Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik teleinformatyk
  • Kwalifikacja: INF.07 - Montaż i konfiguracja lokalnych sieci komputerowych oraz administrowanie systemami operacyjnymi
  • Data rozpoczęcia: 8 czerwca 2025 23:17
  • Data zakończenia: 8 czerwca 2025 23:30

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaką funkcję punkt dostępu wykorzystuje do zabezpieczenia sieci bezprzewodowej, aby jedynie urządzenia z określonymi adresami fizycznymi mogły się z nią połączyć?

A. Uwierzytelnianie
B. Filtrowanie adresów MAC
C. Radius (Remote Authentication Dial In User Service)
D. Nadanie SSID
Filtrowanie adresów MAC to technika zabezpieczania sieci bezprzewodowej, która polega na zezwalaniu na dostęp tylko dla urządzeń o określonych adresach MAC, czyli fizycznych adresach sprzętowych. W praktyce, administrator sieci tworzy listę dozwolonych adresów MAC, co pozwala na kontrolowanie, które urządzenia mogą łączyć się z siecią. To podejście jest często stosowane w małych i średnich przedsiębiorstwach, gdzie istnieje potrzeba szybkiego działania i uproszczonego zarządzania dostępem. Należy jednak pamiętać, że mimo iż filtrowanie MAC zwiększa bezpieczeństwo, nie jest to metoda absolutna. Złośliwi użytkownicy mogą skanować sieć i kopiować adresy MAC, co czyni tę metodę podatną na ataki. Dobrym rozwiązaniem jest stosowanie filtrowania MAC w połączeniu z innymi mechanizmami zabezpieczeń, takimi jak WPA3 (Wi-Fi Protected Access 3) lub uwierzytelnianie 802.1X, co znacznie podnosi poziom ochrony sieci.

Pytanie 2

Jakie urządzenie pozwala komputerom na bezprzewodowe łączenie się z przewodową siecią komputerową?

A. koncentrator
B. modem
C. regenerator
D. punkt dostępu
Punkt dostępu, czyli po angielsku access point, to urządzenie, które pozwala komputerom i innym sprzętom łączyć się z bezprzewodową siecią lokalną, znaną jako WLAN. Można to porównać do mostu, który łączy sieć przewodową z urządzeniami bezprzewodowymi. Dzięki niemu można korzystać z Internetu i lokalnych zasobów. Wiesz, często spotykamy punkty dostępu w biurach, szkołach czy w domach, bo pomagają w rozszerzaniu zasięgu sieci. W praktyce, kiedy mamy dużo urządzeń, jak smartfony, laptopy czy tablety, to punkty dostępu są naprawdę niezbędne, bo umożliwiają dostęp bez kabli. Używając dobrze zaprojektowanej sieci Wi-Fi z punktami dostępu zgodnymi z normą IEEE 802.11, możemy cieszyć się świetną wydajnością i bezpieczeństwem danych.

Pytanie 3

Aby aktywować FTP na systemie Windows, konieczne jest zainstalowanie roli

A. serwera sieci Web (IIS)
B. serwera DNS
C. serwera DHCP
D. serwera Plików
Wybór innych ról, takich jak serwer DHCP, serwer Plików czy serwer DNS, jest błędny, ponieważ każda z tych ról pełni zupełnie inną funkcję w infrastrukturze sieciowej. Serwer DHCP (Dynamic Host Configuration Protocol) odpowiada za przydzielanie adresów IP urządzeniom w sieci, co jest kluczowe dla komunikacji, ale nie ma nic wspólnego z transferem plików. Serwer Plików może umożliwiać przechowywanie i udostępnianie plików w sieci, jednak nie obsługuje on bezpośrednio protokołu FTP, co jest istotne, gdyż FTP wymaga dedykowanego serwera do zarządzania połączeniami i transferem. Serwer DNS (Domain Name System) jest odpowiedzialny za tłumaczenie nazw domen na adresy IP, co jest niezbędne do lokalizacji zasobów w internecie, ale również nie ma związku z protokołem FTP. Wybierając nieodpowiednie odpowiedzi, można wpaść w pułapkę myślową, gdzie mylimy różne usługi i ich funkcje. Kluczowym aspektem jest zrozumienie, że FTP wymaga specyficznej infrastruktury, która została zaprojektowana do obsługi tego protokołu, a to oferuje jedynie rola serwera sieci Web (IIS), co czyni ją niezbędną w kontekście uruchamiania usług FTP.

Pytanie 4

W którym rejestrze systemu Windows znajdziemy informacje o błędzie spowodowanym brakiem synchronizacji czasu systemowego z serwerem NTP?

A. Ustawienia.
B. System.
C. Zabezpieczenia.
D. Aplikacja.
Wybór dziennika systemowego jako źródła informacji o błędach synchronizacji czasu z serwerem NTP jest prawidłowy, ponieważ dziennik systemowy w systemie Windows rejestruje wszystkie zdarzenia związane z działaniem systemu operacyjnego, w tym problemy z synchronizacją czasu. Synchronizacja czasu jest kluczowym procesem, który zapewnia, że system operacyjny działa w zgodzie z czasem serwera NTP, co jest istotne dla wielu aplikacji i operacji sieciowych. Problemy z synchronizacją mogą prowadzić do błędów w logowaniu, problemów z certyfikatami SSL oraz niestabilności w aplikacjach zależnych od dokładnego czasu. Aby zdiagnozować problem, administratorzy mogą uruchomić Podgląd zdarzeń (Event Viewer) i przeszukać dziennik systemowy pod kątem wpisów związanych z NTP, takich jak błędy „Time-Service” lub „Sync”. Dobrą praktyką jest również regularne monitorowanie dzienników systemowych, co pozwala na wczesne wykrywanie i rozwiązywanie potencjalnych problemów związanych z synchronizacją czasu.

Pytanie 5

Atak DDoS (ang. Distributed Denial of Service) na serwer spowoduje

A. zbieranie danych o atakowanej infrastrukturze sieciowej.
B. przeciążenie aplikacji dostarczającej określone informacje.
C. zatrzymywanie pakietów danych w sieci.
D. zmianę pakietów transmisyjnych w sieci.
Atak DDoS, czyli Zdalne Odrzucenie Usługi, polega na jednoczesnym obciążeniu serwera dużą ilością zapytań przesyłanych z różnych źródeł, co prowadzi do przeciążenia aplikacji serwującej określone dane. Taki atak ma na celu uniemożliwienie dostępności usługi dla legalnych użytkowników. Przykładem może być atak na serwis internetowy, gdzie atakujący wykorzystują sieć botnetów do wysyłania ogromnej liczby żądań HTTP. W rezultacie aplikacja serwisowa nie jest w stanie przetworzyć wszystkich zapytań, co prowadzi do spowolnienia lub całkowitym zablokowaniem dostępu. W praktyce organizacje powinny implementować mechanizmy ochrony przed atakami DDoS, takie jak systemy zapobiegania włamaniom (IPS), a także skalowalne architektury chmurowe, które mogą automatycznie dostosowywać zasoby w odpowiedzi na wzrost ruchu. Przestrzeganie dobrych praktyk, takich jak regularne testowanie odporności aplikacji oraz monitorowanie ruchu sieciowego, jest kluczowe w zapobieganiu skutkom ataków DDoS.

Pytanie 6

Zestaw zasad do filtrowania ruchu w routerach to

A. NNTP (Network News Transfer Protocol)
B. MMC (Microsoft Management Console)
C. ACPI (Advanced Configuration and Power Interface)
D. ACL (Access Control List)
Dobra robota z odpowiedzią na ACL! To jest naprawdę trafne, bo ACL, czyli Access Control List, to zbiór reguł, które naprawdę mają duże znaczenie w sieciach. Dzięki nim można decydować, co można przesyłać do i z urządzeń, takich jak ruter. To działa na poziomie pakietów, co daje adminom możliwość kontrolowania ruchu sieciowego za pomocą adresów IP, protokołów i portów. Fajnym przykładem, jak można to wykorzystać, jest ograniczenie dostępu do niektórych zasobów czy też zezwolenie tylko zaufanym adresom IP. To naprawdę pomaga w zwiększeniu bezpieczeństwa sieci. W branży często mówi się o tym, żeby stosować ACL jako część większej strategii bezpieczeństwa, obok takich rzeczy jak firewalle czy systemy wykrywania włamań. Nie zapomnij też, że warto regularnie przeglądać i aktualizować te reguły, bo środowisko sieciowe ciągle się zmienia, a dostęp do ważnych zasobów trzeba minimalizować tylko do tych, którzy naprawdę go potrzebują.

Pytanie 7

Który standard technologii bezprzewodowej pozwala na osiągnięcie przepustowości większej niż 54 Mbps?

A. IEEE 802.11a
B. IEEE 802.11g
C. IEEE 802.11b
D. IEEE 802.11n
Standard IEEE 802.11n, wprowadzony w 2009 roku, pozwala na osiąganie znacznie wyższych prędkości transmisji danych, przekraczających 54 Mbps. Główne cechy tego standardu to zastosowanie technologii MIMO (Multiple Input Multiple Output), która umożliwia równoległe przesyłanie danych przez wiele anten. Dzięki temu, IEEE 802.11n może osiągać przepustowości sięgające 600 Mbps w idealnych warunkach. W praktyce standard ten jest szeroko stosowany w domowych sieciach Wi-Fi, biurach oraz miejscach publicznych, gdzie zróżnicowane urządzenia wymagają stabilnego i szybkiego dostępu do Internetu. Dodatkowo, 802.11n obsługuje szerokość kanału do 40 MHz, co również zwiększa wydajność sieci. Implementacja tego standardu w urządzeniach, takich jak routery, karty sieciowe oraz punkty dostępowe, zgodnie z najlepszymi praktykami branżowymi, zapewnia nie tylko wyższą prędkość, ale również lepszą stabilność połączenia, co jest kluczowe w dobie rosnącej liczby urządzeń mobilnych korzystających z sieci bezprzewodowych.

Pytanie 8

Jakie jest adres rozgłoszeniowy (broadcast) dla hosta z adresem IP 192.168.35.202 oraz 26-bitową maską?

A. 192.168.35.0
B. 192.168.35.192
C. 192.168.35.63
D. 192.168.35.255
Adres rozgłoszeniowy (broadcast) dla danej sieci to adres, który umożliwia wysyłanie pakietów do wszystkich urządzeń w tej sieci. Aby obliczyć adres rozgłoszeniowy, należy znać adres IP hosta oraz maskę podsieci. W przypadku adresu IP 192.168.35.202 z 26-bitową maską (255.255.255.192), maska ta dzieli adres na część sieciową i część hosta. W tym przypadku, maska 26-bitowa oznacza, że ostatnie 6 bitów jest przeznaczone dla hostów. Mamy zakres adresów od 192.168.35.192 do 192.168.35.255. Adres rozgłoszeniowy to ostatni adres w danym zakresie, co w tym przypadku wynosi 192.168.35.255. Przydatność tego adresu jest szczególnie istotna w sieciach lokalnych, gdzie urządzenia mogą komunikować się ze sobą w sposób grupowy, co jest zrealizowane właśnie poprzez użycie adresu rozgłoszeniowego. Przykładem zastosowania adresu rozgłoszeniowego może być wysyłanie aktualizacji oprogramowania do wszystkich komputerów w sieci jednocześnie, co znacznie ułatwia zarządzanie i oszczędza czas.

Pytanie 9

Który element zabezpieczeń znajduje się w pakietach Internet Security (IS), ale nie występuje w programach antywirusowych (AV)?

A. Aktualizacje baz wirusów
B. Zapora sieciowa
C. Skaner wirusów
D. Monitor wirusów
Wybór innych opcji, jak skaner antywirusowy czy aktualizacja baz wirusów, to trochę chybiony pomysł, jeśli chodzi o różnice między programami antywirusowymi a pakietami Internet Security. Skaner antywirusowy to taki standard, który znajdziesz w każdym oprogramowaniu zabezpieczającym, bo jego główna rola to wykrywanie i usuwanie wirusów. Niezależnie od tego, czy to programy antywirusowe, czy pakiety Internet Security, skanery są zwyczajnie potrzebne. Monitor antywirusowy też nie jest odrębnym elementem, a jedynie funkcją skanera, pozwalającą na ciągłe obserwowanie systemu. Co do aktualizacji baz wirusów, to jest to ważne dla obu typów oprogramowania, bo przecież muszą być na bieżąco z nowymi zagrożeniami. Tak więc, mylenie tych funkcji jako czegoś unikalnego dla pakietów Internet Security powoduje nieporozumienia, co do tego, jak różne zabezpieczenia naprawdę działają.

Pytanie 10

Które z zestawień: urządzenie – realizowana funkcja jest niepoprawne?

A. Przełącznik – segmentacja sieci na VLAN-y
B. Modem – łączenie sieci lokalnej z Internetem
C. Access Point – bezprzewodowe łączenie komputerów z siecią lokalną
D. Ruter – łączenie komputerów w tej samej sieci
Odpowiedź 'Ruter – połączenie komputerów w tej samej sieci' jest błędna, ponieważ ruter nie służy do bezpośredniego łączenia komputerów w tej samej sieci lokalnej, lecz do kierowania ruchem pomiędzy różnymi sieciami. Ruter działa na warstwie trzeciej modelu OSI (warstwa sieci), a jego główną funkcją jest przekazywanie pakietów danych pomiędzy sieciami, np. z lokalnej sieci komputerowej do Internetu. Przykładowo, w typowej sieci domowej ruter łączy urządzenia lokalne (jak komputery, smartfony) z dostawcą usług internetowych (ISP). Działanie rutera można zobrazować na przykładzie, kiedy użytkownik chce przeglądać strony internetowe – ruter przekazuje żądania z lokalnej sieci do Internetu i odwrotnie, zarządzając jednocześnie trasami danych, co zapewnia optymalizację ich przepływu. Dobrą praktyką jest również skonfigurowanie rutera w taki sposób, aby zapewniał on odpowiednie zabezpieczenia, takie jak zapora ogniowa (firewall) czy system detekcji intruzów (IDS).

Pytanie 11

Planowana sieć przypisana jest do klasy C. Sieć została podzielona na 4 podsieci, w których każda z nich obsługuje 62 urządzenia. Która z wymienionych masek będzie odpowiednia do realizacji tego zadania?

A. 255.255.255.224
B. 255.255.255.128
C. 255.255.255.192
D. 255.255.255.240
Maska 255.255.255.192 jest odpowiednia do podziału sieci klasy C na cztery podsieci z co najmniej 62 urządzeniami w każdej. Maska ta, zapisana w postaci CIDR, to /26, co oznacza, że 26 bitów jest zarezerwowanych na adresy sieciowe, a pozostałe 6 bitów na adresy hostów. Obliczając liczbę dostępnych adresów hostów w poszczególnych podsieciach, stosujemy wzór 2^(32 - maska) - 2, co w tym przypadku daje 2^(32 - 26) - 2 = 62. Oznacza to, że każda z czterech podsieci może obsłużyć dokładnie 62 urządzenia, co jest zgodne z wymaganiami. W praktyce, podział na podsieci pozwala na lepsze zarządzanie ruchem sieciowym, zwiększenie bezpieczeństwa poprzez izolację podsieci oraz umożliwia efektywne wykorzystanie dostępnego adresowania IP. Standardy, takie jak RFC 950, określają zasady podziału sieci i przypisania adresów, co jest kluczowe w projektowaniu nowoczesnych architektur sieciowych.

Pytanie 12

Moduł SFP, który jest wymienny i zgodny z normami, odgrywa jaką rolę w urządzeniach sieciowych?

A. konwertera mediów
B. zasilania rezerwowego
C. interfejsu do diagnostyki
D. dodatkowej pamięci operacyjnej
Moduł SFP nie ma nic wspólnego z zasilaniem awaryjnym. Ta funkcja należy do systemów UPS (Uninterruptible Power Supply), które ratują sytuację, gdy prąd znika. Co do pamięci RAM, to też niedobrze myślisz. SFP nie służy do zwiększania pamięci w urządzeniach, jego zadanie to tylko konwersja sygnałów. Ludzie czasami mylą SFP z czymś, co ma podnieść wydajność pamięci, a to jest zupełnie inne zagadnienie. Interfejs diagnostyczny też nie wchodzi w grę dla modułu SFP. One nie są zaprojektowane jako narzędzia do analizy, tylko do fizycznego łączenia w sieci. Częstym błędem jest mylenie funkcji fizycznych komponentów z ich rolą w zarządzaniu i diagnostyce. Taki sposób myślenia może prowadzić do złego zarządzania siecią i wyboru złych komponentów, co później źle wpływa na wydajność i niezawodność całego systemu.

Pytanie 13

Jakie narzędzie należy zastosować do zakończenia kabli UTP w module keystone z wkładkami typu 110?

A. Wkrętaka płaskiego
B. Narzędzia uderzeniowego
C. Wkrętaka krzyżakowego
D. Zaciskarki do wtyków RJ45
Narzędzie uderzeniowe jest kluczowym elementem w procesie zarabiania końcówek kabla UTP w modułach keystone ze stykami typu 110. Działa ono na zasadzie mechanicznego uderzenia, które umożliwia skuteczne i trwałe połączenie żył kabla z odpowiednimi stykami w module. Użycie narzędzia uderzeniowego zapewnia, że przewody są dokładnie wciśnięte w styki, co zapobiega problemom z przesyłem sygnału oraz minimalizuje straty. W praktyce, podczas zarabiania końcówek, ważne jest, aby żyły kabla były odpowiednio uporządkowane zgodnie z kolorami standardu T568A lub T568B, co jest kluczowe dla zachowania spójności i jakości połączeń sieciowych. Standardy te są uznawane w branży telekomunikacyjnej jako najlepsze praktyki. Narzędzie to jest niezbędne, ponieważ inne narzędzia, takie jak wkrętaki, nie są zaprojektowane do tego typu operacji i mogą prowadzić do uszkodzenia styków lub niewłaściwego połączenia.

Pytanie 14

W jakiej usłudze serwera możliwe jest ustawienie parametru TTL?

A. DHCP
B. HTTP
C. FTP
D. DNS
Wybór odpowiedzi związanej z DHCP, FTP lub HTTP wskazuje na pewne nieporozumienia dotyczące funkcji i zastosowań tych protokołów. DHCP (Dynamic Host Configuration Protocol) jest używany do automatycznego przydzielania adresów IP urządzeniom w sieci lokalnej. Chociaż DHCP odgrywa kluczową rolę w konfiguracji sieci, nie ma on związku z TTL, który dotyczy głównie przechowywania informacji o adresach w systemie DNS. FTP (File Transfer Protocol) jest protokołem służącym do przesyłania plików między komputerami w sieci, a jego mechanizm działania nie obejmuje żadnego zarządzania czasem przechowywania danych, co sprawia, że nie jest on właściwym kontekstem do analizy TTL. Z kolei HTTP (Hypertext Transfer Protocol) to protokół odpowiedzialny za przesyłanie danych w Internecie, szczególnie dla stron WWW i zasobów sieciowych, ale również nie dotyczy bezpośrednio TTL. Wybierając jedną z tych opcji, można łatwo wpaść w błąd, myśląc, że parametry związane z czasem przechowywania danych są dostępne w każdym z protokołów. Każdy z wymienionych protokołów ma swoje konkretne funkcje i zastosowania, które nie obejmują zarządzania pamięcią podręczną w kontekście DNS. Zrozumienie, które protokoły są odpowiedzialne za jakie aspekty komunikacji sieciowej, jest kluczowe dla poprawnego zarządzania infrastrukturą IT oraz dla unikania typowych błędów w konfiguracji usług sieciowych.

Pytanie 15

Czy okablowanie strukturalne można zakwalifikować jako część infrastruktury?

A. dalekosiężnej
B. terenowej
C. pasywnej
D. czynnej
Wybór infrastruktury terytorialnej to chyba nieporozumienie, bo to nie do końca pasuje do roli okablowania strukturalnego. Ta terytorialna infrastruktura dotyczy głównie geograficznego zasięgu sieci, a nie jej wnętrza. A jak mówimy o infrastrukturze aktywnej, to mamy na myśli urządzenia jak switche czy routery, które przetwarzają i zarządzają danymi – więc to zupełnie inny temat niż pasywne okablowanie. Okablowanie strukturalne, jako część infrastruktury pasywnej, nie jest w to zaangażowane, tylko tworzy ramy dla tych aktywnych elementów. Jakby wybierać infrastrukturę dalekosiężną, to można by pomyśleć, że okablowanie strukturalne obsługuje wszystko na dużych odległościach, a to tak nie działa, bo zależy to od tych aktywnych technologii, które mogą korzystać z pasywnych połączeń. Najważniejsze jest zrozumienie, że pasywne elementy okablowania są podstawą całej sieci, a ich dobra instalacja i zarządzanie są kluczowe, żeby system działał niezawodnie i efektywnie.

Pytanie 16

Która z warstw modelu ISO/OSI określa protokół IP (Internet Protocol)?

A. Warstwa danych łącza
B. Warstwa fizyczna
C. Warstwa sieci
D. Warstwa transportowa
Warstwa sieci w modelu ISO/OSI jest kluczowa dla działania Internetu, ponieważ to tutaj definiowane są protokoły odpowiedzialne za adresowanie oraz przesyłanie danych pomiędzy różnymi sieciami. Protokół IP (Internet Protocol) działa na tej warstwie i ma za zadanie dostarczać dane pomiędzy hostami w sieci, niezależnie od fizycznych połączeń. Przykładem praktycznym zastosowania IP jest routing, gdzie routery wykorzystują adresy IP do określenia najlepszej trasy dla przesyłanych pakietów. Standardy takie jak IPv4 i IPv6, będące wersjami protokołu IP, są fundamentalne w zapewnieniu komunikacji w sieci. Zrozumienie warstwy sieci i działania protokołu IP jest kluczowe dla specjalistów zajmujących się sieciami, ponieważ umożliwia projektowanie i zarządzanie złożonymi architekturami sieciowymi, zapewniającą efektywną wymianę danych.

Pytanie 17

Adres IPv6 pętli zwrotnej to adres

A. ::1
B. FE80::
C. FC80::
D. ::
Wybór innych adresów pokazuje, że coś tu nie zrozumiałeś, jeśli chodzi o IPv6. Adres zerowy, czyli ::, dostaje się w momencie, gdy nie ma konkretnego adresu, więc użycie go jako pętli zwrotnej to duża pomyłka. Przez to nie wiadomo, do jakiego interfejsu to prowadzi. W konfiguracji sieci może być z tym sporo kłopotów. Z kolei adresy FC80:: i FE80:: to lokalne adresy, które są używane w lokalnej sieci, ale nie są przeznaczone do pętli zwrotnej. Wiele osób się w tym myli, co potem rodzi błędne ustawienia i problemy z diagnostyką. Adres pętli zwrotnej jest zupełnie inny, bo chodzi o komunikację wewnętrzną w urządzeniu. Musisz mieć na uwadze, że znajomość różnic między tymi adresami jest kluczowa, kiedy projektujesz coś związanego z siecią. Niewłaściwy adres może naprawdę namieszać w komunikacji i dostępności usług. Więc warto być czujnym na te detale!

Pytanie 18

Technologia oparta na architekturze klient-serwer, która umożliwia połączenie odległych komputerów w sieci poprzez szyfrowany tunel, nazywa się

A. VLAN
B. WLAN
C. WAN
D. VPN
Technologia VPN (Virtual Private Network) umożliwia bezpieczne połączenie zdalnych komputerów w sieci przez szyfrowany tunel. Dzięki temu użytkownicy mogą przesyłać dane w sposób chroniony przed podsłuchiwaniem i dostępem nieautoryzowanych osób. VPN jest powszechnie stosowany w firmach, które umożliwiają pracownikom zdalny dostęp do zasobów sieciowych, zapewniając jednocześnie ochronę danych. Przykładem może być pracownik, który korzystając z publicznej sieci Wi-Fi w kawiarni, łączy się z siecią firmową przez VPN, co uniemożliwia hakerom przechwycenie jego danych. Standardy bezpieczeństwa, takie jak IPsec (Internet Protocol Security) oraz SSL/TLS (Secure Sockets Layer/Transport Layer Security), są często wykorzystywane w implementacjach VPN, co czyni tę technologię zgodną z najlepszymi praktykami branżowymi.

Pytanie 19

Ustanawianie zaszyfrowanych połączeń pomiędzy hostami w publicznej sieci Internet, wykorzystywane w sieciach VPN (Virtual Private Network), to

A. tunelowanie
B. trasowanie
C. mostkowanie
D. mapowanie
Trasowanie odnosi się do procesu określania optymalnej trasy dla danych przesyłanych przez sieć, jednak nie ma związku z tworzeniem zaszyfrowanych połączeń. Trasowanie koncentruje się na kierowaniu pakietów danych do ich docelowych lokalizacji, co nie zapewnia bezpieczeństwa przesyłanych informacji. Mapowanie, z drugiej strony, polega na przypisywaniu zasobów w systemach komputerowych lub sieciach, co również nie ma wpływu na zabezpieczenie komunikacji. Mostkowanie natomiast łączy różne segmenty sieci lokalnej, ale nie szyfruje danych, co nie spełnia wymogów związanych z bezpieczeństwem w publicznych sieciach. Typowym błędem myślowym w tym kontekście jest mylenie terminów związanych z funkcjonalnością sieci, co może prowadzić do fałszywego przekonania, że metody te oferują podobne korzyści w zakresie ochrony danych. Kluczowe w rozwiązaniach zabezpieczających, takich jak VPN, jest zrozumienie, że tunelowanie bezpośrednio odpowiada za zapewnienie bezpiecznego, szyfrowanego połączenia, co jest podstawą dla bezpieczeństwa w sieciach publicznych.

Pytanie 20

Administrator zamierza zorganizować adresację IP w przedsiębiorstwie. Dysponuje pulą adresów 172.16.0.0/16, którą powinien podzielić na 10 podsieci z równą liczbą hostów. Jaką maskę powinien zastosować?

A. 255.255.224.0
B. 255.255.240.0
C. 255.255.192.0
D. 255.255.128.0
Odpowiedź 255.255.240.0 jest poprawna, ponieważ ta maska podsieci (znana również jako /20) umożliwia podział puli adresów 172.16.0.0/16 na 16 podsieci, z których każda ma 4096 adresów (w tym 4094 adresy hostów). Aby uzyskać 10 równych podsieci, administrator powinien wybrać maskę, która zapewni wystarczającą ilość adresów. Maska 255.255.240.0 dla podsieci /20 jest odpowiednia, ponieważ pozwala na stworzenie 16 podsieci (2^4), gdzie każda podsieć ma 4094 hosty (2^(32-20)-2). Takie rozwiązanie jest zgodne z najlepszymi praktykami w zarządzaniu adresacją IP, ponieważ zapewnia elastyczność w przyszłych rozbudowach sieci. Umożliwia to także efektywne wykorzystanie dostępnych adresów IP oraz ułatwia zarządzanie ruchem sieciowym.

Pytanie 21

Protokół, który umożliwia synchronizację zegarów stacji roboczych w sieci z serwerem NCP, to

A. Internet Group Management Protocol
B. Simple Mail Transfer Protocol
C. Internet Control Message Protocol
D. Simple Network Time Protocol
Simple Network Time Protocol (SNTP) jest protokołem używanym do synchronizacji zegarów komputerów w sieci. Jego głównym celem jest zapewnienie dokładności czasu na urządzeniach klienckich, które komunikują się z serwerami NTP (Network Time Protocol). Protokół ten działa na zasadzie wymiany pakietów z informacjami o czasie, co pozwala na korekcję zegarów roboczych. Dzięki SNTP, organizacje mogą zapewnić spójność czasową w swojej infrastrukturze IT, co jest kluczowe w wielu aplikacjach, takich jak logowanie zdarzeń, transakcje finansowe oraz synchronizacja danych między serwerami. W praktyce, wdrożenie SNTP w sieci lokalnej lub w chmurze jest stosunkowo proste i może znacznie poprawić efektywność operacyjną. Przykładem zastosowania SNTP jest synchronizacja czasu w systemach rozproszonych, gdzie zgodność czasowa jest istotna dla poprawności działania aplikacji. Standardy, takie jak RFC 5905, określają szczegóły implementacji i działania protokołu, co czyni go niezawodnym narzędziem w zarządzaniu czasem w sieci.

Pytanie 22

Kabel skrętkowy, w którym każda para przewodów ma oddzielne ekranowanie folią, a wszystkie przewody są umieszczone w ekranie z folii, jest oznaczany symbolem

A. F/UTP
B. F/FTP
C. S/FTP
D. S/UTP
Odpowiedź F/FTP odnosi się do kabla, który składa się z pojedynczych par przewodów, gdzie każda para jest chroniona przez osobny ekran foliowy, a cały kabel jest dodatkowo osłonięty ekranem foliowym. Tego typu konstrukcja pozwala na znaczne zmniejszenie zakłóceń elektromagnetycznych, co jest kluczowe w aplikacjach wymagających wysokiej wydajności oraz niezawodności przesyłu sygnałów, takich jak sieci komputerowe czy systemy telekomunikacyjne. W praktyce, kable F/FTP są często stosowane w środowiskach biurowych oraz w instalacjach, gdzie istnieje ryzyko występowania zakłóceń od innych urządzeń elektronicznych. Zgodnie ze standardem ISO/IEC 11801, który definiuje wymagania dotyczące kabli dla różnych aplikacji sieciowych, użycie ekranowanych kabli jest zalecane w przypadku instalacji w trudnych warunkach elektromagnetycznych. Przykładami zastosowania kabli F/FTP mogą być podłączenia w sieciach lokalnych (LAN), gdzie stabilność i jakość przesyłu danych jest priorytetem.

Pytanie 23

Który ze standardów opisuje strukturę fizyczną oraz parametry kabli światłowodowych używanych w sieciach komputerowych?

A. IEEE 802.3af
B. IEEE 802.11
C. RFC 1918
D. ISO/IEC 11801
ISO/IEC 11801 to fundamentalny, międzynarodowy standard, który precyzyjnie określa wymagania dotyczące okablowania strukturalnego w budynkach i kampusach, w tym parametry techniczne oraz sposób budowy kabli światłowodowych. W praktyce oznacza to, że instalując sieć – czy to w biurze, czy w szkole, czy nawet w nowoczesnej hali produkcyjnej – trzeba sięgać po wytyczne tego standardu, by zapewnić odpowiednią jakość i kompatybilność komponentów. ISO/IEC 11801 definiuje klasy transmisji, rodzaje włókien, minimalne parametry tłumienia i wymagania dotyczące złącz czy sposobu prowadzenia przewodów światłowodowych. To bardzo przydatne, bo daje gwarancję, że sieć będzie działać niezawodnie i zgodnie z oczekiwaniami – nie tylko dziś, ale też za kilka lat, kiedy pojawi się potrzeba rozbudowy lub modernizacji. Moim zdaniem, w codziennej pracy technika sieciowego to właśnie do tego standardu sięga się najczęściej, zwłaszcza przy projektowaniu czy odbiorach nowych instalacji światłowodowych. Przy okazji warto wspomnieć, że ISO/IEC 11801 obejmuje również okablowanie miedziane, ale dla światłowodów jest wręcz nieocenionym źródłem wiedzy o dobrych praktykach i wymaganiach branżowych.

Pytanie 24

W Active Directory, zbiór składający się z jednej lub wielu domen, które dzielą wspólny schemat oraz globalny katalog, określa się mianem

A. lasem
B. gwiazdą
C. liściem
D. siatką
Odpowiedź 'lasem' jest poprawna, ponieważ w architekturze Active Directory (AD) termin 'las' odnosi się do zbioru jednej lub większej liczby domen, które mają wspólny schemat (Schema) oraz globalny wykaz (Global Catalog). Las jest kluczowym elementem organizacji wewnętrznej Active Directory, który pozwala na zarządzanie grupami domen i ich zasobami w skoordynowany sposób. W praktyce, las umożliwia administratorom IT zarządzanie wieloma domenami w ramach jednej struktury, co jest szczególnie istotne w dużych organizacjach z rozproszoną infrastrukturą IT. Dla przykładu, jeśli firma ma różne oddziały w różnych lokalizacjach, może stworzyć las, który obejmie wszystkie te oddziały jako osobne domeny, ale z możliwością współdzielenia zasobów i informacji. Dzięki temu organizacja może zachować elastyczność i łatwość w zarządzaniu, a także zapewnić spójność w politykach bezpieczeństwa i dostępu. Dodatkowo, w kontekście dobrych praktyk, zarządzanie lasami w AD wspiera zasady segregacji obowiązków oraz ułatwia nadzorowanie polityk grupowych.

Pytanie 25

Termin hypervisor odnosi się do

A. wbudowanego konta administratora w wirtualnym systemie
B. głównego katalogu plików w systemie Linux
C. oprogramowania kluczowego do zarządzania procesami wirtualizacji
D. wbudowanego konta administratora w systemie Linux
Hypervisor, znany również jako monitor wirtualizacji, to kluczowy element technologii wirtualizacji, który pozwala na uruchamianie wielu systemów operacyjnych na jednym fizycznym komputerze. Jego główną rolą jest zarządzanie i alokacja zasobów sprzętowych, takich jak procesory, pamięć RAM, a także przestrzeń dyskowa, pomiędzy różnymi maszynami wirtualnymi. Przykłady zastosowania hypervisorów obejmują centra danych, gdzie umożliwiają one efektywne wykorzystanie sprzętu, co prowadzi do oszczędności kosztów oraz zwiększenia elastyczności operacyjnej. Hypervisory mogą działać w trybie typu 1 (bare-metal), gdzie instalowane są bezpośrednio na sprzęcie, lub w trybie typu 2 (hosted), gdzie działają jako aplikacje na istniejącym systemie operacyjnym. W kontekście dobrych praktyk, stosowanie hypervisorów jest zgodne z zasadami efektywności energetycznej i optymalizacji zasobów w środowiskach IT.

Pytanie 26

Co oznacza skrót WAN?

A. rozległą sieć komputerową
B. lokalną sieć komputerową
C. prywatną sieć komputerową
D. miejską sieć komputerową
Skrót WAN oznacza Wide Area Network, co w tłumaczeniu na polski oznacza rozległą sieć komputerową. WAN to typ sieci, który łączy komputery i urządzenia w dużym zasięgu geograficznym, obejmującym miasta, regiony, a nawet kraje. Zastosowanie WAN jest powszechne w dużych organizacjach oraz korporacjach, które potrzebują komunikować się między oddziałami rozrzuconymi na dużym obszarze. Przykłady zastosowania WAN obejmują sieci bankowe, które łączą różne placówki, oraz systemy informatyczne w przedsiębiorstwach międzynarodowych. W kontekście standardów, WAN zazwyczaj korzysta z protokołów takich jak MPLS (Multi-Protocol Label Switching) i Frame Relay, które zapewniają efektywną transmisję danych na dużą skalę. Dobrą praktyką w zarządzaniu WAN jest wykorzystanie rozwiązań typu SD-WAN (Software-Defined Wide Area Network), które umożliwiają lepsze zarządzanie ruchem sieciowym oraz zwiększają bezpieczeństwo połączeń. Zrozumienie koncepcji WAN jest kluczowe dla projektowania nowoczesnych, rozproszonych architektur sieciowych, które odpowiadają na potrzeby globalnych organizacji.

Pytanie 27

Urządzenie sieciowe, które umożliwia dostęp do zasobów w sieci lokalnej innym urządzeniom wyposażonym w bezprzewodowe karty sieciowe, to

A. przełącznik
B. koncentrator
C. panel krosowy
D. punkt dostępu
Punkt dostępu, czyli access point, to mega ważny element każdej sieci bezprzewodowej. Dzięki niemu urządzenia z bezprzewodowymi kartami mogą się łączyć z siecią lokalną. W praktyce, to taki centralny hub, gdzie wszyscy klienci mogą znaleźć dostęp do różnych zasobów w sieci, jak Internet czy drukarki. Z mojego doświadczenia, punkty dostępu świetnie sprawdzają się w biurach, szkołach i miejscach publicznych, gdzie sporo osób potrzebuje dostępu do sieci naraz. Standardy jak IEEE 802.11 mówią o tym, jak te punkty powinny działać i jakie protokoły komunikacyjne wykorzystują. Żeby dobrze zamontować punkty dostępu, trzeba je odpowiednio rozmieszczać, tak by zminimalizować martwe strefy i mieć mocny sygnał, co jest istotne dla wydajności naszej sieci bezprzewodowej.

Pytanie 28

Do jakiej warstwy modelu ISO/OSI odnosi się segmentacja danych, komunikacja w trybie połączeniowym z użyciem protokołu TCP oraz komunikacja w trybie bezpołączeniowym z zastosowaniem protokołu UDP?

A. Transportowej
B. Łącza danych
C. Sieciowej
D. Fizycznej
Wybór warstwy sieciowej jako odpowiedzi na pytanie o segmentowanie danych oraz komunikację w trybie połączeniowym i bezpołączeniowym wskazuje na nieporozumienie dotyczące ról poszczególnych warstw modelu ISO/OSI. Warstwa sieciowa koncentruje się głównie na trasowaniu pakietów danych oraz adresowaniu logicznym, co oznacza, że jest odpowiedzialna za przesyłanie danych pomiędzy różnymi sieciami, a nie za ich segmentację. Protokół IP, który działa na poziomie warstwy sieciowej, zajmuje się kierowaniem pakietów, ale nie zapewnia mechanizmów kontroli błędów ani segmentacji danych, co jest kluczowe w warstwie transportowej. Wybór fizycznej warstwy również nie ma uzasadnienia, ponieważ ta warstwa dotyczy przesyłania sygnałów przez medium fizyczne, a nie zarządzania komunikacją pomiędzy aplikacjami. Z kolei warstwa łącza danych odpowiada za niezawodne przesyłanie ramek danych na lokalnych sieciach, ale nie obejmuje aspektów segmentowania danych ani protokołów TCP i UDP. Typowe błędy myślowe, które prowadzą do takich niepoprawnych odpowiedzi, to mylenie funkcji zarządzania połączeniami i segmentacji danych z funkcjami routingowymi i adresowymi, co może być wynikiem braku zrozumienia pełnej struktury modelu ISO/OSI oraz zasad jego działania.

Pytanie 29

Aplikacja systemowa Linux, której celem jest kontrolowanie ruchu sieciowego zarówno przychodzącego, jak i wychodzącego z określonego urządzenia, to

A. iptables
B. mtr
C. ifconfig
D. chkconfig
Iptables to narzędzie w systemach Linux, które służy do zarządzania regułami filtrowania ruchu sieciowego. Umożliwia administratorom definiowanie, które pakiety danych mają być akceptowane, a które odrzucane, co jest kluczowe dla zapewnienia bezpieczeństwa i kontroli nad ruchem sieciowym. Iptables działa na poziomie jądra systemu, co pozwala na efektywne przetwarzanie pakietów przed dotarciem do aplikacji. Przykładowo, można użyć iptables do zablokowania dostępu do określonych portów, co uniemożliwi nieautoryzowanym użytkownikom komunikację z serwerem. W praktyce, dobra konfiguracja iptables jest podstawą zabezpieczeń systemów Linux i zgodności z normami bezpieczeństwa, takimi jak ISO 27001. Należy pamiętać, że iptables obsługuje różne tabele i łańcuchy, co pozwala na zaawansowane manipulacje ruchem, takie jak NAT (Network Address Translation) czy filtracja w zależności od stanu połączenia.

Pytanie 30

Z powodu uszkodzenia kabla typu skrętka zanikło połączenie pomiędzy przełącznikiem a komputerem stacjonarnym. Jakie urządzenie pomiarowe powinno zostać wykorzystane do identyfikacji i naprawy usterki, aby nie było konieczne wymienianie całego kabla?

A. Spektrum analizer.
B. Wielofunkcyjny miernik.
C. Reflektometr TDR
D. Urządzenie do pomiaru mocy.
Reflektometr TDR (Time Domain Reflectometer) to urządzenie, które pozwala na lokalizację uszkodzeń w kablach, w tym w kablach typu skrętka. Działa na zasadzie wysyłania impulsów elektrycznych wzdłuż kabla i analizy echa tych impulsów, które powracają po napotkaniu na różne impedancje, takie jak uszkodzenia lub połączenia. Dzięki temu można dokładnie zlokalizować miejsce awarii, co pozwala na szybkie podjęcie działań naprawczych bez konieczności wymiany całego kabla. W praktyce, reflektometr TDR jest niezwykle przydatny w sytuacjach, gdy występują problemy z połączeniem, ponieważ oszczędza czas i koszty związane z wymianą infrastruktury. Tego rodzaju urządzenia są standardem w branży telekomunikacyjnej i IT, gdzie utrzymanie ciągłości działania sieci jest kluczowe. Użycie TDR jest zgodne z dobrymi praktykami w zakresie diagnostyki sieci i pozwala na efektywne zarządzanie zasobami. Warto również zauważyć, że reflektometry TDR są w stanie dostarczyć dodatkowe informacje o kondycji kabla, co może pomóc w zapobieganiu przyszłym awariom.

Pytanie 31

Jakie protokoły są częścią warstwy transportowej w modelu ISO/OSI?

A. ARP oraz RARP (Address Resolution Protocol i Reverse Address Resolution Protocol)
B. IP oraz IPX (Internet Protocol i Internetwork Packet Exchange)
C. ICMP oraz RIP (Internet Control Message Protocol i Routing Information Protocol)
D. TCP oraz UDP (Transmission Control Protocol i User Datagram Protocol)
TCP (Transmission Control Protocol) oraz UDP (User Datagram Protocol) to dwa kluczowe protokoły warstwy transportowej w modelu ISO/OSI. TCP zapewnia niezawodną, połączeniową komunikację, co oznacza, że gwarantuje dostarczenie danych i ich kolejność. Jest powszechnie używany w zastosowaniach wymagających wysokiej niezawodności, jak przeglądarki internetowe, e-maile czy przesyłanie plików. Przykładem wykorzystania TCP jest protokół HTTP, który jest fundamentem przeglądania sieci. Z kolei UDP, będący protokołem bezpołączeniowym, pozwala na szybszą transmisję danych, co sprawia, że jest idealny do aplikacji, które mogą tolerować utratę pakietów, takich jak przesyłanie strumieniowe audio i wideo czy gry online. Oba protokoły są zgodne z dobrą praktyką projektowania systemów, gdyż są dostosowane do różnych potrzeb aplikacji, co sprawia, że warstwa transportowa jest elastyczna i wydajna.

Pytanie 32

Aplikacja, która pozwala na przechwytywanie pakietów oraz analizowanie aktywności w sieci, to

A. firewall
B. skaner sieci
C. oprogramowanie antywirusowe
D. skaner Wifi
Skaner sieci to narzędzie, które umożliwia przechwytywanie pakietów i monitorowanie ruchu w sieci, co czyni je niezwykle przydatnym w zarządzaniu bezpieczeństwem i diagnostyką sieci. Działa na zasadzie analizy transmisji danych, co pozwala na identyfikację potencjalnych zagrożeń, wykrywanie nieautoryzowanych urządzeń w sieci oraz monitorowanie wydajności. Przykładem zastosowania skanera sieci jest analiza ruchu w celu identyfikacji ataków DDoS, co pozwala na szybką reakcję i wdrożenie środków zaradczych. Dobre praktyki w branży rekomendują regularne korzystanie z takich narzędzi w celu zapewnienia integralności i bezpieczeństwa infrastruktury sieciowej. Skanery sieci są również kluczowe w procesie audytu bezpieczeństwa, gdzie umożliwiają ocenę podatności systemów oraz działanie zgodnie z normami takimi jak ISO 27001, które wskazują na potrzebę skutecznego monitorowania i zarządzania ryzykiem. Znalezienie odpowiedniego skanera sieciowego, który spełnia wymogi organizacyjne i techniczne, jest istotne dla efektywnej ochrony przed zagrożeniami.

Pytanie 33

Jak nazywa się topologia fizyczna, w której wszystkie urządzenia sieciowe są połączone z jednym centralnym urządzeniem?

A. drzewa
B. siatki
C. gwiazdy
D. pierścienia
Topologia gwiazdy to jedna z najpopularniejszych architektur sieciowych, w której wszystkie urządzenia, takie jak komputery i drukarki, są połączone z centralnym urządzeniem, zazwyczaj przełącznikiem lub hubem. Taki układ zapewnia łatwą konserwację i diagnozowanie problemów, gdyż ewentualne awarie jednego z węzłów nie wpływają na funkcjonowanie pozostałych urządzeń. Przykładem zastosowania topologii gwiazdy może być lokalna sieć komputerowa w biurze, gdzie wszystkie stacje robocze są podłączone do jednego przełącznika. Standardy takie jak Ethernet oraz protokoły sieciowe, takie jak TCP/IP, zostały zaprojektowane z myślą o pracy w takich strukturach. Zastosowanie topologii gwiazdy ułatwia także skalowanie sieci – wystarczy dodać nowe urządzenie do centralnego przełącznika, co czyni ją elastyczną i odpowiednią dla rozwijających się środowisk biurowych.

Pytanie 34

Gdy komputer K1 wykonuje polecenie ping, otrzymuje odpowiedź od komputera K2. Natomiast po wysłaniu polecenia ping w odwrotnym kierunku komputer K2 nie dostaje odpowiedzi od K1. Oba urządzenia działają na systemie Windows 7 lub 10. Jaka może być przyczyna tej sytuacji?

A. Zapora sieciowa jest wyłączona na komputerach K1 oraz K2.
B. Karta sieciowa komputera K2 jest uszkodzona.
C. Ustawienia domyślne zapory na komputerze K1 są skonfigurowane.
D. Nieprawidłowa konfiguracja kart sieciowych w komputerach K1 i K2.
Odpowiedź wskazująca na skonfigurowane domyślne ustawienia zapory na komputerze K1 jest prawidłowa, ponieważ zapory sieciowe w systemach operacyjnych, takich jak Windows 7 i 10, mają na celu zabezpieczenie systemu przed nieautoryzowanym dostępem. W przypadku, gdy zapora na komputerze K1 jest skonfigurowana w sposób blokujący przychodzące pakiety ICMP (protokół używany przez polecenie ping), komputer K2 nie będzie w stanie uzyskać odpowiedzi na wysyłane żądania ping. Przykładem praktycznego zastosowania tej wiedzy jest sytuacja, gdy administratorzy sieci muszą zarządzać regułami zapory, aby umożliwić określone typy komunikacji w sieci. Dobre praktyki sugerują, aby zapora była odpowiednio skonfigurowana, aby zezwalać na komunikację o krytycznym znaczeniu, jednocześnie blokując nieautoryzowane połączenia. Warto również regularnie monitorować i aktualizować ustawienia zapory w celu dostosowania do zmieniających się potrzeb sieci oraz zagrożeń.

Pytanie 35

Jaki prefiks jest używany w adresie autokonfiguracji IPv6 w sieci LAN?

A. 24
B. 64
C. 32
D. 128
Prefiks o długości 64 bitów w adresie autokonfiguracji IPv6 w sieci LAN jest standardem określonym w protokole IPv6. Długość ta jest zgodna z zaleceniami organizacji IETF, które wskazują, że dla efektywnej autokonfiguracji interfejsów w sieci lokalnej, należy stosować prefiks /64. Taki prefiks zapewnia odpowiednią ilość adresów IPv6, co jest kluczowe w kontekście dużej liczby urządzeń podłączonych do sieci. Dzięki zastosowaniu prefiksu 64, sieci lokalne mogą łatwo i automatycznie konfigurować swoje adresy IP, co jest szczególnie istotne w przypadku dynamicznych środowisk, takich jak sieci domowe lub biurowe. Praktyczne zastosowanie tej koncepcji przejawia się w automatycznej konfiguracji adresów przez protokół SLAAC (Stateless Address Autoconfiguration), który umożliwia urządzeniom generowanie unikalnych adresów na podstawie prefiksu i ich identyfikatorów MAC. Takie rozwiązanie znacząco upraszcza zarządzanie adresami IP w sieciach IPv6.

Pytanie 36

W biurze rachunkowym potrzebne jest skonfigurowanie punktu dostępu oraz przygotowanie i podłączenie do sieci bezprzewodowej trzech komputerów oraz drukarki z WiFi. Koszt usługi konfiguracji poszczególnych elementów sieci wynosi 50 zł za każdy komputer, 50 zł za drukarkę i 100 zł za punkt dostępu. Jaki będzie całkowity wydatek związany z tymi pracami serwisowymi?

A. 100 zł
B. 200 zł
C. 300 zł
D. 250 zł
Cały koszt serwisu wynosi 300 zł. To wynik dodania kosztów za konfigurację trzech komputerów, drukarki i punktu dostępu. Koszt skonfigurowania jednego komputera to 50 zł, więc jeśli mamy trzy, to wychodzi 150 zł (50 zł razy 3). Do tego jeszcze 50 zł za drukarkę i 100 zł za punkt dostępu. Jak to zsumujesz, to dostaniesz 150 zł + 50 zł + 100 zł, co daje 300 zł. To jest ważne, bo pokazuje, jak kluczowe jest dobre planowanie budżetu w usługach IT. Z mojego doświadczenia, firmy często muszą uważnie oceniać koszty przy wprowadzaniu nowych technologii, bo inaczej mogą się zdziwić. Dlatego dobrze jest przeanalizować wszystko dokładnie przed startem projektu, żeby lepiej nią zarządzać i nie mieć niespodzianek z wydatkami w przyszłości.

Pytanie 37

Protokół SNMP (Simple Network Management Protocol) służy do

A. odbierania wiadomości e-mail
B. przydzielania adresów IP oraz adresu bramy i serwera DNS
C. konfiguracji urządzeń sieciowych oraz zbierania danych na ich temat
D. szyfrowania połączeń terminalowych z zdalnymi komputerami
Protokół SNMP, czyli Simple Network Management Protocol, to naprawdę ważne narzędzie, jeśli chodzi o zarządzanie i monitorowanie urządzeń w sieci. Dzięki niemu, administratorzy mogą zbierać wszystkie ważne info o stanie czy wydajności różnych urządzeń, jak routery czy serwery. Ma to ogromne znaczenie, żeby sieć działała sprawnie. Na przykład, SNMP może pomóc w monitorowaniu obciążenia procesora lub pamięci. A to z kolei pozwala szybko zlokalizować problemy i podjąć odpowiednie działania. SNMP działa na zasadzie klient-serwer, gdzie agent na urządzeniu zbiera dane i przesyła je do systemu. To wszystko sprawia, że wiele procesów, jak aktualizacja konfiguracji, można zautomatyzować. Protokół ten jest zgodny z normami IETF, co również wspiera dobre praktyki w zarządzaniu sieciami oraz sprawia, że różne urządzenia od różnych producentów mogą ze sobą współpracować. To czyni SNMP naprawdę kluczowym elementem w nowoczesnych infrastrukturach IT w firmach.

Pytanie 38

Na podstawie tabeli ustal, ile kabli ekranowanych typu skrętka należy poprowadzić w listwie PCV typu LN 25x16.

Typ listwyPrzewody
Przekrój czynny [mm²]Ø 5,5 mm, np. FTPØ 7,2 mm, np. WDX pek 75-1,0/4,8Ø 10,6 mm, np. YDY 3 x 2,5
LN 20X1014021
LN 16X16185311
LN 25X16305532
LN 35X10.123043
LN 35X10.2115 + 11541/1
LN 40X16.1505963
LN 40X16.2245 + 24583/31/1

A. 4 kable.
B. 3 kable.
C. 2 kable.
D. 5 kabli.
Odpowiedź "5 kabli" jest prawidłowa, ponieważ listwa PCV typu LN 25x16 została zaprojektowana tak, aby mogła pomieścić pięć kabli ekranowanych typu skrętka o przekroju 0,55 mm. Przy instalacji kabli należy zwrócić uwagę na zalecane normy, które podkreślają znaczenie odpowiedniej ilości kabli w kontekście uniknięcia zakłóceń elektromagnetycznych oraz optymalizacji przepływu danych. W praktyce, stosując się do tych wytycznych, zapewniamy efektywne działanie systemów telekomunikacyjnych oraz minimalizujemy ryzyko awarii związanych z przeciążeniem instalacji. Warto również pamiętać, że odpowiednia organizacja kabli w listwie wpływa na ich trwałość i łatwość w przyszłych modyfikacjach oraz konserwacji. Na przykład, przy instalacji w biurach, gdzie wiele urządzeń wymaga dostępu do sygnału, prawidłowe prowadzenie kabli ma kluczowe znaczenie dla stabilności połączeń sieciowych.

Pytanie 39

Oblicz całkowity koszt kabla UTP Cat 6, który posłuży do połączenia 5 punktów abonenckich z punktem dystrybucyjnym, wiedząc, że średnia odległość między punktem abonenckim a punktem dystrybucyjnym wynosi 8 m, a cena brutto 1 m kabla to 1 zł. W obliczeniach należy uwzględnić dodatkowe 2 m kabla na każdy punkt abonencki.

A. 40 zł
B. 50 zł
C. 32 zł
D. 45 zł
Koszt brutto kabla UTP Cat 6 dla pięciu punktów abonenckich można obliczyć, stosując się do określonych kroków. Najpierw obliczamy długość kabla potrzebną do połączenia punktów abonenckich z punktem dystrybucyjnym. Dla każdego z pięciu punktów abonenckich mamy średnią odległość 8 m. W związku z tym, całkowita długość kabla wynosi 5 punktów x 8 m = 40 m. Następnie dodajemy zapas 2 m dla każdego punktu abonenckiego, co daje dodatkowe 5 punktów x 2 m = 10 m. Sumując te wartości, otrzymujemy całkowitą długość kabla wynoszącą 40 m + 10 m = 50 m. Cena za 1 m kabla wynosi 1 zł, więc koszt brutto 50 m kabla to 50 zł. Takie podejście uwzględnia nieprzewidziane okoliczności, co jest zgodne z dobrymi praktykami w zakresie instalacji kablowych, gdzie zawsze warto mieć zapas materiałów, aby zminimalizować ryzyko błędów podczas montażu.

Pytanie 40

Aby zmierzyć tłumienie łącza światłowodowego w dwóch zakresach długości fali 1310 nm oraz 1550 nm, powinno się wykorzystać

A. miernik mocy optycznej
B. tester UTP
C. rejestrator cyfrowy
D. reflektometr TDR
Miernik mocy optycznej jest urządzeniem wykorzystywanym do pomiarów intensywności światła w systemach światłowodowych, co czyni go idealnym narzędziem do oceny tłumienia łącza. Tłumienie to strata sygnału, która może wystąpić w wyniku absorpcji, dyspersji czy odbić na złączach. Dla oceny wydajności łącza światłowodowego w standardowych oknach transmisyjnych 1310 nm i 1550 nm, miernik mocy optycznej umożliwia precyzyjne określenie poziomu mocy optycznej, co jest kluczowe dla identyfikacji ewentualnych problemów w infrastrukturze. W praktyce, pomiar mocy na obu długościach fal pozwala na weryfikację zgodności z normami branżowymi, takimi jak ISO/IEC 11801, które określają maksymalne poziomy tłumienia dla różnych zastosowań. Regularne pomiary z użyciem miernika mocy optycznej są niezbędne dla zapewnienia optymalnej wydajności sieci światłowodowych, co przekłada się na stabilność i jakość przesyłanego sygnału.