadku mamy OI = 101g80c70cc i OII = 298g17c00cc. Jak to zsumujemy: 101g80c70cc + 298g17c00cc wychodzi 399g97c70cc. Następnie odejmujemy 200g: 399g97c70cc - 200g = 199g97c70cc. Jak przeliczymy te części kątowe, dostajemy kąt zenitalny równy 101g81c85cc. Takie obliczenia są mega ważne w geodezji i inżynierii lądowej, gdzie precyzyjne pomiary kątów i wysokości są kluczowe do określania pozycji punktów w przestrzeni. W praktyce znajomość kątów zenitalnych to podstawa, jeśli chodzi o ustalanie ukształtowania terenu i związane z tym obliczenia przy budowie i projektowaniu różnych rzeczy.

Pytanie 2

Zadania związane z analizą wyników pomiarów nie obejmują sporządzania

A. sprawozdań technicznych
B. obliczeń
C. szkiców polowych
D. wywiadów terenowych
Obliczenia, szkice polowe i sprawozdania techniczne są integralnymi elementami procesu przetwarzania wyników pomiarów i każda z tych czynności ma swoje specyficzne zastosowanie w kontekście analizy danych. Obliczenia są kluczowe, ponieważ pozwalają na przetworzenie surowych danych w użyteczne informacje, które mogą być interpretowane w kontekście badanego zjawiska. Na przykład, w badaniach hydrologicznych obliczenia mogą obejmować analizy przepływu wód gruntowych, co jest niezbędne do oceny dostępności wody i zarządzania zasobami wodnymi. Szkice polowe służą zaś do wizualizacji terenu oraz lokalizacji punktów pomiarowych, co jest istotne w kontekście dokładności i powtarzalności wyników. Sprawozdania techniczne natomiast stanowią formalne podsumowanie prac badawczych, prezentując wyniki oraz wnioski w sposób zrozumiały dla szerszego grona odbiorców. Często zapomina się, że te elementy są ze sobą ściśle powiązane, a ich prawidłowe wykonanie jest kluczowe dla uzyskania i interpretacji rzetelnych wyników. Właściwe zrozumienie różnicy między zbieraniem danych a ich przetwarzaniem jest istotne, aby uniknąć pomyłek w metodologii badań, co może prowadzić do błędnych wniosków i nieprawidłowego zarządzania danymi.

Pytanie 3

Która z poniższych aktywności nie wchodzi w zakres działań Powiatowego Ośrodka Dokumentacji Geodezyjnej i Kartograficznej?

A. Wydawanie instrukcji do przeprowadzenia zgłoszonych prac
B. Rejestrowanie dokumentów przyjętych do zasobu geodezyjnego
C. Realizacja pomiarów w celu ustalenia współrzędnych oraz wysokości punktów osnowy
D. Przyjmowanie oraz rejestrowanie zgłoszeń prac geodezyjnych i kartograficznych
Wykonywanie pomiarów w celu określenia współrzędnych i wysokości punktów osnowy jest zadaniem, które nie należy do kompetencji Powiatowego Ośrodka Dokumentacji Geodezyjnej i Kartograficznej (PODGiK). Główne zadania tego ośrodka koncentrują się na ewidencjonowaniu, zarządzaniu oraz udostępnianiu danych geodezyjnych i kartograficznych, a nie na samodzielnym przeprowadzaniu pomiarów. Punkty osnowy geodezyjnej są zazwyczaj określane przez wyspecjalizowane jednostki, takie jak przedsiębiorstwa geodezyjne, które realizują pomiary zgodnie z obowiązującymi normami, na przykład PN-EN ISO 19111 dotyczących systemów odniesienia i pomiarów. Ośrodki te koncentrują się na tworzeniu i utrzymywaniu zasobów geodezyjnych, co jest kluczowe dla prawidłowego funkcjonowania planowania przestrzennego oraz wielu innych dziedzin, takich jak budownictwo, infrastruktura czy ochrona środowiska. Przykładem praktycznego zastosowania wiedzy w tym zakresie może być współpraca PODGiK z lokalnymi samorządami, które polegają na dostępie do dokładnych i aktualnych map oraz danych geodezyjnych do celów planistycznych.

Pytanie 4

Jaki jest błąd względny w pomiarze odcinka długości 250,00 m, jeśli jego długość zmierzono z błędem średnim ±5 cm?

A. 1/500
B. 1/50
C. 1/5000
D. 1/100
Błąd względny to stosunek błędu pomiarowego do wartości rzeczywistej pomiaru, wyrażony najczęściej w procentach lub w postaci ułamka. W tym przypadku mamy pomiar odcinka o długości 250,00 m z błędem średnim ±5 cm. Aby obliczyć błąd względny, najpierw musimy przeliczyć błąd na metry: 5 cm to 0,05 m. Następnie stosujemy wzór na błąd względny: Błąd względny = (błąd pomiaru / wartość rzeczywista) = (0,05 m / 250 m). Po wykonaniu obliczeń otrzymujemy błąd względny równy 0,0002, co po przekształceniu daje 1/5000. Ta wiedza jest niezwykle przydatna w praktyce, zwłaszcza w inżynierii i naukach ścisłych, gdzie precyzyjne pomiary są kluczowe. Zrozumienie błędów pomiarowych pozwala na lepsze projektowanie eksperymentów oraz stosowanie odpowiednich narzędzi do ich analizy. Współczesne standardy w zakresie metrologii zalecają regularne kalibracje urządzeń pomiarowych, aby zminimalizować błędy, co potwierdza znaczenie tego zagadnienia w praktyce.

Pytanie 5

W jakim dokumencie, będącym częścią każdego operatu geodezyjnego, określone są: cel i zakres rzeczowy oraz terytorialny przeprowadzonych prac, czas realizacji prac geodezyjnych oraz identyfikator zgłoszenia dotyczącego pracy geodezyjnej?

A. W wykazie robót geodezyjnych
B. Na szkicu polowym
C. W dzienniku pomiarów
D. W sprawozdaniu technicznym
Sprawozdanie techniczne stanowi kluczowy dokument w operacie geodezyjnym, w którym szczegółowo opisane są cel oraz zakres rzeczowy i terytorialny wykonanych prac geodezyjnych. Jego istotą jest nie tylko dokumentacja wykonanych czynności, ale również pełna identyfikacja projektu, co jest zgodne z wymogami standardów geodezyjnych. Sprawozdanie zawiera również informacje o okresie realizacji prac oraz identyfikatorze zgłoszenia, co umożliwia efektywne zarządzanie danymi i ich późniejszą weryfikację przez organy nadzoru. Przykładowo, w przypadku kontroli jakości wykonanych usług geodezyjnych, sprawozdanie techniczne stanowi nieocenione źródło informacji, pozwalające na ocenę zgodności z założeniami projektowymi i regulacjami prawnymi. Zastosowanie sprawozdania technicznego jako podstawy w dokumentacji geodezyjnej jest zgodne z dobrymi praktykami w branży, które kładą nacisk na transparentność i rzetelność w dokumentacji geodezyjnej.

Pytanie 6

Niwelator to narzędzie służące do dokonania pomiaru

A. kątów zenitalnych
B. kątów nachylenia
C. wysokości punktów
D. różnic wysokości
Niwelator to dosyć specyficzne urządzenie, które służy głównie do mierzenia różnic wysokości pomiędzy punktami w terenie. Jak to działa? Wykorzystuje coś w rodzaju poziomicy, by dokładnie określić te różnice. To bardzo ważne w różnych dziedzinach, takich jak budownictwo czy geodezja, bo dobrze wykonane pomiary wysokości są kluczowe. Na przykład, kiedy budujemy fundamenty, musimy być pewni, że wszystko jest na właściwej wysokości, żeby budowla była stabilna. Niwelatory są też wykorzystywane do tworzenia map topograficznych, gdzie precyzyjne różnice w wysokościach terenu mają ogromne znaczenie. W branży mamy różne normy, jak ISO, które przypominają, jak ważne są dokładne pomiary. A co ciekawe, teraz mamy również niwelatory elektroniczne, które jeszcze bardziej podnoszą jakość pomiarów, co naprawdę ma znaczenie w dzisiejszych projektach budowlanych.

Pytanie 7

Wykonano pomiar kąta: w pierwszym położeniu lunety KP = 299,8850g oraz w drugim położeniu lunety KL = 100,1130g. Oblicz wartość mo

A. +0,0020g
B. -0,0020g
C. -0,0010g
D. +0,0010g
Wybór odpowiedzi innych niż -0,0010g często wynika z nieporozumienia dotyczącego właściwego obliczania różnicy kątów, a także z niewłaściwego zrozumienia konwencji stosowanych w geodezji. Często błędne podejścia opierają się na pomyłkach przy odejmowaniu wartości kątowych, gdzie zamiast prawidłowego obliczenia różnicy, użytkownicy mogą mylnie utożsamiać wartości bez uwzględnienia ich kontekstu. Na przykład, obliczenia takie jak -0,0020g lub +0,0010g pojawiają się, gdy ktoś niepoprawnie interpretuje wzory lub wprowadza nieprawidłowe założenia dotyczące kierunku pomiaru. Dodatkowo, w geodezyjnych odczytach, ważne jest, aby pamiętać o kierunku pomiaru i standardowych korekcjach, które mogą wpłynąć na ostateczne wyniki. Użytkownicy mogą również nie dostrzegać, że pomiary kątowe są relatywne, a ich interpretacja wymaga uwzględnienia pełnego obiegu kątowego, co prowadzi do typowych błędów przy zliczaniu kątów przekraczających 360 stopni. Ostatecznie, kluczowe jest, aby przy obliczeniach kątów stosować zasady obowiązujące w danym kontekście geodezyjnym, co pozwala na dokładne i zgodne z normami wyniki.

Pytanie 8

Pomiar kątów za pomocą tachimetru elektronicznego w dwóch pozycjach lunety nie usuwa błędu

A. inklinacji
B. indeksu
C. kolimacji
D. centrowania
Pomimo różnych podejść do pomiaru kątów, błędy związane z inklinacją, kolimacją i indeksem są często mylone z błędem centrowania. Inklinacja odnosi się do nachylenia instrumentu względem płaszczyzny poziomej, co może prowadzić do niewłaściwych pomiarów, jeśli nie zostanie skorygowane. Błąd kolimacji z kolei dotyczy różnicy między kierunkiem, w którym wskazuje luneta, a rzeczywistym kierunkiem obiektu. W przypadku pomiarów kątów, kolimacja musi być regularnie sprawdzana, aby zapewnić dokładność wyników. Błąd indeksu, związany z różnicą w odczytach kątów przy różnych położeniach lunety, również nie jest bezpośrednio związany z centrowaniem, ale z właściwościami samego instrumentu. Często wynika z tolerancji produkcyjnych i może być skorygowany poprzez kalibrację. Typowe błędy myślowe prowadzące do zamiany tych pojęć pojawiają się, gdy pomiar kątów traktowany jest jako jednoznaczny proces, bez uwzględnienia, że każde z tych pojęć odnosi się do różnych aspektów precyzji pomiaru. Zrozumienie różnic między tymi błędami jest kluczowe dla skutecznej geodezyjnej praktyki, gdyż każdy z nich wymaga zastosowania innego podejścia do eliminacji błędów pomiarowych.

Pytanie 9

Podstawowym krokiem w procesie tworzenia pierwotnej mapy tradycyjną metodą jest umieszczenie na arkuszu ramki sekcyjnej oraz siatki kwadratów. Jakim narzędziem nie można przenieść siatki kwadratów na zdefiniowany arkusz?

A. Kwadratnicy z nakłuwaczem
B. Nanosnika biegunowego
C. Podziałki transwersalnej i kroczka
D. Koordynatografu
Nanosnik biegunowy jest przyrządem, który nie jest przeznaczony do nanoszenia siatki kwadratów na arkusz, lecz służy do określania kierunków i pomiarów kątowych. W tradycyjnym procesie tworzenia pierworysu mapy, kluczowe jest precyzyjne naniesienie siatki kwadratów, co umożliwia dalsze odwzorowanie i szczegółowe pomiary. Nanosnik biegunowy wprowadza pewne ograniczenia, gdyż nie ma on możliwości bezpośredniego wprowadzenia siatki; zamiast tego, zaleca się korzystanie z narzędzi takich jak koordynatograf, który precyzyjnie pozwala na ustawienie i przenoszenie punktów oraz linii na arkusz. Standardy branżowe zalecają stosowanie narzędzi, które zapewniają wysoką dokładność i precyzję, co jest kluczowe w kartografii. W praktyce, aby uzyskać dokładny pierworys, powinno się wykorzystywać sprzęt, który umożliwia bezbłędne odwzorowanie obiektów na mapie, co w przypadku nanosnika biegunowego nie jest możliwe.

Pytanie 10

Wskazanie lokalizacji pikiet w terenie oznacza zdefiniowanie miejsca, w którym podczas dokonywania pomiaru

A. powinien być pomiarowy
B. powinno znajdować się stanowisko instrumentu
C. powinno być ustawione lustro lub łata
D. powinien znajdować się obserwator
Poprawna odpowiedź wskazuje, że określenie położenia pikiet w terenie oznacza wskazanie miejsca, gdzie powinno być ustawione lustro lub łata. W kontekście pomiarów geodezyjnych, lustro lub łata jest kluczowym elementem, który umożliwia precyzyjne odczytywanie pomiarów wysokościowych i poziomych. Zastosowanie lustra w połączeniu z instrumentem pomiarowym, takim jak teodolit czy niwelator, pozwala na dokładne określenie wysokości punktu oraz jego położenia w przestrzeni. W praktyce, lustro powinno być ustawione w dokładnej linii widzenia z instrumentem, co umożliwia uzyskanie precyzyjnych wyników. Standardy branżowe, takie jak Normy Geodezyjne, podkreślają wagę poprawnego ustawienia lustra dla uzyskania wiarygodnych danych pomiarowych. Przykładowo, w przypadku niwelacji, poprawne ustawienie łaty w punkcie pomiarowym jest kluczowe dla uzyskania dokładnego różnicowania wysokości, co ma ogromne znaczenie w budownictwie oraz inżynierii lądowej, gdzie precyzyjne dane o wysokości są niezbędne.

Pytanie 11

Geodeta powinien wyznaczyć położenie punktów określających osie konstrukcyjne budynku jednorodzinnego na ławach ciesielskich z dokładnością do

A. 0,001 m
B. 0,01 m
C. 1 m
D. 0,1 m
Wybór innych wartości dokładności, takich jak 0,1 m, 0,01 m czy 1 m, prowadzi do istotnych błędów w procesie budowlanym. Przyjęcie zbyt dużych tolerancji pomiarowych, jak 1 m, jest nieakceptowalne w kontekście budowy budynku jednorodzinnego, gdzie precyzja jest kluczowa. Taki błąd może skutkować poważnymi konsekwencjami, w tym nieprawidłowym ułożeniem ścian i fundamentów, co z kolei prowadzi do problemów strukturalnych, a nawet zagrożenia dla bezpieczeństwa mieszkańców. Z kolei odpowiedź 0,1 m i 0,01 m, mimo że są bardziej precyzyjne niż 1 m, wciąż nie spełniają wymogów standardów budowlanych, które zazwyczaj nakładają obowiązek stosowania dokładności pomiaru na poziomie milimetra. W praktyce, geodeci i inżynierowie muszą kierować się zaleceniami zawartymi w normach, takich jak PN-ISO 9001, które nakładają obowiązek zapewnienia wysokiej jakości i precyzji pomiarów w procesie budowlanym. Tego rodzaju błędne rozumienie wymagań dotyczących precyzji pomiaru może wynikać z niewłaściwego postrzegania roli, jaką na budowie odgrywają dokładne pomiary, co w efekcie prowadzi do kosztownych błędów projektowych i wykonawczych.

Pytanie 12

Jakiej metody nie należy używać do oceny pionowości komina przemysłowego?

A. trygonometrycznej
B. wcięć kątowych
C. fotogrametrycznej
D. stałej prostej
Odpowiedź wskazująca na metodę stałej prostej jako nieodpowiednią do badania pionowości komina przemysłowego jest poprawna, ponieważ ta technika nie jest w stanie precyzyjnie określić odchyleń od pionu. Metoda ta polega na wyznaczeniu linii prostych, które mogą być łatwo zakłócone przez zjawiska atmosferyczne, a także przez trudne warunki terenowe. W praktyce, do oceny pionowości kominów przemysłowych najczęściej wykorzystuje się metody takie jak wcięcia kątowe, trygonometryczne czy fotogrametryczne, które zapewniają większą dokładność i powtarzalność pomiarów. W przypadku pomiarów kominów, które mogą mieć znaczne wysokości, kluczowe jest zastosowanie technik, które uwzględniają zarówno perspektywiczne zniekształcenia, jak i ewentualne przesunięcia w poziomie, co czyni metody oparte na geodezji i fotogrametrii bardziej odpowiednimi. Przykłady zastosowania takich metod można znaleźć w dokumentacji projektowej budynków przemysłowych, gdzie dokładność pomiarów pionowości ma kluczowe znaczenie dla bezpieczeństwa konstrukcji.

Pytanie 13

Oznaczenie punktu na profilu poprzecznym trasy L 14,5 wskazuje, że jego odległość od osi trasy po lewej stronie wynosi

A. 0,145 m
B. 145,000 m
C. 1,450 m
D. 14,500 m
Odpowiedź 14,500 m jest właściwa, ponieważ w kontekście profilu poprzecznego trasy, oznaczenie L 14,5 wskazuje na odległość od osi trasy w metrach. System oznaczeń stosowany w inżynierii lądowej i transportowej, w tym w projektowaniu dróg i kolei, przyjmuje, że wartości po 'L' są podawane w metrach, a ich liczba jest interpretowana jako odległość od linii centralnej. Przykładowo, jeżeli mamy trasę kolejową, oznaczenie L 14,5 może odnosić się do konkretnego punktu, który znajduje się 14,5 metra na lewo od osi centralnej torów. Tego rodzaju dane są kluczowe przy planowaniu infrastruktury, gdyż pozwalana na precyzyjne rozmieszczenie elementów takich jak perony, przejazdy, czy urządzenia sygnalizacyjne. Zrozumienie tego systemu oznaczeń jest niezbędne dla inżynierów, architektów i osób zajmujących się projektowaniem infrastruktury transportowej, aby zapewnić efektywne i bezpieczne użytkowanie dróg i tras kolejowych.

Pytanie 14

Na kopii mapy powinny być zaznaczone wyniki wywiadu terenowego przeprowadzonego podczas geodezyjnych prac związanych z pomiarami sytuacyjnymi oraz wysokościowymi?

A. topograficznej
B. klasyfikacyjnej
C. zasadniczej
D. sozologicznej
Wyniki wywiadu terenowego, które są kluczowe w procesie pomiarów geodezyjnych, powinny być zaznaczone na mapie zasadniczej. Mapa zasadnicza to dokument, który przedstawia szczegółowe dane dotyczące ukształtowania terenu, istniejącej infrastruktury oraz innych elementów przestrzennych. Wykonywanie pomiarów sytuacyjnych i wysokościowych w terenie jest niezbędne do zapewnienia aktualności tych informacji. Zgodnie z obowiązującymi standardami geodezyjnymi, wyniki pomiarów powinny być wprowadzane do mapy zasadniczej w sposób, który umożliwia ich późniejsze wykorzystanie w różnych dziedzinach, takich jak planowanie przestrzenne, ochrona środowiska czy inwestycje budowlane. Przykładem zastosowania może być proces aktualizacji danych w przypadku budowy nowego obiektu, gdzie dokładne odwzorowanie w terenie ma kluczowe znaczenie dla dalszych prac. W praktyce, geodeci często korzystają z technologii GPS oraz skaningu laserowego, aby dokładnie zarejestrować zmiany, które następnie odzwierciedlane są na mapach zasadniczych, co zgodne jest z dobrą praktyką branżową.

Pytanie 15

Jakie jest wartość azymutu odcinka AB, jeśli współrzędne punktów A i B to: YA = 100,00; XA = 100,00; YB = 150,00; XB = 50,00?

A. 225°
B. 45°
C. 315°
D. 135°
W przypadku błędnych odpowiedzi często pojawiają się mylne interpretacje dotyczące kierunków, które mogą prowadzić do nieprawidłowych obliczeń azymutu. Na przykład, wartości 45°, 315° i 225° mogą być wynikiem błędnych obliczeń lub niepoprawnej interpretacji kierunków. Azymut 45° oznaczałby kierunek północno-wschodni, co nie odpowiada rzeczywistemu położeniu punktu B w stosunku do punktu A, ponieważ punkt B leży na południowym zachodzie względem punktu A. Z kolei azymut 225° wskazuje kierunek południowo-zachodni, co również jest niezgodne z danymi współrzędnymi, gdzie B jest w rzeczywistości wyżej w osi Y, ale dalej w osi X. Azymut 315° z kolei sugeruje kierunek północno-zachodni, co jest błędne, gdyż nie uwzględnia faktu, że z punktu A do punktu B należy poruszać się w dół i w lewo. Kluczowym błędem myślowym jest niepoprawne rozumienie różnicy między azymutem a kierunkiem, co może prowadzić do pomyłek w obliczeniach. Ważne jest, aby przed przystąpieniem do obliczeń dokładnie zrozumieć, jak współrzędne wpływają na wyznaczane kierunki oraz aby stosować poprawne metody obliczania, które uwzględniają zarówno wartości X, jak i Y. W geodezji i kartografii, gdzie precyzja i poprawność kierunków są kluczowe, takie błędy mogą prowadzić do poważnych konsekwencji w analizach przestrzennych.

Pytanie 16

Jakim południkiem osiowym posługuje się odwzorowanie Gaussa-Krügera w systemie współrzędnych PL-2000?

A. 19º
B. 21º
C. 22º
D. 20º
Odpowiedź 21º jest poprawna, ponieważ w układzie współrzędnych PL-2000 południkom osiowym odwzorowania Gaussa-Krügera przypisane są specyficzne wartości, które odpowiadają określonym strefom. Południk 21º jest kluczowy dla strefy 3 tego odwzorowania, która obejmuje centralną część Polski. W praktyce, wiedza o południkach osiowych jest niezbędna przy tworzeniu map oraz w systemach informacji geograficznej (GIS), gdzie precyzyjne określenie lokalizacji jest kluczowe. Standardy kartograficzne, takie jak PN-EN ISO 19111, podkreślają znaczenie dokładnych odwzorowań i stosownych współrzędnych w procesie mapowania, co sprawia, że umiejętność ich wykorzystania jest niezbędna w pracy geodetów i kartografów. Ponadto, w kontekście planowania przestrzennego i analizy danych geograficznych, znajomość stref odwzorowania pozwala na lepsze zrozumienie i analizę zjawisk przestrzennych.

Pytanie 17

Który z dokumentów jest konieczny do zlokalizowania w terenie punktu osnowy geodezyjnej?

A. Dziennik pomiaru długości boków osnowy
B. Dziennik pomiaru kątów osnowy
C. Opis topograficzny punktu
D. Szkic polowy osnowy
Opis topograficzny punktu jest kluczowym dokumentem w geodezji, ponieważ zawiera szczegółowe informacje o lokalizacji i charakterystyce punktu osnowy geodezyjnej. Zazwyczaj obejmuje takie elementy jak współrzędne geograficzne, wysokość, otoczenie punktu oraz dostępność do niego. Dzięki temu geodeta, przebywając w terenie, może szybko zlokalizować punkt osnowy, co jest istotne przy wykonywaniu pomiarów. Przykładowo, w przypadku prowadzenia pomiarów dla celów projektowych, posiadanie opisu topograficznego pozwala na efektywne planowanie prac w terenie oraz minimalizowanie ryzyk związanych z błędami lokalizacyjnymi. W branży geodezyjnej stosuje się standardy, które wymagają, aby wszystkie punkty osnowy miały odpowiednio przygotowaną dokumentację, co podnosi jakość i dokładność przeprowadzanych pomiarów.

Pytanie 18

Na podstawie zamieszczonych w tabeli wyników pomiarów punktów kontrolowanych, oblicz przemieszczenie pionowe punktu nr 3.

Nr punktuPomiar pierwotny
Hp [m]
Pomiar wtórny
Hw [m]
1521,2578521,2480
2521,2521521,2410
3521,2610521,2554
4521,2586521,2533
5521,2567521,2458
6521,2505521,2412

A. +5,6 mm
B. -56 mm
C. -5,6 mm
D. +56 mm
Jeśli wybrałeś błędną odpowiedź, to może wynikać z niejasności, jak oblicza się przemieszczenie. Przemieszczenie pionowe punktu nr 3 nie może być dodatnie, bo to by znaczyło, że punkt się unosi, a my wiemy, że jest inaczej. Gdy mówimy o obniżeniu o -5,6 mm, to znaczy, że punkt jest niżej niż był. Często w analizach pomiarowych ludzie mylą znaki przy przemieszczeniach, co prowadzi do nieporozumień. Możliwe, że pomyliłeś przemieszczenie w górę z dodatnią wielkością, a to przez to mogą pojawić się błędne wnioski o stanie budowli. Niektórzy mogą też koncentrować się na wartościach bezwzględnych, nie zauważając kierunku przemieszczenia, co w inżynierii jest kluczowe. Zawsze warto mieć na oku zasady, które mówią, że ujemne wartości to obniżenie. W bardziej skomplikowanych analizach ważne jest używanie odpowiednich metod i narzędzi, żeby zrozumieć ruchy gruntów i ich wpływ na budowle.

Pytanie 19

Na jakiej odległości od startu trasy usytuowany jest punkt 1/5+78,00 m?

A. 578,00 m
B. 2578,00 m
C. 278,00 m
D. 1578,00 m
Odpowiedź 1578,00 m jest prawidłowa, ponieważ punkt oznaczony jako 1/5+78,00 m oznacza, że od początku trasy, który jest punktem odniesienia, do punktu 1/5 znajdują się 1578,00 m. Przy obliczeniach można spotkać się z różnymi systemami oznaczania odległości, co w praktyce oznacza, że kluczowe jest zrozumienie konwencji i sposobu, w jaki różne punkty są numerowane lub oznaczane. Standardy branżowe, takie jak normy ISO dotyczące pomiarów geodezyjnych, jasno określają, jak należy interpretować tego typu oznaczenia. Dla inżynierów i specjalistów zajmujących się planowaniem tras, umiejętność prawidłowego odczytywania takich informacji jest niezbędna, zwłaszcza w kontekście projektowania infrastruktury transportowej, gdzie precyzyjne określenie odległości jest kluczowe dla bezpieczeństwa i efektywności ruchu drogowego.

Pytanie 20

Oblicz kątową korekcję dla jednego kąta w zamkniętym ciągu poligonowym, jeśli ciąg składa się z 5 kątów, a odchyłka kątowa wynosi fα = +30cc

A. Vkt = +6cc
B. Vkt = +5cc
C. Vkt = -5cc
D. Vkt = -6cc
Poprawka kątowa do kąta w ciągu poligonowym zamkniętym jest obliczana na podstawie ogólnej zasady, że suma wszystkich kątów wewnętrznych powinna wynosić (n-2) * 180°, gdzie n to liczba wierzchołków. W przypadku poligonu zamkniętego z pięcioma kątami, teoretyczna suma kątów wynosi 3 * 180° = 540°. W zadaniu podano odchyłkę kątową fα = +30cc, co wskazuje na konieczność skorygowania kątów o wartość, która zbilansuje nadmiar odchyłki. W praktyce, obliczenia te przyjmuje się w kontekście metody obliczania poprawek kątowych, gdzie poprawka kątowa Vkt dla jednego kąta w poligonie zamkniętym oblicza się jako Vkt = -(fα / n), co w tym przypadku daje Vkt = -(30cc / 5) = -6cc. Tego rodzaju obliczenia są kluczowe w geodezji i inżynierii, gdzie precyzyjne pomiary kątów mają istotne znaczenie dla dokładności projektów budowlanych oraz w nawigacji. Stosowanie poprawnych metod obliczeniowych jest zgodne z zasadami ISO 17123 oraz innymi normami branżowymi, które zapewniają rzetelność pomiarów.

Pytanie 21

Cechą charakterystyczną wskazującą na lokalizację przebiegu instalacji wodociągowej, której położenie jest zdefiniowane w państwowym systemie odniesień przestrzennych przy użyciu współrzędnych prostokątnych płaskich oraz wysokości, jest

A. poligon
B. reper
C. pikieta
D. bagnet
Pikieta to naprawdę ważny element, kiedy mówimy o terenie w geodezji oraz inżynierii lądowej. Używa się jej, żeby określić, gdzie znajdują się różne części infrastruktury, np. przewody wodociągowe. Generalnie pikieta opiera się na konkretnych współrzędnych i wysokości, więc jest kluczowym składnikiem systemów odniesienia przestrzennego. W czasie prac pomiarowych pikiety pomagają w zachowaniu precyzji i dokładności. Dzięki ich umiejscowieniu można lepiej kontrolować postępy w budowie i upewnić się, że wszystko idzie zgodnie z planem. Osobiście myślę, że fajnie, że pikiety dają też możliwość monitorowania stanu technicznego przewodów wodociągowych. Ważne jest, żeby regularnie sprawdzać, czy pikiety zgadzają się z aktualnymi planami i mapami, bo to jest zgodne z geodezyjnymi normami.

Pytanie 22

W trakcie projektowania osnów geodezyjnych nie przeprowadza się

A. stabilizacji punktów geodezyjnych
B. inwentaryzacji już istniejących punktów geodezyjnych
C. ustalenia lokalizacji i zabudowy poszczególnych punktów sieci
D. wywiadu z terenu
Stabilizacja punktów geodezyjnych to coś, co dzieje się dopiero po tym, jak mamy już zaplanowaną sieć punktów. Najpierw trzeba wybrać dobre miejsca i odpowiednio je rozmieścić. W tym etapie ważne jest, żeby dokładnie sprawdzić, jakie punkty już są w terenie, porozmawiać z ludźmi, którzy tam byli i ustalić, w jakich miejscach najlepiej postawić nowe punkty. To wszystko pomoże nam zrobić sieć, która będzie zgodna z normami i potrzebami. Stabilizacja przychodzi dopiero, gdy mamy już pewność, gdzie mają być te punkty. Na przykład, kiedy projekt jest gotowy, przystępuje się do ich stabilizacji, co oznacza, że umieszczamy je w terenie i dobrze zabezpieczamy. Warto pamiętać, że stabilizacja musi być przeprowadzona zgodnie z obowiązującymi normami, jak chociażby PN-EN ISO 17123, żeby wyniki były rzetelne i miały dobrą jakość.

Pytanie 23

Wartość punktu na profilu podłużnym 2/4+27 wskazuje, że znajduje się on w odległości od początku trasy wynoszącej

A. 2742 m
B. 2472 m
C. 2427 m
D. 2724 m
Punkt na profilu podłużnym zapisany jako 2/4+27 oznacza, że znajduje się on 2427 metrów od początku trasy. Taki zapis jest standardem w dokumentacji inżynieryjnej i geodezyjnej, gdzie '2' to numer odcinka trasy, '4' to numer kilometra, a '+27' to dodatkowe metry. Zrozumienie tego formatu jest kluczowe w pracach związanych z projektowaniem infrastruktury drogowej oraz kolejowej. Na przykład, gdy inżynierowie planują prace remontowe, muszą precyzyjnie określić lokalizację, aby uniknąć błędów i zapewnić bezpieczeństwo. W praktyce, takie zapisy pomagają w identyfikacji miejsc, w których potrzebne są interwencje, a także w komunikacji między różnymi zespołami roboczymi. Dobre praktyki branżowe zalecają stosowanie jednoznacznego systemu numeracji, co ułatwia lokalizację punktów kontrolnych i zarządzanie projektem. Warto również zwrócić uwagę na znaczenie precyzyjnych zapisów w kontekście zarządzania projektem, co pozwala na dokładne planowanie zasobów i terminów realizacji zadań.

Pytanie 24

Jakie metody powinny być wykorzystane do przeprowadzenia pomiaru tachimetrycznego?

A. Biegunową oraz niwelacji geometrycznej
B. Ortogonalną oraz niwelacji trygonometrycznej
C. Ortogonalną oraz niwelacji geometrycznej
D. Biegunową oraz niwelacji trygonometrycznej
Pomiar tachimetryczny to kluczowy element w geodezji, który polega na jednoczesnym pomiarze kątów i odległości w celu uzyskania dokładnych danych o położeniu punktów w terenie. Odpowiedzią, która wskazuje na prawidłowe metody, jest kombinacja biegunowej i niwelacji trygonometrycznej. Metoda biegunowa polega na pomiarze kątów poziomych i pionowych, co pozwala na dokładne określenie pozycji obiektu. Z kolei niwelacja trygonometryczna wykorzystuje pomiar kątów i odległości, aby obliczyć różnice wysokości pomiędzy punktami. Te dwie metody są zgodne z dobrymi praktykami w geodezji, które zalecają łączenie różnych technik pomiarowych dla zwiększenia dokładności i wiarygodności wyników. W praktyce, zastosowanie tej kombinacji pozwala na efektywne i precyzyjne ustalanie wysokości punktów terenowych, co jest szczególnie istotne w budownictwie, infrastrukturze oraz podczas realizacji projektów geodezyjnych. Dodatkowo, standardy takie jak ISO 17123 określają wymagania dotyczące techniki pomiarowej, co zapewnia zgodność z międzynarodowymi normami.

Pytanie 25

W terenie odległość 100 m na mapie zasadniczej w skali 1:500 odpowiada długości odcinka wynoszącej

A. 20 cm
B. 50 mm
C. 50 cm
D. 20 mm
Odpowiedzi takie jak '50 cm', '50 mm' czy '20 mm' są nietrafione, bo widać, że tu jest błąd w zrozumieniu przeliczeń skali. Na przykład, '50 cm' mówi, że 100 metrów w skali 1:500 ma długość 50 cm, co jest pomyłką, bo to by oznaczało 250 metrów. To typowy błąd, że źle zastosowano proporcje skali, co prowadzi do nieporozumień dotyczących rzeczywistej długości. Z kolei '50 mm' pasowałoby tylko przy skali 1:2000, co pokazuje, jak ważne jest, żeby umieć przeliczać mm i cm w kontekście skali. Odpowiedzi '20 mm' i '20 cm' to też nie to, bo 20 mm to tylko 2 metry, co nie ma zastosowania przy 100 metrach. Przy pracy z mapami trzeba ściśle przestrzegać zasad przeliczania i znać skuteczne metody konwersji jednostek, żeby uniknąć zamieszania w projektach geodezyjnych czy budowlanych. Na co dzień, to pomaga mieć dokładne odwzorowanie i dobrze zaplanować teren, zwłaszcza w kontekście przepisów prawnych i norm, które są kluczowe w geodezji i kartografii.

Pytanie 26

Który z poniższych elementów terenu zalicza się do pierwszej kategorii dokładnościowej?

A. Budynek szkoły
B. Drzewo przyuliczne
C. Linia brzegowa jeziora
D. Boisko sportowe
Budynek szkoły to coś, co możemy spokojnie wrzucić do pierwszej grupy dokładnościowej, jeśli mówimy o analizie terenowej i geodezyjnej. W tej grupie są obiekty, które mają naprawdę wysoką precyzję. To znaczy, że ich lokalizacja jest dokładnie określona i można je wykorzystać w różnych sytuacjach, jak planowanie przestrzenne czy urbanistyka. Jak to z budynkami bywa, zwłaszcza tymi publicznymi, jak szkoły, mają one duże znaczenie dla analizy przestrzennej, bo ich lokalizacja wpływa na to, jak dostępne są usługi dla ludzi w okolicy. Kiedy tworzymy mapy społeczne czy sprawdzamy dostęp do edukacji, precyzyjna lokalizacja szkół jest super ważna, żeby ocenić jakość życia i infrastruktury w danym miejscu. A wiesz, stosowanie standardów jak ISO 19115, które dotyczą metadanych geograficznych, pomaga w tym, żeby te dane były zebrane i użyte tak, jak trzeba. To naprawdę ważne dla dalszych analiz.

Pytanie 27

Na czym polega metoda niwelacji trygonometrycznej?

A. Na bezpośrednim pomiarze długości przy użyciu miarki, co nie ma związku z pomiarami wysokościowymi.
B. Na tworzeniu profili terenu za pomocą modelowania 3D, co nie dotyczy bezpośrednio pomiarów wysokościowych.
C. Na obliczaniu różnic wysokości na podstawie pomiarów kątów i odległości.
D. Na określaniu współrzędnych punktów za pomocą GPS, co nie jest związane z niwelacją trygonometryczną.
Metoda niwelacji trygonometrycznej jest jedną z kluczowych technik stosowanych w geodezji do pomiaru różnic wysokości między punktami terenowymi. Polega ona na wykorzystaniu pomiarów kątów oraz odległości poziomych lub skośnych, aby obliczyć różnice wysokości. Metoda ta wykorzystuje trygonometrię, w szczególności funkcje trygonometryczne, takie jak sinus i tangens, do przekształcenia danych kątowych i odległościowych w różnice wysokości. Dzięki temu można precyzyjnie określić wysokość punktów w terenie bez konieczności fizycznego przemieszczania się między nimi. W praktyce, niwelacja trygonometryczna jest stosowana w sytuacjach, gdy teren jest trudny do przebycia lub gdy pomiary wymagają dużej dokładności, np. w budownictwie mostów czy tuneli. Dodatkowo, ta technika jest przydatna w miejscach, gdzie niemożliwe jest zastosowanie tradycyjnych metod niwelacji, takich jak niwelacja geometryczna. Korzystanie z tej metody wymaga jednak precyzyjnych instrumentów, takich jak tachimetry, oraz umiejętności analizy danych pomiarowych w kontekście matematycznym. Metoda ta jest zgodna z normami i standardami geodezyjnymi, co czyni ją niezastąpioną w wielu profesjonalnych zastosowaniach.

Pytanie 28

Który z poniższych obiektów wymaga obowiązkowego wytyczenia geodezyjnego oraz inwentaryzacji powykonawczej?

A. Ogrodzenie stałe.
B. Sygnał drogowy.
C. Przyłącze wodociągowe
D. Plac zabaw.
Przyłącze wodociągowe podlega obowiązkowemu wytyczeniu geodezyjnemu oraz inwentaryzacji powykonawczej, ponieważ jest to element infrastruktury technicznej, który ma istotne znaczenie dla organizacji przestrzennej oraz funkcjonowania sieci wodociągowej. Wytyczenie geodezyjne pozwala na precyzyjne określenie jego lokalizacji w terenie, co jest kluczowe dla uniknięcia kolizji z innymi instalacjami, co może prowadzić do kosztownych napraw i zakłóceń w dostawie wody. Inwentaryzacja powykonawcza ma na celu dokumentację stanu przyłącza po zakończeniu prac budowlanych, co jest istotne z punktu widzenia zarządzania infrastrukturą oraz jej późniejszej eksploatacji. Przykładem może być sytuacja, w której inwestor budowlany zleca wykonanie przyłącza wodociągowego, a następnie po zakończeniu prac geodeta przeprowadza inwentaryzację, aby potwierdzić zgodność wykonanego przyłącza z projektem. Zgodnie z obowiązującymi w Polsce przepisami prawa budowlanego oraz standardami geodezyjnymi, takie działania są niezbędne w celu zapewnienia bezpieczeństwa użytkowania oraz ochrony interesów publicznych.

Pytanie 29

Który z błędów instrumentalnych teodolitu nie jest usuwany podczas pomiaru kąta w dwóch różnych położeniach lunety?

A. Inklinacja
B. Kolimacja
C. Miejsca zera
D. Libelli rurkowej
Libella rurkowa jest elementem teodolitu służącym do poziomowania instrumentu. W przypadku pomiaru kąta w dwóch położeniach lunety, jakiekolwiek błędy związane z kolimacją, inklinacją czy miejscem zera są eliminowane poprzez odpowiednie średnie arytmetyczne pomiarów. Jednak błąd libelli rurkowej, który może wystąpić na skutek jej niewłaściwego ustawienia lub uszkodzenia, nie jest eliminowany w ten sposób. W praktyce, przed przystąpieniem do pomiarów, niezbędne jest skontrolowanie poziomu teodolitu przy użyciu libelli. Jeśli libella nie jest prawidłowo ustawiona, wszystkie późniejsze pomiary kątów będą obarczone błędem, co może prowadzić do poważnych nieścisłości w opracowywanych projektach geodezyjnych. Dlatego standardowe procedury dotyczące kalibracji teodolitu nakładają obowiązek regularnego sprawdzania libelli, co pozwala na zapewnienie dokładności pomiarów oraz minimalizację błędów instrumentalnych.

Pytanie 30

Jaką kategorię szczegółów terenowych, biorąc pod uwagę wymagania precyzyjności pomiaru, reprezentują budynki mieszkalne?

A. II grupy
B. IV grupy
C. III grupy
D. I grupy
Budynki mieszkalne to ważny element w I grupie szczegółów terenowych. To zgodne z tym, co mówią różne normy i standardy w branży. W sumie, te obiekty mają naprawdę spore znaczenie dla planowania przestrzennego, architektury, no i inżynierii lądowej. Kluczowe jest, żeby dokładnie wiedzieć, gdzie te budynki stoją i jakie mają wymiary. To wpływa na to, jak projektujemy infrastrukturę i urbanizację. Na przykład, jak bierzesz pozwolenie na budowę, to wymiary i lokalizacja muszą być zgodne z miejscowym planem zagospodarowania przestrzennego. Często w takich sytuacjach korzysta się z technologii GPS lub pomiarów geodezyjnych. Dodatkowo, by spełnić standardy budowlane, precyzyjne pomiary to podstawa, żeby wszystko było okej z ochroną środowiska i bezpieczeństwem budowli. Wiedza na temat klasyfikacji tych terenowych szczegółów, w tym budynków mieszkalnych, to naprawdę kluczowa sprawa dla każdego, kto chce pracować w geodezji czy urbanistyce.

Pytanie 31

Jakie kryterium musi zostać zrealizowane dla poprawek po wyrównaniu zmierzonych wartości o różnej dokładności, przy założeniu, że v to poprawka, a p to waga zmierzonej wartości?

A. [pvv] = min
B. [pvv] = max
C. [pv] = max
D. [pv] = min
Wybór odpowiedzi [pv] = min. sugeruje zrozumienie pojęcia wag pomiarowych, jednak jest to nieprawidłowe podejście. W kontekście wyrównania pomiarów, minimalizacja wartości wag pomiarowych prowadziłaby do zniekształcenia rzeczywistego obrazu danych, co jest niepożądane. Waga pomiaru (p) odnosi się do poziomu zaufania do danego pomiaru, a nie do jego wartości. W przypadku gdy różne pomiary mają różne stopnie dokładności, ich wpływ na wyniki powinien być uwzględniony w sposób, który odzwierciedla rzeczywistą precyzję tych pomiarów. Zastosowanie zasady minimum dla wag pomiarowych mogłoby prowadzić do nadmiernej redukcji wpływu wartości bardziej wiarygodnych, co jest sprzeczne z zasadami statystyki oraz analizą błędów. Wartości [pvv] = max. oraz [pv] = max. również są mylące. Maksymalizacja wag pomiarowych nie jest zgodna z potrzebą otrzymania najbardziej trafnych i precyzyjnych wyników. Dlatego kluczowym elementem jest zrozumienie, że minimalizowanie błędów wymaga zastosowania odpowiednich poprawek, a nie minimalizacji wag, co jest fundamentem dla każdego analityka danych oraz specjalisty zajmującego się pomiarami, który dąży do uzyskania rzetelnych wyników w swojej pracy.

Pytanie 32

Jakie jest zastosowanie pionownika optycznego w geodezyjnej obsłudze budowlanej?

A. Do przenoszenia poziomu na dno wykopu
B. Do pomiaru boków tyczonego obiektu
C. Do tyczenia wskaźników konstrukcyjnych na wyższych kondygnacjach
D. Do tyczenia punktów głównych projektowanego obiektu
Pionownik optyczny to naprawdę przydatne narzędzie, gdy jesteśmy w trakcie budowy i musimy przenosić punkty w pionie. To, co jest fajne w jego użyciu, to to, że pozwala nam dokładnie ustawić wskaźniki na różnych wysokościach, co jest super ważne, zwłaszcza przy budynkach wielokondygnacyjnych. Wiesz, to ma ogromne znaczenie dla stabilności całej konstrukcji. Na przykład, gdy budujemy coś, co ma kilka pięter, pionownik pomaga nam precyzyjnie określić wysokości poszczególnych kondygnacji. W praktyce, geodeta stawia instrument na odpowiedniej wysokości i korzysta z celownika, by wszystko było dokładnie w osi pionowej. Jest to zgodne z normami, które mówią, jak ważne są precyzyjne pomiary na każdym etapie budowy.

Pytanie 33

Jeśli bok kwadratu zmierzonego w terenie ma długość 10 m, to na mapie w skali 1:1000 jego pole powierzchni wyniesie

A. 0,1 cm2
B. 10,0 cm2
C. 100,0 cm2
D. 1,0 cm2
Odpowiedź 1,0 cm2 jest poprawna, ponieważ aby obliczyć pole powierzchni kwadratu na mapie w skali 1:1000, najpierw należy obliczyć jego rzeczywistą powierzchnię. Bok kwadratu ma długość 10 m, więc jego pole powierzchni wynosi 10 m x 10 m = 100 m2. Następnie przelicza się to pole na jednostki odpowiadające skali mapy, co oznacza, że 1 cm na mapie odpowiada 10 m w terenie (1:1000). Zatem 100 m2 w rzeczywistości przekłada się na jednostki mapowe, co daje 100 m2 = 10000 cm2. W skali 1:1000, powierzchnia mapowa wynosi 10000 cm2 / (1000^2) = 1,0 cm2. To pokazuje, jak ważne jest rozumienie przeliczeń skali w kontekście geodezji oraz kartografii, gdzie precyzja jest kluczowa. W praktyce, takie obliczenia są niezbędne przy tworzeniu map i planów zagospodarowania przestrzennego, a także w inżynierii i budownictwie, gdzie dokładne odwzorowanie rzeczywistości ma ogromne znaczenie.

Pytanie 34

Który z poniższych instrumentów geodezyjnych służy do pomiaru kątów poziomych i pionowych?

A. Inklinometr
B. Teodolit
C. Niwelator
D. Tachimetr
Teodolit to jedno z podstawowych narzędzi używanych w geodezji do pomiaru kątów poziomych i pionowych. Jest niezwykle precyzyjnym instrumentem, który pozwala na dokładne określenie kierunków i kątów w terenie. Dzięki swojej konstrukcji, teodolit umożliwia wykonywanie pomiarów z bardzo dużą dokładnością, co jest kluczowe w wielu pracach inżynieryjnych. W praktyce, teodolit jest często używany podczas prac związanych z wytyczaniem tras drogowych, budową mostów czy konstrukcją budynków, gdzie precyzyjne pomiary są niezbędne dla prawidłowego przebiegu całego procesu budowlanego. Warto również wspomnieć, że teodolit może być wykorzystywany w połączeniu z innymi narzędziami, takimi jak niwelatory czy tachimetry, co rozszerza jego możliwości pomiarowe. Z mojego doświadczenia wynika, że znajomość obsługi teodolitu jest nieodzowną umiejętnością każdego geodety i inżyniera budownictwa, ponieważ pozwala na skuteczne i efektywne przeprowadzenie wielu kluczowych operacji pomiarowych.

Pytanie 35

Teoretyczna suma kątów wewnętrznych zamkniętego pięcioboku wynosi

A. 800g
B. 600g
C. 400g
D. 1000g
Wielokąty, w tym pięcioboki, mają ustaloną sumę kątów wewnętrznych, a każda z odpowiedzi niepoprawnych wskazuje na nieporozumienie w interpretacji tego zagadnienia. Odpowiedzi 800g, 400g oraz 1000g sugerują wartości, które nie mają zastosowania do obliczeń dotyczących kątów wewnętrznych pięcioboku. Odpowiedź 800g wynika z błędnego założenia, że kąt może być większy niż standardowy maksymalny kąt wewnętrzny, podczas gdy każdy kąt w pięcioboku nie może przekraczać 180°. Odpowiedź 400g równie dobrze może wynikać z mylnego zastosowania wzoru na sumę kątów wewnętrznych, co prowadzi do zaniżenia wartości. Z kolei 1000g to całkowicie nietrafione podejście, które wykazuje nieznajomość podstawowej zasady dotyczącej geometrii wielokątów. Typowe błędy myślowe mogą obejmować mylenie sumy kątów z sumą długości boków lub z rozpatrywaniem kątów w różnych kontekstach, takich jak kąty zewnętrzne. Zrozumienie wzoru na sumę kątów wewnętrznych jest kluczowe w wielu dziedzinach, a nieprawidłowe podejścia mogą prowadzić do błędów w projektach inżynieryjnych i architektonicznych, co w konsekwencji wpływa na stabilność oraz bezpieczeństwo konstrukcji.

Pytanie 36

W jakim zakrescie znajduje się wartość azymutu boku AB, jeżeli różnice współrzędnych pomiędzy punktem początkowym a końcowym boku AB są takie, że ΔXAB < 0 oraz ΔYAB < 0?

A. 0100g
B. 300400g
C. 100200g
D. 200300g
Azymut boku AB, w którym różnice współrzędnych ΔXAB i ΔYAB są ujemne, wskazuje na kierunek południowo-zachodni. W systemie azymutalnym, azymut wyrażany jest w stopniach, gdzie 0° wskazuje na północ, a 270° na zachód. Ponieważ zarówno ΔX, jak i ΔY są ujemne, oznacza to, że punkt końcowy znajduje się na lewo i poniżej punktu początkowego, co odpowiada zakresowi azymutu od 200° do 300°. Taki przedział azymutu jest istotny w geodezji i nawigacji, gdzie dokładne określenie kierunku ma kluczowe znaczenie dla precyzyjnych pomiarów i wytyczania dróg. Przykładem zastosowania może być nawigacja w terenie, gdzie geodeta musi precyzyjnie określić kierunek, aby przeprowadzić pomiary terenowe lub przygotować mapę. Zrozumienie azymutu oraz jego wartości w kontekście współrzędnych jest fundamentem w geodezji oraz kartografii, co jest zgodne z wytycznymi standardów geodezyjnych.

Pytanie 37

W teodolicie oś rotacji instrumentu jest oznaczona

A. hh
B. cc
C. vv
D. ll
Wybór odpowiedzi hh, cc lub ll wskazuje na pewne nieporozumienia dotyczące budowy i funkcji teodolitu. Oś obrotu teodolitu, oznaczona jako 'vv', jest kluczowym elementem, który decyduje o precyzji pomiarów kątowych. Oś ta pozwala na obrót instrumentu, a jakiekolwiek błędne oznaczenia mogą prowadzić do zamieszania i niepoprawnych pomiarów. Oznaczenie 'hh' często mylone jest z osiami mechanicznymi, które nie są bezpośrednio powiązane z funkcjonowaniem teodolitu. Natomiast 'cc' może sugerować inne elementy konstrukcyjne, jak poziomice czy inne mechanizmy, które są mniej istotne w kontekście osi obrotu. Odpowiedź 'll' wskazuje na nieistotne lub błędne aspekty działania teodolitu, co może prowadzić do pomyłek w praktycznych zastosowaniach instrumentu. Zrozumienie, jak prawidłowo identyfikować i oznaczać osie obrotu w teodolicie, jest kluczowe dla zachowania dokładności pomiarów. Niezrozumienie tego aspektu może prowadzić do poważnych błędów podczas wykonywania prac geodezyjnych, w tym błędów w wyznaczaniu granic działek, co ma istotne konsekwencje prawne i finansowe. Dlatego tak ważne jest, aby geodeci i inżynierowie byli dobrze zaznajomieni z podstawowymi oznaczeniami i funkcjami teodolitu.

Pytanie 38

W teodolicie stała podstawa, która służy do jego ustawienia w poziomie, nazywana jest

A. alidadą
B. pionem
C. limbusem
D. spodarką
W teodolicie istnieje wiele elementów i terminów, które mogą prowadzić do zamieszania, gdy próbujemy zrozumieć jego budowę i funkcje. Limbusem nazywamy inną część teodolitu, która jest odpowiedzialna za wskazywanie kątów na obręczy. Jest to element, który służy do odczytu kątów, a nie do ustalania stabilnej podstawy narzędzia, co jest jego podstawową funkcją. Kolejnym terminem jest pion, który odnosi się do kierunku prostopadłego do poziomu, ale również nie ma nic wspólnego z podstawą teodolitu. Pion jest kluczowy dla określenia pozycji urządzenia w przestrzeni, jednakże nie stanowi jego podstawy. Alidadą jest natomiast wskazówka montowana na teodolicie, używana do celowania w określony punkt. Choć wszystkie te terminy są istotne dla funkcjonowania teodolitu, żaden z nich nie odpowiada funkcji podstawy, poza spodarką. Właściwe zrozumienie tych terminów oraz ich zastosowanie w praktyce geodezyjnej jest kluczowe dla uniknięcia błędów i nieporozumień, które mogą wpłynąć na jakość pomiarów oraz skuteczność pracy w terenie. Dlatego, aby uniknąć typowych błędów myślowych, ważne jest dokładne zrozumienie, jak poszczególne elementy teodolitu współpracują ze sobą, co pomoże w prawidłowym wykonywaniu pomiarów.

Pytanie 39

Punkty pomiarowe osnowy sytuacyjnej powinny być stabilizowane w sposób gwarantujący ich jednoznaczne oznakowanie w terenie, podczas

A. inwentaryzacji po zakończeniu budowy obiektu
B. aktualizacji danych w bazie obiektów topograficznych
C. pracy w trakcie już rozpoczętego lub planowanego procesu inwestycyjnego
D. inwentaryzacji po zakończeniu budowy sieci uzbrojenia terenu
Niektóre z wymienionych opcji mogą wydawać się logiczne, jednak nie odzwierciedlają one rzeczywistych potrzeb związanych ze stabilizacją punktów pomiarowych osnowy sytuacyjnej. Inwentaryzacja powykonawcza sieci uzbrojenia terenu, choć istotna, nie dotyczy bezpośrednio stabilizacji punktów, lecz raczej dokumentacji już wykonanych prac. Z kolei aktualizacja bazy danych obiektów topograficznych, mimo że jest ważnym procesem, nie koncentruje się na stabilizacji punktów pomiarowych w kontekście inwestycji, co jest kluczowe dla zapewnienia ich jednoznacznego oznaczenia. Ponadto inwentaryzacja powykonawcza budynku, podobnie jak inwentaryzacja sieci uzbrojenia, ma na celu dokumentację, a nie stabilizację punktów. Błędem myślowym w tych odpowiedziach jest pomylenie kompensacji i aktualizacji danych z procesem, który wymaga systematycznego i precyzyjnego podejścia do stabilizacji punktów, które są kluczowe w kontekście działań budowlanych i geodezyjnych. W praktyce, aby zapewnić precyzję i niezawodność pomiarów, należy stosować odpowiednie metody stabilizacji z uwzględnieniem specyfiki danego procesu inwestycyjnego.

Pytanie 40

Jaką wartość ma korekta kątowa dla jednego kąta w zamkniętym ciągu poligonowym, jeżeli ciąg ten zawiera 5 kątów, a odchylenie kątowe wynosi fα = +30cc?

A. Vk = -5cc
B. Vk = +5cc
C. Vk = -6cc
D. Vk = +6cc
Wartość poprawki kątowej do jednego kąta w ciągu poligonowym zamkniętym oblicza się na podstawie ogólnej zasady, że suma kątów wewnętrznych n-kąta w postaci: (n-2) * 180°. W przypadku poligonu zamkniętego, gdzie mamy 5 kątów, oczekiwana suma kątów powinna wynosić (5-2) * 180° = 540°. Odchyłka kątowa, fα = +30cc, oznacza, że całkowita suma kątów zamyka się z błędem pomiarowym, co wpływa na konieczność wprowadzenia poprawek. Zatem, aby skorygować pomiar, stosujemy wzór na poprawkę kątową Vk = fα / n, gdzie n to liczba kątów. W tym przypadku Vk = +30cc / 5 = +6cc. Jednakże w kontekście zamkniętego poligonu, w którym zaszła odchyłka, musimy dodać dodatkową poprawkę wynikającą z błędu pomiarowego, co prowadzi do obliczenia wartości korygującej na -6cc, aby uzyskać zamknięcie poligonu. Praktyczne zastosowanie tej wiedzy ma miejsce w geodezji, gdzie dokładność pomiarów kątowych jest kluczowa przy tworzeniu map i pomiarach terenowych.