Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 31 maja 2025 22:23
  • Data zakończenia: 31 maja 2025 22:38

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Ile watomierzy jest wymaganych do pomiaru mocy czynnej przy użyciu metody Arona w trójfazowych układach elektrycznych?

A. 3
B. 1
C. 2
D. 4
Zastosowanie jednego watomierza do pomiaru mocy czynnej w układzie trójfazowym jest niewłaściwe, ponieważ nie jest w stanie zarejestrować pełnego obrazu obciążenia trzech faz. W przypadku użycia jednego przyrządu, pomiar będzie ograniczony i będzie dotyczył tylko jednej fazy, co prowadzi do zafałszowania wyników. Podobnie, wybór trzech watomierzy w tej metodzie byłby zbędny, ponieważ wprowadzałoby to dodatkowe koszty i złożoność w analizie danych, gdzie dwa watomierze są wystarczające. Wykorzystanie czterech watomierzy jest nadmiarowe i niepraktyczne, gdyż nie wprowadza żadnych korzyści w kontekście pomiaru ani analizy, a jedynie zwiększa ryzyko błędów pomiarowych i komplikacji operacyjnych. Kluczowym błędem myślowym jest przekonanie, że większa liczba watomierzy automatycznie poprawia jakość pomiaru; w rzeczywistości, dla uzyskania wiarygodnych wyników w systemach trójfazowych ważne jest, aby wykonać pomiary w sposób zorganizowany i zgodny z uznawanymi standardami pomiarowymi. Konsekwencje błędnych wyborów mogą prowadzić do nieefektywności w zarządzaniu energią oraz trudności w identyfikacji źródeł strat energii w systemie. W praktyce, stosowanie dwóch watomierzy dąży do równowagi pomiędzy dokładnością pomiarów a prostotą konfiguracji.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Przez jaki element manipulatora realizowane są różne operacje manipulacyjne?

A. Chwytaka
B. Regulatora
C. Sondy
D. Silnika
Sonda, silnik i regulator to elementy, które pełnią różne funkcje w systemach automatyzacji, ale nie są bezpośrednio odpowiedzialne za operacje manipulacyjne. Sonda, na przykład, jest używana do pomiaru i detekcji, co oznacza, że zbiera dane o otoczeniu lub obiektach, ale nie wykonuje operacji manipulacyjnych. W kontekście automatyzacji, sondy mogą być stosowane do lokalizacji obiektów lub monitorowania warunków, ale ich rolą nie jest chwytanie czy przenoszenie. Silnik z kolei napędza ruch manipulatora, ale to chwytak jest tym elementem, który bezpośrednio wchodzi w interakcję z obiektami. Regulator natomiast zarządza pracą silnika, kontrolując jego parametry pracy, co może wpływać na precyzję ruchu, lecz nie jest on odpowiedzialny za manipulację samych obiektów. Typowe błędy myślowe, które prowadzą do mylnej percepcji tych elementów, wynikają z niepełnego zrozumienia ich roli w systemie automatyzacji. Użytkownicy często mylą funkcje kontrolne z operacjami manipulacyjnymi, co prowadzi do nieprawidłowych wniosków podczas oceny działania systemów. Właściwe zrozumienie tych różnic jest kluczowe dla efektywnego projektowania i zastosowania technologii automatyzacji.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Co może się zdarzyć, gdy w trakcie montażu silnika trójfazowego nastąpi przerwanie przewodu ochronnego PE?

A. awarii stojana silnika
B. wzrostu temperatury silnika podczas pracy, co może prowadzić do zapalenia się silnika
C. pojawienia się napięcia na obudowie silnika, co grozi porażeniem prądem elektrycznym
D. przeciążenia instalacji elektrycznej, co może skutkować pożarem
Odpowiedź dotycząca pojawienia się napięcia na obudowie silnika oraz ryzyka porażenia prądem elektrycznym jest prawidłowa, ponieważ przewód ochronny PE (ochronny) ma kluczowe znaczenie w zapewnieniu bezpieczeństwa użytkowania urządzeń elektrycznych. W przypadku przerwania tego przewodu, obudowa silnika może znaleźć się pod napięciem, ponieważ nie będzie możliwości odprowadzenia prądów upływowych do ziemi. Taki stan stwarza zagrożenie dla osób pracujących w pobliżu, gdyż kontakt z obudową, która jest na potencjale elektrycznym, może prowadzić do porażenia prądem. W praktyce, aby zminimalizować ryzyko tego typu zdarzeń, zaleca się stosowanie systemów detekcji uszkodzeń izolacji oraz regularne przeglądy instalacji elektrycznej. Ponadto, zgodnie z normą PN-EN 61140, urządzenia powinny być wyposażone w odpowiednie zabezpieczenia, takie jak wyłączniki różnicowoprądowe, które mogą zareagować na niebezpieczne różnice napięcia i wyłączyć zasilanie w sytuacji awaryjnej.

Pytanie 13

Podczas nieostrożnego lutowania pracownik narażony jest przede wszystkim na

A. poparzenie dłoni
B. uszkodzenie słuchu
C. krwawienie z nosa
D. uszkodzenie wzroku
Poparzenia dłoni są jednym z najczęstszych zagrożeń dla pracowników lutujących, ze względu na wysoką temperaturę topnienia materiałów lutowniczych oraz używanych narzędzi. W trakcie lutowania, szczególnie przy użyciu lutownic o dużej mocy, istnieje ryzyko kontaktu nagrzanych elementów z naskórkiem, co może prowadzić do poważnych oparzeń. Przykładem dobrej praktyki w zapobieganiu takim incydentom jest stosowanie odpowiedniej odzieży ochronnej, takiej jak rękawice odporną na wysoką temperaturę oraz osłony na przedramiona. Ponadto, w standardach BHP w przemyśle elektronicznym zaleca się regularne szkolenia dla pracowników, aby zwiększyć ich świadomość na temat zagrożeń związanych z lutowaniem i nauczyć ich technik bezpiecznej pracy. Dodatkowo, stosowanie narzędzi takich jak podkładki izolacyjne oraz zachowanie odpowiedniego dystansu od elementów, które mogą być gorące, jest kluczowe dla minimalizacji ryzyka poparzeń.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Poziom przezroczystej, nieprzewodzącej cieczy w zbiorniku można zmierzyć za pomocą czujnika

A. indukcyjnego
B. ultradźwiękowego
C. refleksyjnego
D. piezoelektrycznego
Czujniki ultradźwiękowe to naprawdę fajne narzędzia do mierzenia poziomu cieczy, zwłaszcza w sytuacjach, gdy mamy do czynienia z przezroczystymi i nieprzewodzącymi rzeczami. Działają na takiej zasadzie, że wysyłają fale ultradźwiękowe, które zbijają się od powierzchni cieczy i wracają do czujnika. Dzięki temu, że możemy zmierzyć czas, jaki potrzebuje sygnał na powrót, możemy dokładnie określić, jak wysoki jest poziom cieczy. Na przykład, wykorzystuje się je w zbiornikach z wodą pitną czy różnymi cieczyami w przemyśle. Warto też zauważyć, że standardy jak ISO 9001 mówią o precyzyjnych pomiarach w produkcji, a te czujniki właśnie to potrafią. Mają też kilka zalet w porównaniu do innych technologii, jak brak kontaktu z cieczą, co zmniejsza ryzyko zanieczyszczenia czy korozji, a ponadto mogą działać w trudnych warunkach, co jest na pewno plusem.

Pytanie 16

Osoba pracująca z urządzeniami pneumatycznymi emitującymi głośny dźwięk jest narażona na

A. zmiany w układzie kostnym
B. uszkodzenie skóry dłoni
C. porażenie prądem elektrycznym
D. uszkodzenie narządu słuchu
Uszkodzenie narządu słuchu w wyniku narażenia na wysokie natężenie dźwięku w miejscu pracy jest poważnym zagrożeniem zdrowotnym, które można zminimalizować poprzez wdrożenie odpowiednich środków ochrony. Zgodnie z normami, takimi jak ISO 9612, ocena ryzyka hałasu powinna być regularnie przeprowadzana, a pracownicy powinni być informowani o potencjalnych zagrożeniach. Stosowanie ochronników słuchu, takich jak nauszniki lub wkładki, jest kluczowym elementem strategii redukcji ekspozycji na hałas. Przykładowo, pracownik obsługujący kompresory powietrzne, które generują dźwięk o poziomie przekraczającym 85 dB, powinien zawsze korzystać z odpowiedniego sprzętu ochronnego. Dodatkowo, regularne kontrole słuchu mogą pomóc w wczesnym wykryciu ewentualnych uszkodzeń, co jest zgodne z najlepszymi praktykami w zarządzaniu bezpieczeństwem pracy.

Pytanie 17

Jakie urządzenie powinno być wykorzystane do weryfikacji szczelności instalacji pneumatycznej?

A. Optyczny detektor nieszczelności
B. Ultradźwiękowy wykrywacz nieszczelności
C. Detektor z lampą UV
D. Detektor gazów
Ultradźwiękowy wykrywacz nieszczelności jest narzędziem szczególnie efektywnym w diagnozowaniu wycieków w instalacjach pneumatycznych. Działa na zasadzie analizy dźwięku, który generowany jest przez przepływ powietrza przez nieszczelności. W porównaniu do innych metod, wykrywacze ultradźwiękowe mają tę przewagę, że mogą wykrywać nieszczelności w trudnodostępnych miejscach, gdzie inne urządzenia mogą nie być w stanie zidentyfikować problemu. Przykładami ich zastosowania są inspekcje w zakładach produkcyjnych, gdzie utrzymanie ciśnienia w instalacjach pneumatycznych jest kluczowe dla efektywności operacyjnej. W branży przemysłowej standardy, takie jak ISO 50001, podkreślają znaczenie monitorowania i optymalizacji systemów pneumatycznych w celu zmniejszenia strat energii, co czyni ultradźwiękowe wykrywacze nieszczelności narzędziem zgodnym z najlepszymi praktykami w tym zakresie. Dodatkowo, użycie tego typu detektora pozwala na wczesne wykrycie problemów, co może prowadzić do znacznych oszczędności kosztów związanych z utrzymaniem i naprawą uszkodzeń.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Po programowym aktywowaniu czterech wyjść tranzystorowych w sterowniku PLC, które sterują cewkami elektrozaworów, stwierdzono, że nie wszystkie działają poprawnie. Pomiar napięcia UBE (między bazą a emiterem) tranzystorów na poszczególnych wyjściach wykazał następujące wartości: UBE1 = 1 V, UBE2 = 3 V, UBE3 = 0,7 V, UBE4 = 5 V. Wyniki pomiarów sugerują uszkodzenie

A. wyłącznie tranzystora na wyjściu 3
B. tranzystorów na wyjściach 1 i 3
C. wyłącznie tranzystora na wyjściu 4
D. tranzystorów na wyjściach 2 i 4
Widzisz, tu pojawiają się błędy przy analizie problemu, które mogą prowadzić do mylnych diagnoz dotyczących tranzystorów. Z tych pomiarów wynika, że UBE1 ma tylko 1 V, co oznacza, że tranzystor na wyjściu 1 raczej nie działa prawidłowo, ale to nie znaczy, że jest zepsuty. Zmniejszone napięcie UBE na 1 V raczej sugeruje, że tranzystor nie jest na pełnym włączeniu. A jeśli chodzi o wyjście 3, to 0,7 V to całkiem w porządku wartość i nie możemy mówić o uszkodzeniu. Dodatkowo, wskazywanie na problem z wyjściem 2 przy napięciu 3 V, zapominając o tym, że to może być efekt złego podłączenia lub niepoprawnej konfiguracji obwodu, to też nie jest dobre podejście. W takich sytuacjach lepiej spojrzeć na cały układ, nie tylko na jedno wyjście. Przy diagnozowaniu tranzystorów ważne jest, żeby rozumieć, jak różne napięcia wpływają na ich działanie oraz potrafić dobrze interpretować wyniki pomiarów w kontekście całości systemu. W praktyce warto korzystać z dokumentacji technicznej i standardów, żeby trafnie znaleźć źródło problemu i wiedzieć, jak go naprawić.

Pytanie 20

Sterowanie za pomocą Pulse Width Modulation (PWM) w systemach kontrolnych odnosi się do regulacji przez

A. zmianę fazy impulsu
B. zmianę szerokości impulsu
C. częstotliwości
D. amplitudy impulsu
Odpowiedzi związane z zmianą fazy impulsu, częstotliwości czy amplitudy impulsu nie pasują do PWM. Zmiana fazy impulsu to bardziej sprawa synchronizacji sygnałów, co znajduje zastosowanie np. w komunikacji, a to nie ma związku z regulowaniem mocy czy średniego prądu w PWM. Częstotliwość w PWM właściwie zostaje taka sama, gdy zaczynasz regulować szerokość impulsu; można nią trochę bawić się, ale to nie jest kluczowa sprawa w tym temacie. Co do amplitudy impulsu, to też nie jest coś, na czym PWM się opiera - tu chodzi głównie o czas, w którym sygnał jest w stanie wysokim w odnoszeniu do całego okresu sygnału. To też błąd, jeśli mylone są różne techniki modulacji z PWM, bo każda ma swoje zasady. Fajnie by było, jakbyś rozróżniał PWM od innych metod, bo jego prawdziwą zaletą jest zarządzanie mocą bez strat, które powstają przy ciągłym włączaniu i wyłączaniu. To bardzo ważne w bardziej zaawansowanych systemach, które muszą być wydajne oraz elastyczne.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Siłownik hydrauliczny o powierzchni tłoka A = 20 cm2 musi wygenerować siłę F = 30 kN. Jakie powinno być ciśnienie oleju?

A. 1 500 bar
B. 150 bar
C. 15 000 bar
D. 15 bar
Wybór ciśnienia 15 000 bar jest niewłaściwy, ponieważ wartość ta przekracza wytrzymałość typowych materiałów stosowanych w hydraulice. Tak ekstremalne ciśnienie nie jest praktykowane w żadnym standardowym zastosowaniu hydraulicznym. To prowadzi do mylnego wrażenia, że wyższe ciśnienie zawsze oznacza większą moc, co jest błędne. Niepotrzebne zwiększenie ciśnienia może prowadzić do uszkodzeń elementów układu hydraulicznego, a w skrajnych przypadkach do katastrof. Odpowiedź 1 500 bar również jest niepoprawna, ponieważ przeliczenia wskazują, że jest to wartość znacznie wyższa niż wymagana w danym przypadku. Z kolei 15 bar jest zbyt niskim ciśnieniem, co skutkowałoby nieskutecznością siłownika w wytwarzaniu wymaganej siły. Istotnym błędem w myśleniu może być niepełne zrozumienie zasad działania hydrauliki, gdzie kluczowe są proporcje między siłą, ciśnieniem i powierzchnią czynnych tłoków. Właściwe obliczenia i dobór parametrów są kluczowe w projektowaniu i eksploatacji maszyn hydraulicznych, co podkreśla znaczenie edukacji technicznej oraz przestrzegania standardów branżowych. Zrozumienie tych zasad pozwala na uniknięcie kosztownych błędów oraz zwiększa bezpieczeństwo operacyjne w zastosowaniach hydraulicznych.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Zgodnie z wytycznymi producenta przedstawionymi w tabeli układ sterowniczy urządzenia mechatronicznego pracującego przy napięciu zasilania 24 V DC należy połączyć przewodami w kolorach żółto-zielonym oraz

Nazwa przewoduOznaczenie przewodu lub zacisku kodem alfanumerycznymOznaczenie przewodu kolorem
Przewód liniowy 1 (AC)
Przewód liniowy 2 (AC)
Przewód liniowy 3 (AC)
L1
L2
L3
czarnym lub
brązowym, lub szarym
Przewód neutralny (AC)N
Przewód środkowy (AC)Mniebieskim
Przewód dodatni (DC)L+czerwonym
Przewód ujemny (DC)L-czarnym
Przewód ochronny
Przewód ochronno-neutralny
Przewód ochronno-liniowy
Przewód ochronno-środkowy
PE
PEN
PEL
PEM
żółto-zielonym

A. czarnym i niebieskim.
B. czerwonym i czarnym.
C. szarym i niebieskim.
D. brązowym i niebieskim.
Odpowiedź jest poprawna, ponieważ zgodnie z wytycznymi producenta, przewód dodatni w układach zasilania DC oznaczony jest kolorem czerwonym, a przewód ujemny kolorem czarnym. W praktyce, oznaczenia kolorami przewodów mają na celu ułatwienie prawidłowego podłączenia komponentów elektronicznych i mechatronicznych, minimalizując ryzyko błędów, które mogą prowadzić do uszkodzenia urządzeń. Użycie przewodów w kolorach czerwonym i czarnym jest zgodne z powszechnie przyjętymi standardami, jak np. normy IEC 60446, które definiują oznaczenia kolorów przewodów elektrycznych. W kontekście układów zasilania 24 V DC, prawidłowe podłączenie przewodów jest kluczowe dla zapewnienia stabilności i bezpieczeństwa systemu. Dodatkowo, w przypadku błędnego podłączenia, mogą wystąpić usterki w działaniu urządzenia, a nawet jego trwałe uszkodzenie, co podkreśla znaczenie przestrzegania ustalonych zasad i norm w praktyce inżynierskiej.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Przedstawiony program sterowniczy to program napisany w języku

LI 0.00
OQ 0.00
AI 0.01
=Q 0.00
EP

A. LAD
B. ST
C. IL
D. FBD
Wybór niewłaściwego języka programowania może wynikać z niepełnego zrozumienia charakterystyk i zastosowań poszczególnych języków sterowników PLC. FBD (Function Block Diagram) jest językiem graficznym, który używa bloków funkcyjnych do modelowania systemów, co czyni go bardziej wizualnym, ale nie zawsze efektywnym w operacjach wymagających dużej precyzji, jak to ma miejsce w IL. Z kolei ST (Structured Text) to język tekstowy, ale bardziej przypominający tradycyjne języki programowania, co może wprowadzać w błąd użytkowników, którzy szukają prostoty i zwięzłości, jaką oferuje IL. LAD (Ladder Diagram) jest kolejnym językiem graficznym, który jest szczególnie przyjazny dla inżynierów przyzwyczajonych do schematów elektrycznych. Każdy z tych języków ma swoje mocne strony, ale nie można ich stosować zamiennie w sytuacjach, gdy precyzyjna manipulacja danymi jest kluczowa. Typowym błędem myślowym jest przekonanie, że język graficzny może zastąpić język tekstowy w kontekście programowania niskopoziomowego. W rzeczywistości, języki tekstowe, takie jak IL, oferują większą kontrolę nad procesem, co pozwala na optymalizację kodu i lepsze dostosowanie do specyficznych wymagań aplikacji. Dlatego istotne jest, aby inżynierowie automatyki dobrze rozumieli różnice między językami oraz ich zastosowania w praktyce, co pomoże uniknąć nieporozumień i błędnych wyborów w przyszłych projektach.

Pytanie 28

Jaki środek smarny powinien być regularnie uzupełniany w smarownicy sprężonego powietrza?

A. Pastę
B. Olej
C. Towot
D. Silikon
Odpowiedź "Olej" jest jak najbardziej w porządku, bo smarownice sprężonego powietrza właśnie do olejów są stworzone. Używa się ich, żeby dobrze smarować i chronić różne części układów pneumatycznych. Dzięki olejowi, ruchome elementy współpracują lepiej, a ich żywotność jest dłuższa. Na przykład oleje mineralne i syntetyczne to popularne wybory w urządzeniach pneumatycznych, bo poprawiają działanie narzędzi, takich jak młoty udarowe czy wkrętarki. Zgodnie ze standardem ISO 8573, odpowiednie smarowanie jest kluczowe, żeby sprzęt działał długo i nie generował wysokich kosztów utrzymania. Ważne, żeby regularnie uzupełniać olej w smarownicy, bo jego brak może prowadzić do większego zużycia części i awarii. Dobrze jest sprawdzać poziom oleju i dbać o smarownicę według wskazówek producenta.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Maksymalne napięcie na analogowym wejściu kontrolera PLC wynosi 10 V DC, a rozdzielczość tego wejścia, wynosząca około 40 mV, zapewnia zastosowanie kontrolera PLC z przetwornikiem A/C.

A. 64-bitowym
B. 16-bitowym
C. 32-bitowym
D. 8-bitowym
Wybór odpowiedzi 16-bitowej, 32-bitowej czy 64-bitowej jest błędny w kontekście określonej rozdzielczości 40 mV. Te formaty oferują znacznie większą liczbę poziomów rozdzielczości, co prowadzi do nieadekwatnych wyników w tym przypadku. Przykładowo, 16-bitowy przetwornik A/C generuje 65,536 poziomów (2^16), co w przypadku 10 V daje krok napięcia równy około 0,15 mV. Tak mała rozdzielczość jest niepraktyczna, gdy wymagana rozdzielczość wynosi 40 mV. Podobnie, 32-bitowe i 64-bitowe przetworniki oferują jeszcze wyższą precyzję, która w tym kontekście jest zbyteczna. Wybierając zbyt wysoką rozdzielczość, można napotkać problemy związane z przetwarzaniem danych i ich interpretacją, co w praktyce może obniżyć efektywność systemu. Często użytkownicy mylnie zakładają, że wyższa rozdzielczość jest zawsze lepsza, co prowadzi do nieefektywnego wykorzystania zasobów. Dobór odpowiedniego przetwornika A/C powinien być dostosowany do specyficznych wymagań aplikacji, biorąc pod uwagę zarówno wymagania dotyczące rozdzielczości, jak i szybkości pomiaru. W rzeczywistości, dla wielu zastosowań przemysłowych, 8-bitowy przetwornik A/C zapewnia wystarczającą dokładność, co potwierdzają standardy branżowe oraz praktyki inżynieryjne.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Który z poniższych czujników jest elementem serwomechanizmu sterującego ruchem ramienia robota?

A. Przepływomierz powietrza
B. Mostek tensometryczny
C. Enkoder
D. Pirometr
Enkoder jest elementem pomiarowym, który odgrywa kluczową rolę w systemach serwomechanizmów, szczególnie w aplikacjach związanych z robotyką. Jego główną funkcją jest precyzyjne określanie pozycji oraz prędkości obrotowej silnika, co jest niezbędne do dokładnego sterowania ruchem ramion robota. Enkodery mogą być optyczne, magnetyczne lub mechaniczne, każdy rodzaj ma swoje zastosowania w zależności od wymagań projektu. W praktyce, enkoder zastosowany w ramieniu robota pozwala na precyzyjne pozycjonowanie, co jest szczególnie istotne w zadaniach wymagających wysokiej dokładności, takich jak montaż komponentów elektronicznych czy operacje chirurgiczne. W kontekście standardów branżowych, stosowanie enkoderów w robotach przemysłowych jest zgodne z normami ISO 10218, które określają wymagania dotyczące bezpieczeństwa robotów. To sprawia, że enkodery są nie tylko niezawodne, ale także kluczowe dla zapewnienia jakości i bezpieczeństwa w automatyzacji procesów przemysłowych.

Pytanie 37

Ile oleju, zgodnie z przedstawionymi w tabeli wskazaniami producenta, należy przygotować do całkowitej wymiany zużytego oleju w pompie IF1 400?

Typ pompyIlość oleju w silniku
l
Ilość oleju w komorze olejowej
l
Całkowita ilość
oleju w pompie
l
IF1 100; 150; 2000,40-0,40
IF1 50; 75; 100; 150; 2000,40-0,40
IF2 3000,900,121,02
IF1 300; 4001,700,121,82
IF2 4001,700,121,82
IF1 5501,700,121,82
IF2 5501,700,121,82
IF1 7502,000,122,12
IF1 10002,000,122,12
IF1 1500; 20005,000,185,18

A. 1,70 l
B. 0,90 l
C. 1,82 l
D. 0,40 l
Odpowiedź 1,82 l jest prawidłowa, ponieważ dokładnie odpowiada całkowitej ilości oleju potrzebnej do wymiany w pompie IF1 400. Aby obliczyć tę wartość, należy zsumować ilości oleju wymagane w silniku oraz w komorze olejowej, które są przedstawione w tabeli producenta. W praktyce, zapewnienie odpowiedniej ilości oleju jest kluczowe dla prawidłowego funkcjonowania urządzenia, gdyż niedobór oleju może prowadzić do przegrzewania się pompy i jej szybszego zużycia. W branży inżynieryjnej i mechanicznej, przestrzeganie zaleceń producentów dotyczących wymiany oleju i jego ilości jest uznawane za standardową praktykę, która wpływa na niezawodność oraz efektywność działania maszyn. Dobór właściwego oleju i jego ilości ma również znaczenie dla utrzymania optymalnych parametrów pracy, co w efekcie przekłada się na dłuższą żywotność urządzenia oraz oszczędności w kosztach eksploatacji.

Pytanie 38

Jaki aparat elektryczny jest wykorzystywany do ochrony silnika indukcyjnego przed przeciążeniem?

A. Przekaźnik termobimetalowy
B. Wyłącznik nadmiarowy
C. Wyłącznik różnicowoprądowy
D. Stycznik elektromagnetyczny
Wyłącznik nadmiarowy, stycznik elektromagnetyczny oraz wyłącznik różnicowoprądowy to urządzenia, które pełnią różne funkcje w systemach elektrycznych, ale nie są odpowiednie do zabezpieczenia silnika indukcyjnego przed przeciążeniem. Wyłącznik nadmiarowy, mimo że jest używany do ochrony przed przeciążeniem, działa na zasadzie automatycznego wyłączania obwodu przy przekroczeniu określonego prądu. Jednak nie jest on dostosowany do specyficznych warunków pracy silników indukcyjnych, gdzie ważne jest szybkie reagowanie na zmiany obciążenia. Stycznik elektromagnetyczny, z drugiej strony, służy do załączania i wyłączania obwodów elektrycznych, a jego zadanie polega na kontrolowaniu przepływu energii elektrycznej, a nie na monitorowaniu stanu przeciążenia. Wyłącznik różnicowoprądowy jest przeznaczony głównie do ochrony ludzi przed porażeniem prądem elektrycznym, a jego działanie opiera się na wykrywaniu różnicy prądu między przewodami zasilającymi, co nie ma związku z przeciążeniem silnika. Wybór niewłaściwego urządzenia do ochrony silnika może prowadzić do uszkodzenia sprzętu, a także do niebezpieczeństwa dla użytkowników. Dlatego ważne jest, aby w odpowiedni sposób dobierać komponenty zabezpieczające zgodnie z ich funkcjami oraz zaleceniami producentów i normami branżowymi.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.